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ABSTRACT 

A linear drift in frequency is an important element in most 
stochastic models of oscillator performance. Quartz crystal 
oscillators often have drifts in excess of a part in ten to 
the tenth power per day. Even commercial cesium beam devices 
often show drifts of a few parts in ten to the thirteenth per 
year. There are many ways to estimate the drift rates from 
data samples (e.g., regress the phase on a quadratic; regress 
the frequency on a linear; compute the simple mean of the 
first difference of frequency; use Kalman filters with a 
drift term as one element in the state vector; and others). 
Although most of these estimators are unbiased, they vary in 
efficiency (i.e., confidence intervals). Further, the esti- 
mation of confidence intervals using the standard analysis 
of variance (typically associated with the specific estima- 
tion technique) can give amazingly optimistic results. The 
source of these problems is not an error in, say, the re- 
gressions techniques, but rather the problems arise from 
correlations within the residuals. That is, the oscillator 
model is often not consistent with constraints on the analy- 
sis technique or, in other words, some specific analysis 
techniques are often inappropriate for the task at hand. 

The appropriateness of a specific analysis technique is crit- 
ically dependent on the oscillator model and can often be 
checked with a simple "whiteness" test on the residuals. 
Following a brief review of linear regression techniques, 
the paper provides guidelines for appropriate drift estima- 
tion for various oscillator models, including estimation of 
realistic confidence intervals for the drift. 

I. INTRODUCTION 

Almost all oscillators display a superposition of random and deterministic 
variations in frequency and phase. The most typical model used isill: 

X(t) = a + b-t + Dr*t2/2 + 4(t) (1) * 

where X(t) is the time (phase) error of the oscillator (or clock) relatl?e to 
some standard; a, b, and Dr are constants for the particular clock; and q(t) is 
the random part. X(t) is a random variable by virtue of its dependence on 4(t). 

* See Appendix Note # 36 
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Even though one cannot predict future values of X(t) exactly, there are often 
significant autocorrelations within the random parts of the model. These cor- 
relations allow forecasts which can significantly reduce clock errors. Errors 
in each element of the model (Eq. 1) contribute their own uncertainties to the 
prediction. These time uncertainties depend on the duration of the forecast 
interval, 'c, as shown below in Table 1: 

TABLE 1. GROWTH OF TIME ERRORS 

MODEL ELEMENT CLOCK 
NAME PARAMETER 

RMS TIME 
ERROR 

Initial Time Error a Constant 

Initial Freq Error b - 'I 

Frequency Drift 

Random Variations 

Dr 

4J(t) 

- T2 

_ ,3/h 

*The growth of time uncertainties due to the random component 
can have various time dependencies. The three-halves power-;az(t)' 
shown here is a "worst case" model.[21 

One of the most significant points provided by Table 1 is that eventually, the 
linear drift term in the model over-powers all other uncertainties for suffi- 
ciently long forecast intervals! While one can certainly measure (i.e., esti- 
mate) the drift coefficient, Dr, and make corrections, there must always remain 
some uncertainty in the value used. That is, the effect of a drift correction 
based on a measurement of. Dr, is to reduce (hopefully!) the magnitude of the 
drift error, but not remove it. Thus, even with drift corrections, the drift 
term eventually dominates all time uncertainties in the model. 

As with any random process, one wants not only the point estimate of a para- 
meter, but one also wants the confidence interval. For example, one might be 
happy to know that a particular value (e.g., clock time error) can be estimated 
without bias, he may still want to know how large an error range he should 
expect. Clearly, an error in the drift estimate (see Eq. 1) leads directly to 
a time error and hence the drift confidence interval leads directly to a confi- 
dence interval for the forecast time. 

II. LEAST SQUARES REGRESSION OF PHASE ON A QUADRATIC 

A conventional least squares regression of oscillator phase data on a quadratic 
function reveals a great deal about the general problems. A slight modifica- 
tion of Eq. 1 provides a conventional model used in regression analysis[3]: 

X(t) = a + bet + cot2 + Q(t) (2) 
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where c = Dr/2. In regression analysis, it is customary to use the symbol “Y” 
as the dependent variable and “X” as the independent variable. This is in con- 
flict with usage in time and frequency where “X” and “Y” (time error and fre- 
quency error, respectively) are dependent on a coarse measure of time, t, the 
independent variable. This paper will follow the time and frequency custom even 
though this may cause some confusion in the use of regression analysis text books. 

