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Cooling that results from optical dipole forces is considered for a bound atom. Through optical pumping, the 
atom can be made to feel decelerating optical dipole forces more strongly than accelerating optical dipole forces. 
This effect, which has previously been realized for free atoms, is called Sisyphus cooling. A simple model for 
a bound atom is examined in order to reveal the basic aspects of cooling and heating when the atom is confined 
in the Lamb-Dicke regime. Results of semiclassical and quantum treatments show that the minimum energy 
achieved is near the zero-point energy and can be much lower than the Doppler cooling limit. Two practical 
examples that approximate the model are briefly examined. 

1. INTRODUCTION 

Interest in laser-cooled atoms and atomic ions has contin- 
ued to increase over the past few years. The simplest 
cooling scheme that has been proposed is called Doppler 
cooling, in which the atom experiences a damping force 
owing to spontaneous scattering of light.' This cooling 
applies to a two-level system. That is, it can be explained 
by a consideration of scattering between a single ground 
state and a single optically excited state. It leads to 
minimum temperatures (the Doppler cooling limit) 
TO = hr/2kB when hT >> R .  Here 27rh is Planck's con- 
stant, r is the decay rate from the excited state, ke is 
Boltzmann's constant, and R = (hk) ' /2m is the recoil en- 
ergy, where A = 2r/k is the wavelength of the exciting ra- 
diation and m is the mass of the atom. For strongly 
allowed (large-T) electric dipole transitions in atoms and 
ions, this leads to temperatures of approximately 1 mK. 

In 1988 an important experiment by the group of 
Phillips a t  the National Institute of Standards and 
Technology, Gaithersburg, Maryland,' showed that tem- 
peratures of laser-cooled sodium atoms were substantially 
below the minimum temperature predicted theoretically 
for two-level systems. A theoretical analysis and subse- 
quent experiments3-' showed that the new cooling mecha- 
nisms responsible for these low temperatures were based 
on a combination of several effects such as optical pump- 
ing between more than one ground-state sublevel, light 
shifts, and polarization or intensity gradients. 

The idea of the new cooling mechanisms is that laser 
beam electric fields E create a polarization d in an atom 
that depends on the ground-state sublevel and on the laser 
polarization. This dipole interacts with the laser field, 
and the reactive part of this interaction induces an energy 
shift of the ground-state sublevels, which varies from one 
ground-state sublevel to the other. This shift is called 
the light shift or the ac Stark shift. If the laser intensity 
or the laser polarization varies in space, these light shifts, 
which are now position dependent, give rise to a dipole or 
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ponderomotive force equal in magnitude to the gradient of 
the atomic energy. Optical pumping takes place between 
the sublevels, so if the laser polarization/intensity varies 
in space, the relative populations of the ground-state sub- 
levels are also position dependent. For an atom moving 
arbitrarily slowly in a spatially periodic light field, the 
averaged force is equal to zero, because the deceleration 
force experienced by the atom in the ascending parts 
of the potential curves (associated with the position- 
dependent light shifts) is offset by the acceleratibn felt in 
the descending parts. However, optical pumping takes a 
finite time to occur (the pumping time T~ is inversely pro- 
portional to the laser intensity I ) .  Therefore, in general, 
for a moving atom, it is possible to arrange the laser tun- 
ing and the polarization/intensity gradients so that the 
atom has time to run up one of the dipole potential hills 
(thereby losing kinetic energy) before being optically 
pumped into another ground-state sublevel where the 
dipole potential has less effect on the kinetic energy. 
After a while, the atom is returned by optical pumping (or 
by some other relaxation mechanism) to the original 
ground state, and the process is repeated. Since the atom 
appears to be running up the potential hills more than 
down, this cooling has been called Sisyphus cooling after 
the Greek mythg (see also Refs. 10 and 11). Cooling that 
is due to static electric and magnetic fields in combination 
with optical pumping has also been con~idered.'~.'~ 

The Sisyphus cooling mechanism was first introduced 
for a two-level atom moving in a high-intensity laser 
standing wave.' The required multilevel structure of the 
atom was then provided by the dressed states of the atom 
in the strong laser field. However, the time lag appearing 
between the dressed-state populations of a moving atom 
and the corresponding populations of an atom at rest is, 
for a two-level atom, of the order of the radiative lifetime 
TR = r-' of the atomic excited state. At low intensity the 
optical pumping time rp for a multilevel atom can be much 
longer than rR. Because of this, the new cooling mecha- 
nisms based on optical pumping and light shifts can lead 
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to friction coefficients as high as Sisyphus cooling for two- 
level atoms but at lower intensity, since, with longer time 
lags ( ~ p  >> TR), smaller velocities can give rise to compa- 
rable  deceleration^.^ 

Doppler cooling exhibits the damping of the sponta- 
neous scattering force, whereas Sisyphus cooling uses the 
decelerating effect of the dipole force combined with a dis- 
sipation of potential energy by spontaneous Raman pro- 
cesses. For completeness, it is useful to identify a third 
kind of cooling, which may be regarded as due to optical 
pumping of the atom into a low-energy state that no longer 
interacts with the laser. Velocity-selective coherent 
population trappingR.l4 and resolved sideband cooling of 
trapped  ion^'^,'^ are of this category. In both cases the 
atoms (ions) are pumped into low-energy states that inter- 
act only weakly with the laser. This interaction becomes 
weaker the smaller the velocity becomes or, in the case of 
sideband cooling, the narrower the cooling transition is. 
Related schemes, which put atoms into a low-energy state 
that no longer interacts (or interacts weakly) with the 
laser light, have been propo~ed.’~ 

Sisyphus or polarization-gradient cooling’ has been an 
important development for cooling and manipulation of 
atoms. For free atoms Sisyphus cooling gives tempera- 
tures down to values where the kinetic energy of the 
atoms is approximately equal to the depth of the potential 
wells associated with the position-dependent light shifts. 
This limit applies down to the point where the dipole well 
energies are of the order of the recoil energy R,  in which 
case the limiting energy is approximately equal to R. 

