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PREFACE

For many years following its publication in 1974, "TIME AND FREQUENCY: Theory
and Fundamentals," a volume edited by Byron E. Blair and published as NBS Monograph 140,
served as a common reference for those engaged in the characterization of very stable clocks and
oscillators. Monograph 140 has gradually become outdated, and with the recent issuance of a
new military specification, MIL-0-55310B, which covers general specifications for crystal oscilla-
tors, it has become especially clear that Monograph 140 no longer meets the needs it so ably
served in earlier years. During development of the new military specification, a process involving
discussion and input from many quarters, a key author of the specification, John Vig of the US
Army Electronics Technology and Devices, urged the National Bureau of Standards (now the
National Institute of Standards and Technology, NIST) to issue a revised publication to serve as
reference for the characterization of clocks and oscillators. With NIST having agreed to this
task, the framers of the military specification used the nomenclature "NBS Monograph 140R" in
their document, anticipating a revised (R) volume which had not yet been prepared.

Considering the availability of a number of newer books in the time and frequency field,
the rewriting of a major volume like Monograph 140 seemed inappropriate. The real need has
not been for rework of everything in Monograph 140, but only for those parts which provide
reference to definitions and methods for measurement and characterization of clocks and oscilla-
tors, subjects which are fully covered in a number of papers distributed through a variety of
conference proceedings, books, and journals. For the near term, we concluded that the most
effective procedure would be to collect a representative set of these papers into one reference
source with introductory comments which permit the reader to quickly access material required
to meet particular needs. Thus, we arrived at this particular collection. The editors’ challenge
has been to select representative papers, to organize them in a convenient manner, and to deal
with errata and notation inconsistencies in a reasonable manner. In the longer term, the materi-
al in this volume needs to be more completely integrated. This task would profitably await
further developments in the area of phase noise measurements.

Donald B. Sullivan
David W. Allan
David A. Howe
Fred L. Walls

Boulder, Colorado
February 28, 1990
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CHARACTERIZATION OF CLOCKS AND OSCILLATORS
D.B. Sullivan, D.W. Allan, D.A. Howe and F.L. Walls, Editors

Time and Frequency Division
National Institute of Standards and Technology
Boulder, Colorado 80303

This is a collection of published papers assembled as a reference for those in-
volved in characterizing and specifying high-performance clocks and oscillators. It
is an interim replacement for NBS Monograph 140, Time and Frequency: Theory
and Fundamentals, an older volume of papers edited by Byron E. Blair. This
current volume includes tutorial papers, papers on standards and definitions, and
a collection of papers detailing specific measurement and analysis techniques.
The discussion in the introduction to the volume provides a guide to the content
of the papers, and tables and graphs provide further help in organizing methods
described in the papers.

Key words: Allan variance, clocks, frequency, oscillators, phase noise, spectral
density, time, two-sample variance.

A. INTRODUCTION

A.1 OVERVIEW

The papers in this volume are organized into three groups: Introductory and Tutorial
Papers, Papers on Definitions and Standards, and Supporting Papers. The three sections (A.2,
A3, and A.4) immediately following this introduction provide overviews of each of the three
groups of papers with comments on each paper. The arrangement of the papers in this particu-
lar order is somewhat arbitrary, since, for example, the first two papers under Supporting Papers
could be included with the Introductory and Tutorial Papers, while paper B.4 could easily be
placed with the Supporting Papers. Our rationale for the first group of papers (discussed in
more detail in section A.2) is that, taken as a group, they provide reasonably complete coverage
of the concepts used in characterizing clocks and oscillators. Several of the papers, taken individ-
ually, are good introductory papers, but, for this publication, need to be complemented with
additional material to provide coverage of an appropriate range of topics.

The second group (section C) of three papers discussed in section A.3 were specifically
written to address definitions and standards. This is a particularly important section, since
consistency in specification of performance can only be achieved if manufacturers and users refer
to the same measurement and characterization parameters.

The Supporting Papers in section D provide additional discussion of topics introduced in
the first group. The first papers in this group (D.1 and D.2) also provide good introductory
material which might be used with section B to gain a better understanding of the concepts.

Section A.5 provides a table and graph designed to help the reader select a measurement
method to meet a particular need. To make this useful, it was kept simple and must therefore
be used with care. Such tabular information can never be arranged well enough to anticipate all
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of the wide range of measurement situations which might be encountered. However, it can serve
as a starting point for the decision-making process.

Section A.6 contains some new material which should be helpful in understanding the
relationship between the Allan variance and the modified Allan variance. Since these ideas are
unpublished, we include them here rather than with the papers on those topics. This section is
followed by a reading list with references to major articles and books which can be used as
supplementary resources. Because some of the papers include extensive reference lists, we have
limited our list to works which are either very comprehensive or only recently published. Partic-
ularly extensive reference lists are included with papers B.1, B.2, C.1, C.3, D.1, and D.2.

Since notation and definitions have changed over the period bridged by these papers, we
have highlighted problem areas on the papers with an asterisk (*). A note directs the reader to
the Appendix where the particular problem is discussed. We have also used this device to
highlight inconsistencies and the usual typographic and other errors which creep into the litera-
ture. The page numbers of the original publications are retained, but we have also used a
continuous page numbering to simplify location of items in the volume.

The topical index on page xi organizes much of the material in the papers under a few
key subject headings. This index provides a shortcut to locating material on a particular topic.

A2 COMMENTS ON INTRODUCTORY AND TUTORIAL PAPERS

Paper B.1 in this section, by Howe, Allan, and Barnes, was originally prepared and
presented as a tutorial paper and has been used with success as an introductory paper in our
annual Time and Frequency Seminar. This paper is now 9 years old, so there are a substantial
number of notes which relate to updates in notation. The paper is nevertheless highly readable
and introduces many of the key measurement methods, providing circuit diagrams with enough
specific detail to be useful in real laboratory situations. Furthermore, it includes discussion and
examples on handling of data which are useful for practical application of the concepts. The
paper presents a particularly useful discussion of the pitfalls encountered in digitizing data, a
problem which is often overlooked.

The second paper (B.2) by Stein is more advanced and those familiar with the general
concepts may find it a better starting point. This and other papers in this collection cite earlier
IEEE recommendations on measures of frequency stability and, while much of this has not
changed, there is a new IEEE standard (paper C.1). In general, the reader should consult the
overview and papers of section C if there is any question concerning definitions or terminology.
Paper B.2 is quite comprehensive, introducing topics (not covered in paper B.1) such as the
modified Allan variance, the delay-line-phase-noise-measurement system, and the use of fre-
quency synthesis to reach frequencies far from normally available reference frequencies.

The materials in papers B.1 and B.2, aside from differences in level of presentation, are
organized in quite different ways. The Howe-Allan-Barnes paper goes directly to the measure-
ment concepts and then describes the means for analyzing the output data and understanding the
confidence of the measurements. On the other hand, the Stein paper carefully lays out the
theoretical background needed to analyze the data before introducing the measurement concepts.
Both papers cover time-domain and frequency-domain measurements.

Paper B.3 by Allan reviews the concepts of the two-sample or Allan variance and the
modified Allan variance showing how classical statistical methods fail to usefully describe the
time-domain performance of good oscillators. The Allan variance concept is also introduced in
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papers B.1 and B.2, and the modified Allan variance is described further in papers D.4 and D.S.
The presentation in paper B.3 is particularly useful in that it discusses general aspects of perfor-
mance of different types of oscillators (quartz, rubidium, hydrogen, and cesium) providing the
basis for prediction of time errors, a topic which may prove useful to those who must develop
system specifications.

Paper B.4 by Walls, Clements, Felton, Lombardi, and Vanek adds to the discussion of
frequency-domain measurements providing information on methods which can be used to in-
crease the dynamic range for both carrier frequency and for Fourier frequencies up to 10 percent
from the carrier. With some aerospace hardware now carrying phase-noise specifications, this is
an important addition to the literature.

A3 COMMENTS ON PAPERS ON STANDARDS AND DEFINITIONS

The first paper in this group (paper C.1) outlines the standard terminology now used for
fundamental frequency and time metrology. This document was widely circulated for comment
during the draft stage and, with its acceptance by IEEE as a standard, supersedes the earlier
reference (paper C.2) which had served as the foundation for characterization of frequency
stability. This latter paper is included because it is so widely cited, and the reader will probably
be confronted with specifications based on its recommendations. Paper C.2 contains additional
material on applications of stability measures and measurement techniques including a useful
discussion of some of the common hazards in measurements. Paper C.1 restricts itself to very
concise statements of the definitions.

The reader will note that the updated terminology in the first paper (C.1) varies in a
number of minor ways from the earlier paper (C.2). A notable addition to definitions is the
introduction of script "ell", £(f), which has become an important measure of phase noise. This
quantity was previously defined as the ratio of the power in one sideband, due to phase modu-
lation to the total signal power. For Fourier frequencies far from the carrier, this quantity can
be simply related to the usual spectral densities which are the quantities that are generally mea-
sured, but the relation breaks down in the important region near the carrier. To resolve this
problem, the new standard defines the approximate relation between £(f) and spectral density as
being exact and applicable for any Fourier frequency.

The third paper in this group (paper C.3), from the 1986 report of the International
Radio Consultative Committee (CCIR), presents the definitions and terminology which have
been accepted for international use by this body. The material in this particularly readable
document is fairly consistent with the IEEE standard and would be useful to those involved in
specification of performance for international trade. A number of minor changes to this docu-
ment have been recommended by different delegations to the CCIR and these will likely be
made in their next publication.

A4 COMMENTS ON SUPPORTING PAPERS
Papers D.1 and D.2 are included in this collection for a number of reasons. First, they

provide alternative introductions to the general topic of oscillator characterization. And second,
they include material not fully covered by introductory papers, B.1 and B.2.
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The first of these (D.1) by Lesage and Audoin covers most of the same ground as papers
B.1 and B.2, but, in addition, includes a nice discussion of characterization of frequency stability
via filtering of phase or frequency noise, a method which may be especially useful for rapid,
automated measurements where high accuracy is not required. Furthermore, this paper discusses
characterization of stable laser sources, a topic not covered in any of the other reference papers.

Paper D.2 by Lance, Seal, and Labaar limits itself to discussion of the measurement of
phase noise and amplitude-modulation (AM) noise. The paper presents a detailed discussion of
delay-line measurement methods which can be used if a second reference oscillator is not
available. The delay-line concept is also introduced in B.2 and B.4, but in much less detail.
While the delay-line method is less sensitive (for lower Fourier frequency) than two-oscillator
methods, it is easier to implement. The paper contains many good examples which the reader
will find useful.

A complete discussion of AM noise is beyond the scope of this volume. AM noise is
usually ignored in the measurement and specification of phase noise in sources under the as-
sumption that the AM noise is always less than the phase noise. This assumption is generally
true only for Fourier frequencies close to the carrier. At larger Fourier frequencies the normal-
ized AM noise can be the same order of magnitude as the phase noise. In systems with active
amplitude leveling, the normalized AM noise can be higher than the phase noise. Under this
condition the AM to PM conversion in the rest of the system may degrade the overall phase
noise performance. For these reasons, we cannot ignore amplitude noise altogether. Paper D.2
provides a useful discussion of amplitude noise. Note 1 in appendix E provides further informa-
tion on definitions, notation and, in particular, the specification of added phase noise and
amplitude noise for signal-handling components.

The next contribution (D.3) provides substantially more detail on the extension of the
time-domain, dual-mixer concept for highly accurate time and time-interval measurements. The
basic dual-mixer ideas are included in papers B.1 and B.2.

Paper D4, published recently, provides the first quantitative treatment of confidence
estimates for phase-noise measurements. To the best of our knowledge, this is the only available
treatment of this important subject. We expect to see additional papers on this topic in the
future.

Paper D.5 discusses the modified Allan variance in more detail than the introductory
papers B.1, B.2, and B.3. It is followed by the Lesage-Ayi paper (D.6) which provides analytical
expressions for the standard set of power-law noise types and also includes discussion of the
uncertainty of the estimate of the modified Allan variance.

Linear frequency drift in oscillators is treated by Barnes in paper D.7. As noted in this
paper, even with correction for drift, the magnitude of drift error eventually dominates all time
uncertainties in clock models. Drift is particularly important in certain oscillators (e.g., quartz
oscillators) and a proper measure and treatment of drift is essential. As with other topics
treated by this group of papers, introductory papers B.1, B.2, and B.3 present some discussion of
frequency drift, but D.7 is included because it contains a much more comprehensive discussion of
the subject.

The final paper (D.8) by Barnes and Allan contains the most recent treatment of mea-
surements made with dead times between them. Paper C.2 introduced the use of bias functions,
B, and B,, which can be used to predict the Allan variance for one set of parameters based on
another set (for the power-law noise models). This last paper extends those ideas, introducing a
third bias function, B,, which can be used to translate the Allan variance between cases where
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dead time is accumulated at the end and where dead time is distributed between measurements,
a useful process for many data-acquisition situations.

AS GUIDE TO SELECTION OF MEASUREMENT METHODS

The table and graph in this section are quick guides to performance limits of the different
methods as well as indications of advantages and disadvantages of each. The ideas presented
here are drawn from papers B.1 and B.4, but we have modified and expanded the material to
make it more comprehensive. The table has been kept simple, so the suggested methods should
be viewed as starting points only. They cannot possibly cover all measurement situations.

For a given measurement task, it is often best to start with a quick, simple measurement
which will then help to define the problem. For example, faced with the need to characterize an
oscillator, a good starting point might be to feed the output of that oscillator along with the
output of a similar, but more stable, oscillator into a good mixer and then look at the output. If
the two can be brought into quadrature by tuning one of the oscillators or by using a phase-
locked loop, then the output can be fed to a spectrum analyzer to get an immediate, at least
qualitative idea, of the performance of the oscillator. This mixing process, which brings the
fluctuations to baseband where measurement is much more straightforward, is basic to many of
the measurement methods. A large number of measurement problems can probably be resolved
with this simple, single-conversion, heterodyne arrangement. If the simplest approach is insuffi-
cient, then some of the more advanced methods outlined below can be used.

There are many ways to go about categorizing the various measurement methods. Since
this volume is aimed at practical measurements, we choose to use the characteristics of the
measurement circuit as the basis for sorting. In this arrangement we have (1) direct measure-
ments where no signal mixers are used, (2) heterodyne measurements where two unequal fre-
quencies are involved, and (3) homodyne measurements where two equal frequencies are in-
volved. These methods are listed below.

I. Direct Measurements
1. Measurements at the Fundamental Frequency
2. Measurements after Multiplication/Division
II. Heterodyne Measurements
1.  Single-Conversion Methods
2. Multiple-Conversion Methods
3. Time-Difference Method
a. Dual-Mixer, Time-Difference Method
III. Homodyne Measurements
1. Phase-Lock-Loop Methods (two oscillators)
a. Loose-Phase-Lock-Loop Method
b.  Tight-Phase-Lock-Loop Method
2. Discriminator Methods (single oscillator)
a. Cavity-Discriminator Method
b. Delay-Line Method
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Table 1. Guide to Selection of Measurement Methods.

Measurement Time Time Frequen Frequencg'
Method Accuracy®  Stability  Accuracy Stability Advantages Disadvantages
(1 day) 0,(r)
I. Direct Measurements |=
See Note  Limited by Limited by Limited by Very simple to perform. Extremely limited resolution not
1. At the Fundamental Frequency # 2in time base  time base  time base appropriate for high stability os-
Appendix  stability accuracy  stability cillators.®
See Note  Limited by Limited by Limited by Very simple to perform; for fre- Provides only modest extension
2. After Multiplication/Division #2in time base  time base  time base quency multiplication factor N, of above method and thus suf-
Appendix  stability accuracy stability noise increases in dB by 20logN. fers similar limitations.®
II. Heterodyne Measurements
Measurement noise can typically Minimum 7 determined by period
7 be made less than oscillator in- of beat frequency, typically not ad-
1. Single-Conversion Methods " ~10"/(v,m) stabilities for 7 = 1 s and longer. justable; cannot compare oscillators
2. Multiple Conversion Methods —_— See 4 ~10° which a 10 MHz near zero beat; additional informa-
Greenhall® at 10 MHz is ~10™" /7 tion needed to tell which oscillator
is high\low in frequency; dead time
often associated with measurements.
7 Wide bandwidth input allows a Using best available equipment,
% ~10" /(vy7) variety of signals; simple to use; measurement noise is typically
3. Time-Difference Method ~100 ps ~20 ps ~10 " which at 10 MHz  cycle ambiguity almost never a greater than oscillator instabilities
at 10 MHz is ~10" '/t problem; measures time, time sta- for 7 less than several seconds,
bility, frequency, and frequency hence is often limited to long-term
stability. measurements.
No dead time; may choose sample More complex than other methods,
7 time (1 ms to as large as desired); and hence more susceptible to ex-
a. Dual-Mixer 6 ~107 /(v,1) oscillators may be at zero beat or  traneous signal pickup; e.g., ground
Time-Difference Method ~100 ps ~5 ps -10 which at 10 MHz different; measurement bandwidth  loops; the time difference is modulo
at 10 MHz is ~107" /7 easily changed; measures time, the beat period, e.g., 200 ns at

time stability, frequency, and fre-
quency stability.