The model given by Eq. 2 is complete if the random component, $(t), is a white 
noise (i.e., random, uncorrelated, normally distributed, zero mean, and finite 
variance). 

III. EXAMPLE 

One must emphasize here that ALL results regarding parameter error magnitudes 
and their distributions are totally dependent on the adequacy of the model. A 
primary source of errors is often autocorrelation of the residuals (contrary to 
the explicit model assumptions). While simple visual inspection of the resi- 
duals is often suf f iclent to recognfze the autocorrelation problem, ‘*whiteness 
tests” can be more objective and precise. 

This section analyzes a set of 94 hourly values of the time difference between 
two oscillators. Figure 1 is a plot of the time difference (measured in micro- 
seconds) between the two oscillators. The general curve of the data along with 
the general expectation of frequency drift in crystal oscillators leads one to 
try the quadratic behavior (Model 111; models #2 and #3 discussed below). While 
it is not common to find white phase noise on oscillators at levels indicated on 
the plot, that assumption will be made temporarily. The results of the regres- 
sion are summarized in a conventional Analysis of Variance, Table 2. 

TABLE 2. ANALYSIS OF VARIANCE QUADRATIC FIT TO PEASE 
(Units: seconds squared) 

SOURCE SUM OF SQUARES 

Regression 2.323-g 

d.f. 

3 

MEAN SQUARE 

Residuals 4.26E-12 91 4.68E-14 

Total 2.3293-g 94 2.483-11 

Coefficient of simple determination 0.99713 

Parameters : 

a^ = l.l0795E-5 (seconds) t-ratio = 161.98 

b  ̂ = 1.4034E-10 (sec/sec) t-ratio - 152.02 

c  ̂ = -3.7534E-16 (sec/sec2) t-ratio = -143.51 
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lb 2; = -7.5073-16 (about -6.5E-11 per day) 
Std. Error = 0.052313-16 

(Note: â  is the value estimated for the a-parameter, etc.) 

The Analysis of Variance, Table 2, above suggests an impressive fit of the data 
to a quadratic function, with 99.71% of the variation5 in the data “explained” 
by the regression. The estimated drift coefficient, Dr, is -7.5073-16 (sec/sec2) 
or about -6.5E-11 per day --- 143 times the indicated standard error of the 
estimate. However, Figure 2, a plot of the residuals, reveals significant auto- 
correlations even visually and without sensitive tests. (The autocorrelations 
can be recognized by the essentially smooth variations in the plot. See Fig. 5 
as an example of a more nearly white data set .) It is true that the regression 
reduced the peak-to-peak deviations from about 18 microseconds to less than one 
microsecond. It is also true that the drift rate is an unbiased estimate of the 
actual drift rate, but the model assumptions are NOT consistent with the auto- 
correlation visible in Fig. 2. This means that the confidence intervals for the 
parameters are not reliable. In fact, the analysis to follow will show just how 
extremely optimistic these intervals really are. 

At this point we can consider at least two other simple analysis schemes which 
might provide more realistic estimates of the drift rate and its variance. Each 
of the two analysis schemes has its own implicit model; they are: 

(2) Regress the beat frequency on a straight line. 
(Model: Linear frequency drift and white FM.) 

(3) Remove a simple average from the second difference of the phase. 
(Model: Linear frequency drift and random walk FM. ) 

Continuing with scheme 2, above, the (average) frequency, y(t), is the first 
difference of the phase data divided by the time interval between successive 
data points. The regression model is: 

%t> = b + Dr*t + s(t) (3) * 

where E(t) = [+(t + -co) - +(t)l/To. Following standard regression procedures as 
before, the results are summarized in another Analysis of Variance Table, Table 
3. 

TABLE 3. ANALYSIS OF VARIANCE LINEAR FIT TO FREQUENCY 
(Units: sec2/sec2) 

SOURCE SUM OF SQUARES d.f, MEAN SQUARE 

Regression 1.879E-18 2 

Residuals 2.084E-20 91 2.298-22 

Total 1.899E-18 93 2.042E-20 

(Note: Taking the first differences of the original data set reduces the 
number of data points from 94 to 93.) 