In this paper we investigate the possibility of extending 
the Sisyphus cooling mechanism to trapped atoms or ions. 
We propose a specific scheme and show that it can lead to 
temperatures much lower than the Doppler limit. Instead 
of permitting the atom to move freely in space, we assume 
that the atom is bound to a localized region of space by 
some external potential. We assume that the intensity 
gradient is due to a standing-wave laser field. By a local- 
ized region of space we mean a region whose spatial extent 
is much smaller than the wavelength of the cooling laser 
divided by 2 i ~  (e.g., k-’ ) .  That is, the atom is confined in 
the Lamb-Dicke regime. For simplicity of discussion, the 
atom is assumed to be bound in one dimension by a har- 
monic well characterized by the oscillation frequency w,. 
The spread of the minimum-energy state is given by x o  = 
(h/Zmw,)”’, where m is the atomic mass. The spatial ex- 
tension of the wave functions then scales as xg, and the 
condition x o  < (spatial extent) << l / k  is equivalent to 
h w ,  >> R. When R >> h w u ,  the atom, even when it is 
near its cooling limit, will always sample many peaks and 
valleys of the standing-wave laser field, and the cooling 
limit should be adequately described by the theory for 
free atoms. 

For a two-level bound atom the Doppler cooling limit is 
achieved when the natural width r of the optical transi- 
tion is much larger than the oscillation frequency w,’ and 
R/h. The opposite condition, r << w, ,  corresponds to 
what is called resolved sideband cooling. In this regime it 
has been ~ h o w n ’ ~ ~ ’ ~  that it is possible to achieve conditions 
in which the difference between the minimum energy and 
the zero-point energy is less than the recoil energy as long 
as w ,  >> R/h. (For this case, however, kBT > hC) In 
order to compare Doppler cooling and Sisyphus cooling in 

the same conditions, we will therefore assume here that 
r >> w , .  The main result of this paper is that, when 
r >> w,, and h w ,  >> R, Sisyphus cooling leads to mini- 
mum temperatures T,  such that kBT, = hw,, ,  whereas 
Doppler cooling leads to temperatures TD such that 
kRTu = hT, that is, higher than T, by a factor of T/w,. 

To illustrate the basic ideas, we consider a simple 
model system, which is described in Section 2 .  More- 
complicated cases can be generalized from this example. 
From a semiclassical treatment (atomic motion treated 
classically) given in Section 3, we will be able to derive 
cooling rates and limits. From this treatment we will see 
that the minimum energies are approximately equal to 
hw,. At these energies we might expect quantum effects 
of the motion to be important, so we will examine the cool- 
ing limits, treating the motion quantum mechanically in 
Section 4. In Section 5 we briefly compare the cooling 
rates and limits achieved here with those obtained from 
Doppler cooling. Although the model was chosen to be 
simple enough to show the basic effects, in Section 6 we 
examine a couple of possible experimental examples that 
closely approximate the simple model. 

2.  MODEL 
A. Atomic Level Structure and Laser Configuration 
We consider Sisyphus cooling of a single bound atom. We 
assume that the atom’s internal structure is represented 
by three levels as shown in Fig. 1. We label these levels g 
for ground state, e for excited state, and r for reservoir 
state. We assume that the transition g + e is an electric 
dipole transition excited by a standing-wave laser beam 
whose frequency w is tuned above the resonance frequency 
0 0  for this transition by an amount 6 (where all frequen- 
cies a re  expressed in radians per second). Level e 
spontaneously decays at rate C It decays to level r with 
branching fraction p and to level g with branching frac- 
tion 1 - p. We assume that the laser’s intensity and de- 
tuning are such that the fraction of time the atom spends 
in the excited state is negligible. We assume that level r 
is transferred back to level g at a rate Rr-g=l/Tr, where 
the duration of the transfer process is so short ( C  T,.) 
that one can consider the position of the ion as remaining 
unchanged during the transfer. We assume that the atom 
is confined to one dimension (the x direction) by a har- 
monic well Uo [Fig. l(b)] characterized by the atom oscilla- 
tion (or vibration) frequency w,. Here, Vo is assumed to 
be an external potential that is independent of the laser 
beam. When the atom spontaneously decays from level e, 
the direction of photon emission is assumed parallel (or 
antiparallel) to the atom’s motion. We assume that 
E, - Eg >> IE, - E,I, so that the effect of recoil heating 
is mathematically simple. These simplifying assump- 
tions will not qualitatively affect the results for other, 
more complicated cases. 

A key element in Sisyphus cooling is that the energies of 
the dressed states or of the light-shifted ground-state sub- 
levels vary along the direction of the atomic motion. 
Such a situation will be achieved here if we take a laser 
intensity that varies linearly with x over the range of 
atomic motion. We are concerned mainly with the case in 
which this intensity gradient is due to a laser standing 
wave along the x direction (see also Appendix A). We then 
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Fig. 1. Model system. (a) The atom has three internal energy 
levels: g,e, and r. A standing-wave laser beam drives g e 
above its resonance frequency. Level e decays with branching 
fraction p to level r and with branching fraction 1 - p to level g. 
Transfer from level r t o g  occurs at a rate R,,,. (b) The atom is 
assumed to be confined by a harmonic well in the x direction. 
The maximum extent of the atom’s motion is assumed to be less 
than A/2r (Lamb-Dicke regime). 

write the laser electric field (classically) as 

E = (E,,,/~)[cos(~x - ut) + C O S ( ~ X  + ut)] 

= E,,, cos wt cos k x ,  (1) 

where x is the atom’s position and the wave vector 
k = %/A, where A is the laser wavelength. According to 
Eq. (l), the laser intensity Z(x) varies as cos2(kx), as shown 
in Fig. l(b). Sisyphus cooling will be most efficient when 
the intensity gradient is a maximum; this occurs at the 
half-intensity point of the standing wave. Therefore we 
assume that the atom’s average position is near x = ~ / 4 k  
[Fig. l(b)]. The linear variation of the light shift of level 
g with x over the range of the atom’s motion follows from 
the localization assumption: The extent of the atom’s 
motion is less than A / ~ T  (Lamb-Dicke regime). 

