

JOLATA Making the Network for you

Enable customers to optimally tune their network performance with real time information and proactive recommendations.

Big Data Analytics Technology

 Big data analytics can be to provide a closed loop unified solution for customers, that will:

- ingest -- see every node, every packet
- digest -- analyze/report findings, and most importantly
- suggest -- recommend actions to improve performance

Real-Time Network Performance Monitoring

Features:

End-to-end monitoring of delay, jitter, throughput and loss *embedded* into the network elements and user equipment. There is *no need for additional external probes*.

Metadata creation for up to every packet at every monitoring point, as desired (filtered), and then forwarded to the Analytics engine. Metadata aggregated, correlated and analyzed by Jolata appliances at the Master Head End or MSC.

Wirespeed processing rates of up to 2x100GbE per analytics appliance; effective traffic analysis of 800Gbps.

Link, Segment and Path statistics from User to Core. Upstream and downstream, one way or roundtrip.

Heatmap and chart visualizations; Threshold crossing alerts.

Visibility with zoom window capability to view delays of specific packets or bursts.

Flexible queries to analyze statistics per node, hop, equipment type, geography, protocol, subscriber, time of day.

Managed within higher level EMS/NMS, or operator's OSS

Synchronized by IEEE1588

Mobile Service Provider Problem Statement

Wireless Service Providers (*and backhaul providers*) need to monitor network performance continually in order to meet required SLAs and to understand Subscriber Quality of Experience (QoE).

Network delay, jitter throughput and loss are good indicators of network performance. Network delay, jitter and loss occur due to:

- Queuing in network hops
- Varying performance of key elements due to software upgrades, etc.

End-to-end solution embedded in the routers that enables continuous monitoring of delay, jitter, throughput and loss wherever metadata-enabled routers (or external probes) are present.

Analytic-driven actions to improve network are prescribed or taken as per user-defined heuristics.

10 eNB's per Access Ring;
10 Access Rings per Aggregation Ring
8 Aggregation Rings per Core Ring
<u>4 Backbone Nodes (e.g., 4 OMC's)</u>
3556 Observation Points

3200 eNB's

270Mbps sustained, total (upstream + downstream)

- 5 observation points per packet
- 40% average sustained load, network-wide
- 1.73 Tbps!

432Gbps per backbone node (OMC)

For every Packet at every observation point, key-value metadata is created with a:

"fingerprint", e.g., a unique identifier

time-stamped - when the packet was there

port-stamped - where the packet was observed

appended with a user selectable "n-tuple", e.g., IP SA/DA, Protocol, Source/Dest Port

Metadata is aggregated, compressed and sent to analytics server for processing:

1%-2% overhead for metadata

Packet Analysis is performed:

Fingerprint matching to develop end to end path, throughput, delay, jitter and loss statistics *per packet* Flow Statistics calculated and stored into the database

Per node, traffic type, customer based on n-tuple filters

JOLATA

🚰 🛛 Eric B. 🖌 🛛 0

0

Timestamp accuracy depends upon the 1588v2 distribution network and clock recovery algorithm and especially so when the underlying network is PTP unaware (still, most of the cases today):

- Determine timestamp accuracy using 1588v2 Packets as the probe packets
 - Sync Messages from the GM are referenced directly to GPS with Timestamp accuracy to +/-50ns or better
 - HW-Timestamp Delay Responses have similar accuracy and stability though they are timed upon receipt
 - Delay request packets can also be used when T3 is inserted and where the BC and/or OC clock recovery algorithm is stable & accurate

Desired result:

Stable floors for each packet type regardless of loading on left or right side network segments

Timestamp Accuracy – 1588v2 Results - I

ITU G.8261 Traffic Model 2; Modified Test Case 13 (10 minute total duration) Synchronization with open source PTPD software setting linux OS time:

Timestamp accuracy: 60us wander, jitter is relatively small

=> Unacceptable for monitoring

Timestamp Accuracy – 1588v2 Results - II

ITU G.8261 Traffic Model 2; Modified Test Case 13 (20 minute total duration) Synchronization with dedicated HW PCIe Card w/TCXO:

Timestamp accuracy: 28us wander, jitter is relatively small

=> Unacceptable for monitoring

Timestamp Accuracy – 1588v2 Results - III

Difference between the capture card timestamp and the PTP timestamp

ITU G.8261 Traffic Model 2; Modified Test Case 13 (20 minute total duration) Synchronization with dedicated HW w/TCXO:

Timestamp accuracy: 25us wander, +/- 30us jitter is very large

=> Unacceptable for monitoring

Timestamp Accuracy – 1588v2 Results - IV

ITU G.8261 Traffic Model 2; Modified Test Case 13 (20 minute total duration) Synchronization with dedicated Router BC w/OCXO:

Timestamp accuracy: <100ns wander, <500ns jitter

=> Acceptable for monitoring

Timestamp Accuracy – 1588v2 Results - V

ITU G.8261 Traffic Model 2; Modified Test Case 13 (20 minute total duration) Synchronization with dedicated Router BC w/OCXO:

Timestamp accuracy: <100ns wander, <500ns jitter

=> Acceptable for monitoring

Wireless Service Providers, Backhaul Operators and Data Centers are adopting analytics to optimize their network performance and quality of service

Network scales are thousands of nodes and Terabits per second of data

Sophisticated big data techniques scale to provide real-time network monitoring and analytics of key performance indicators end-to-end and hop-by-hop including:

Throughput

Delay

Jitter

Loss

Timestamp accuracy depends upon the 1588v2 distribution network and clock recovery algorithm and especially so when the underlying network is PTP unaware:

PTP packets can be used as the probe packets (GPS-based GM packets preferred)

Boundary Clocks improve overall performance

Your results may vary:

1588v2 clock recovery stability is essential to accurate analytics