* See Appendix Note # 37 
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Coefficient of simple determination 0.9605 

Parameters : 

b^ - l.O49E-10 (sec/sec) t-ratio = 3.32 

Er = -7.635E-16 (sec/sec2) t-ratio = -4.70 
Std. Error = 0.16243-16 (sec/sec2) 

While the drift rate estimates for the two regressions are comparable in value 
(-7.5073-16 and -7.635%16), the standard errors of the drift estimates have 
gone from 0.0523-16 to O.l62E-16 (a factor of 3). The linear regression’s coef- 
ficient of simple determination is 96.05% compared to 99.17% for the quadratic 
fit. Figure 3 shows the residuals from the linear fit and they appear more 
nearly white. A cumulative periodogram[4] is a mOre objective test of white- 
ness , however. The periodogram, Fig. 4, does not find the residuals acceptable 
at all. 

IV. DRIFT AND RANDOM WALK FM 

In the absence of noise, 
Dr*ro2. 

the second difference of the phase would be a constant, 
If one assumes that the second difference of the noise part is white, 

then one has the classic problem of estimating a constant (the drift term), in 
the presence of white noise (the second difference of the phase noise). Of 
course, the optimum estimate of the drift term is just the simple mean of the 
second difference divided by ro2. The results are summarized below, Table 4: 

TABLE 4. SIMPLE MEAN OF SECOND DIFFERENCE PEASE 

Simple mean & = -6.709E-16 t-ratio - -2.45 

Degrees of Freedom - 91 

Standard Deviation s  ̂ = 26.2405E-16 

Standard Deviation of the Mean = 2.73583-16 

Figure 5 shows the second difference of the phase after the mean was subtracted. 
Visually, the data appear reasonably white, and the periodogram, Fig. 6, cannot 
reject the null hypothesis of whiteness. Now the standard error of the drift 
term is 2.735E-16, 52 times larger than that computed for the quadratic fit! 
Indeed, the estimated drift term is only 2.45 times its standard error. 

v. SUMMARY OF TESTS 

The analyses reported above were all performed on a single data set. In order 
to verify any conclusions, all three analyses used above were performed a total 
of four times on four different data sets from the same pair of oscillators. 
Table 5 summarizes the results: 
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TABLE 5. SUMMARY OF DRIFT ESTIMATES 
(Units of l.E-16 sec/sec2) 

ESTIMATION 
PROCEDURE 
6 MODEL 

Quad Fit 
(White PM 
and Drift) 

COMPUTED 
DRIFT STANDARD 

ESTIMATE ERROR 

-7.507 .0523 

-8.746 .0493 No 

-6.479 .0645 No 

-6.468 .0880 No 

PASS 
WHITENESS 

TESTS? 

No 

1st Difference 
Linear Fit 
(White FM 
and Drift) 

-7.635 .162 No 

-8.558 .206 No 

-6.443 .192 No 

-6.253 .295 No 

Second Difference 
Less Mean 
(Random Walk 
FM and Drift) 

-6.710 2.736 Yes 

-7.462 9.335 No 

-6.870 3.424 Yes 

-6.412 3.543 Yes 

One can calculate the sample means and variances of the drift estimates for each 
of the three procedures listed in Table 5, and compare these "external" estimates 
with those values listed in the table under "Computed Standard Error," the 
"internal" estimates. Of course the sample size is small and we do not expect 
high precision in the results, but some conclusions can be drawn. The compari- 
sons are shown in Table 6. 

It is clear that the quadratic fit to the data displays a very optimistic inter- 
nal estimate for the standard deviation of the drift rate. Other conclusions 
are not so clear cut, but still some things can be said. Considering Table 5, 
the "2nd Diff - Mean" residuals passed the whiteness test three times out of 
four. The external estimate of the drift standard deviation lies between the 
internal estimates based on the first and second differences. Since the oscil- 
lators under test were crystal oscillators, one expects flicker FM to be present 
at some level. One also expects the flicker FM behavior to lie between white FM 
and random walk FM. This may be the explanation of the observed standard devia- 
tions, noted in Table 6. 
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TABLE 6. STANDARD DEVIATIONS 

PROCEDURE 
(Model) 

Quad Fit (White PM) 

1st Diff - Lin 
(White FM) 

2nd Diff - Mean 
(Rand Wlk FM) 