In this paper we focus on the regime 

where R,,, and R,,, are, respectively, the rates of trans- 
fer from g to r when the atom is in level g and from r to g 
when the atom is in level r. We also assume that the laser 
intensity is weak enough to avoid any saturation of the 
g -+ e transition. That is, 

(3) 

In Eq. (3), s is the saturation parameter and w ,  = 
(eldig) . E,,,/h is the Rabi frequency. In this low- 
saturation regime the population of the excited state is 
small, and we can derive rate equations for the evolution 
of the lower states r and g. 

The condition r << 6 implies that the light shift of g 
[Eqs. (13) below] is larger than the contribution to the 
width of this level that is due to the photon scattering 
rate. The condition w ,  << r has already been discussed 
in Section 1 as defining the regime in which the Doppler 
limit is achieved for a two-level bound atom. In a point of 
view in which the atomic motion is treated classically 
(semiclassical approach), the condition Rg+r, R,,, << w ,  
means that the bound atom makes several oscillations in 
the harmonic binding potential before being transferred 
from g to r or from r to g. It is then possible to neglect 
the variation with space of the populations of levels g and 
r and to consider only their average over an oscillation 
period. This greatly simplifies the calculation of the rate 
of variation of the atomic external energy in the semiclas- 
sical approach. From a fully quantum point of view, in 
which the atomic motion is quantized, the condition Rg+, 
R,,, << w ,  means that the width of the vibrational levels 
in the binding potential, owing to the excitation rates 
from g or r, is smaller than the spacing ho, between these 
levels. This introduces a similar simplification into the 
calculations, since it permits a secular approximation to 
be used. The secular approximation consists in neglect- 
ing, in the master equation describing the evolution of the 
atomic density matrix u, any coupling between the popula- 
tions of the vibrational levels and the off-diagonal ele- 
ments of a In this way we can obtain a set of equations 
involving only the populations of the vibrational levels, 
which has a simple interpretation in terms of transition 
rates. This is an example of a situation in which the rate 
of variation of atomic internal variables (R,,,., Rr+,) is 
slower than the rate of variation of external variables ( m u ) .  
A similar example was recently studied in connection with 
the quantization of atomic motion in optical molasses.’* 

B. Qualitative Explanation of the Cooling 
For 6 > 0, as shown in Fig. l(a), the electric field of the 
laser shifts the level g to higher energy. Because s << 1, 
the atom is primarily in g or r. When it is in the state g 
(more precisely, in the dressed state, which contains the 
larger admixture of g ) ,  it is subject to an additional poten- 
tial energy UL(x),  which is a function of x proportional to 
the laser intensity. For the conditions of Fig. l(b) the ef- 
fect of this potential for the limited range of the atom’s 
motion is to give an additional force in the + x  direction. 

A crude explanation of the Sisyphus cooling is the fol- 
lowing: As the atom oscillates back and forth (with fre- 
quency w , , )  in the well Uo(x) ,  it experiences an additional 
potential hill U L ( x )  sloping down toward the + x  direction. 
The atom is more likely to be transferred to level r by 
spontaneous Raman scattering when it is in regions of 
higher intensity. Therefore the predominant effect is 
that, after the atom runs up the laser hill UL(x)  in the - x  
direction (therefore losing kinetic energy), it is trans- 
ferred to level r, where UL(x)  = 0. After a time of order 
T, it is transferred back to level g, where on the average it 
must run up the hill UL(x) again before being transferred 
to level r. This leads to a net cooling effect. 
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Fig. 2. Qualitative explanation of the cooling. When the atom 
is in state r, it experiences the confining potential U,(x), which is 
unperturbed by the laser fields. When the atom is in level g, the 
potential well is shifted in the + x  direction by the dipole force of 
the laser. This shifted potential is represented by U,(x) .  The 
laser excitation is assumed to be weak enough that the atom 
spends a negligible amount of time in  level e. Therefore the 
spontaneous Raman transitions g + e + r can be represented by 
transitions between g and r such as those indicated by (I) and (11) 
in the figure. Process (I) is favored more than process (11) be- 
cause, when the atom is on the left-hand side of the well Us, the 
chance of g + e excitation is higher since the laser intensity is 
higher [see Fig. l(b)]. Process (I) leads to cooling because the 
atom drops to a lower part of the well U,. Process (11) causes 
heating and, along with the heating resulting from recoil, eventu- 
ally balances the cooling, resulting in a minimum energy. 

A more accurate explanation is the following: When 
the atom is in the state g, it experiences the combined 
potential U, + UL = U,, which is a well with frequency w ,  
shifted by an amount Axo in the + x  direction (upper part 
of Fig. 2). When the atom oscillates in the - x  direction 
in the well U,, it is more likely to be transferred to level r 
by spontaneous Raman scattering because the laser inten- 
sity is higher. It can therefore drop into a lower part of 
the unshifted well U,(x) = Uo(x) ,  keeping the same posi- 
tion x since the duration r-' of the transfer process is 
much smaller than the oscillation period w,-' in the bind- 
ing potential. It therefore loses potential energy [process 
(I) of Fig. 21. After a time of order T, (which is indepen- 
dent of the position x ) ,  the atom is transferred back to 
level g and the process is repeated. Heating, as illus- 
trated by process (11) in Fig. 2, in which the atom gains 
potential energy, can also occur but is less favored because 
the laser intensity is less in the + x  direction. 

Spontaneous Raman scattering (g -+ e -+ r )  occurs at a 
rate proportional to the intensity, which according to 
Eq. (1) can be expressed as 

(4) 

The term - 2 b x l ( x  = ~ / 4 k )  is responsible for the cooling. 
The term that is independent of x causes heating because 
of two effects. First, for each scattering event, photon 
recoil causes an average increase in energy 2R." Second, 
when the atom changes from level g to level r, the well 
switches from U, to U,. As we will see in Section 3, the 
corresponding potential energy change, when it is aver- 

aged over one oscillation period, leads to heating. A simi- 
lar effect occurs in the transitions from r to g. The 
balance of the cooling with these sources of heating yields 
the minimum kinetic energy for the atom. Since 6 > 0, 
there is some additional Doppler or spontaneous force 
antidamping that tends to increase the atom's energy; this 
is shown in Subsection 5.B to be negligible for the condi- 
tions assumed here. 