5 MHz.

2Accuracy of the measurement cannot be befter than the stability of the measurement. Accuracy is limited by the accuracy of the reference oscillator.
is is for a measurement bandwidth of 10° Hz; v = frequency; 7 = measurement time.
“This assumes use of a simple frequency counter.

C. Greenhall, 4Ist Annual Frequency Control Symposium, 1987, pp. 126-129.

The dash (——) means that the method is not generally appropriate for this quantity.


Notes and Errata
See Item 2 on page TN-337 of the Appendix for further information.  Click on the link for this paragraph to go there.


L-NL

Table 1. Guide to Selection of Measurement Methods. (continued)

Measurement
Method

Frequenc}' Frequencby

Stability  Accuracy Stability

0,(7)

Advantages

Disadvantages

III. Homodyne Methods

Particularly useful for measurement
of phase noise.

Generally no used for measurement
of time.

1. Phase-Lock-Loop Methods

Assure continuous quadrature of
signal and reference.

Care needed to assure that noise of
interest is outside loop bandwidth.

a. Loose-Phase-Lock Loop

Depends on ~10'7/(u0'r)
calibration which at 10 MHz
of varicap is ~10"" /7

Useful for short-term time stability
analysis as well as spectrum analysis
and the detection of periodicity in
noise as spectral lines; excellent
sensitivity.

Long-term phase measurements
(beyond several seconds are not
practical.

b. Tight-Phase-Lock Loop

Depends on ~10'7/(u01)
calibration  which at 10 MHz
of varicap is ~10" /7

Measurement noise typically less
than oscillator instabilities for

7 = 1 s and longer; good measure-
ment system bandwidth control;
dead time can be made small or

negligible.

Need voltage controlled reference
oscillator; frequency sensitivity is
a function of varicap tuning curve,
hence not conducive to measuring
absolute frequency differences.

2. Discriminator Methods

Requires no reference oscillator.

Substantially less bandwidth than
two-oscillator, homodyne methods;
sensitivity low at low Fourier fre-

quency.

a. Cavity Discriminator

Depends on Depends on
characteris- characteris-
tics of dis- tics of dis-
criminator  criminator

Requires no reference oscillator;
very easy to set up and high in
sensitivity; practical at microwave
frequencies.

Requires more difficult calibration
to obtain any accuracy over even
modest range of Fourier frequencies;
accurate only for Fourier frequen-
cies less than 0.1 x bandwidth.

b. Delay Line

Depends on

_— characteris-
tics of delay
line

Requires no reference oscillator;
dynamic range set by properties
of delay line; practical at micro-
wave frequencies.

Substantially less accurate than two-
oscillator, homodyne methods; cum-
bersome sets of delay lines needed
to cover much dynamic range; con-
siderable delay needed for measure-
ments below 100 kHz from carrier.

2Accuracy of the measurement cannot be befter than the stability of the measurement. Accuracy is limited by the accuracy of the reference oscillator.
is is for a measurement bandwidth of 10° Hz; v = frequency, 7 = measurement time.
The dash (——) means that the method is not generally appropriate for this quantity.
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Table 1 organizes the measurement methods in the above manner giving performance
limits, advantages and disadvantages for each. Figure 1 following the table provides limitations
for phase noise measurements as a function of Fourier frequency. The reader is again reminded
that the table is highly simplified giving nominal levels that can be achieved. Exceptions can be
found to almost every entry.

A.6 RELATIONSHIP OF THE MODIFIED ALLAN VARIANCE TO THE ALLAN VARIANCE

In sorting through this set of papers and other published literature on the Allan Variance,
we were stimulated to further consider the relationship between the modified Allan variance and
the Allan variance. The ideas which were developed in this process have not been published, so
we include them here. Paper D.6, "Characterization of Frequency Stability: Analysis of the
Modified Allan Variance and Properties of Its Estimate,” by Lesage and Ayi adds new insights
and augments the Allan and Barnes paper (D.5), "A Modified Allan Variance with Increased
Oscillator Characterization Ability." In this section we extend the ideas presented in these two
papers and provide further clarification of the relationship between the two variances, both of
which are sometimes referred to as two-sample variances.

Figure 2 shows the ratio [mod o,(7)/0, (1)F as a function of n, the number of time or
phase samples averaged together to calculate mod 0,(7). This ratio is shown for power-law noise
spectra (indexed by the value of a) running from f2 to f2 These corrected results have a some-
what different shape for a@ = -1 than those presented in either paper D.5 or paper D.6. Further-
more, this figure also shows the dependence on bandwidth for the case where @ = 1. For all
other values of a shown, there is no dependence on bandwidth. Table 2 gives explicit values for
the ratio as a function of n for low n as well as the asymptotic limit for large n. For a = 1, the
asymptotic limit of the ratio is considerably simplified from that given in papers D.5 and D.6.
With these results it is possible to easily convert between mod o,(7) and o (7) for any of the
common power-law spectra.

The information in figure 2 and table 2 was obtained directly from the basic definitions of
0,(7) and mod o,(7) using numerical techniques. The results of the numerical calculations were
checked against those obtained analytically by Allan and Barnes (D.5) and Lesage and Ayi (D.6).
For a = 2, 0 and -2 the results agree exactly. For a = 1 and -1 the analytical expressions are
really obtained as approximations. The numerical calculations are obviously more reliable.
Details of our calculations can be found in a NIST report [1]. A useful integral expression (not
commonly found in the literature) for moda;('r) is

2 ff DS

moda’(z) - :
n*rn 1: fAsin’(nt, f)

Figure 2 and table 2 show that, for the fractional frequency fluctuations, mod o (1)
always yields a lower value than o,(7). In the presence of frequency modulation (FM) noise
with a > 0, the improvement is very significant for large n. This condition has been examined in
detail by Bernier [2]. For white FM noise, @ = 0, the optimum estimator for time interval 7 is
to use the value of the times or phases separated by 7 to determine frequency. This is analo-
gous to the algorithm for calculating o,(7) which yields the one-sigma uncertainty in the estimate
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Table 2.

. 2 2 . _ .
Ratio of mod o(7) to 0y(7) versus n for common power-law noise types Sy(t:) = h % n is the
n7, where 7;) is the minimum sample time.

number of time or phase samples averaged to obtain mod oi('r
w, is 2w times the measurement bandwidth f,.

mod o}(7)
R(n) = ——%—— Vs. T =17,
y
n a = -2 a= -1 a=0 a = +]1 a = +2
Ty = wTy =10 w1, = 100 w,re = 10*

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.859 0.738 0.616 0.568 0.543 0.525 0.504 0.500
3 0.840 0.701 0.551 0.481 0.418 0.384 0.355 0.330
4 0.831 0.681 0.530 0.405 0.359 0.317 0.284 0.250
5 0.830 0.684 0.517 0.386 0.324 0.279 0.241 0.200
6 0.828 0.681 0.514 0.349 0.301 0.251 0.214 0.167
7 0.827 0.679 0.507 0.343 0.283 0.235 0.195 0.143
8 0.827 0.678 0.506 0.319 0.271 0.219 0.180 0.125
10 0.826 0.677 0.504 0.299 0.253 0.203 0.160 0.100
14 0.826 0.675 0.502 0.274 0.230 0.179 0.137 0.0714
20 0.825 0.675 0.501 0.253 0.210 0.163 0.119 0.0500
30 0.825 0.675 0.500 0.233 0.194 0.148 0.106 0.0333
50 0.825 0.675 0.500 0.210 0.176 0.134 0.0938 0.0200
100 0.825 0.675 0.500 0.186 0.159 0.121 0.0837 0.0100
Limit 0.825 0.675 0.500 3.37 1/n

[

1.04 +3 lnw, 1

)
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of the frequency measured in this manner over the interval 7. The estimate of frequency,
obtained by averaging the phase or time data, is degraded by about 10 percent from that ob-
tained by using just the end points [3]. This is analogous to the algorithm for calculating mod
o,(7) which, in this case, underestimates the uncertainty in measuring frequency by /2. For
white phase modulation (PM) noise, @ = 2, the optimum estimator for frequency is obtained by
averaging the time or phase data over the interval 7. This is analogous to the algorithm for
calculating mod o (7) which yields the one-sigma uncertainty in the estimate for frequency
measured in this manner. This estimate for frequency is /n better than that provided by o,(1).

Based on these considerations, it is our opinion that mod o,(7) can be profitably used
much more often than it is now. The presence of significant high-frequency FM or PM noise in
the measurement system, in an oscillator, or in an oscillator slaved to a frequency reference, is
very common. The use of mod o,(7) in such circumstances allows one to more quickly assess
systematic errors and long-term frequency stability. In other words, a much more precise value
for the frequency or the time of a signal (for a given measurement interval) can be derived using
mod o,(7) when n is large.

The primary reasons for using 0,(7) are that it is well known, it is simple to calculate, it
is the most efficient estimator for FM noise (e < 0), and it has a unique value for all 7. The
advantages of mod o,(7) are cited in the above paragraph. There are some situations where a
study of both 0,(7) and mod o (7) can be even more revealing than either one. The disadvan-
tages of using mod o (7) are that it is more complex to calculate and thus requires more com-
puter time and it has not been commonly used in the literature, so interpretation of the results is
more difficult to reconcile with published information. Another concern sometimes raised is that
mod o,(7) does not have a unique value in regions dominated by FM noise (a 2 0). With
rapidly increasing computer speeds, the computational disadvantage is disappearing The correct-
ed and expanded information presented in figure 2 and table 2 addresses the concern about
uniqueness.

The primary disadvantage of using 0,(7) is that the results can be too conservative. That
is, if the level of high-frequency FM noise is high, then the results are biased high, and it can
take much longer (often orders of magnitude longer) to characterize the underlying low-frequen-
cy performance of the signal under test.
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PROPERTIES OF SIGNAL SOURCES AND
MEASUREMENT METHODS

D. A. Howe, D. W. Allan, and J. A. Barnes

Time and Frequency Division
National Bureau of Standards
Bouider, Colorado 80303

Summary

This paper is a review of frequency stability
measurement techniques and of noise properties of
frequency sources,

First, a historical development of the useful-
ness of spectrum analysis and time domain measure-
ments will be presented. Then the rationale will
be stated for the use of the two-sample (Allan)
variance rather than the c¢lassical variance.
Next, a range of measurement procedures will be
outlined with the trade-offs given for the various
techniques employed. Methods of interpreting the
measurement results will be given. In particular,
the five commonly used noise models (white PM,
flicker PM, white FM, flicker FM, and random walk
fM) and their causes will be discussed. Methods
of characterizing systematics will also be given.
Confidence intervals on the various measures will
be discussed. In addition, we will point out
methods of improving this confidence interval for
a fixed number of data points.

Topics will be treated in conceptual detail.
Only light (fundamental) mathematical treatment
will be given.

Although traditional concepts. will be de-
tailed, two new topics will be introduced in this
paper: (1) accuracy limitations of digital and
computer-based analysis and (2) optimizing the
results from a fixed set of input data.

The final section will be devoted to funda-
mental (physical) causes of noise in commonly used
frequency standards. Also transforms from time to
frequency domain and vice-versa will be given,

Key Words. Frequency stability; Oscillator noise
mode11ng; Power law spectrum; Time-domain sta-
bility; Frequency-domain stability; White noise;
Flicker noise.

Introduction

Precision oscillators play an important role
in high speed communications, navigation, space
tracking, deep space probes and in numerous other
important applications. In this paper, we will
review some precision methods of measuring the
frequency and frequency stability of precision
oscillators. Development of topics does not rely
heavily on mathematics. The equipment and set-up
for stability measurements are outlined. Examples
and typical

results are presented. Physical

interpretations of common noise processes are
discussed. A table is provided by which typicai
frequency domain stability characteristics may be
translated to time domain stability characteristics
and vice-versa.

1. THE SINE WAVE AND STABILITY

A sine wave signal generator produces a
voltage that changes in time in a sinusoidal way
as shown in figure 1.1. The signal is an oscil-
lating signal because the sine wave repeats itself.
A cycle of the oscillation is produced in one
period "T". The phase is the angle "¢" within a

cycle corresonding to a particular time "t".

FIGURE 1.1

It is convenient for us to express angles in
radians rather than in units of degrees, and
positive zero-crossings will occur at even mul-
tiples of n-radians. The frequency "v" is the
number of cycles in one second, which is the
reciprocal of period (seconds per cycle). The
expression describing the voltage "V' out of a
sine wave signal generator is given by V(t) = Vp
sin {#(t)] where vp is the peak voltage amplitude.
Equivalent expressions are

- t
v(t) = Vpsin (27! T)
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and
V(t) =V, sin (2n0t).

Consider figure 1.2. Let's assume that the maximum
value of "V" equals 1, hence "Vp" =1,
that the voltage "V(t)" is normalized to unity.
If we know the frequency of a signal and if the

We say

signal is a sine wave, then we can determine the
incremental change in the period "T" (denoted by
At) at a particular angle of phase.

P
&,
:

0.2 PRI

FIGURE 1.2
Note that no matter how big or small At may be, we
can determine AV. Let us look at this from another
point of view. Suppose we can measure AV and At.

From this, there is a sine wave at a unique minimum
frequency corresponding to the given AV and At.
For infinitesimally small At, this frequency is
called the instantaneous frequency at this t. The
smaller the interval At, the better the approxi-
mation of instantaneous freguency at t.

When we speak of oscillators and the signals

they produce, we recognize that an oscillator has
some nominal frequency at which it operates. The
“frequency stability" of an oscillator is a term
used to characterize the frequency fluctuations of
the oscillator signal. There is no formal defini-
tion for "freguency stability".
usually refers to frequency stability when com=
paring one oscillator with another. As we shall

However, one

see later, we can define particular aspects of an
oscillator's output then draw conclusions about
its relative frequency stability. In general
terms,

“Frequency stability is the degree to which
an oscillating signal produces the same value
of frequency for any interval, At, throughout
a specified period of time".

Let's examine the two waveforms shown in
figure 1.3. Frequency stability depends on the
amount of time involved in a measurement. Of the
two oscillating signals, it is evident that "2" is
more stable than "1" from time t, to t, assuming

the horizontal scales are Tinear in time.
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FIGURE 1.3
From time t; to t,, there may be some question as
to which of the two signals is more stable, but
it's clear that from time t, to t,, signal "1" is
at a different frequency from that in interval t,
to t,.

If we want an oscillator to produce a parti-
cular frequency Vg» then we're correct in stating
that if the oscillator signal frequency deviates
from vy over any interval, this is a result of
something which is undesirable. In the design of
an oscillator, it 1is important to consider the
sources of mechanisms which degrade the oscil-
lator's frequency stability. A1l undesirable
mechanisms cause random (noise) or systematic
processes to exist along with the sine wave signal
of the oscillator. To account for the noise
components at the output of a sine wave signal
generator, we can express the output as

V(t) = [V0 +¢g(t)] sin [vaot +o(t)]. (1.1)
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where V0 =z nominal peak voltage ampiitude,
£(t) = deviation of amplitude from nominal,
vy = nominal fundamental fregquency,
o(t)

deviation of phase from nominal.