EXTERNAL ESTIMATE INTERNAL ESTIMATE 
(Std. Dev. of Drift (RMS Computed Std. 
Estimates from Col. Dev. Col. 113, 
12, Table 5) Table 5) 

1.08 0.065 

1.08 0.203 

0.44 5.45 

VI. DISCUSSION 

In all three of the analysis procedures used above, more parameters than just 
the frequency drift rate were estimated. Indeed, this is generally the case. 
The estimated parameters included the drift rate, the variance of the random 
(white) noise component, and other parameters appropriate to the specific model 
(e.g., the initial frequency offset for the first two models). If these other 
parameters could be known precisely by some other means, then methods exist to 
exploit this knowledge and get even better estimates of the drift rate. The 
real problems, however, seem to require the estimate of several parameters in 
addition to the drift rate, and it is not appropriate to just ignore unknown 
model parameters. 

To this point, we have considered only three, rather ideal oscillator models, 
and seldom does one encounter such simplicity. Typical models for commercial 
cesium beam frequency standards include white FM, random walks FM, and frequency 
drift. Unfortunately, none of the three estimation routines discussed above are 
appropriate to such a model. This problem has been solved in some of the recent 
work of Jones and Tryon[5]s[6]. Their estimation routines are based on Kalman 
Filters and maximum likelihood estimators and these methods are appropriate for 
the more complex models. For details, the reader is referred to the works of 
Jones and Tryon. 

Still left untreated are the models which, in addition to drift and other noises, 
incorporate flicker noises , either in PM or FM or both. In principle, the 
methods of Jones and Tryon could be applied to Kalman Filters which incorporate 
empirical flicker modelsL7]. To the author's knowledge, however, no such analy- 
ses have been reported. 

VII. CONCLUSIONS 

There are two primary conclusions to be drawn: 

(1) The estimation of the linear frequency drift rates of oscillators 
and the inclusion of realistic confidence intervals for these 
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estimates are critically dependent on the adequacy of the model 
used and, hence the adequacy of the analysis procedures. 

(2) The estimation of the drift rate must be carried along with the 
estimation of any and all other. model parameters which are not 
known precisely from other considerations (e.g., initial fre- 
quency and time off sets, phase noise types, etc. ) 

More and more, scientists and engineers require clocks which can be relied on to 
maintain accuracy relative to some master clock. Not only is it important to 
know that on the average the clock runs well, but it is essential to have some 
measure of time imprecision as the clock ages. For example, the uncertainties 
might be expressed as, say,, 90% certain that the clock will be within 5 micro- 
seconds of the master two weeks after synchronization. Such measures are what 
statisticians call “interval estimates” (in contrast to point estimates) and 
their estimations require interval estimates of the clock’s model parameters. 
Clearly, the parameter estimation routines must be reliable and based on sound 
measurement practices. Some inappropriate estimation routines can be applied 
to clocks and oscillators and give dangerously optimistic forecasts of 
performance. 
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APPENDIX A 

REGRESSION ANALYSIS 
(Equally Spaced Data) 

We begin with the continuous model equation: 

X(t) - a + bet + c-t* + +(t) (Al) 

We assume that the data is in the form of discrete readings of the dependent 
variable X(t) at the regular intervals given by: 

t = nro 

Equation (Al) can then be written in the obvious form: 

X, - a + ~~ b*n + ro2 c-n* + +(nro) 

for n = 1, 2, 3 . . . . N. 

Next, we define the matrices: 

1 -1 N = 

1 1 1. 

1 2 4 

11 3 9 

1 1 1 ** 1 3 N 2 1 4. 4 9 N* 1. I. . I. w I. 

-[ T- 0 100 0 To 0 To2 0 1 

bn 
1 

(NT)‘X = -- TO !i! xn n 
1 

= T l 

Xl 
X2 

X3 

-II 
x = 

I. 