The cooling is the same when the atom's well is in a 
region of positive slope [e.g., x = 3n-/4k in Fig. l(b)]. The 
cooling effect goes to zero when the well is centered at 
points of zero slope [e.g., x = 0, 4 2 k ,  and n-/k in Fig. l(b)]. 

3. SEMICLASSICAL TREATMENT 
In this section we treat the external motion of the atom 
classically. Such treatment, often called semiclassical, is 
valid if the atomic de Broglie wavelength is small com- 
pared with the length scale (the light wavelength A )  over 
which the field varies." In principle, it should also re- 
quire that the extension of the atomic wave packet be 
much larger than the size of the ground state of the con- 
fining potential. Actually, we will see that the latter con- 
dition can be dropped, and the semiclassical and quantum 
results are identical even if the atom is mostly in the 
ground state of the well. 

A. Internal Atomic Dynamics 
The internal states of the atom are treated quantum me- 
chanically. In the low-intensity domain of interest here 
[relation (3)], the optical Bloch equations, giving the evolu- 
tion of the atomic density operator, can be simplified by 
an adiabatic elimination of the optical coherences (off- 
diagonal matrix elements of the density operator between 
ground and excited states). We are then left with a set of 
rate equations for the populations rr, ( j  = g, r ,e )  of the 
atom's three internal levels20*21: 

7jg = - R , + e ( ~ ) ( ~ g  - re) + R r + g r p  + (1 - PIriT,, (54 

7;, = R ~ + ~ ( ~ )  (Tg - - rrre, (5b) 

7jr = - R ~ + ~ ~ ~  -+ prnb, (5c) 

where 

R ~ + ~ ( ~ )  = (rs/z)cos2(~x). (6) 

Since we have assumed that s << 1, the scatter rate 
Rg+e(x) is much smaller than r and the population of the 
excited state, re, is small compared with 1. For times 
long compared with r-', we have therefore approximately 

re = n-,(s/2)cos2(kx), (7)  

+, = - R g + r ( ~ ) ~ g  + R r - g ~ r ,  (84 

?rr = -Tg, (8b) 

where 

Rg+r(x) = PRgl.e(~) = ~ ( ~ s / ~ ) c o s ~ ( ~ x ) .  (9) 

In  the  limit Rr+,, R,,, << a,,, and when we use 
n-, + n-, = 1, tne steady-state solution of Eqs. (8) is simply 
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where (Rg4,.) stands for the average of Rg+r(x) over the 
atom oscillation period for the atom in level g (recall that 
we have assumed that R, - does not depend on x ) .  The 
time constant Tint for the relaxation of these internal vari- 
ables is given by 

B. External Atomic Dynamics 
When the atom is in level r, or when the atom is in level g 
in the absence of the laser, the center of the atom's well is 
denoted xr0. Therefore the atom's harmonic well can be 
described by 

When the atom is in level g in the presence of the laser 
field, the center of the atom's well is shifted by the laser 
light. Using the dressed-state formalism,' we find that 
the energy of the state g is shifted by an amount 

k h 
2 2 U,(X) = - [ w I 2  cos2(kx) + S2]1/2 - - 8  = ULO cos2(kx), 

is the maximum value of UL. Equations (13) are valid for 
S >> F a l .  The internal state lg) changes to the dressed 
state lg)', but lg)' = lg) in the limit w 1  << 6. The center 
of the atom's well, xgo, when it is shifted by the dipole 
potential, corresponds to the spatial minimum of the total 
potential for the atom in level g: 

(14) 

Since the cooling will be a maximum where the intensity 
gradient is maximum, we choose kxrO = r/4. Assuming 
that the shift Axo between the two wells is small com- 
pared with A1257 we linearize UL(X)  around xr0 to obtain 

(15) 

U g ( X ,  = U4x) + U L ( X ) .  

U L b )  = UL0/2 - kULO(X - x r o ) .  

The shift Axo is then 

Ax0 = xgo - x,O = 25(kxo)xo, (16a) 

where 

5 = ULoI~ou (16b) 

and x o  = (h/2mw,)"2 i s  the spread of the zero-point wave 
function in the harmonic well. We show in Subsec- 
tion 3.D that the minimum kinetic energy is achieved for 
ULo = ho,, that is, for 5 = 1. Therefore, since we have 
assumed the Lamb-Dicke criterion k x o  << 1, the shift Ax0 
of the well U,(x) that is due to the dipole potential is, for 
minimum kinetic energy, much smaller than xo and thus 
much smaller than A/2r, as we assumed in deriving 
Eq. (16a). 

C. Cooling Rate 
The variation of the external (kinetic + potential) en- 
ergy E,  can be expressed by the equation 

Ex = r g ( R g - r ( X )  [ u r ( X )  - ug(x)l) + r r R r - g ( u g ( x )  - UrCx)) 
+ rg(Rg4x))2R. (17) 

The first two terms stand for the average change in poten- 
tial energy as the atom goes from g to r and from r to g, 
respectively. They therefore contain both Sisyphus cool- 
ing and the heating that is due to the sudden switching of 
the wells. Recoil heating for the g ---f r transfer is con- 
tained in the third term of Eq. (17), and spontaneous force 
Doppler antidamping (heating) can be neglected (Sub- 
section 5.B). The averages are taken over one oscillation 
period in the initial potential [V,(x) for the first term of 
Eq. (17) and U,.(x) for the second]. 

As in relation (4), we linearize the rate R,,,(x) [Eq. (9)] 
around xr0:  

Rg-dx) = P(rS/4) [1 - 2 k ( x  - xrO)I, (18) 

and we use the equipartition of energy for the atom oscil- 
lating in U , ( x ) :  

E, = 2 -mwU2(x - (: xg0)Z) . 

For times long compared with Tint, we then obtain, using 
Eqs. (10) for rg and rr,  

E x  -(l/Tti) (Ex - Exo), (204 

where the steady-state energy EZo is 

= "".(( 2 + ;) 
and the Sisyphus cooling time constant T~ is given by 

For the conditions of interest (6 = 1, R/hw, << l), one can 
check that T~ >> Tint. 