Ideally “"&¢" and "¢" should equal zero for all
time. However, in the real world there are no
perfect oscillators. To determine the extent of
the noise components "ec" and "¢", we shall turn
our attention to measurement techniques.

The typical precision oscillator, of course,
has a very stable sinusoidal voltage output with a
frequency v and a period of oscillation T, which
is the reciprocal of the frequency (v = 1/T). One
goal is to measure the frequency and/or the fre-
quency stability of the sinusoid. Instability is
actuaily measured, but with little confusion it is
often called stability in the literature. Natur-
ally, fluctuations in frequency correspond to
fluctuations in the period. Almost all freguency
measurements, with very few exceptions, are mea-
surements of phase or of the period fluctuations
in an oscillator, not of frequency, even though
the frequency may be the readout. As an example,
most frequency counters sense the zero (or near
zero) crossing of the sinusoidal voltage, which is
the point at which the volitage is the most sensi-
tive to phase fluctuations.

One must also realize that any frequency
In some
instances, one oscillator is in the counter. It

measurement involves two oscillators.

is impossible to purely measure only one oscil-
lator. In some instances one oscillator may be
encugh better than the other that the fluctuations
measured may be considered essentially those of
the latter. However, in general because frequency
measurements are always dual, it {s useful to
define:

Vg =V
1 o (1.2)

y (t)=
: ]

as the fractional freguency difference or deviation
of oscillator one, v;, with respect to a reference
oscillator v divided by the nominal frequency vy
Now, y(t) is a dimensionless quantity and useful

in describing oscillator and clock performance;
e.g., the time deviation, x(t), of an oscillator
over a period of time t, is simply given by:

t
x(t) = [ y(t')dt! (1.3)
[+

Since it is impossible to measure instantaneous
frequency, any frequency or fractional frequency
measurement always involves some sample time, At
or "t"--some time window through which the oscii-
lators are observed; whether it's a picosecond, a
second, or a day, there is always some sample

yiLy,
deviation is being measured say starting at some
time t and again at a later time, t + t. The
difference in these two time deviations, divided
by t gives the average fractional frequency over
that period t:

vty = x(t +v) = x(t) . (1.8)

T

Tau, t, may be called the sample time or averaging
time; e.g., it may be determined by the gate time
of a counter.

What happens in many cases is that one samples
a number of cycles of an oscillation during the
preset gate time of a counter; after the gate time
has elapsed, the counter latches the value of the
number of cycles so that it can be read out,
printed, or stored in some other way. Then there
is a delay time for such processing of the data
before the counter arms and starts again on the
next cycle of the oscillation. During the delay
time (or process time), information is lost. We
have chosen to call it dead time and in some
instances it becomes a problem. Unfortunataly for
data processing in typical oscillators the effects
of dead time often hurt most when it is the hardest
to aveid.
short compared to a second when it is very dif-
ficult to avoid dead time, that is usually where
dead time can make a significant difference in the

In other words, for times that are

data analysis. Typically for many oscillators, if
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the sample time is long compared to a second, the
dead time makes little difference in the data
analysis, uniess it is excessive.l New equipment
or techniques are now available which contribute
Zero or negligible dead time.z

In reality, of course, the sinusoidal output
of an oscillator is not pure, but it contains
noise fluctuations as well. This section deals
with the measurement of these fluctuations to
determine the quality of a precision signal source.

We will describe five different methods of
measuring the frequency fluctuations in precision
oscillators.

1.1 Common Methods of Measuring Frequency Sta-
bility
A. Beat frequency method

The first system is called a heterodyne
frequency measuring method or beat frequency
method. The signal from two independent oscil-
lators are fed into “the two ports of a double
balanced mixer as illustrated in figure 1.4.

vy vy "
otk TesT naen ssciLLATon
1
1 vy = vl =y "8
LOW PASS FILTER | EZAMPLE v, o ) W2
Wwels
HETERODYNE FREQUENCY
MEASUREMENT METHOD
g s | ov e,
FIGURE 1.4

The difference frequency or the beat frequency,
Y is obtained as the output of a low pass filter
which follows the mixer. This beat frequency is
then amplified and fed to a freguency counter and
printer or to some recording device. The frac-
tional frequency is obtained by dividing vy by the
nominal carrier frequency Vo
excellent precision; one can measure essentially

all state-of-the-art oscillators.

This system has

B. Dual mixer time difference (DTMD) system

This system shows some significant promise and
has just begun to be exploited. A block diagram is
shown is figure 1.5.
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FIGURE 1.5

To preface the remarks on the DMTD, it should be
mentioned that if the time or the time fluctua-
tions can be measured directly, an advantage is
obtained over just measuring the frequency. The
reason is that one can calculate the freguency
from the time without dead time as well as know
the time behavior. The reason, in the past, that
frequency has not been inferred from the time (for
sample times of the order of several seconds and
shorter) is that the time difference between a
pair of oscillators operating as clocks could not
be measured with sufficient precision (commercially
the best that is available is 10-1! seconds). The
system described in this section demonstrates a
precision of 10-13 seconds. Such precision opens
the door to making time measurements as well as
frequency and frequency stability measuements for
sample times as short as a few milliseconds and
longer, all without dead time.

In figure 1.5, oscillator 1 could be con-
sidered under test and oscillator 2 could be
considered the reference oscillator. These signals
go to the ports of a pair of double balanced
mixers. Another oscillator with separate symmetric
buffered outputs is fed to the remaining other two
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ports of the pair of double balanced mixers. This
common oscillator's frequency fJs offset by a
desired amount from the other two oscillators.
Then two different beat frequencies come out of
the two mixers as shown. These two beat frequen-
cies will be out of phase by an amount proportional
to the time difference between oscillator 1 and
2—excluding the differential phase shift that may
be inserted. Further, the beat frequencies differ
in frequency by an amount equal to the frequency
difference between oscillators 1 and 2.

This measurement technique is very useful
where one has oscillator 1 and oscillator 2 on the
same frequency. This is typical for atomic stan-
dards (cesium, rubidium, and hydrogen frequency
standards).

IMlustrated at the bottom of figure 1.5 is
what might represent the beat frequencies out of
the two mixers. A phase shifter may be inserted
as illustrated to adjust the phase so that the two
beat rates are nominally in phase; this adjustment
sets up the nice condition that the noise of the
common oscillator tends to cancel (for certain
types of noise) when the time difference is deter-
mined. After amplifying these beat signals, the
start port of a time interval counter is triggered
with the positive zero crossing of one beat and
the stop port with the positive zero crossing of
the other beat. Taking the time difference be-
tween the zero crossings of these beat frequencies,
one measures the time difference between ascillator
1 and osciliator 2, but with a precision which has
been amplified by the ratio of the carrier fre-
quency to the beat frequency (over that normally
achievable with this same time interval counter).
The time difference x(i) for the ith measursment
between oscillators 1 and 2 is given by eq (1.5).

x(iy =38 . @ é_ (1.5)

Tb“o o 0

where At(i) is the ith time difference as read on
the counter, Ty is the beat period, % is the
nominal carrier frequency, ¢ is the phase delay in
radians added to the signal of oscillator 1, and k
is an integer to be determined in order to remove

the cycle ambiguity. It is only important to know
k if the absolute time difference is desired; for
frequency and frequency stability measurements and
for time fluctuation measurements, k may be assumed
zero unless one goes through a cycle during a set
of measurements. The fractional frequency can be
derived in the normal way from the time fluctua-
tions.

vy 1) = vy, D

Yo

Jx(d+1) - x(i) (1.6)

T

At(i + 1) - at(d
e

b "o

yl‘z(i) r) =

In eqs (1.5) and (1.6), assumptions are made
that the transfer (or common) oscillator is set at
a lower frequency than oscillators 1 and 2, and
that the voltage zero crossing of the beat v; - Ve
starts and that v, - v stops the time interval
counter. The fractional frequency difference may
be averaged over any integer multiple of Ty

x(i + m) - x(i
me, (1.7)

yl,z(i, mtb) =
where m is any positive integer. If needed, T
can be made to be very small by having very high
peat frequencies. The transfer (or common) oscil-
lator may be replaced with a low phase-noise
frequency synthesizer, which derives its basic
reference frequency from oscillator 2. In this
set-up the nominal beat frequencies are simply
given by the amount that the output frequency of
the synthesizer is offset from v,. Sample times
as short as a few milliseconds are easiliy ob-
tained. Logging the data at such a rate can be a
problem without special equipment. The latest NBS
time scale measurement system is based on the OMTD
and is yielding an excellent cost benefit ratio.

C. Loose phase lock 1oop method

This first type of phase lock Toop method is
illustrated in figure 1.6. The signal from an
oscillator under test is fed into one port of a
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mixer. The signal from a reference oscillator is
fed into the other port of this mixer. The signals
are in quadrature, that is, they are 90 degrees out

TEST
OSCILLATOR

REF
QSCILLATOR

YOLTAGE CONTROL
OF FREQUENCY

QUTPUT OF
PLL FILTER

FIGURE 1.6
of phase so that the average voltage out of the
mixer is nominally zero, and the instantaneous

voltage fluctuations correspond to phase fluc-
tuations rather than to amplitude fluctuations
between the two signals. The mixer is a key
element in the system. The advent of the Schottky
barrier diode was a significant breakthrough in
making low noise precision stability measurements.
The output of this mixer is fed through a Tow pass
filter and then amplified in a feedback loop,
causing the voltage controlled oscillator (refer-
ence) to be phase locked to the test oscillator.
The attack time of the loop is adjusted such that
a very loose phase lock (long time constant)
condition exists. This 1is discussed later in
section VIII.

The attack time is the time it takes the
servo system to make 70% of its ultimate correction
after being slightly disturbed. The attack time
is equal to 1/nwh, where *h is the servo bandwidth.
If the attack time of the loop is about a second
then the voltage fluctuations will be proportional
to the phase fluctuations for sample times shorter
than the attack time. Depending on the coeffi-
cient of the tuning capacitor and the quality of
the oscillators involved, the amplification used
may vary significantly but may typically range
from 40 to 80 dB via a good low noise amplifier.
In turn this signal can be fed to a specturm
analyzer to measure the Fourier components of the
phase fluctuations. This system of frequency-
domain analysis is discussed in sections VIII to X.

It is of particular use for sample times shorter
than one second (for Fourier frequencies greater
than 1 Hz) in analyzing the characteristics of an
oscillator. It is specifically very useful if one
has discrete side bands such as 60Hz or detailed
structure in the spectrum. How to characterize
precision oscillators using this technique will be
treated in detail later in section IX and XI.

One may also take the output voltage from the
above amplifier and feed it to an A/D converter
This digital output becomes an extremely sensitive
measure of the short term time or phase fluctua-
tions between the two oscillators. Precisions of
the order of a picosecond are easily achievable.

D. Tight phase lock loop method

The second type of phase lock loop methed
(shown in figure 1.7) is essentially the same as
the first in figure 1.6 except that in this case
the loop is in a tight phase lock condition; i.e.,
the attack time of the loop should be of the order
of a few milliseconds. In such a case, the phase
fluctuations are being integrated so that the
voltage output is proportional to the freguency

0SCILLATO i i) -
oRoth TIsT bl PoseiL L"Aotcnlnﬂ
‘ 10 vARICAS
coes [ x
LOM PSS FILTER BIAS BOX
TIGHT PHASE-LOCK LOOP ™y
METHOD OF MEASURING
FREGUENCY STABILITY
YOLTAGZ 10
FREQUENCY ot ¢
CORYERTER
e s |1 ge,
FIGURE 1.7

fluctuations between the two oscillators and is no
longer proportional to the phase fluctuations for
sample times longer than the attack time of the
loop. A bias box is used to adjust the voitage on
the varicap to a tuning point that is fairly
linear and of a reasonable value. The voltage
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fluctuations prior to the bias box (biased slightly
away from zero) may be fed to a voltage to fre-
quency converter which in turn is fed to a fre-
quency counter where one may read out the frequency
fluctuations with great amplification of the
instabilities between this pair of oscillators.
The frequency counter data are logged with a data
logging device. The coefficient of the varicap
and the coefficient of the voltage to frequency
converter are used to determine the fractional
frequency fluctuations, Yi between the oscil-
lators, where i denotes the ith measurement as
shown in figure 1.7. It is not difficult to
achieve a sensitivity of a part in 104 per Hz
resolution of the frequency counter, so one has

excellent precision capabilities with this system.

E. Time difference method
The last measurement method we will illustrate

is very commonly used, but typically does not have
the measurement precision more readily available
in the first four methods illustrated above. This
method is called the time difference method, ang
is shown in figure 1.8. Because of the wide
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FIGURE 1.8
bandwidth needed to measure fast rise-time pulses,
this method is limited in signal-to-noise ratio.
However, some counters are commercially available
allowing one to do signal averaging or to do
precision rise-time comparison (precision of time
difference measurements in the range of 10 ns to
10 ps are now available). Such a method yields a
direct measurement of x(t) without any translation,

conversion, or multiplication factors. Caution
should be exercised in using this technique even
if adequate measurement precision is available
because it is not uncommon to have significant
instabilities in the frequency dividers shown in
figure 1.8--of the order of several nanoseconds.
The technology exists to build better frequency
dividers than are commonly available, but manufac-
turers have not yet availed themselves of state-of-
the-art techniques in a cost beneficial manner. A
trick to by-pass divider problems is to feed the
oscillator signals directly into the time interval
counter and’observe the zero voltage crossing into
a well matched impedance. (In fact, in all of the
above methods one needs to pay attention to impe-
dance matching, cable lengths and types, and con-
nectors). The divided signal can be used to
resolve cycle ambiguity of the carrier, otherwise
the carrier phase at zero volts may be used as the
time reference. The slope of the signal at zero
volts is Zan/tI, where t; = 1/v, (the period of
oscillation). For Vp = 1 volt and a 5 MHz signal,
this slope is 3m volts/ns, which is a very good
sensitivity.

1I. MEASUREMENT METHODS COMPARISON
When making measurements between a pair of

frequency standards or clocks, it is desirable to
have less noise in the measurement system than the
composite noise in the pair of standards being
measured. This places stringent requirements on
measurement systems as the state-of-the-art of
precision frequency and time standards has advanced
to its current level. As will be shown, perhaps
one of the greatest areas of disparity between
measurement system noise and the noise in current
standards is in the area of time difference mea-
surements. Commercial equipment can measure time
differences to at best 10-1!!s, but the time fluc-
tuations second to second of state~of-the-art
standards is as good as 10-~13s.

The disparity is unfortunate because if time
differences between two standards could be measured
with adequate precision then one may also know the
time fluctuations, the frequency differences, and
the frequency fluctuations. In fact, one can set
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Example of

Data deducible from the measursment

Hisrachy Measuresent
Status Method Tine Slime Freq. SFreq.
Dual Mixer Time Diff. x(t) = &t 8 x(t,1) = y(t,t) = 8 y(t,t)=
1 or ™ x (t + t)=x(t) s x(t.t) y(ter,t)=y(t,1)
Time Interval Counter T
Loose Phase~locked 8§ x(t,r) =
2 reference oscillator can't seasure 8 o(t.t “ *
=
3 Heterodyne or beat can't ssasure can't measure |Y\(,t-')[
freguency beat .
[
4 Tight phase-locked can't measure can't measurs can't measure 6 y(t,1) =
reference oscillator c -8V ~
TABLE 2.1
Hessurement Tiee Tise F frequency Advantages Disadvantages Approxisate
Method sccuracy stapility aceuracy stapility Cost (k$)
(1 aay)
No cead time: many cnhoose More complex than othar sethods,
sample time (lms t0 as and hence s more suceptadle to
large as desired); oscil- extranious signal pickup, ¢.9.,
Oual Miner lators may be at zero deat ground loops: the time difference
Time Difference ~100ps 0.1ps ~10-1¢ -1.10-13 or different; seasuresent is sodule the Beat period, e.g., -5
x = bandwidth easily changed; 200ns @ SMMz. to 30
BRASUraRInt N3ise typically
below oscillators noise for
tausls and Tonger: measures
tiaes, time stabtlity,
re y 23 fr 3 19
stabiiity.
Wide bandwidth input allows Measurement noise typicaly
a variety of signails; in excess of oscillator
Tise Intervsi simple 0 use; cycle amdi- instanilitias for tau values
Countar ~100ps 10ps ~10-3% -1.10-4 Quity almost never a pro- up %o and of the order of 17
x 1= Dlem; measures time, time severs) thousand seconds;
stability, frequancy, and hence, typically not useful
freguency stability, for short term stapility
analysis.
Usaful for short tere time Calibration cepends on appro=
Losse Phase- stapility analysis as well priate referencs oscillator
lock reference” Liad 0. 1ps dependas on ~1,10-38 as spectrum analysis; varicap cyrve charecteristics. <«
escillator calibration of x e excellent phase sensiti-
varicap curve vity==typically batter than
sest escillators.
Measurement nofse can Mnisum tay determined dy
Neterodyne or typically be sade Jess than period of beat f
Seat Frequency o Lo ~10-1¢ ~1.10-33 oscillator instabilities typically not adjustable; can 0.2%w1
x 1= for tay sls and longer. aot compare oscillators nesr
tero beat; cannot tell waich
escillator is high or low in
frequency; dead tiss oftan
associatad with thess asasure~
sents.
Weasurement noise typically Need voltage controiled
Tignt prase~ Tess tham oscillator insta= reference oscillator: frequency
locked reference* L L band -1.10-33 bilitfes far taumls ana sensitivity is & function of varicap <1
oscillatar x b longer; good asasuremsent tunINg curve, Nence not conducive to

system bana=width control:
dead time can de ssce saall
or negligible.

seasuring adsolute frequency differ

T Rieules reference osciTiatar 13 avalTanle 13 The BELroTogiec.

