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1. 1ntroductioa 

Techniques to characterize and to measure the frequency and phase instabilities in frequency generators 
and received radio signals are of fundamental importance to users of frequency and time standards. 

In 1964 a subcommittee on frequency stability was formed, within the Institute of Electrical and Electronic 
Engineers (IEEE) Standards Committee 14 and later (in 1966) in the Technical Committee on Frequency and 
Time within the Society of Instrumentation and Measurement (SIM), to prepare an IEEE standard on frequency 
stability. In 1969, this subcommittee completed a document proposing definitions for measures on frequency and 
phase stabilities. These recommended measures of stabilities in frequency generators have gained general 
acceptance among frequency and time users throughout the world. Some of the major manufacturers now specify 
stability characteristics of their standards in terms of these recommended measures. 

Models of the instabilities may include both stationary and non-stationary random processes as well as 
systematic processes. Concerning the apparently random processes, considerable progress has been made 
[IEEE-NASA, 1964; IEEE, 19721 in characterizing these processes with reasonable statistical models. In contrast, 
the presence of systematic changes of frequencies such as drifts should not bg modelled statistically, but should be 
described in some reasonable analytic way as measured with respect to an adequate reference standard, e.g., linear 
regression to determine a model for linear frequency drift. The separation between systematic and random parts 
however is not always easy or obvious. The systematic effects generally become predominant in the long term, and 
thus it is extremely important to specify them in order to give a full characterization of a signal’s stability. This 
Report presents some methods of characterizing the random processes and some important types of systematic 
processes. 

Since then, additional significant work has been accomplished. For example, Baugh [1971] illustrated the 
properties of the Hadamard variance - a time-domain method of estimating discrete frequency modulation 
sidebands - particularly appropriate for Fourier frequencies less than about 10 Hz; a mathematical analysis of 
this technique has been made by Sauvage and Rutman (19731; Rutman [1972] has suggested some alternative 
time-domain measures while still giving general support to the subcommittee’s recommendations; De Prins cf al. 
(19691 and De Prins and Comelissen. [1971] have proposed alternatives for the measure of frequency stability in 
the frequency domain with specific emphasis on sample averages of discrete spectra. A National Bureau of 
Standards Monograph ,devotes Chapter 8 to the “Statistics of time and frequency data analysis” [Blair, 19743. This 
chapter contains some measurement methods, and applications of both frquencydomain and time-domain 
measures of frequency/phase instabilities. It also describes methods of conversion among various time-domain 
measures of frequency stability, as well as conversion relationships from frequency-domain measures to time- 
domain measures and vice versa. The effect of a finite number of measurements on the accuracy with which the 
two-sample variance is determined has been specified [Lesage and Audoin, 1973, 1974 and 1976; 
Yoshimura, 1978). Box-Jenkins-type models have been applied for the interpretation of frequency stability 
measurements [Barnes, 1976; Percival, 19761 and reviewed by Winkler 11976). 

Lindsey and Chie [1976] have generalized the r.m.s. fractional frequency deviation and the two-sample 
variance in the sense of providing a larger class of time-domain oscillator stability measures. They have developed 
measures which characterize the random time-domain phase stability and the frequency stability of an oscillator’s 
signal by the use of Kolmogorov structure functions. These measures are connected to the frequency-domain 
stability measure S,,(fi via the Mellin transform. In this theory, polynominal type drifts are included and some 
theoretical convergence problems due to power-law type spectra are alleviated. They also show the close 
relationship of these measures to the r.m.s. fractional deviation [Cutler and Searle, 1966) and to the two-sample 
variance [Allan, 19661. And finally, they show that other members from the set of stability measures developed are 
important in specifying performance and writing system specifications for applications such as radar, communica- 
tions, and tracking system engineering work. 

Other forms of limited sample variances have been discussed [Baugh, 1971; Lesage and Audoin, 1975; 
Boileau and Picinbono. 19761 and a review of the classical and new approaches has been published 
[Rutman, 1978). 

* See Appendix Note # 23 TN-162 
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Frequency and phase instabilities may be characterized by random processes that can be represented 
statistically in either the Fourier frequency domain or in the time domain [Blackman and Tukey, 19591. The 
instantaneous, normalized frequency departure y(r) from the nominal frequency vs is related to the instantaneous- 
phase fluctuation p(r) about the nominal phase 21~0 I by: 

1 WO y(r) - znv - do 
o dr - g (1) 

x(r) - g 

0 

where x(r) is the phase variation expressed in units of time. 

2. Fourier frqoency domaiu 

In the Fourier frequency domain, frequency stability may be defined by several one-sided (the Fourier 
frequency ranges from 0 to w) spectral densities such as: . 

W3 of y(r). &<A of cp(0, WI of &r), &tfl of x(r), etc. 