D. Cooling Limit 
In steady state the atom's external energy is reduced to 
Ez0 [Eq. (20b)l. Exo is minimized when the laser intensity 
is adjusted to make 5 E ULo/hw, = p-li2, in which case 

(21) 

From the second expression in Eq. (21) the minimum ex- 
ternal energy is equal to the depth of the wells created by 
the standing-wave laser beam. This agrees with the re- 
sult of Sisyphus cooling of free atoms.' When p = 1, this 
predicts an energy near the zero-point energy for the 
ion in its well. In such a situation we might question the 
validity of this approach, which treats the atomic motion 
classically. Therefore i t  will be useful to compare 
the cooling limit derived here with the results from a 
quantum-mechanical treatment of the atom's motion. 

Exom"' = ho,/@ = ULO. 
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Fig. 3. Diagram for the cooling when the motion is quantized. 
Each electronic state has a sublevel structure of harmonic- 
oscillator levels labeled by the quantum numbers n,, wherej = g, 
e, or r. Cooling is represented by scattering processes of the 
form ng + n, + n,, where n, < ng. This may be viewed as due 
to spontaneous Raman scattering off states ( g ,  ng)' and (e, n,)", 
which are dressed by the laser. 

4. QUANTUM TREATMENT 
A. Transition Rates 
In this section we treat the atom's motion in its well quan- 
tum mechanically. We describe the cooling process as 
shown in Fig. 3, where laser photons undergo spontaneous 
scattering from the dressed states, which now include the 
perturbed harmonic-oscillator states (denoted by primes 
and double primes). 

Cooling results from spontaneous Raman scattering 
processes of the form jg, ng)' -+ le, ne)'' -j Ir, nr), where 
n, < ng. States /g,n,)'  and le,n,)" are assumed to be 
dressed by the standing-wave laser field. We can calcu- 
late the cooling and the cooling limit as was done in 
Ref. 19. For practical purposes the cooling rate is ade- 
quately represented by the semiclassical treatment of 
Subsection 3.C. Here we are interested primarily in the 
cooling limit, since the semiclassical treatment predicts a 
minimum energy approximately equal to hw,. We can 
calculate the minimum energy, using Eq. (27) of Ref. 19. 
It will be more instructive, however, to calculate the rates 
for each process ng -+ n, separately. According to Ref. 19, 
these rates can be written as 

where C is a factor that includes the laser intensity (at the 
position x = n-/4k) and matrix elements for the g + e 
transition, X is the atomic position operator, and k, is the 
wave vector for the scattered photon. For simplicity we 
will assume the scattered photon to be in either the + x  
or the - x  direction, so that k, . X = 2 k X .  f ( X )  is a 
function representing the x dependence of the laser's elec- 
tric field amplitude near x = .rr/4k; from Eq. (l), f ( X )  = 
1 - k ( X  - xro). E,+ and En# are the energies of the indi- 
vidual harmonic-oscillator levels for the excited and 

ground states, respectively. The sum is performed over 
all possible excited harmonic-oscillator states. 

Since we have assumed that 6 >> w , ,  the denominator 
in the sum in Eq. (22) can be approximated by 6. This 
amounts to neglecting Doppler antidamping; the validity 
of this approximation is discussed in Subsection 5.B. 
With this approximation and the closure relation over the 
states In,)", Eq. (22) simplifies to 

rg,ng-r,n, = p(C/~2)((n,lexp(-ik, . X ) f ( X )  InJ12. (23) 
When /3 f 1, we must also consider scattering directly 
back to the ground state from the excited state. These 
direct rates give rise to additional recoil heating for the 
g -+ e -+ g scattering process: 

rg,ns-g,n,* = (1 - P )  CC/s2),i {(ng*l')exp(-k . X)f(X) lngY12, 

(24) 
where ng* is the final harmonic-oscillator state in the di- 
rect scattering process. Finally, we must consider the 
change in harmonic-oscillator energy levels in the transi- 
tions r + g. As in the semiclassical treatment, this leads 
to a heating resulting from the sudden switching of the 
harmonic well (even without any spatial variation of the 
transfer rate Rr+g).  This process is described by the rate 

r r , n , - g , n p  = ~lI(ngI'>~lnr)l2, (25) 
where C' is a constant characterizing the rate of the 
r -+ g process. In Subsection 4.D these rates will be used 
in a master equation for the populations of the harmonic- 
oscillator levels. Before that is discussed, two preliminary 
steps are required. First we must find an expression for 
the perturbed harmonic-oscillator wave functions. 
Then we will obtain simple expressions for the rates in 
Eqs. (23)-(25). 

B. Dressed Harmonic-Oscillator Wave Functions 
As we discussed in Section 1, the dipole force acts uni- 
formly over the extent of the wave functions of interest in 
the Lamb-Dicke limit. Therefore the effect of this dipole 
force is simply to shift the center of the harmonic- 
oscillator well for the g state to xr0 + A x o ,  the value calcu- 
lated semiclassically. (This can be explicitly verified by 
the use of second-order perturbation theory to dress the 
wave functions.) The wave functions ing)' are simply 
obtained by using the spatial translation operator 

Ing)' = exp(-iAxOP,/h) Ing), (26) 

where P, is the x component of the atomic momentum 
operator. 

In the following, we will require both the position and 
momentum operators X and P, in terms of raising and low- 
ering operators at and a: 

(27) 
(28) 

x = xo(at + a) ,  

P, = ixomw,(at - a). 

C. Evaluation of the Rates 
Using Eq. (26) in Eqs. (23)-(25), we find that 
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where 

AI = exp(-ik,X)f(X)exp(-iAx;oP,l~~, (30d 

( 3 W  

AB = exp(-iAxoP,/h) (304 

AZ = exp(iAxoP,/h)exp( - ik,X)f(X)exp( - iAxoP,/h) ,  

and where k ,  = - t k ,  depending on the direction of the 
spontaneously emitted photon (assumed to be along the 
+ x  or the --x direction). 