TABLE 2.

2
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up an interesting hierarchy of kinds of measurement
systems: 1) those that can measure time, x(t); 2)
those that can measure changes in time or time
fluctuations &x(t); 3) those that can measure
frequency, v(y = (v-vo)/vo); and 4) those that can
measure changes in frequency or frequency fluctua-
tions, 6v (8y = 6v/v°). As depicted in table 2.1,
if a measurement system is of status 1 in this
hierarchy, 1.e., it can measure time, then time
fluctuations, frequency and frequency fluctuations
can be deduced.
is only capable of measuring time fluctuations
(status 2 - table 2.1), then time cannot be de-
duced, but frequency and frequency fluctuations

However, if a measurement system

can. If frequency is being measured (status 3 -
table 2.1), then neither time nor time fluctuations
may be deduced with fidelity because essentially
all commercial frequency measuring devices have
"dead time" (technology is at a point where that
is changing with fast data processing speeds that
are now available). Dead time in a frequency
measurement destroys the opportunity of integrating
the fractional frequency to get to "true" time
fluctuations. Of course, if frequency can be
measured, then trivially one may deduce the fre-
quency fluctuations. Finally, if a: system can
only measure frequency fluctuations {status 4 -
table 2.1), then neither time, nor time fluctua-
tions, nor frequency can be deduced from the data.
If the frequency stability is the primary concern
then one may be perfectly happy to employ such a
measurement system, and similarly for the other
statuses in this measurement hierarchy. Obviously,
if a measurement method of Status 1 could be
empioyed with state-of-the-art precision, this
would provide the greatest flexibility in data
processing. From section 1, the dual mixer time
difference system is purported to be such a method.
Table 2.2 is a comparison of these different
methods. The

there may be unique situations where

measurement values entered are
nominal;
significant departures are observed. The time and
listed are the

values.

frequency stabilities nominal

second to second rms The accuracies

listed are taken in an absolute sense. The costs

listed are nominal estimates in 1981 dollars.

Figure 2.1 s a diagram indicating the

sample time regions over which the various methods

with
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are most appropriately applied. The large diago-
nally oriented area indicates the typical noise
1imits of the measurement technique (at particular
values of sample time indicated on the horizontal

scale).

I1I. CHARACTERIZATION
Given a set of data of the fractional fre-

quency or time fluctuations between a pair of
oscillators, it is useful to characterize these
fluctuations with reasonable and tractable models
In so doing for many kinds of
oscillators, it is useful to consider the flucua-

of performance.

tions as those that are random (may only be pre-
dicted statistically) and those that are non-
random (e.g., systematics— those that are enviren-
mentally induced or those that have a causal
effect that can be determined and in many cases
can be predicted).

3.1 Non-random Fluctuations

Non-random fluctuations are usually the main
cause of departure from "true" time or “true"
frequency.
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If, for example, one has the values of the
frequency over a period of time and a frequency
offset from nominal is observed, one may calculate
directly that the phase error will accumulate as a
ramp. If the freguency values show some linear
drift then the time fluctuations will depart as a
quadratic. In aimost all oscillators, the above
systematics, as they are sometimes cailed, are the
pr{mary cause of time and/or frequency departure.
A useful approach to determine the value of the
frequency offset is to calculate the simple mean
of the set, or for determining the value of the
frequency drift by calculating a linear least
squares fit to the freguency. A least squares
quadratic fit to the phase or to the time deriva-
tive is typically not as efficient an estimator of
thé frequency drift for most oscillators.

3.2 Random Fluctuations

After calculating or estimating the systematic
or non-random effects of a data set, these may be
subtracted from the data leaving the residual
random fluctuations. These can usually be best
It is often the case
for precision oscillators that these random fluc-

characterized statistically.

tuations may be well modeled with power law spec-
tral densities. This topic is discussed later in
sections VIII to X. We have

5,(f) = hf%, (3.1
where Sy(f) is the one-sided spectral density of
f is the
Fourier frequency at which the density is taken,

the fractional frequency fluctuations,
hu is the intensity coefficient, and a is a number
modeling the most appropriate power law for the
data. that in the time
domain one can nicely represent a power law spec-

It has been shown1'3
tral density process using a well defined time-
domain stability measure, ay(t), to be explained
in the next section. For example, if one obsarves
from a log o 2(t) versus t diagram a particular
slope (call it y) over certain regions of sample
time, 1, this slope has a correspondence to a
power law spectral density or a sat of the same

with some amplitude coefficient ha‘ In particular,

10

p=-a -1 for =3 <a<l and y -2 for 1 < 0.
Further a correspondence exists between ha and the
These coefficients have
The
transformations for some of the more common power

coefficient for o (1).
been calculated and appear in section XI.
Taw spectral densities have been tabulated making
it quite easy to transform the frequency stability
modeled in the time-domain over to the frequency
Examples of some power-law
spectra that have been simulated by computer are
shown in figure 3.1.
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have been named white noise, flicker noise, random

it

M"

walk, and flicker walk (the w in fig. 3.1 is
angular Fourier frequency, w = 2nf).
Once the noise characteristics have been

determined, one is often able to deduce whether
the oscillators are performing properly or not and
whether they are meeting either the design speci-
fications or the manufacturers specifications.
For example a cesium beam frequency standard or a
rubidium gas cell frequency standard when working
properly should exhibit white frequency noise,
which is the same as random walk phase (or time)
for tau values of the order of a few seconds to
severa] thousand seconds (see also sec. XI).

IV. ANALYSIS OF TIME DOMAIN DATA

Suppose now that one

is given the time or
frequency fluctuations between a pair of precision
oscillators measured, for example, by one of the
techniques outlined in section I, and a stability
Let this comparison be
The minimum sample time

analysis 1is desired.

depicted by figure 4.1.



If the
time difference or the time fluctuations are

is determined by the measurement system.

available then the frequency or the fTractional
frequency fluctuations may be calculated from one
period of sampling to the next over the data
ingiciated figure 4.1. Suppose
further there are M values of the fractional

length as in

frequency ¥y Now there are many ways to analyze
these data. Historically, people have typically
used the standard deviation equation shown
figure 4.1, Ogtd. dev.(‘)‘ where y is the average
fractional frequency over the data set and is

subtracted from each value of ¥y before squaring,

in

summing and dividing by the number of values minus
one, (M-1), and taking the square root to get the
At NBS, we have studied what
happens to the standard deviation when the data
set may be characterized by power law spectra
white
In other words, if

standard deviation.

which are more dispersive than classical
noise frequency fluctuations.
the fluctuations are characterized by flicker

noise or any other non-white-noise frequency
deviations, what happens to the standard deviation
for that data set? One can show that the standard
deviation is a function of the number of data
points in the set; it is also a function of the
dead time and of the measurement system bandwidth.
For example, using flicker noise frequency modula-
as the number of data points

the standard deviation monotonically

tion as a model,
increases,
increases without 1imit. Some statistical measures
have been developed which do not depend upon the
data
characterizing the random fluctuations in precision
An 1EEE subcommitiee on freguency
stability has recommended what has come to be
taken from the set
of useful variances developed, and an experimental
estimation of the square root of the Allan vari-
ance

length and which are readily usabie for
oscillators.

known as the "Allan variance"

is shown as the bottom right equation in
figure 4.1, This equation is very easy to imple-
ment experimentally as one simply need add up the
squares of the differences between adjacent values
of Yo divide by the number of them and by two, and
take the square root.

which the [EEE subcommittee has recommended for

One then has the guantity

specifiration of stability in the time domain—

donotod‘by:cy(t).

ny(:r,) =<% (y(t+r) - ?(t))’>;’, (4.1)

where tte brackets "“<>" denote infinite time

average. .In practice this is easily estimated
from a Fimite data set as follows:

b

(yi*l = yi>z ’

"1

(4.2)
i=1

where the y; are the discrete frequency averages
as {llustrated in figure 4.1.
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FIGURE 4.1

A simulated plot of the time fluctuations, x(t)
between a pair of oscillators and of the corres-
ponding fractional freguencies calculated from the
time fluctuations each averaged over a sample time
1. At the bottom are the equations for the stan-
dard deviation (left) and for the time-domain
measure of frequency stability as recommended by
the IEEE subcommittee on frequency stability
(right).

One would Tike to know how Uy(t) varies with
the sample time, 1. A simple trick that one can
use that is very useful if there is no dead time,
is to average the previous values for ¥y and Yy
and call that a new 2 averaged over 21, similarly
average the previous values for Y3 and Y and call
that a new Yy averaged over 2t etc., and finally
apply the same equation as before to get ay(Zt).
One can repeat this process for other desired

integer muyltiples of t and from the same data set
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be able to generate values for oy(mt) as a function
of mt from which one may be able to infer a model
for the process that is charactaristic of this
pair of oscillators. If one has dead time in the
measurements adjacent pairs cannot be averaged in
an unambiguous way to simply increase the sample
time. One has to retake the data for each new
sample time--often a very time consuming task,
This is another instance where dead time can be a
probiem.

How the classical variance (standard deviation
squared) depends on the number of samples is shown
Plotted is the ratio of the stan-
dard deviation sguared for N samples to the stan-

in figure 4.2,

dard deviation squared for 2 samples; <g2(2,1)> is
the same as the Allan variance, cyz(t). One can
see the dependence of the standard deviation upon
the number of samples for various kinds of power
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FIGURE 4.2

The ratio of the time average of the standard
deviation squared for N samples over the time
average of a two sample standard deviation squared
as a function of the number of smaples, N. The
ratic is plotted for various power law spectral
densities that commonly occur in precision escil-
lators. The figure illustrates one reason why the
standard deviation is not a convenient measure of
frequency stability; i.e. it may be very important
to specify how many data points are in a data set
if you use the standard deviation.

taw spectral densities commonly encountered as

reasonable models for many important precision

oscillators. Note, cyz(r) has the same value as

12

variance for the classical noise

One main point of figure

the classical
case (white noise FM).
4.2 is simply to show that with the increasing
data length the standard deviation of the common
behaved for the
very often

classical variance is not wel)
kinds of noise processes that are
encountered in most of the precision oscillators
of interest.

One may combine eq (1.4) and eq (4.1),'which
yields an equation for cy(t) in terms of the time

difference or time deviation measurements.

oy(t) = <;%7 (x(t+21) - Zx(§*t) + x(t))? & )

(4.3)
which for N discrete time readings may be estimated
as,

L 2 .
~ - 2
0,(t) 2 | N-T)Re El (Xieg = PXqap * X2
(4.4)

where the i denotes the number of the reading in
the set of N and the nominal spacing between
readings is t. If there is no dead time in the
data and the original data were taken with the x's
o' we can pick t in eq (4.4) to

be any integer multiple of 1, i.e., T = mt

spaced by t

- b
1 N-2m

o (Mto) = T Zmom T é:l("hzm T Wy T XA

(4.8)

Equation (4.5) has some interesting consequences
because of the efficient data usage in terms of
the confidence of the estimate as will be explained
in the next section.

EXAMPLE: Find the Allan variance, cyz(t), of the
following sequence of fractional fre-
quency fluctuation values Yo each value
averaged over one ‘second.

¥, = 4.36 x 10-$ ¥g = 4.47 x 10-§

¥, = 4.61 x 10-3 ¥g = 3.96 x 10-3
¥y = 3.19 x 10-5 ¥y = 4.10 x 10-5
Yg = 4.21 x 10- yg = 3.08 x 10-3

(assume no dead-time in measursment of averages)
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Since each average of the fractional
fluctuation values is for one second,
first variance calculation will be at t = ls.

frequency
then the
We
the

are given M = 8 (eight values); therefore,

number of pairs in sequence is M=1 = 7. We have:

Data values First differences First qifference squared
Yy (x 10-9) Opay ~ y) (x 10-9) Oyey = ¥} (x 10-99)

4.36 Seand —
61 0.25 0.06
319 Y] 2.02
4.2 1.02 1.08
447 9.26 0.07
1.9 -0.81 0.2
4.10 0.14 0.02
3.08 -1.02 —¢
o)
(y -y )2 =4,51 x 10-30
& Vel
Therefore,
-10
o2(1s) = 2L X 10°070 o 3 5, 10-11
Yy 2(7)
and

0 (1) = [a§(1s)]* = [3.2 x 10-317% = 5.6 x 10-8

one can calculate the
variance for t = 2s by averaging pairs of adjacent
values and using these new averages as data values

Using the same data,

for the same procedure as above. For three second

averages (1t = 3s) take adjacent threesomes and
find their averages and proceed in a similiar
manner. More data must be acquired for longer
averaging times.

One sees that with large numbers of data
values, it is helpful to use a computer or program-
The confidence of the estimate
on ay(r) improves nominally as the square root of
In this example,
M=8 and the confidence can be expressed as being
no better the 1/J8 x 100% = 35%. This then is the
allowable error in our estimate for the t = 1s

The next section shows methods of com~

mable calculator.

the number of data values used.

average.
puting and improving the confidence interval.
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V.  CONFIDENCE OF THE ESTIMATE AND OVERLAPPING
sAMPLES®
One can imagine taking three phase or time

measurements of one oscillator relative to another
at equally spaced intervals of time. From this
phase data one can obtain two, adjacent values of
average frequency. From these two frequency mea-
surements, one can calculate a single sample Allan
(or two-sample) variance (see fig. 5.1). Of
course this variance does not have high precision
or confidence since it is based on only one fre-

quency difference.

+ t-> - »
dmm
a1

| —ple— 2 —

FIGURE 5.1

Statisticians have considered this problem of
quantifying the variability of quantities like the
Allan Variance. C(onceptually, cne could imagine
repeating the above experiment (of taking the
three phase points and calculating the Allan
Variance), many times and even calculating the
distribution of the values.

For the above cited experiment we know that
the results are distributed 1ike the statistician’s
chi-square distribution with one degree of freedom.
That is, we know that for most common oscillators
the first difference of the frequency is a normaily
distributed variable with the typical bell-shaped
curve and zero mean. However, the square of a
normally distributed variable is
distributed.
is always positive and the normal curve is com=
pletely symmetric and negative values
likely as positive. The resulting distribution is
called a chi-square distribution, and it has ONE
“degree of freedom"
obtained by considering the squares of individual
(i.e., one independent sample), normally distri-
buted variables.

In contrast, if we took five phase values,

then we could calculate four consecutive frequency

NOT normally
That is easy to see since the sguare

are as

since the distribution was

values, as in figure 5.2. We could then take the
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first pair and calculate a sample Allan Variance,
and we could calculate a second sample Allan
Variance from the second pair (f.e., the third and
fourth frequency measurements). The average of
these two sample Allan Variances provides an
improved estimate of the “true" Allan Variance,
and we would expect it to have a tighter confidence
interval than in the previous example. This could
be expressed with the aid of the chi-square distri-
bution with TWO degrees of freedom.