.I 

XN 

- 
N 

c XII 
1 

n 

I 

2 

= T* 

SX 

S nx 

S nnx 

(A*) 

(A31 
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where four quantities must be calculated from the data: 

SX - F %I snnx = T X, n2 
n=l n=l 

snx = y X,n S xx = F &-I2 
n=l n=l 

Define 

With these definitions, Eq. A3 can be rewritten in the matrix form: 

x = NTB + 4 --- (A4) 

and the coefficients, B, which minimize the squared errors are given by: 

a^ 

E =i 6 = 2 l ( N’N )-’ l ( N’X ) 

2 

(A5) 

The advantage of evenly spaced data for these regressions is that, with a bit of 
algebra, the matrix, ( N'N )'l, can be written down in closed form: 

( N’N )-’ = 

where 

A B C 

B D E 

C E F 

A = 3 [3 (N + 1) + 21 

B = -18 (2N + 1) 

c = 30 

I l l/G (A6) 

D = 12 (2N + 1) (8N + 11) / [(N + 1) (N + 2)] 

E = -180 / (N + 2) 

F= 180 / [(N + 1) (N + 2)1 
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and 

G = N (N - 1) (N - 2) 

Also, the inverse of T is just: 

1 0 0 

r -1 P [ 0 l/r, 0 0 0 1 l/T,2 

The complete solution for the regression parameters can be summarized as follows: 

There are four quantities which must calculate from the data: 

SX = F xn snnx - y X, n2 
n-l n-l 

snx m F Xnn S xx = y xn2 
n=l n=l 

for n = 1, 2, 3, . . . . N. Based on these four quantities, the regression param- 
eters are calculated from the seven following equations: 

A 

a = (A S, + ~~ B Snx + To2 G Snnx) / G 

G= (B Sx + TO D Snx + ~0~ E Snnx) / (G ToI 

h 
c= (CS, + f. E Snx + ~~~ F &xl / (G ~0 2, 

2 = (Sxx - a  ̂ S, - TO b  ̂ Snx - ~0~ c  ̂ Snnx) / (N - 3) 

&2 P 22 D / (G T,~) 

&2 = $2 F / (G ~~~~ 
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whefe the coefficients A, B, C, etc., are given by: 

A - 3 [3N (N + 1) + 21 

B = -18 (2N + 1) 

c - 30 

D = 12 (2~ + 1) (8~ + ii) / [(N + 1) (N + 211 

E = -180 / (N + 2) 

F = 180 / [(N + 1) (N + 2)] 

and 

G = N (N - 1) (N - 2). 

In matrix form, the error variance for forecast values is: 

Var (jik) = 2 [l + N& 

where Nk’ = [l no no] and ~~ no is the date for the forecast point, $. That 
is, no = N + K and K is the number of lags past the last data point at lag N. 
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APPENDIX B 

REGRESSIONS ON LINEAR AND CUBIC FUNCTIONS 

The matrixes (N'N)'l for the linear fit and cubic fit, which correspond to Eq. 
A6 in AppendixTare as follows: 

For the linear fit: 

A 
(N'N)'1 = 

B 

where 

A = 2 (2N + 1) 

B = -6 

c - 12 / (N + 1) 

and 

D = N (N - 1) 

For the cubic fit: 

(N'N)'l = 

where 

B 

7 
l/D 

C 

A B C D 

B E F G 

C F H I 

D G I J 

A = 8 (2N + 1) (N + N + 3) 

B = -20 (6N2 + 6N + 5) 

c = 120 (2N + 1) 

D '= -140 

1 
l/K 

E = 200 (6~4 + 27 ~3 + 42 N2 + 30 N + 11) / L 

F = -300 (N + 1) (3N + 5) (3N + 2) / L 

G = 280 (6N2 + 15N + 11) / L 
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H - 360 (2N + 1) (9N + 13) / L 

I - -4200 (N + 1) / L 

J - 2800 / L 

and 

K - N (N - 1) (N - 2) (N - 3) 

L = (N + 1) (N + 2) (N + 3). 

The restrictions on these equations are that the data is evenly spaced begin- 
ning with n - 1 to n - N, and no missing values. For error estimates (and their 
distributions) to be valid, the residuals must be random, uncorrelated, (i.e., 
white). 
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QUESTIONS AND ANSWERS 

MR. ALLAN: 

We have found the second difference drift estimator to be useful for 
the random walk FM process. One has to be careful when you apply it, 
because if you use overlapping second differences, for example, if 
you have a cesium beam, and you have white noise F'M out to several 
days and then random walk FM beyond that point, and you are making 
hourly or 2 hour measurements, if you use the mean of the second 
differences, you can show that all the middle terms cancel, and in 
fact you are looking at the frequency at the beginning of the run and 
the frequency at the end of the run to compute the frequency drift and 
that's very poor. 