We now replace the position and momentum operators X 
and P, in AI,  Az, and AB by their expressions in terms of a 
and ut [Eqs. (27) and (28)]. It is convenient to change the 
origin of the x axis to xr0,  in which case f( X) = 1 - k X. 
Since kxo(n + 1)"' << 1 (Lamb-Dicke criterion), we keep 
only terms in first order in kxoa or kxout.  This gives 

Al z 1 - kxo[at(l - 5 + ik,/k) + ~ ( l  + 5 + ZkJk)], 
(314 

(3W 

(314 

A2 = 1 - kxo(at + a) (1 + i k , / k ) ,  

A3 = 1 + [ k ~ o ( ~  - at). 

Therefore, in the Lamb-Dicke limit, the important rates 
are those for which the vibrational quantum number 
changes by 1, and we have 

r g , n - r , n  = P- = R g - r ,  
C 
6 2  - (324 

(32b) 

(324 

r r . n - g ,  = c = R,,, , (324 

r g . n + r , n + i  = Rg-r(kzo)2(n + 1)[1  + (1 - 0 2 1 ,  
r g , n - r , n - i  = Rg-r(kxo)2n[l + (1  + 5)'1, 

- PRg, ,2(kr~)z(n  + 1) = (R) n + l  r g , n + g , n - l .  

P 
r g , n - g , n + i  = - 

D. 
A master equation for the populations takes the form 

Rate Equations and Cooling Limit 

n + l  

+g,n = C 2 ( - r g , n - t , n ' r g , n  + r s , n a - g , n r i , n ' )  9 (33a) 

+r, n = 2 (-r,, n-g, n ' r r ,  n + r g , n + , n r g , d ,  (33b) 

where r g , .  denotes the population with internal state g 
and external state n, etc. As expected, in steady state 
these equations show, after a little algebra, that the total 
population going from n to n + 1 is equal to the total pop- 
ulation going from n + 1 to n.  That is, 

n'=n-1 r = g , r  

n + l  

n'=n-1 

In order to exploit this result, we now look for an approxi- 
mate expression for r g , n  and r r , n  as a function of the total 
population of level n (rn = rg,n + T ~ , ~ ) .  Equations (33), 

written for steady state, give a relation between r g z n >  r r , n >  

TgTn'g,n+-ll and rr,ntll If we assume that ( iis not large CQN~ 

1 + O[(n + 1)(kxO)2],  so 

pared with 1 a n d  recall that K x o ( n  + 1)"' <e 1, then 
Eqs. (32) and (33) give rg, rg, n /L, n + g ,  rr, n = 

(35W 

Substituting relations (35) into Eq. (34) and using 
Eqs. (32), we obtain 

1 g, n-r, n 

r g , n + , n  + r r , n - g , n  
r r n  = T n .  

where we have neglected terms o f  order ( n  + 1) (kx0)' and 
higher. r n + l / r n  is 
minimized for 6 = ULo/hw. = P-'", in which case 

For 5 << 1, we have r n + l / r n  + 1. 

(37) 

Since, according to Eq. (36), r n + l / r n  is independent of n, 
we can write 

which shows that the system reaches a thermodynamic 
equilibrium. For such a thermodynamic equilibrium, 
(nu) = [exp(hw,/ksT) - l ] - ' ,  in which case 

(39) (nu) = [ 1  + P5(5 - 1)1/2P5. 

(nu) = P-"' - 1/2. 

ExOmln = ho,((n,)  + 1/2)  = hw,p-1'2, 

This is minimized for 5 = P- l iZ ,  in which case 

(40) 

This corresponds to a minimum energy 

(41) 

in agreement with the semiclassical answer [Eq. (21)]. 
This remarkable agreement between the semiclassical 
and quantum theories can be interpreted in the following 
way. The motion of a quantum particle in a harmonic 
well is governed by the same basic equations as those for 
the classical motion. (This is particularly clear in the 
Wigner function approach and is a particular feature of 
the harmonic potential.) Consequently, the only place 
where Planck's constant plays a role in the problem here is 
in the recoil heating, where R = h2k2/2m, and this recoil 
is handled in the same way in both treatments. There- 
fore it should not be surprising that both approaches lead 
to the same minimum energy, even though this energy is 
close to the zero-point energy in the quantum well. 

5. DISCUSSION 
A. Cooling Rate 
It is interesting to compare the rate for the Sisyphus cool- 
ing discussed here with the rate for Doppler cooling. 
Doppler cooling can be represented in Fig. 1 by the con- 
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ditions p = 0 and 6 < 0. The rate for Doppler cooling has 
been calculated by many authors; for example, from 
Eq. (19a) of Ref. 22 the cooling rate is 

T ~ - ~  = - 2 ~ ~ ~ h h ~ ~ ~ { ~ [ ( r / 2 ) ~  + a D 2 ] } - ' ,  (42) 

where RsD is the total scattering rate, the subscripts D 
stand for Doppler cooling, and the intensity is assumed to 
be below saturation (s << 1). For minimum temperature 
using Doppler cooling, we want 6 D  = -r/2. For this case, 

7 D - l  = 4Rso RlhT. (43) 

According to Eq. ( ~ O C ) ,  assuming, for example, that 
R,,, >> (Rg-,.) (that is, rg=l), the ratio of rates for Sisy- 
phus cooling and Doppler cooling is 

(44) 

Therefore, for the minimum-temperature case (6 = l), the 
ratio of Sisyphus cooling to Doppler cooling is approxi- 
mately given by the ratio (r/w.)((RR.'.)/Rso). For 
(Rg+r)/RSD=lr Sisyphus cooling is faster by T/w,. 

Comparing the Sisyphus cooling rate with the cooling 
rate in the resolved sideband limit15,'6.19 is not so straight- 
forward because the conditions in which each applies are 
different. For efficient sideband cooling (in a two-level 
atom), we want 6 = -w ,  and r << wL, ,  and these condi- 
tions are incompatible with relation (2). Therefore a 
comparison of cooling rates depends on the specific atomic 
system considered. The practical advantages of one cool- 
ing scheme over the other will also depend on the specific 
system investigated; this will depend, for example, on 
the availability and the ease of operation of the re- 
quired lasers. 