These spectral densities are related by the equations: 

(4) 

Power-law spectral densities are often employed as reasonable models of the random rtuctuations in 
precision oscillators. In practice, it. has been recognized that these random fluctuations are the sum of five 
independent noise processes and he&e: 

+2 
z h,f’ for 0 < / -C fA 

a=-2 
(9 

0 for / > fh 

where &‘s are constants, a’s are integers, and fh is the high frequency cut-off of a low pass filter. Equations (2), 
(3) and (4) are correct and consistent for stationary noises including phase noise. High frequency divergence is 
eliminated by the restrictions on f in equation (5). The identification and characterization of the five noise 
processes are given in Table I, and shown in Fig. 1. In practice, only two or three noise processes are sufficient to 
describe the random frequency fluctuations in a specific oscillator; the others may be neglected. 

3. Timedomaiu 

Random frequency instability in the time-domain may be defined by several sample variances. The 
recommended measure is the two-sample standard deviation which is the sottare root of the two-sample zero 
dead-time variance av2(r) [van Neumann cr al., 1941; Allan, 1966; Barnes l r ai, 19711 defined as: - 

u)?(t) = ( 
<Jj +,-&I 

2 > 
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y(r) dr = xk+tz -5 

(6) 

and rk + , = $ + r (adjacent samples) 

< > denotes an infinite time average. The xk and xk+t are time residual measurements made at r& and 
r&+1 I r& + T, k = 0, 1, 2, . . ., and 11~ is the fixed sampling rate which gives zero dead time between frequency 
measurements. By “residual” it is understood that the known systematic effects have been removed. 
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If the initial sampling rate is specified as l/x0, then it has been shown [Howe cr al, 19811 that in geneA 
one may obtain a more efficient estimate of u,.(r) using what is called “overlapping estimates”. This estimate is 
obtained by computing equation (7). 

1 N-lm 

0; CT) * 
2(N - 

(7) 

where N is the number of original time departure measurements spaced by Q,, (N I M + 1, where M is the 
number of original frequency measurements of sample time, ~0) and r = mre. The corresponding confidence 
intervals [Howe et al., 19811, discussed in Q 6, are smaller than those obtained by using equation (12). and the 
estimate is still unbiased. 

If dead time exists between the frequency departure measurements and this is ignored in computing 
equation (a), it has been shown that the resulting stability values (which are no longer the Allan variances), will be 
biased (except for the white frequency noise) as the frequency measurements are regrouped to estimate the stability 
for mro (m > 1). This bias has been studied and some tables for its correction published [Barnes, 1969; 
Lesage, 1983). 

A plot of au(r) versus r for a frequency standard typically shows a behaviour consisting of elements as 
shown in Fig. 1. The first part, with cry(r) - T-“~ (white frequency noise) and/or a,(r) - T-I (white or flicker 
phase noise) reflects the fundamental noise properties of the standard. In the case where a,.(r) - r-i, it is not 
practical to decide whether the oscillator is perturbed by white phase noise or by flicker phase noise. Alternative 
techniques are suggested below. This is a limitation of the usefulness of U,(T) when one wishes to study the nature 
of the existing noise sources in the oscillator. A frequency-domain analysis is typically more adequate for Fourier 
frequencies greater than about 1 Hz. This T-I and/or T- I’* law continues with increasing averaging time until the 
so-called flicker “floor” is reached, where Us is independent of the averaging time T. This behaviour is found in 
almost all frequency standards; it depends on the particular frequency standard and is not fully understood in its 
physical basis. Examples of probable causes for the flicker “floor” arc power supply voltage fluctuations, magnetic 
field fluctuations, changes in components of the standard, and microwave power changes. Finally the curve shows 
a deterioration of the stability with increasing averaging time. This occurs typically at times ranging from hours to 
days, depending on the particular kind of standard. 

A “modified Allan variance”, MOD U:(T), has been -developed [Allan and Barnes, 19811 which has the 
property of yielding different dependences on T for white phase noise and flicker phase noise. ‘The dependences 
for MOD U,.(T) are T-~'* and T-' respectively. The relationships between cry(r) and MOD U,(T) are also explained 
in [Allan and Barnes, 1981; IEEE 1983. Lesage and Ayi, 19841. MOD U,(T) is estimated using the following 
equation: 

MOD a; (T) - 
1 

‘-:+I [ “5’ (Xi+zm - 2Xi+n + Xi)] 
2$m*(N- 3m + 1) j-, i-j 

(8) 

where N is the original number of time measurements spaced by TO, and T = mro the sample time of choice. 
Properties and confidence of the estimate are discussed in Lesage and Ayi 119841. Jones and Xyon (19831 and 
Barnes er al. [1982] have developed maximum likelihood methods of estimating U,,(T) for the specific models of 
white frequency noise and random walk frequency noise, which has been shown to be a good model for 
observation times longer than a few seconds for caesium beam standards. 