However, there is another option. We could
also consider the sample Allan Variance obtained
from the second and third frequency measurements.
That is the middle sample variance. Now, however,
we're in trouble because clearly this last sample
Allan Variance is NOT independent of the other
two. Indeed, it is made up of parts of each of
the other two. This does NOT mean that we can't
use it for improving our estimate of the "true"
Allan Variance, but it does mean that we can't
just assume that the new average of three sample
Allan Variances is distributed as chi-square with
three degrees of freedom. Indeed, we will en-
counter chi-square distributions with fractional
degrees of freedom. And as one might expect, the
number of degrees of freedom will depend upon the
underlying noise type, that is, white FM, flicker
FM, or whatever.

Before going on with this, it is of value to
review some concepts of the chi-square distri-
bution. Sample variances (like sampie Allan
Variances) are distributed according to the equa-
tion:

_ (d.f.)-s2
X2 = = (5.1)

where 52 is the sample Allan Variance, x2 is

chi-square, d.f. is the number of degrees of
freedom (possibly not an integer), and o2 is the
“"trye" Allan Variance we're all dinterested in
knowing=-but can only estimate imperfectly.
Chi~square is a random variable and its distri-
bution has been studied extensively. For some
reason, chi-square is defined so that d.f., the
number of degrees of freedom, appears explicitly
in eq (5.1). Still, 2 1is a (implicit)
function of d.f., also.

The probability density for the chi-square
distribution is given by the relation

RA
pO2) = i G2 e (5.2)
2 r(—z-—)

where r(?@ia) is the gamma function, defined by
the integral

rys g e™ ax (5.3)

Chi-square distributions are useful in deter-
mining specified confidence intervals for variances
and standard deviations. Here is an example.
Suppose we have a sample variance s2 = 3.0 and we
know that this variance has 10 degrees of freedom.
(Just how we can know the degrees of freedom will
be discussed shortly.) Suppose also that we want
to know a range around our sample value of s2 = 3.0
which "probably" contains the true value, c?. The
desired confidence is, say, 90%. That is, 10% of
the time the true value will actually fall outside
of the stated bounds. The usual way to proceed is
to allocate 5% to the low end and 5X to the high
end for errors, leaving our 90X in the middle.
This 1s arbitrary and a specific problem might
dictate a different allocation. We now resort to
tables of the chi-square distribution and find
that for 10 degrees of freedom the 5% and 95%
points correspond to:

x2(.05) = 3.94
for d.f. = 10 (5.4)
x2(.95) = 18.3
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Thus, with 90X probability the calculated sample
variance, s2, satisfies the inequality:

g2
3.94 ¢ {&L)88 (183

(5.5)

and this inequality can be rearranged in the form

1.64 < 02 < 7.61 (5.6)

or, taking square roots:
1.28 <0< 2.76 (5.7)
Now someone might object to the form of

eq (5.7) since it seems to be saying that
the true sigma falls within two limits with 90%

probability. Of course, this is either true or
not and is not subject tc a probabilistic inter-
pretation. Actually eq (5.7) 1is based on

the idea that the true sigma is not known and we
estimate it with the square root of a sample
variance, s2. This sample variance is a random
variable and is properly the subject of probabil-
ity, and its value (which happened to be 3.0 in
the will eq (5.7)
times out of ten.

Typically, the sample variance is calculated
from a data sample using the relation:

example) conform to nine

(5.8)

where it is implicitly assumed that the xn's are
random and uncorreiated (i.e., white) and where x
is the sample mean calculated from the same data
set. If all of this is true, then s2 is chi-square
distributed and has N-1 degrees of freedom.

Thus, for the case of white L and a conven-
tional sample eq (5.8)), the
number of degrees of freedom are given by the
equation:

variance (i.e.,

d.f. = N-1 (5.9)
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The problem of interest here is to obtain the
corresponding equations for Allan Variances using
overlapping estimates on various types of noise
(i.e., white FM, flicker FM, etc.).

Other (Lesage and
Yoshimura) have considered the question of the
variance of the Allan Variances without regard to
This is, of course, a closely
related problem and use will be made of their

authors and Audoin,

the distributions.
results. These authors considered a more restric-
tive set of overlapping estimates than will be
considered here, however.

V1. MAXIMAL USE OF THE DATA AND DETERMINATION OF

THE UEGREES OF FPREEDUM.

6.1 Use of Data

Consider the case of two oscillators being
in phase and exactly N values of the
Assume that the
data are taken at equally spaced intervals, t

compared
phase difference are obtained.
o
N-1
consecutive values of average frequency and from

From these N phase values, one can obtain
these one can compute N-2 individual, sample Allan
Variances (not all independent) for 1 = Ty
N-2 values can be averaged to obtain an estimate

These

of the Allan Vvariance at t = t_.. The variance of

this variance has been calcu{:ted by the above
cited authors.

Using the same set of data, it is also possi-
ble to estimate the Allan Variances for integer
muitiples of the base sampling interval, t = nt,.
Now the possibilities for overlapping sample Allan
Variances are even greater. For a phase data set
of N points one can obtain exactly N-2n sample
0f course only a
fraction of these are generally independent.
Sti1l the use of ALL of the data is well justified
(see fig. 6.1).

Consider the case of an experiment extending

Allan Variances for t = nt,.

for several weeks in duration with the aim of

getting estimates of the Allan Variance for tau
values equal to a week or more. As always the
purpose is to estimate reliably the “true" Allan
with as

Variance as well as possible--that is,

tight an uncertainty as possible. Thus one wants
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FIGURE 6.1
to use the data as efficiently as possible since
obtaining more data can be very expensive. The
most efficient use is to average all possible

sample Allan Vvariances of a given tau value that
one can compute from the data.

The problem comes in estimating how tight the
confidence intervals really are—that is, in esti-
mating the number of degrees of freedom. C(learly,
if one estimates the confidence intervals pessimi-
is needed to reach a

stically, then more data

specified tolerance, and that can be expensive.
The other error of over-confidence in a question-
Ideally,
realistic confidence estimates for the

is the

able value can be even more expensive.
one has
most efficient use of the data, which

intent of this writing.

6.2 Determining the Degrees of Freedom

In principle, it should be possible to deter-
mine analytically the equations corresponding to
eq (5.9) for all cases of interest.
tunately the analysis becomes quite complicated.
Exact computer algorithms were devised for the

Unfor-

cases of white phase noise, white frequency modu-
lation and random walk FM. For the two flicker
(i.e., flicker FM and PM) a completely
empirical approach was used. Due to the complexity

cases

of the computer programs, fits were

devised for ail five noise types.

empirical
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The approach used is based on three equations
relating to the chi-square distribution:

2 52
R (6.1)
E[x2] = d.f. (6.2)
Var[x?] = 2(d.1.) (6.3)

where the expression E[x2] means the "expectation,"
or average value of x, Var{y?] is the variance of
x2, and d.f. is the number of degrees of freedom.

A computer was .used to simulate phase data
sets of some length, N, and then Allan Variances
with t = nt, were calculated for all possible
sampies. This "experiment” was repeated at least
1000 times using new simulated data sets of the
same spectral type, and always of the same length,
N. Since the data were simulated on a computer,
the "true" Allan Variance, 02, was known for many
of the noise models and could be substituted into
eq (6.1). From the 1000 values of s2/g2, distri-
butions and sample variances were obtained. The
"axperimental" distributions were compared with
theoretical verify that the
observed distributions truely conformed to the
chi-square distribution.

The actual
freedom were made using the relation:

distributions to

calculation of the degrees of

232
a.f. = %%()577 (6.4)
which can be deduced from eqs (6.1), (6.2),

and (6.3).
sample variance of the 1000 values of the average

The Var(s2?) was estimated by the

Allan Variances,
set of length N.
0f course this had to be repeated for various
values - of N and n, as well as for each of the five
common noise types: white PM, flicker PM, white
FM, flicker FM, and random walk FM.
certain limiting values are known and these can be
used as checks on the method.
(N=1)/2=n,
from each data set and one should get about one
degree of freedom for eq (6.4), which was observed

each obtained from a phase data

Fortunately,

For example, when

only one Allan Vvariance i{s obtained
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in fact. Also for n=1 the "experimental" condi-
tions correspond to those used by Lesage and
Indeed, the method also

it gave results

Audoin, and by Yoshimura.
was tested by verifying that
consistent with eq (5.9) when applied to the
conventional sample variance. Thus, combining eq

(6.4) with the equations for the variance of the

Allan Variances from Lesage and Audoin and

Yoshimura, one obtains:

White PM a.f. = BIE | for v > 4

Flicker PM d.f, =7?
-2)2

White FM g.f. = 2-2)7 (6.5)
3N-7

. _ 2(N=2)2

Flicker FM d.f. = 2 3N-49

Random walk fM d.f. = N-2

for n=l. Unfortunately, their results are not

totally consistent with each other. Where incon-
sistency arose the value in best agreement with
the "experimental"” results was chosen.

The empirical equations which were fit to the
data

summarized below:

"experimental" and the known values are

White PM q.f. g {EDNZn)
2(N=n)
Flicker PM d.f. = exp <1n gﬁl n $Zﬂ:%2$ﬁ:ll>
(6.6)
i =l 3N-1) _ 2(N-2) | . _4n2
White FM mf.s[ T N ] T

2(N-2
SN - 4.9 Tor ™l

Flicker FM d.f.

n

2
3ﬁfﬁ§§'35" for n> 2

d.f. = N2

N-1)2-3n(N-1)+4n2
n (N-3)2

The figures in Appendix I demonstrate the fit to
the "experimental" data.

Random Walk FM
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It is appropriate to give some estimate of
just how well these empirical egquations approach
the
mately (a few percent) the correct assymptotic
behavior at n=1 and n=(N-1)/2. the
values were tested (using the simulation results)
range of N=5 to MN=1025 for n=1 to
In general, the

“"true" values. The equations have approxi-

In between,

over the
n=(N-1)/2 changing by octaves.
fit was good to within a few percent.
acknowledge that distributional problems with the
can
known values which

We must

random number generators cause problems,
although there were several
should have revealed these problems if they are
present. Also for three of the noise types the
exact number of degrees of freedom were calculated
for many values of N and n and compared with the
"Monte Carlo" calculations. The results were all
very good. )

Appendix [ presents the data in graphical
form. A1l values are thought to be accurate to
within one percent or better for the cases of
white PM, white FM, and random walk FM. A larger

tolerence should be allowed for the flicker cases.

VII. EXAMPLE OF TIME-DOMAIN SIGNAL PROCESSING AND

ANALYSIS
We will analyze in some detail a commercial
portable clock, Serial No. 102. This cesium was

measured against another commercial cesium whose
stability was well documented and verified to be
better than the one under test. Plotted in figure

7.1 are the residual time deviations after removing

FTs

PC ¥S CSLO

FIGURE 7.1
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a mean frequency of 4.01 parts in 1033. Applying
the methods described in section IV and section V,
we generated the Oy(t) diagram shown

7.2.

in figure
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FIGURE 7.2
One observes that the last two points are propor—
tional to t’l and one is suspicious of a signifi-
cant frequency drift.

If one calculates the drift knowing that
ay(r) is equal to the drift times 33 a drift of
1.22 x 10-* per day is obtained. A linear least
squares to the frequency was removed and sections
The linear least
squares fit showed a drift of 1.23 x 10-14 per
which

IV and V were applied again.

day, is in excellent agreement with the
previous calculated value obtained from ay(t).
Typically, the linear least squares will give a
much better estimate of the linear frequency drift
than will the estimate from o (t) being propor-
tional to t¢1. Y

Figure 7.3 gives the plot of the time resid-
uals after removing the linear least squares and
figure 7.4 is the corresponding ay(t) vs. 1T dia-
gram. From the 33 days of data, we have used the
90% confidence interval to bracket the stability
estimates and one sees a reasonable fit corres-
ponding to white noise frequency modulation at a

level of 4.4 x 10-31! t-s. This seemed excessive
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in terms of the typical performance of this par-
ticular cesium and in as much as we were doing
some other testing within the environment, such as
working on power supplies and charging and dis-
charging batteries, we did some later tests.
Figure 7.5 is a plot of ay(t) after the standard
had been left alone in a quiet environment and had
been allowed to age for about a week. One ob-
serves that the white noise frequency modulation
Tevel is more than a factor of 4 improved over the
previous data., This led us to do some studies on
the effects of the power supply on the cesium fre-
quency as one is charging and discharging bat-
teries, which proved to be significant. One
notices in figure 7.4 that the Oy(t) values plotted
are consistent within the error bars with flicker
noise frequency modulation. This is more typical
of the kind of noise one would expect due to such
environmental perturbations as discussed above.

Careful time- and/or frequency-domain analy-
ses can lead to significant insights into problems
and their solutions and is highly recommended by
ihe authors.. The frequency-domain techniques wil)
be next approached.

VIII. SPECTRUM ANALYSIS
Another method of characterizing the noise in

a signal source is by means of spectrum anmalysis.
To understand this approach, let's examine the
waveform shown in figure 8.1.

T~
v » ar

X T

FIGURE 8.1
Here we have a sine wave which is perturbed
for short instances by noise. Some loosely refer
to these types of noises as "glitches". The
waveform has a nominal frequency over one cycle
which we'll call “vo“ (vo = %). At times, noise
causas the instantaneous frequency to differ

markedly from the nominal frequency. If a pure
sine wave signal of freguency vq is subtracted
from this waveform, the remainder is the sum of
the noise components. These components are of a
variety of frequencies and the sum of their ampli-
tudes is nearly zero except for the intervals
during each glitch when their amplitudes momen-
tarily reinforce each other. This {s shown graph-

ically in figure 8.2.
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FIGURE 8.2

One can plot a graph showing rms power vs.
frequency for a given signal. This Kkind of plot
is called the power spectrum. For the waveform of
figure 8.1 the power spectrum will have a high
value at Yo and will have lower values for the
signals produced by the glitches. C(loser analysis
reveals that there is a recognizable, somewhat
constant repetition rate associated with the
glitches. In fact, we can deduce that there is a
significant amount of power in another signa)l
whose period is the period of the glitches as
shown in figure 8.2. Let's call the frequency of
the glitches V-
observe a noticeable amount of power in the spec-

Since this is the case, we will

trum at Vg with an amplitude which is related to
the characteristics of the glitches. The power
spectrum shown in figure 8.3 has this feature. A
predominant vg component has been depicted, but
other harmonics also exist.

SECTRAL. DENSITY
1 &
AA
0 Vo e
FREQUENCY —
FIGURE 8.3
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Some noise will cause the instantaneous fre-
quency to "jitter" around Yy with probability of
being higher or lower than vg- We thus usually

find a "pedestal" associated with vy 2s shown in

figure 8.4.
SPECTRAL, DENSTTY
-l
TOER
0
FIGURE 8.4
The process of breaking down a signal into
all of its various components of frequency is
called Fourier expansion (see sec. X). In

other words,
components,

the addition of all the frequency
called Fourier frequency components,
produces the original signal.
Fourier frequency is the difference between the
frequency component and the fundamental frequency.
The power spectrum can be normalized to unity such

The value of a

that the total area under the curve equals one.
The power spectrum normalized in this way is the
power spectral density.

The power spectrum, often called the RF
spectrum, of V(t) is very useful in many appli-
cations. Unfortunately, if one is given the RF

spectrum, it is impossible to determine whether
the power at different Fourier frequencies is a
result of amplitude fluctuations "e(t)" or phase
fluctuations "¢(t). The RF spectrum can be separ~
ated into two independent spectra, one being the
spectral density of "e(t)" often called the AM
power spectral density and the other being the
spectral density of "o(t)".

For the purposes here, the phase-fiuctuation
components are the ones of interest. The spectral
density of phase fluctuations is denoted by S¢(f)
S For the fre~
quently encountered case where the AM power spec-
tral density is negligibly small and the total
modulation of the phase fluctuations is small
(mean-square value is much less than one rad?),

where is Fourier frequency.