B. Contribution of Doppler Antidamping in Sisyphus 
Cooling 
For the model considered here (6 > 0), Doppler cooling is 
turned into an antidamping term. We can use Eq. (42) to 
check that this heating effect can be neglected compared 
with Sisyphus cooling. For the situation of interest here 
(6 >> r), we have 

(45) 

By comparing with Eq. (~OC), we find that 

Therefore we may neglect the effects of Doppler anti- 
damping compared with Sisyphus cooling except when 
p << 1. 

C. Cooling Limit 
The minimum energy for Doppler cooling is hr/2. There- 
fore, according to Eq. (21) or (41), the minimum energy for 
Sisyphus cooling will be smaller than that for Doppler 
cooling by the approximate ratio w , , / T  << 1. Conse- 
quently, the Sisyphus cooling rate is more efficient (at low 
temperatures, where the Lamb-Dicke criterion is satis- 

fied) and the Sisyphus cooling limit is smaller than that 
for Doppler cooling. The minimum energy for sideband 
cooling and Sisyphus cooling is approximately the same, 
since the ion can be cooled to near the zero-point energy 
(hwJ2) in either case. However, for some applications it 
may be desirable to cool to (n,) << 1, in which case side- 
band cooling appears to be the appropriate choice. 

6. POSSIBLE EXPERIMENTAL 
CON FIGURATIONS 
To give an idea of how Sisyphus cooling might be employed, 
we consider the example of a single, trapped '"g' ion in a 
magnetic field B. To make the problem tractable, we 
will consider only the cooling of one degree of freedom, 
namely, the axial oscillation in a Paul rf trap or a Penning 
trap. To be consistent with the notation above, we call 
this the x degree of freedom. We will also make the sim- 
plifying assumption that the scattering rate for cooling 
the other degrees of freedom is adjusted so that, on the 
average, the recoil heating of the axial degree of freedom 
appears to be due only to reemission along the + x  or the 
- x direction from the laser that cools the axial degree of 
freedom. This is consistent with the assumption made in 
the calculations of Sections 3 and 4. 

The relevant internal energy levels are  shown in 
Fig. 4(a). We assume that a linearly polarized standing- 

- - (+3/2)- - ___ 24Mgr , , , - (+1/2) 

- (-112) 

- (-312) 

- (+112) 

- (-1/2) 

Fig. 4. The cooling described in the text could be approximately 
realized by a trapped 24Mg+ ion in a magnetic field. A specific 
case is illustrated for the levels labeled g, e, and r in (a). Transfer 
from level r to level g could be realized with microwave radiation 
tuned to the r + g transition. This transfer could also be ac- 
complished by spontaneous Raman transitions r ---f e' -+ g by 
using a traveling-wave laser beam (laser 2 in the figure) tuned to 
the r + e' transition. In this case additional recoil heating must 
be accounted for (see the text). Another case that would apply to 
an ion or an atom with an outer unpaired electron and a spin 112 
nucleus (and no intermediate electronic states) is shown in (b). 
Here the magnetic field is assumed to be small enough that 
the Zeeman structure is unresolved. Transfer from r to g 
through spontaneous Raman transitions (laser 2) is indicated in 
the figure. 
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wave laser beam (k vectors parallel and antiparallel to x) 
is tuned above the ' S l l z ( m ~  = +1/2) -+ 'PP,,,(mJ = -112) 
transition frequency by an amount 6 [laser 1 in Fig. 4(a)]. 
We assume that B (parallel to x) is large enough that 
ha << 2 p ~ B / 3 ,  where p~ is the Bohr magneton. This en- 
sures that there will be negligible excitation on transi- 
tions other than those of interest. One situation for 
approximate realization of the cooling limit described in 
Subsections 3.D and 4.D is the following: First we leave 
laser 1 on long enough that the ion is pumped to level r 
with high probability [from Fig. 4(a), p = 2/3)]. We then 
turn laser 1 off and transfer ions from level r to g with a 
microwave T pulse. (To accomplish the transfer, we need 
not as-sume that the duration of the n- pulse is less than 
m u - ' . )  Laser 1 is then turned on again, and the process is 
repeated. When laser 1 is turned back on, we assume 
that it is accomplished in a time long compared with m u W 1  
but short compared with Rg-r-', so n, is unchanged as lg) 
becomes dressed. As far as the cooling limit goes, this 
situation is actually somewhat better than the model that 
we have assumed in Section 2 because we avoid the heat- 
ing resulting from well switching in the r -+ g transition. 
Mathematically, this amounts to setting A 3  = 1 in 
Eq. (29c). In this case the steady-state energy would be 
given by (nu) = [2 + p[([ - 2)]/40[. This would be mini- 
mized for [ = (2//3)"', in which case (nu),,,," = (2p)-" 
2 - %. For p = 2/3,(nu)mln = 0.37. 

Experimentally, it might be easier to accomplish the 
r + g transfer with a second, traveling-wave laser beam 
tuned near the ' S l i z (mJ  = -1 /2)  'P3,,(m~ = +1/2)  
transition [laser 2 in Fig. 4(a)]. (Additional cooling could 
be obtained with a second, standing-wave laser beam, but 
this would be more difficult to arrange experimentally.) 
The r -+ g transfer is then accomplished by spontaneous 
Raman scattering with probability p' = 213 for each scat- 
tering event from laser 2. This basic scheme could also 
be realized on 'SliZ - zPliz transitions in 24Mg+ or other 
ions (atoms) with similar energy-level structure. 

Using laser 2 will lead to a slightly higher minimum en- 
ergy than our model predicts because of the additional re- 
coil heating in the r -+ g transfer. To account for this 
heating properly, we must modify Eq. (17). Therefore 
we write 

E,' = E, + T,R,, , ,(~R),  (47) 

where E, is given by Eq. (17), R,,, is the excitation rate 
from r to e' [e' is the 2 P 3 / 2 ( m ~  = +1/2) level] that is due to 
the second laser, and R,,, = 2R,,,/3. In steady state 
this amounts to doubling the recoil heating term in 
Eq. (17). For this case, Ex0 = ha,([ + 3/[)/2, which is 
minimized for [ = G, yielding E x O  = 6 h w ,  or 
(nu) = fi - 112 = 1.23. 