4. Conversion between frequeocy aod time domains 

In general, if the spectral density of the normalized frequency fluctuations S,(j) is known, the two-sample 
variance can be computed [Barnes et al., 1971; Rutman, 1972): 

fh 

U,‘(T) = 2 ’ (‘I (ltT/)2 

sin4nT/ dJ 
(9) 
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FIGURE 1 - Slope chamcten’stics of the five independent noise pmcesses 

(log scale) 

Specifically, for the power law model given by equation (5). the time-domain measure also follows the 
power law as derived by Cutler from equations (5) and (9). 

w U,‘(T) - h-2 - r+h-,2log.2+h,~+h, 
1.038 + 3 10&(2xh T) 

6 (2x)2 T2 
+&L 

(2n)Z T2 
(10) 

Note. - The factor 1.038 in the fourth term of equation (10) is different from the value given in most previous 
publications. 
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The values of h, are characteristics of oscillator frequency noise. One may note for integer values (as often 
seems to be the case) that )r - -a - I, for - 3 5 a S 1, and u = - 2 for a Z 1 where cr: (T) - r@. 

These conversions have been verified experimentally [Brandenberger et al., 19711 and by computation 
[Chi, 19771. Table II gives the coefficients of the translation among the frequency stability measures from time 
domain to frequency domain and from frequency domain to time domain. 

The slope characteristics of the five independent noise processes are plotted in the frequency and time 
domains in Fig. 1 (log log scale). 

5. Measurement techniques 

The spectral density of phase fluctuations S,(fi may be approximately measured using a phase-locked 
loop and a low frequency wave analyzer [Meyer, 1970; Walls et al., 19761. A double-balanced mixer is used as the 
phase detector in a lightly coupled phase lock loop. The measuring system uses available state-of-the-art electronic 
components; also a very high quality oscillator is used as the reference. For very low Fourier frequencies (well 
below 1 Hz), digital techniques have been used [Atkinson er al., 1963; De Prins ef al., 1969; Babitch and 
Oliverio, 19741. New methods of measuring time (phase) and frequency stabilities have been introduced with 
picosecond time precision [Allan and Daams, 19751, and of measuring the Fourier frequencies of phase noise with 
30 dB more sensitivity than the previous state of the art [Walls er al., 19761. 

Several measurement systems using frequency counters have been used to determine time-domain stability 
with or without measurement dead time [Allan. 1974; Allan and Daams, 19751. A system without any counter has 

’ also been developed [Rutman, 1974; Rutman and Sauvage, 19741. Frequency measurements without dead time can 
be made by sampling time intervals instead of measuring frequency directly. Problems encountered when dead 
time exists between adjacent frequency measurements have also been discussed and solutions recommended 
[Blair, 1974; Allan and Daams, 1975; Ricci and Peregrine, 19761. Discrete spectra have been measured by 
Groslambert ef al. [1974]. 

6. Confidence limits of time domain measurements 

A method of data acquisition is to measure time variations xi at intervals 10. Then u,(r) can be estimated 
for any r = nro (n is any positive integer) since one may use those 3 values for which i is equal to nk. An 
estimate for a,(r) can be made from a data set with M measurements of Jrj as follows: 

or equivalent 

% (7)s I .&y;: (xj+2-2xj+l + 9) 
2 1/2 
1 

(11) 

(12) 

Thus, one can ascertain the dependence of or(r) as a function of T from a single data set in a very simple way. 
For a given data set, M of course decreases as n increases. 

To estimate the confidence interval or error bar for a Gaussian type of noise of a particular value cry(r) 
obtained from a finite number of samples [Lesage and Audoin, 19731 have shown that: 

Confidence Interval I, = u,(r) . & . M-“2 for M > 10 (13) 

where: 

M: total number of data points used in the estimate, 

a: as defined in the previous section, 

K2 = ICI = 0.99, 

ICY = 0.87. 

K-I - 0.77, 

K-2 = 0.75. 
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Uy(T - 
As an example of the Gaussian model with M - 100, a - - 1 (flicker frequency 
1 second) - 10-12, one may write: 

& pI u,(r) * I& ’ M-“’ - u,(r) * (0.77) * (100)-“2 - U,(l) * (0.077), 

noise) and 

which gives: 

fJ,o - 1 second) - (1 f 0.08) x lo-” 

(14) 

(19 

A modified estimation procedure including dead-time between pairs of measurements has also been 
developed [Yoshimura, 19781, showing the influence of frequency fluctuations auto-correlation. 

7. Conclusion 

The statistical methods for describing frequency and phase instability and the corresponding power law 
spectral density model described are sufficient for describing oscillator instability on the short term. Equation (9) 
shows that the spectral density can be unambiguously transformed into the time-domain measure. The converse is 
not true in all cases but is true for the power law spectra often used to model precision oscillators. 

Non-random variations are not covered by the model described. These can be either periodic or 
monotonic. Periodic variations are to be analyzed by means of known methods of harmonic analysis. Monotonic 
variations are described by linear or higher order drift terms. 

TABLE I - 7hrfinctional characteristics offive independent noise processes 
for frcquenqv instability of oscillators 

Description of noise process 
lime-domaine 

Flicker phase 1 -1 -2 -I 

White phase 2 0 -2 -1 
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TABLE II - Translation o/fequency stability measures from spectral densities in 
frequency domain to variance in time domain and vice versa ($or 2r1&r > I) 

Description of noise process 

Random walk frequency 

Flicker frequency 

White frequency 

Flicker phase 

White phase 

D _ 1.038 + 3 IO& (2njhT) 
4ns 

B- 2lO&2 

c- l/2 
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