20

the RF spectrum has approximately the same shape
as the phase spectral density.
difference

However, a main
in the representation is that the RF
signal

and the phase spectral density does not.

spectrum includes the fundamental (car-
rier),
Another major difference is that the RF spectrum
is a power spectral density and is measured in
units of watts/hertz. The phase spectral density
involves no "power' measurement of the electrical
The are radians?/hertz. It is
tempting to think of So(f) as a "power” spectral
density because
passing V(t) through a phase detector and measuring
the detector's output power spectrum. The measure-
ment technigue makes use of the relation that for

small deviations (8¢ << 1 radian),

2
Voo ()
2| _rms
(0 -< Vs )

where Vrms(f) is the root-mean-square noise voltage

signatl. units

in practice it is measured by

(8.3)

per JHZ at a fourier freguency "f", and Vs is the
sensitivity (voits per radian) at the phase quadra-
ture output of a phase detector which is comparing
the two oscillators. In the next section, we will
Took at a scheme for directly measuring S¢(f).

One question we might ask is, "How do fre-
quency changes relate to phase fluctuations?"
After all

oscillator that is a major consideration in many

it's the frequency stability of an

applications. The frequency is equal to a rate of
change in the phase of a sine wave. This tells us
that fluctuations in an oscillator’'s output fre-
quency are related to phase fluctuations since we
must change the rate of “¢(t)" to accomplish a
shift in "v(t)", the frequency at time t. A rate
of change of total "e.(t)" s denoted by “$T(t)“.
We have then

2mv(t) = 6T(t) (8.4)

The dot denotes the mathematical
differentiation on the function ¢T with respect to
t.* From eq (8.4)

operation of

its independent variable

* As an analogy, the same operation relates the
position of an object with its velocity.
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and eg (1.1) we get
2o(t) = de(t) = 2mvy + 6(t)

Rearranging, we have

2mu(t) - 2y = é(t)

or

v(t) - Vo = Qéﬁl

The quantity v(t) - vy can be more conveniently
denoted as Sv(t), a change in frequency at time t.
Equation (8.5) tells us that if.we differentiate
the phase fluctuations ¢(t) and divide by 21, we
will have calculated the frequency fluctuation
Su(t). Rather than specifying a frequency fluc-
tuation in terms of shift in frequency, it is
useful to denote Sv(t) with respect to the nominal

frequency vg- The quantity §§S£2 is called the
0

(8.5)

fractional fregquency fluctuation** at time t and

is signified by the variable y(t). We have

= Sv(t) o(t
y(t) = —vé-l '27:%0

(8.6)

The fractiomal frequency fluctuation y(t) is
a dimensionless quantity.
stability, 1ts
clearer if we consider the following example.
Suppose in two oéci]]ators dv(t) is consistently
equal to + 1 Hz and we have sampled this value for
many times t. Are the two oscillators equal in
their ability ‘to produce their desired output
frequencies? Not if one oscillator is operating
at 10 Hz and the other at 10 MHz. In one case,
the average value of the fractional
fluctuation is 1/10, and in the second case fis
1/10,000,000 or 1 x 10-7. The 10 MHz oscillator
is then more precise. If frequencies are multi-
plied or divided using ideal electronics, the
fractional stability is not changed.

In the frequency domain, we can measure the
of frequency fluctuations y(t). The

When talking about fre-

quency appropriateness becomes

frequency

.spectrum

** Some international recommendations replace
"fractional" by "normalized".
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spectral density of frequency fluctuations is
denoted by Sy(f) and is obtained by passing the
signal from an oscillator through an ideal FM
detector and performing spectral analysis on the
resuitant output voltage.
{fractional frequency)2/Hz or Hz-1i.

S (f) has dimensions of
Differentia-

tion of ¢(t) corresponds to muitipliication by ;I
0

in tearms of spectral densities. With further cal-

culation, one can derive that

2

. (2
5,(1) = (“o ) 5,() (8.7)

We will address ourselves primarily to S°(f), that
the spectral density of phase fluctuations.
noise-measurement purposes, S¢(f) can be.
measured with a straightforward, easily dupiicated
Whether one measures phase or
frequency spectral densities is of minor importance

is,
For

equipment set-up.

since they bear a direct relationship. It is
important, however, to make the distinction and to
use eq (8.7) if necessary.

8.1 The Loose Phase-Locked Loop

Section I, 1.1, C described a method of
measuring phase fluctuations between two phase-
locked oscillators. Now we will detail the pro-
cedure for measuring S¢(f).

Suppose we have a noisy oscillator. We wish
to measure the osciilator's phase fluctuations
relative to nominal phase. One can do this by
phaselocking another oscillator (called the re-
ference oscillator) to the test oscillator and
mixing the two oscillator signals 90° out of phase
(phase quadrature).
in figure 8.9. The two oscillators are at the
same frequency in long term as guaranteed by the
phase=lock loop (PLL). A Tow-pass filter (to
filter the R.F. sum component) is used after the
mixer since the difference (baseband) signal is

the one of interest.

This is shown schematically

By holding the two signals
at a relative phase difference of 90°, short-term
phase fluctuations betwaen the test and reference
oscillators will appear as voltage fluctuations

out of the mixer,
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FIGURE 8.9
if we can make the serva time
constant very long, then the PLL bandwidth as a
filter will be smali. This may be done by lowering
the gain Av of the loop amplifier.

auteyt oF
Ly FILTER

wWith a PLL,

We want to
translate the phase modulation spectrum to base-
band spectrum so that it is easily measured on a
With a PLL
in mind that the reference

Tow frequency
filter,

spectrum analyzer.
we must keep
oscillator should be as good or better than the
This is because the output of
the PLL represents the noise from both oscillators,

test oscillator.

and if not properiy chosen, the reference can have
noise masking the noise from the test os¢illator.
Often,
the same type and have, therefore, approximately
the
measurement by noting that the noise we measure is

the reference and test oscillators are of

same noise. We can acquire a meaningful

from two oscillators. Many times a good approxi-
mation is to assume that the noise power is twice
that which
So(f) is general notation depicting spectral den-
A PLL filter output
necessarily yields noise from two os¢illators.

The output of the PLL filter at Fourier
frequencies above the loop bandwidth is a voltage

is associated with one osc¢illator.

sity on a per hertz basis.

representing phase fluctuations between reference.

and test oscillator. It is necessary to make the
time-constant of the loop long compared with the
inverse of the lowest Fourier frequency we wish to
: 1 .
measure. That is, 1. Zr T{Towest)" This means

that if we want to measure S¢(f) down to 1 Mz, the

1

loop time-constant must be greater than o5 se-

conds. One can measure the time-constant by
perturbing the loop (momentarily disconnecting the
battery is convenient) and noting the time it
takes for the control voltage to reach 70% of its
final The signal from the mixer can then
be A preamp

may be necessary before the spectrum analyzer.

# See Appendix Note # 3

value.

inserted into a spectrum analyzer.

) *
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The analyzer determines the mean square volts that
pass through the analyzer's bandwidth centered
around a pre-chosen Fourier frequency f. It is
desireable to normalize results to a 1 Hz band-
width. Assuming white phase noise (white PM),
this can be done by dividing the mean square
voltage by the analyzer bandwidth in Hz.
have to approximate for other noise processes.

One may

(The phase noise sideband levels will usually be
indicated volts-per-root-Hertz on most
analyzers.)

in ms

8.2 Equipment for Frequency Domain Stability
Measurements

(1) Low=-noise mixer
This should be a high quality, double-
balanced type, but single-ended types
may be used. should
have well-buffered outputs to be able to

The oscillators

isolate the coupling between the two
input RF ports of the mixer,
two oscillators via
signal

ports.

couple tightly
injection through the input
We want the PLL to control

One should read the specifi-
in order to prevent exceeding

Tocking.
cations
the maximum allowable input power to the
mixer. It is best to operate near the
maximum for best signal-to-noise out of
the IF port of the mixer and,

cases, it is possible to drive the mixer

in some

into saturation without burning out the
device.

]
X)—4-8
o ]
FIGURE 8.10

(2) Low-noise DC 1ifier
The amount of gain Av needed in the loop
amplifier will depend on the amplitude
of the mixer output and the degree of

#% See Appendix Note # 4
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varactor control in the reference oscil-
lator. We may need only a small amount
of gain to acquire lock. On the other
hand, it may be necessary to add as much
as 80 dB of gain. Good low-noise DC
amplifiers are available from a number
of sources, and with cascading stages of
ampiification, each contributing noise,
it will be the noise of the first stage
which will add most significantly to the
noise being measured. If a suitable
low-noise first-stage amplifier {is not
readily available, a schematic of an
amplifier with 40 dB of gain is shown in
figure 8.11 which will serve nicely for
the first stage. Amplifiers with very
low equivalent input noise performance
are also available from many manufac-
turers. The response of the amplifier
should be flat from OC to the highest
Fourier frequency one wishes to measure,
The loop time-constant is inversely
related to the gain Av and the determi-
nation of Av is best made by experimen=

- . 1
tation knowing that t. < mor—yseesy.
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FIGURE 8.11

(3) Voltage~controlled reference quartz

oscillator

This oscillator should be a good one
with specifications available on its
frequency domain stability. The refer-
ence should be no worse than the tast
oscillator. The varactor control should

* See Appendix Note # 5
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be sufficient to maintain phase~lock of
the reference. In general, low quality
test oscillators may have varactor
control of as much as 1 x 10-% fractional
frequency change per volt. Some provi-
sion should be available on the refarence
oscillator for tuning the mean freguency
over a frequency range that will enable
phase=lock. Many factors enter into the
choice of the reference oscillator, and
often it is convenient to simply use two
test oscillators phase-locked together.
In this way, one can assume that the
noise out of the PLL filter is no worse
than 3 dB greater than the noise from
each oscillator. If it is uncertain
that both oscillators are contributing
approximately equal noise, then one
should perform measurements on three
oscillators taking two at a time. The
noisier-than-average oscillator will
reveal itself.

(4) Spectrum analyzer
The signal analyzer typically should be

capable of measuring the noise in rms
volts in a narrow bandwidth from near
1 Hz to the highest Fourier freguency
of interest. This may be 50 kHz for
carrier frequencies of 10 MHZ or lower.
For voltage measuring analyzers, it is
typical to use units of "volts per yHZ".
The spectrum analyzer and any associated
input amplifier will exhibit high-fre-
quency rolloff. The Fourier frequency
at which the voltage has dropped by 3 dB
is the measurement system bandwidth fh’
or w, = anh. This can be measured
directly with a variable signal gener-
ator.

Section X describes how analysis can be
performed using a discrete fourier transform
analyser. Expanding digital technology has made
the use of fast-fourier transform analysis affor-
dable and compact.
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Rather than measure the spectral density of
phase fluctuations between two oscillators, it is
possible to measure the phase fluctuations intro-
duced by a device such as an active filter or
amplifier. Only a slight modification of the
existing PLL filter equipment set up is needed.
The scheme is shown in figure 8.12.

REF
OSCILLATOR

- —
| QEVICE

3
>
UNDER ‘
! TEST 90"
| PHASE
q{ —.—{ SHIFTER
J

UMPER TO MEASURE INTRINSIC NOISE OF SET-uUP

FIGURE 8.12
Figure 8.12 1is a differential phase noise

measurement set-up. The output of the refaerence
oscillator is split so that part of the signal
passes through the device under test. We want the
two signals going to the mixer to be 90° out of
phase, thus, phase fluctuations between the two
input ports cause voltage fluctuations ‘at the
output. The voltage fluctuations then can be

measured at various Fourier frequancies on a
spectrum analyzer.

To estimate the noise inherent in the test
set-up, one can in principle bypass the device
under test and compensate for any change in ampli-
The PLL filter

technique must be converted to a differential

tude and phase at the mixer.

phase noise technique in order to measure inherent

test equipment noise. It is a good practice to

measure the system noise before proceeding to mea-

surement of device noise.

A frequency domain measurement set-up is
shown schematically in figure 8.13. The component

0sc =i P40 | 5,01
s0a [:> | specTaum
nlxtﬂi MAA s o | amaLrzER
10000 0.01uF A
A\
U 3
VARACTOR & —
-+
FIGURE 8.13

values for the low-pass filter out of the mixer
are suitable for oscillators operating at around
S MHz.

The active gain element (av) of the Yoop is a
DC ampliifier with flat frequency response. One
may replace this element by an integrator to
achieve high gain near 0C and hence, maintain
better lock of the reference oscillator in long
long-term drift between the
and test oscillators might require

manual re-adjustment of the freguency of one or
s

term. Otherwise
reference

the other oscillator.

8.3 Procedure and Example

At the input to the spectrum analyzer, the
voltage varies as the phase fluctuations in short-
term

2
v "
= [ _rms

H

Vs is the phase sensitivity of the mixer in volts
per radian. Using the previously described equip-
ment set-up, Vs can be measured by disconnecting
the feedback loop to the varactor of the reference
The peak voltage swing is equal to Vs
in units of volts/rad if the resultant beat note
This may not be the case for
state-of-the-art SQ(f) measurements where one must
drive the mixer very hard to achieve low mixer
Hence, the output will not be a

sine wave, and the volts/rad sensitivity must be

oscillator.

is a sine wave.

noise levels.

estimated by the slew-rate (through zero volts) of
the resultant square-wave out of the mixer/ampli-
fier.

The value for the measured S¢(f) in decibels
is given by:

VrmsVo1tage at f
S . (f) = 20 log
AN stuil-scale $-detector voltage

EXAMPLE: Given a PLL with two oscillators such
that, at the mixer output:

ve=1 volt/rad
& See Appendix Note # 6
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vms(45 Hz) = 100 nV per root hertz
solve for S¢(45 Hz).

.i, 2 7 2
- (100 nv (Hz 10- .
50(45 Hz) = ( TV/r2d ) = ("T') rad2 Hz-!

.14 rad?
10 T2

In decibels,

-7
20 Yog 19%-31 = 20 log ;%U’

S¢(45 Hz)

20 (-7) = -140 dB at 45 Hz

[}

In the example, note that the mean frequency
of the oscillators in the PLL was not essential to
computing S¢(f). However, in the application of
Sﬁ(f), the mean frequency Y, is necessary informa-
tion. Along with an SQ(f), one should always
attach Vo In the example above vy T 5 MHz, so we
have

2
’:g ) v, =5 Mz,

From eq (8.7), Sy(f) can be computed as

S° (45 Hz) = 10-14

= (35__\? 1g-14 rad?
Sy (45 Hz) = (5—;T0‘> 10 T
Sy (45 Hz) = 8.1 x 10-2% Hz-1, Vo = 5 Mz,

IX. POWER-LAW NOISE PROCESSES

Power-law noise processes are models of
precision oscillator noise that produce a parti-
cular slope on a spectral density plot. We often
classify these noise processes into one of five

categories. Far plots of S¢(f), they are:

1. Random walk FM (random walk of fre-
quency), S¢ plot goes down as 1/7¢,

2. Flicker FM (flicker of frequency), SO
plot goes down as 1/f3.

3. White FM (white of frequency), §
goes down as 1/12,

4. Flicker PM (flicker of phase), S¢ plot
goes down as 1/f.

5. White PM (white of phase), S¢ plot is

flat.

N plot

Power law noise processes are characterized by
their functional dependence on Fourier frequency.
Equation B.7 relates S¢(f) to Sy(f), the spectral
dengity of frequency fluctuations. Translation of
Sy(f) to time-domain data ay(r) for the five model
noise processes is covered later in section XI.

The spectral density plot of a typical oscil-
lator's output usually is a combination of dif-
ferent power-law noise processes. It is very
useful and meaningful to categorize the noise
processes. The first job in evaluating a spectral
density plet is to determine which type of noise
exists for a particular range of Fourier fre-
quencies. It is possible to have all five noise
processes being generated from a single oscillator,
but, in general, onfy two or three noise processes
are dominant. Figure 9.1 is a graph of S¢(f)
showing the five noise processes on a log-log

" scale. Figure 9.2 shows the spectral density of

phase fluctuations for a typical high-quality
oscillator.
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X. PITFALLS IN DIGITIZING THE DATA
The advent and prolific use of digital com=
puters has changed the manner in which processing

of analog signals takes place if a computer is
used. This section addresses the most common
problems in such analyses.