For 24Mg+ we t a k e  r/2n- = 4 3 . 0  MHz and  A = 
279.64 nm. If we assume that w , / ~ T  = 2 MHz, the 
conditions of relation (2) are reasonably satisfied for 
6127~ = 1 GHz and w1/2x = 0.118 GHz (obtained from 
[ = fi), in which case R,,, = 4.68 x lo5 s-'. For these 
conditions and laser 2 adjusted to make R,,, = Rgde, we 
have rs = 17.4 bs. For the transitions of interest the reso- 
nant cross section is A' /~TK If laser 2 is tuned to reso- 
nance the required intensity is 5.34 mW/cm2. For one of 

the be ms in the standing-wave laser beam, we require 
an int nsity of 5.78 Wlcm'. To satisfy the condition 
h6 << p~ we require that B >> 0.1077'. The effective 
temperature of the ion is given by 

(48) 

For (n,) = 1.23, T -- 0.16 mK. For the same transition 
the Doppler cooling limit is (nu) = 10, corresponding to 
T = 1 mK. For (nu) < 1, Eq. (48) shows that the tem- 
perature is only logarithmically dependent on (nu). To 
achieve lower temperatures, we require w ,  to be lower, but 
if we make w ,  too low, we violate the condition k x o  << 1 
(in the example above, kxo = 0.23). 

Another scheme that might be used to cool an ion in a 
rf trap in a low magnetic field is illustrated in Fig. 4(b). 
This would work for lg9Hg+ ions, for example. Laser 1 
provides the Sisyphus cooling, and laser 2 [or microwave 
radiation between the 'SliZ ( F  = 0) and ( F  = 1) levels] 
provides the repumping into level g. Similar schemes 
exist in other ions or atoms. 

Experimentally, it may be difficult to make the center 
of the atom's well coincide with the point of maximum 
intensity gradient. One way around this problem for the 
standing-wave configuration would be to permit the 
standing wave to run over the center of the atom's posi- 
tion. This could be accomplished by the construction of 
a moving standing wave composed of two counterpropa- 
gating laser beams separated by frequency 0,. When 
R,,, << a, << mu,  the above expressions hold, with the 
magnitude of the intensity gradient replaced by its value 
averaged over the standing wave. 

L 
T = hwu/[kB ln(1 + (nu)- ')].  

7. SUMMARY 
We have examined Sisyphus cooling for a bound atom for 
the condition in which the radiative linewidth r is much 
larger than the oscillation frequency w ,  of the atom in its 
well. We have studied the strong-binding limit, which is 
given by the condition that the recoil energy be much less 
than the zero-point energy of the atom in the well. We 
have examined the cooling, using a simple three-level 
model for the internal states of the atom. We have as- 
sumed that the atom is confined in one dimension and 
cooled by a standing-wave laser beam. This model can be 
generalized to more-complicated cases. Since the mini- 
mum energies are near the zero-point energy of the atom 
in its well, we have examined the cooling limit, treating 
the atom's motion both classically and quantum mechani- 
cally. Within the approximations of the model the cooling 
limits are found to be the same. 

We found that the minimum energy of the atom occurs 
when the depth of the dipole potential well created by the 
standing wave is approximately equal to the zero-point en- 
ergy of the atom. In this case the minimum energy of the 
atom is given by the condition that the mean occupation 
number (n,) of the atom in its well be approximately equal 
to 1. If we compare Sisyphus cooling with Doppler cool- 
ing, which operates on the same type of broad transition 
(r >> mu) ,  we find that Sisyphus cooling is much more ef- 
ficient for both the cooling rate (as long as we are in the 
Lamb-Dicke limit) and the cooling limit. Sisyphus cool 
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ing leads to a temperature nearly as low as that result- 
ing f rom sideband cooling without the requirement of a 
narrow atomic transition. We have briefly examined 
experimental examples that assume atomic ions stored in 
traps. The same ideas should apply, however, for neutral 
atoms confined by magnetic traps, optical dipole traps, etc. 

APPENDIX A: COOLING IN OTHER 
INTENSITY GRADIENTS 
In the main text we have treated Sisyphus cooling in a 
standing-wave laser beam. The main ingredient in the 
cooling is that the atom experiences an intensity gradient 
along its direction of motion. Therefore it is useful to 
consider cooling in a more general intensity gradient. 
The cooling treatment of Section 4 applies, except that we 
must replace k in relations (4) and (15), Eq. (16a), and 
relation (18) by [dZ/dxL]/2Z evaluated at the equilibrium 
position of the ion, x, (O) .  If we define 

then we find that the cooling rate is equal to the cooling 
rate of Eqs. (20) mu!tiplied by 12,  and the cooling limit 
(from the condition E, = 0) is given by 

This limiting energy is minimized for 5 = (2/p32)”2; in 
which case 

= hwu,J(@. (-43) 

As an example, consider cooling in the intensity gradi- 
ent of a focused traveling-wave Gaussian laser beam 
whose intensity in the direction transverse to the axis of 
the beam is given by Z(x,) = Io exp( -2xl2/uO2), where wo is 
the beam waist. If we assume that the atom is nominally 
localized to the position where Z[x,(O)] = Z0/2, then 
x , ( O )  = k[( ln  2)/2]”2w0. For th i s  condition, ( = 
[(ln 2)/2~r~]’’~(A/u~). For a given w, ,  the cooling rate is 
reduced by the factor (’, and the minimum energy is in- 
creased by the factor (-’. However, in certain experi- 
ments this cooling might still be useful, because the region 
over which this intensity gradient is linear is larger and a 
standing-wave laser beam is not required. Therefore the 
condition hwu >> R need not be satisfied. On the other 
hand, the minimum achievable energy is larger than the 
recoil energy. This can be shown with the fact that the 
relative variation of Z(x) over the spatial distribution cor- 
responding to Eq. (A3) should remain much less than 1. 
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