DR. BARNES: 

My comment would be: There again the problem is in the model, and not 
in the arithmatic. The models applied here were 3 very simple models, 
very simple, simpler than you will run into in life. It was pure random 
walk plus a drift or pure frequency noise plus a drift, or pure random 
walk of frequency noise plus a drift and it did not approach at all any 
of the noise complex models where you would have both white frequency and 
random walk frequency and a drift. That's got to be handled separately, 
I'm not even totally sure how to perform it in all cases at this point. 

MR. McCASKILL: 

I would like to know if you would comment on the value of the sample time 
and the reason why, of course, is that the mean second difference does 
depend on the sample time? For instance, if you wanted to estimate the 
aging rate or change in linear change of frequency, what value of sample 
time would you use in order to make that correction. So, really, the 
question is, how does the sample time enter into your calculations? 

DR. BARNES: 

At least I will try to answer in part. I don't know in all cases, I'm 
sure, but if you have a complex noise process where you have at short 
term different noise behavior than in long term, it may benefit you to 
take a longer sampling time and effectively not look at the short term, 
and then one of the simple models might apply. I honestly haven't 
looked in great detail at how to choose the sample time. It is an 
interesting question. 
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MR. McCASKILL: 

Well, let me go further, because we had the benefit of being out at 
NBS and talking with Dr. Allan earlier and he suggested that we use 
the mean second difference, and the only problem is if we want to 
calculate or correct for our aging rate at a tau of five days or ten 
days, and you calculate the mean second difference, you come up with 
exactly the Allan Variance. What appears is that in order to come up 
with the number for the aging rate, you have to calculate the mean 
second difference using a sample time whenever you take your differences 
of longer than, let's say, ten days sample time. So we use, of course, 
the regression model, but we use on the order of two or three weeks in 
order to calculate an aging rate correction for, say, something like the 
rubidium in the NAVSTAR 3 clock. It looks like in order to come up 
with a valid value for the Allan Variance of five or ten day sample 
time you have to calculate the aging rate at a longer, maybe two or 
three times longer sample time. 

DR. BARNES: 

Dave Allan, do you think you can answer that? 

MR. ALLAN: 

Not to go into details, but if you assume that in the longer term you 
have random walk frequency modulation as the predominant noise process 
in a clock, which seems to be true for rubidium, cesium and hydrogen, 
you can do a very simple thing. You can take the full data length 
and take the time at the beginning, the time in the middle and the 
time in the end and construct a second difference, and that's your 
drift. 

There is still the issue of the confidence interval on that. If you 
really want to verify your confidence interval, you have to have enough 
data to do a regression. You need enough data to test to be sure the 
model is good. 

DR. WINKLER: 

That argument is fourteen years old, because we have been critized 
here. I still believe that for a practical case where you depend on 
measurements which are contaminated and maybe even contaminated by 
arbitrarily large errors if they are digital. These, theoretical 
advantages that you have outlined may not be as important as the 
benefits which you get when you make a least square regression. In 
this case you can immediately identify the wrong data. Otherwise, if 
you put the data into an algorithm you may not know how much your data 
is contaminated. So for practical applications, the first model even 
though theoretically it is poor, it still gives reasonable estimates 
of the drift and you have residuals which let you identify wrong phase 
values immediately. 
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DR. BARNES: 

I think that’s true and you may have different reasons to do regression 
analysis, if your purpose is to measure a drift and understand the 
confidence intervals, then I think what has been presented is reasonable, 
if you have as your purpose to look- to see if there are indications of 
funny behavior in a curve that has such strong curnature or drift that 
you can’t get it on graph paper without doing that, I think it is a very 
reasonable thing to do. I think looking at the data is one of the 
healthiest things any analyst can do. 

582 

TN-295 


	ABSTRACT
	I. INTRODUCTION
	II. LEAST SQUARES REGRESSION OF PHASE ON A QUADRATIC
	III. EXAMPLE
	IV. DRIFT AND RANDOM WALK FM
	V. SUMMARY OF TESTS
	VII. CONCLUSIONS
	APPENDIX A REGRESSION ANALYSIS
	APPENDIX B REGRESSIONS ON LINEAR AND CUBIC FUNCTIONS
	REFERENCES
	QUESTIONS AND ANSWERS