10.1 Discrete-Continuous Processes

Digital processing implies that data must be
presented to a computer or other processor as an
array of numbers whether in a batch or in a time
series. If the data are not already in this form
(it wusually is not when considering frequency
stability measurements), then it is necessary to
transform to this format by digitizing. Usually,
the signal available for apalysis s a voltage
which varies with frequency or phase difference
between two oscillators.

10.2 Digitizing the Data
Digitizing the data is the process of conver-

ting a continuous waveform into discrete numbers.
The process is completed in real time using an
analog-to-digital converter (ADC). Three consid-
erations in the ADC are of importance here:

1. Conversion time
2. Resolution (quantization uncertainty)
3. Linearity

An ADC "looks at" an incoming waveform at equi-
spaced intervals of time T. Ideaily, the output
of the ADC is the waveform (denoted by y(t))
multiplied by a series of infinitely narrow
sampling intervals of unit height as in figure
10.1. We have at ¢t =T

yl(t) = y(t)6(t=-T) = y(T)6(t-T) (10.1)

where &(t-T) 1is a delta function. If y(t) is
continuous at t = nT and n = 0, £1, £2,..., then

yo(t) = 3 y(nT) & (t=nT)
ns-mn
(10.2)
2 = integer

The delta function respresentation of a sampled
waveform eq (10.2) is useful when a subsequent
continuous integration is performed using it.6

o0

FIGURE 10.1

In ADC's, the input signal is sampled during an
aperture time and held for conversion to a digital
number, usually binary. Sampling and processing
takes time which is specified as the conversion
time. This is the total time required for a
complete measurement at one sample to achieve a
given level of accuracy. If yz(t) is the ideal
discrete-time representation of continuous process
y(t), then the ADC output denoted by yj‘a(t) is:

vy = vgq t 3D (10.3)

where "d" is the conversion time and ¢ - %{ the
accuracy tolerance at "d" as a function of rate-of-
change in y(t). In general a trade-off exists
between d and ¢. For example, for a commonly
avajlable, high-gquality 10-bit ADC, a conversion
time of d = 10 ys yields a maximum error of 3X.
Whereas given a 30 us conversion time, we can
obtain 0.1X maximum error.

The error due to conversion time "d" is many
times negiigible since processing in digital
filters and spectrum analysis takes place after
the converter. Conversion time delay can be of
critical concern, however, where real-time proces-
sing at speeds of the order of "d" become important
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such as in digital servo loops where corrections
are needed for fast changing errors.

A portion of the conversion-time error is a
function of the rate of changc .! of the process
if the sample-and-hoid portion of the ADC relies
on the charging of a capacitor during an aperture
time. This is true because the charge cycle will
have a finite time-constant and because of aperture
time uncertainty. Ffor example, if the time-con-
stant is 0.1 ns (given by say a 0.1 Q source
resistance charging a 0.001 ufd capacitor), then
a 0.1% nominal error will exist for slope .X =
1V/us due to charging. With good design, this
error can be reduced. The sampling circuit (be-
fore charge) is usually the dominant source of
error and logic gate-delay jitter creates an
aperture time uncertainty. The jitter typically
is Dbetween 2-5 ns which means an applied signal
slewing at, say, 1 V/us produces an uncertainty
of 2-5 mv.
to signal slewing rate, it can be anticipated that

Since e-%% is directly proportional

high=level, high-frequency components of y(t) will
have the greatest error in conversion. For typical
ADC's, less than 0.1X error can be achieved by
holding _Z to less than 0.2 V/us.

The continuous process y(t) is partitioned
into 2" discrete ranges for n-bit conversion., All
analog values within a given range are represented
by the same digital code, usually assigned to the
nominal midrange value. There is, therefore, an
inherent quantization uncertainty of < ¥ least-
significant bit (LSB), in addition to other conver~
For example, a 10-bit ADC has a total
of 1024 discrete ranges with a Jowest order bft
then representing about 0.1X of full scale and
quantization uncertainty of = 0.0SX.

We define the dynamic range of a digitail
system as the ratioc between the maximum allowable

sion errors.

value of the process (prior to any overflow condi-
tion) and the minimum discernable value. The
dynamic range when digitizing the data is set by
the quantizing uncertainty, or resolution, and
is the ratio of 2" to % LSB. (If additive noise
makes coding ambiguous to the % LSB level, then
the dynamic range is the ratio of 2" to the noise
uncgrtainty, but this is usually not the case.)

For example, the dynamic range of a 10-bit system
is 2" = 1024 to %, or 2048 to 1.
dB's, this is

Expressed in

20 log 2048 = 66.2 dB

if referring to a voltage-to-code converter.

The converter linearity specifies the degree
to which the voltage-to-code transfer approximates
a straight line. The noniinearity is the deviation
from a straight line drawn between the end points
(all zeros to all ones code). It is usually not
acceptable to have nonlinearity greater than % LS8
which means that the sum of the positive errors or
the sum of the negative errors of the individual
bits must not exceed i LSB (or % Y% LSB). The
linearity specification wused in this context
includes al)l effects such as temperature errors
under expected operating temperature extremes and
power supply sensitivity errors under expected
operating supply variations.

10.3 Aliasing
Figure 10.1 illustrates equispaced sampling

of continuous process y(t). It is important to
have a sufficient number of samples/second to prop-
erly describe information in the high frequencies.
On the other hand, sampling at too high a rate may
unnecessarily increase the processing labor. As
we reduce the rate, we see that sample values
could represent low or high frequencies in y(t).
This property is called aliasing and constitutes a
source of error similiar to "imaging" which occurs
in analog frequency mixing schemes (i.e., in the
multiplication of two different signals).

If the time between samples (k) is T saconds,
then the sampling rate is T samples per second
Then useful data in y(t) wil] be from 0 to ZT Hz
and frequencies higher than 'T Hz will be folded
into the lower range from 0 to -T Hz and confused
with data in this lower range. The cutoff fre-
quency is then given by

-1
f = 5T (10.4)

and is sometimes called the "Nyguist frequency."
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We can use the convolution theorem to simply
illustrate the existence of aliases. This thesorem

states that multiplication in the time domain
corresponds to convolution in the frequency domain,
and the time domain and frequency domain represen-
pairs.7 The

in figure 10.1(a) fis

tations are Fourier transform
Fourier transform of y(t)

denoted by Y(f); thus:

Y(1) =/ y(t)e 1% gy (10.5)
KA
and
®
y(t) = 5 fY(f)ejznftdf (10.56)
2o

The function Y(f)
The Fourier transform of A(t) is shown in figure

is depicted in figure 10.2(a).

10.2(b) and is given by A(f) where applying the

discrete transform yields:

an =% T oer-D,

(10.7)
==
recalling that
=
a(t) = Y &(t =nT), (10.8)
n=-m
from eq (10.2).
Y AD
1
ol ¥ * e
b s P——
@ (48]
FIGURE 10.2

S
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Y(f) convolved with Af is denoted by Y(f)*
A(f) and is shown in figure 10.2(c). We see that
the transform Y(f) is repeated with origins at
f= $‘ Conversely, high frequency data with infor-
mation around f = ; will fold into the data around

the origin between -fs and +fs. In the computation
of power spectra, we encounter errors as shown in
figure (10.3).

&)

o £ d ° t ¢

fs » smese PeEcaocr

FIGURE 10.3

Aliased power spectra due to folding.
Spectra, (b) Aliased Spectra.

Two pioneers in
Nyquist and Claude Shannon,
criteria for discrete-continuous processing sys-

(a) True

Harold
developed design

information theory,

tems.
time-domain process y(t) through a finite band-
width whose upper limit fN is the highest signifi-

Given a specified accuracy, we can convey

cant spectral component of y(t). For discrete-
continuous process yk(t), ideally the input signal

spectrum should not extend beyond fs. or
(10.9)

Equation (10.9)
is refered to as the "Shannon limit."

In practice,
there is absolutely no signal or noise component

where fs is given by eq (10.4).
there is never a case in which

above fN‘ Filters are used before the ADC in
order to suppress components above fN which fold
into the lower bandwidth of This so-

called anti-aliasing filter usually must be quite

interest.

sophisticated in order to have low ripple in the
passband,
and steep rolloff characteristics.
the
filter, we can apply a fundamental filter property

constant phase delay in the passband,
In examining

rolloff requirements of the anti-aliasing

that the output spectrum is equal to the input
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spectrum multiplied by the square of the frequency
response function; that is,

S(f) [H(F)]2 = s(f)
out

(10.10)

The filter response must be flat to fN and at-
tenuate aliased noise components at ? t f=
2nfs: f. In digitizing the data, the observed
spectra will be the sum of the baseband spectrum
(to fN) and all spectra which are folded into the

baseband spectrum

S(f) = S,(1) + 5.y (2f, = 1) + 5,5 (2 + 1)
observed
$ S (4 = )L ws (21 (f +F D)

(10.11)
=5.(f) +

. Si (21 (fs + f))
where M is an appropriate finite limit.

For a given rejection at an upper freguency,
clearly the cutoff frequency fc for the anti-
aliasing filter should be as low as possible to
relax the rolloff requirements. Recall that an
nth order low-pass filter has frequenCy response
function

1
H(f) & —r
1+ j(; n (10.12)
c
and output spectrum
s(f) = ——341 (10.13)

-

2n
out 1 + T;)

and after sampiing, we have (applying eq (10.11))

M 1
S () $:(2 1 (f + =f)
$(f) 0 . i $ 11 )2
observed ¢ 2n  i=-M 2 (fs + Tf) n
l‘f_ ].-o.__f

(10.14)

If fc is chosen to be higher than fN, then the
first term (baseband spectrum) is negligibly
affected by the filter, which is our hope. It is

the second term (the sum of the folded in spectra)
which causes an error.

As an example of the rolloff reguirement,
consider the measurement of noise process n(t) at
f = 400 Hz in a 1 Hz bandwidth on a digital spec-
trum analyzer. Suppose n(t) is white; that is,

Sn(f) =k, (10.15)

ko = constant
Suppose further that we wish to only measure the
noise from 10 Hz to 1 kHz; thus fN = 1 kHz. Let
us assume a sampling frequency of fs = ZfN or
2 kHz. If we impose a 1 dB8 error 1limit in

Sobserved
can tolerate an error limit of 10-% due to aliasing

and have 60 dB of dynamic range, then we

effects in this measurement, and the second term in
eq (10.14) must be reduced to this level. We can
choose fc = 1.5kHz and obtain

S(f) =k + . ley 2n
observed 0 {= 1+ 21 (f, +3f)
fe
(10.16)

The term in the series which contributes most is
at i = -1, the nearest fold-in. The denominator
must be 106 or more to realize the allowable error
1imit and at n > 8 this condition is met. The
next most contributing term is i = +1 at which the
error is < 10-7 for n = 8, a negligible contribu-
tion. The error increases as f increases for a
fixed n because the nearest fold-in (i = -1) is
coming down in frequency (note fig. 10.2(c)) and
power there is filtered less by the anti-aliasing
filter. Let us look at the worst case (f = lkHz)
to determine a design criteria for this example.
At f = 1 kHz, we must have n > 10.

Thus the requirement in this example is for a
10-pole low-pass filter (60 dB/octave rolloff).

10.4 Some History of Spectrum Analysis Leading to
the Fast Fourier Transform
Newton in his Principia (1687) documented the
first mathematical treatment of wave motion al-
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though the concept of harmonics in nature was
pointed out by Pythagoras, Kepler, and Galileo.
However, it was the work of Joseph Fourier in 1807
which showed that almost any function of a real
variable could be represented as the sum of sines
and cosines.
a document in 1822.

In using Fourier's technique,

The theory was rigorously treated in

the periodic
nature of a process or signal is analyzed. Fourier
analysis assumes we can apply fixed amplitudes,
frequencies, and phases to the signal.

In the early 1900's two relatively independent
developments took place: (1) radio electronics
and electric power hardware were fast growing
(2) statistical
events or processes which were not periodic became
The

explored signal and noise properties of a voltage

technologies; and analysis of

increasingly understood. radio engineer
or current into a load by means of the spectrum
analyzer and measurement of the power spectrum.
On the other hand, statisticians explored deter-
ministic an& stochastic properties of a process by
means of the variance and self-correlation pro-
perties of the process at different times. Wiener
(1930) showed that the variance spectrum (i.e.,
the breakdown of the variance with Fourier fre-
quency) was the Fourier transform of the autocor-
relation function of the process. He also theor-
ized that the variance spectrum was the same as
the power spectrum normalized to unit area. Tukey
(1949) advocated the use of the variance spectrum
treatment of al}

is more easily

in the statistical
because (1) f{t
correlation-type functions; and (2) it fortuitously

processes
interpreted than

is readily measureable by the radio engineer.

The 1950's saw rigorous appiication of stati-
stics to communication theory. Parallel to this
was the rapid advancement of digital computer
hardware. Blackman and Tukey (1959) and Welch
(1961) methods of
deriving an estimate for the variance spectrum by

elaborated on other uyseful

taking the ensemble time-average sampled, discrete
line spectra. The approach assumes the random

process is ergodic. Some digital approaches

estimate the variance spectrum using Wiener's

theorem if correlation-type functions are useful

30

in the analysis, but in general the time-averaged,
sample spectrum is the approach taken since its
implementation is direct and straightforward.
Most always, ergodicity can be assumed. 89

The variance of process y(t) is related to

the total power spectrum by

[ ]
a*ly(t)l = J Sy(f) df. (10.17)
Since
iml
o [y(t)] = g 37 [ y3L) dt (10.18)

we see that if y(t) is a voltage or current into a
is the
integral of Sy(f) with respect to frequency over
the entire range of frequencies (-w,»). Sy(f) is,
therefore, the power spectrum of process y(t).
The power spectrum curve shows how the variance is
distributed with frequency and should be expressed

1-ohm load, then the mean power of y(t)

in units of watts per unit of frequency, or volts
squared per unit of frequency when the load is not
considered.

Direct estimation of power spectra has been
carried out for many years through the use of
analog instruments. These have variously been
referred to as sweep spectrum analyzers, harmonic
analyzers, filter banks, and wave analyzers.
These devices make use of the fact that the spec-
trum of the output of a linear system (analog
filter) is the spectrum of the input multiplied by
the square of the system's
function (real part of the transfer character-
istic). Note eq (10.10). If y(t) has spectrum
S (f) feeding a filter with frequency response
function H(f), then its output is

frequency response

S(f)

= [H(f)12 S (f)
filtered Y

(10.19)

If H(f) is rectangular in shape with width Af,
then we can measure the contribution to the total
power spectrum due to S (f ¢ %I .

The development of the fast Fourier transform
(FFT) in 1965 made digital methods of spectrum
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estimation increasingly attractive. Today the
choice between digital or analog methods depends
more on the objectives of the analysis rather than
on technical limitations. However, many aspects
of digital spectrum analysis are not well known by
the casual user in the laboratory while the analog
analysis methods and their limitations are under-
stood to a greater extent.

Digital spectrum analysis is realized using
the discrete Fourier transform (DFT), a modified
version of the continuous transform depicted in
eqs (10.5) and (10.6). By sampling the input
waveform y(t) at discrete intervals of time ty =
At representing the sampled waveform by eq (10.2)

and integrating eq (10.5) yields

-] .
Y1) = X y(at)e IFTAT

(10. 20)

Equation (10.20)
Because f(t)

is a Fourier series expansion.
is specified as being bandlimited,
the Fourier transform as calculated by eq (10.20)
is as accurate as eq (10.5);
extend beyond the Nyquist frequency, eq (10.4).

however, it cannot

In practice we cannot compute the Fourier
transform to an infinite extent, and we are re-
stricted to some observation time T consisting of
nAt intervals. This produces a spectrum which is
not continuous in f but rather is computed with

resolution Af where

=3 -1
Af = mc T (10.21)
With this change, we get the discrete finite
transform

N-1 »
Y(maf) = X y,(t)e jZmafnt (10.22)
n=0

The DFT computes a sampled Fourier series,
and eq (10.22) assumes that the function y(t)
repeats itself with period T. Y(dAf) is called
the "line spectrum." A comparison of the DFT with
the continuous Fourier transform is shown later in
part 10.7.
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The fast Fourier transform (FFT) is an algor-
ithm which efficiently computes the line spectrum
by reducing the number of adds and multiplies
in eq (10.22). If we choose T/at to
a rational power of 2,

involved
equal then a symmetric
matrix can be derived through which yl(t) passes
and quickly yields Y(maf).

mation by the direct method requires a processing

An N-point transfor-

time proportional to N2 whereas the FFT requires a

time proportionai to N log, N. The approximate

ratio of FFT to direct computing time is given by

N log; N Tog, N

T = T = ﬁ (10.23)

where N = 2V, if N =219 the FFT
requires less than 1/100 of the normal processing

For example,

time.

We must calculate both the magnitude and
phase of a frequency in the line spectrum, i.e.,
the real and imaginary part at the given frequency.
N points in the time domain allow N/2 complex
quantities in the frequency domain.

The power spectrum of y(t) is computed by
squaring the real and imaginary components, adding
the two together and dividing by the total time T.

We have

RLY(mAf)]2T+ I[Y(maf)]2 (10.24)

Sy(mAf) =

This quantity is the sampled power spectrum
and again assumes periodicity in process y(t) with
total period 7.10

10.5 Leakage
Sampled digital spectrum analysis

transforming a finite block of data.

always
involves
Continuous process y(t) is "looked at" for T time
through a data window which can functionally be
described by

y'(t) = w(t)-y(t) (10.25)
where w(t) is the time domain window. The time-
discrete counterpart to eq (10.25) is

Yo(t) = wy(t)-y,(t) (10.26)



and wz(t) is now the sampled version of w(t)
Equation (10.26)
in the frequency

derived similarly to eq (10.2).
is equivalent to convolution
domain, or

Y'(maf) = W(mAT)*Y(mAf) (10.27)
Y'(maf) is called the "modified” line spectrum due
to convolution of the original line spectrum with
the Fourier transform of the time-domain window

function.
Suppose the window function is rectangular,

and ~
wy(t) =1, :% <t< %
= t > T (10.28)
' 2
This window is shown in figure 10.4(a). The
Fourier transform of this window is
. 7 sinmt maAf NT
W(maf) = T ARBIN (10.29)

and is shown in figure 10.4(b). If y(t) is a sine
wave, we convolve the spectrum of the sinusoid, a
deita function, with W(maf).
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FIGURE 10.4
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The transform process (eq 10.22) treats the
sample signal as if it were periodically extended.
Discontinuities usually occur at the ends of the
window function in the extended version of the
sampied waveform as in figure 10.5(c). '
spectra thus represent a periodically extended

Sample

sampled waveform, complete with discontinuites at
its ends, rather than the original waveform.

=)

FIGURE 10.5

appear the sinusoid

is referred to as "leakage."

Spurious components. near
spectrum and this
Leakage results from discontinuites in the periodi-
cally extended sample waveform.

but

one can choose an appropriate window function w(t)

Leakage cannot be eliminated entirely,
in order to minimize its effect. This is usually
done at the expense of resolution in the frequency
domain. An optimum window for most cases is the

Hanning window given by:

wt) = [} - 3 cos (51 (10.30)

for 0 < t < T and "a" designates the number of
times the window is Figure 10.6(a)
shows the window function and 10.6(b) shows the
in the freguency domain for
Note that this window

implemented.

Hanning line shape
various numbers of "Hanns."
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eliminates discontinuities due to the ends of

sample length T.

Each time the Hanning window is applied,the
sidelobes in the transform are attenuated by i2
aB/octave, and the main lobe is widened by 2Af.
The amplitude uncertainty of an arbitrary sine
wave input is reduced as we increase the number of
Hanns; however, we trade off resolution in fre-
quency.

The effective noise bandwidth indicates the
departure of the filter response away from a true
rectangularly shaped filtered response (frequency
domain). Table 10-1 lists equivalent noise band-
width corrections for up to three applications of

the Hanning window. 11

Equivalent Noise

Number of  Hanns ___Bandwidth
1 1.5 af
2 1.92 af
3 2.31 af

TABLE 10.1

33

 effective time-domain window

10.6 Picket-Fence Effect
The effect of leakage discussed in the pre-

vious section gives rise to a sidelobe type re-
sponse that can be tailored according to the
time-window function through which the analyzed
signal passes as a block to be transformed to the
Using the Hanning window dimin=~
ishes the amplitudes of the sidelobes, however, it

frequency domain.

increases the effective bandwidth of the passband
around the center frequency. This is because the
shorter
than a perfect Directly
related to the leakage (or sidelobe) effect is one
called the "picket-fence" effect. This is because
the resemble a frequency

response which has geometry much like a picket

length is

rectangular window.

sidelobes themselves
fence.

The existence of both sidelobe leakage and
the resultant picket-fence effect are an artifact
of the way in which the FFT analysis is performed.
Frequency-domain analysis wusing analog filters
involves a continuous -signal in and a continuous
On the other hand,
involves a continuous signal in, but the transform

signal out. FFT analysis
to the frequency domain is performed on blocks of
data.

tion from a block, the assumption is made that the

In order to get discrete fregquency informa-

block represents one period of a periodic signal.
The picket-fence effect is a direct consequence of
this assumption. For example, consider a sinewave

signal which is transformed from a time-varying
voltage to a
through an FFT.

ed will be length, T, in time.

frequency-domain representation
The block of data to be transform-
Let's say that the
block, T, represents only 4% cycles of the input
sinewave as in figure 10.5. Artificial sidebands
will be created in the transform to the frequency
domain, whose frequency spacing equals %, or the
reciprocal of the block length. This represents
a worst-case condition for sidelobe generation
and creates a large number of spurious discrete
frequency components as shown in figure 10.7(b).

If, on the other hand, one changes the block
time, T, so that the representation is an integral
number of cycles of the input sinewave, then the

transform will not contain sidelobe leakage compo-
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nents and the artificial sideband frequency compo-
nents disappear. In practice, when looking at
complex input signals, the block time, T, is not
synchronous with any component of the transformed
part of the signal. As a result, discrete fre-
quency components in the frequency domain have
associated with them sidebands which come and go
depending on the phase of the time window, T,
relative to the sine components of the incoming
signal. The effect is much Tike looking through a
picket fence at the sidebands. 12

An analogy to the sidelobe leakage and picket-
fence effect is to record the incoming time-varying
signal on a tape loop, which has a length of time,
T. The loop of tape then repeats i{tself with a
period of T. This repeating signal is then coupled
to a scanning or filter-type spectrum analyzer.
The phase discontinuity between the end of one
passage of the loop and the beginning of the loop
on f{tself again a phase~modulation
component, which gives rise to artificial sidebands

in the spectrum analysis.

represents

A word of caution —
this is not what actually happens in a FFT analyzer
(i.e., there is no recirculating memory). However,
the Fourier transform treats the incoming block as

if this were happening.
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10.7 Time Domain-Frequency Domain Transforms
A. Integral transform
Figure 10.8 shows the well-known
transform,

integral
which transforms a continuous time-
domain signal extending over all time into a

NEZRAL TRAISFORM y »
Y0/~ W I -
-1l {~»
4 / m* U\ ROy
-t {—»
FIGURE 10.8

continuous frequency-domain signal extending over
ail frequency. This is the ideal transform. In
practice, however, one deals with finite times and
bandwidths.
is an estimate of the transform and is so for only

The integral transform then, at best,
short, well-behaved signals. That is, the signal
goes to zero at infinite time and at infinitely
high freguency.

B. Fourier series
The Fourier~series transform assumes perio-
dicity
Only one period of the signal

in the time-domain signal for all time.
(for time T) is
required for this kind of transform.
series treats the incoming signal as periodic with
period, T, and continuous.
trum is then discrete with

The Fourier

The transformed spec-
infinite harmonic
components with frequency spacing of %. This is
shown in figure 10.9.

TCURER SIRES
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FIGURE 10.9
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FIGURE 10.10

Figure 10.10 shows the transform from a sam~
pled time-domain signal to the freguency domain.
Note that in the fregquency domain, the result is
This effect, commonly
called aliasing, is discussed eariier in section
10.3. Figure 10.9 and figure 10.10 show the sym-
metry between the time- and frequency-domain trans-
forms of discrete lines.

repetitive in frequency.

C. Discrete fourier transform

Finally, have the sampled,
(assumed) time-domain signal which is transformed
to a discrete and repetitive (aliased) freguency-
This is shown in figure

we periodic

domain representation.
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XI. TRANSLATION FROM FREQUENCY DOMAIN STABILITY
MEASUREMENT TO TIME DOMAIN STABILITY MEASURE-
MENT AND VICE-VERSA.

11.1 Procedure

Knowing how to measure SQ(f) or Sy(f) for a
pair of ascillators, let us see how to translate
the power-law noise process to a plot of Oyz(t).
First, convert the spectrum data to Sy(f), the
spectral density of frequency fluctuations (see
sections III and VIII).
which completely specify Sy(f) for a particular
power-law noise process: (1) the slope on a
log-log piot for a given range of f and (2) the
amplitude. The slope we shall denote by "o“;
therefore f* is the straight line (on log-log
scale) which relates Sy(f) to f. The amplitude
will be denoted “ha"; it is simply the coefficient
of f for a range of f.

There are two quantities

When we examine a plot of
spectral density of frequency fluctuations, we are
looking at a representation of the addition of ail

the power-law processes (see sec. [X). We have
]
s(f)= 2, h (11.1)
y o=

In section IX, five power-law noise processes
were outlined with respect to SO(f)' These five
are the common ones encountered with precision
oscillators. Equation (8.7) relates these noise
processes to Sy(f). One obtains

with respect to

5,()

1. Random Walk FM  (f-2) . . . a = =2

2. Flicker M (f-3) . . . a=-1

3.  white FN (1) .a= 0

4. Flicksr gM (f) .a=s

5. \Wwhite ¢M (f2) ...a= 2
slope on
log=1log
paper

Table 11.1 is a list of coefficients for

translation from Uyz(t) to Sy(f) and from S¢(f) to
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Oyz(‘t). In the table, the left column 1is the
designator for the power-law process. Using the
middle column, we can solve for the value of Sy(f)
by computing the coefficient "a" and using the
The rightmost
column yields a solution for Oyz(t) given frequency
domain data S (f) and a caiculation of the appro-
priate "b" coefficient.

measured time domain data o 2(t).

EXAMPLE:

In the phase spectral density plot of figure
11.1, there are two power-law noise processes for
oscillators being compared at 1 MHz. For region
1, we see that when f increases by one decade
(that is, from 10 Hz to 100 Hz), S°(f) goes down
by three decades (that is, from 10-1! to 10-1%).

Thus, S¢(f) goes as 1/f3 = -3, For region 1, we

= = 2 =
5(3= H T Sy(f3=aa§(t) oy(g=b5(f)
3f
2 §2n;2 12 f2 h
(white phase) (Zn)? 12 "!o

1 2n)2 12 f
(flicker noise) 1.638 + 3 lniwhﬂ

0
(white frequency)

-1

(flicker frequency) 2 1n
-2

(random walk freguency) 2n

[1.038 + 3 ln(wht)]f
(2n)< 14 vg

f2
21 v"’o

21n (2) - f3
Tt v

[+}

Tt f Qﬂ%}_\?}'ﬁ

0

TABLE 11.1
Conversion table from time domain to frequency domain and from frequency
domam to time domain for common kinds of interger power law spectral densities;

(=u /27:) is the measurement system bandwidth.

Measurement reponse should be

w?thm 3 dB from D.C. to f (3 dB down high-frequency cutoff is at fh)

- _0
S5(N =R 5,(D)
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& (n ‘ou L
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—

FIGURE 11.1
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identify this noise process as flicker FM. The
rightmost column of table 11.1 relates a§(t) to
SQ(f). The row designating flicker freguency
noise yields:

o;(t) = ﬂsg_f: Sg(f)
0

One can pick (arpbitrarily) a convenient Fourier
frequency f and determine the corresponding values
of 50(1') given by the plot of figure 11.1. Say,

= 10, thus 50(10) = 10-11, Solving for 0;(1:),
given vy = 1 MHz, we obtain:

‘7;(") = 1.39 x 10-20

therefore, o (t) = 1.18 x 10-19,
have white PM. The relationship between °§(t) and

For region 2, we
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S¢(f) for white PM is:

3f
= h
o) = Ty

Again, we choose a Fourier frequency, say f = 100,
and see that S¢(100) = 10-i%. Assuming fh = 104
Hz, we thus obtain:

1

G;(t) =7.59 x 10-24. 2,
therefore,

= -12 l

Oy(t) 2.76 x 10 I

The resultant time domain

characterization is
shown in figure 11.2.
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The translation of S¢(f) of figure 11.1 yields this
Oy(t) plot.

0° (
lj" L
I AN
\\u-ulm
\\v'% TRaOoM LK M
-~ weoef ,’
&n b - RIOER ME. ™™ ”»
‘\————mﬂ—'
'6‘5 . L 1 d -
1 © o0 -] o o
SRE TME TS
FIGURE 11.3

D'. -
WABOM WAL P
” " by =85 x10%0,
At
M CKER MR ™™
) by s29x108
o® L o :
Sgn WASTE NOWE YW
o h = 70210,
3L \\‘ 2
6: - - L ] A A . sl
W ©5 o 00 o o 1 0
fin
FIGURE 11.4

Figures 11.3 and 11.4 show plots of time-
domain stability and a transiation to frequency
Since table 11.1 has the coefficients
which connect both the frequency and time domains,

domain.

it may be used for translation to and from either
domain.

XII. CAUSES OF NOISE PROPERTIES IN A SIGNAL SOURCE

12.1 Power-law Noise Processes

Section IX pointed out the five commonly used
power-law models of noise. With respect to S¢(f),
one can estimate a staight line slope (on a log-log
scale) which corresponds to a particular noise
type. This is shown in figure 12.1 (also fig.9.1).
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We can make the following general remarks about
power-law noise processes:

1. Random walk FM (1/f4) noise is difficuilt
is wusually very
Random walk FM

to measure since it
close to the carrier,
usually relates to the OSCILLATOR'S
PHYSICAL ENVIRONMENT. If random walk FM
is a predominant feature of the spectral
density plot then MECHANICAL SHOCK,
VIBRATION, TEMPERATURE,
ronmental effects may be causing "random”

or other envi-

shifts in the carrier frequency.

2. Flicker FM (1/13) s
physical

a noise whose

cause is wusually not fully
understood but may typically be related
to the PHYSICAL RESONANCE MECHANISM OF
AN ACTIVE OSCILLATOR or the DESIGN OR
CHOICE OF PARTS USED FOR THE ELECTRONICS,
or ENVIRONMENTAL PROPERTIES. Flicker FM
is common in high-quality oscililators,
but may be masked by white FM (1/f2) or
flicker PM (1/f) in lower-quality oscil-

lators.

3. Wwhite FM (1/f2) noise is a common type
found in PASSIVE-RESONATOR FREQUENCY
STANDARDS. These contain a slave oscil-
lator, often quartz, which is locked to
a resonance feature of another device
which behaves much 1ike a high-Q filter.
Cesium and rubidium standards have white
FM noise characteristics.

4, Flicker PM (1/f) noise may relate to a
physical resonance mechanism 1in an
oscillator, but it usually {is added by
NOISY ELECTRONICS.

even in the highest quality

This type of noise
is common,
oscillators, because in order to bring
the
level,

signal ampiitude up to a usable
amplifiers are used after the
signal source. Flicker PM noise may be
introduced in these stages. It may also

be introduced in a frequency multiplier.

* See Appendix Note # 7
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Flicker PM can be reduced with good
low-noise amplifier design (e.g., using
rf negative feedback) and hand-selecting
transistors and other electronic com-
ponents.

5. White PM (fo) noise is broadband phase

noise and has little to do with the
probably
produced by similar phenomena as flicker
PM (1/f) noise. STAGES OF AMPLIFICATION
are uysually responsible for white PM
noise. This noise can be kept at a very
low value with good .amplifier design,
hand-selected components, the addition
of narrowband filtering at the output,

resonance mechanism. [t fis

or increasing, if feasible, the power of
the primary frequency source.l3

12.2 Other types of noise

A commonly encountered type of noise from a
is the
Shown in

signal source or measursment apparatus

presence of 60 Hz A.C. line noise.
figure 12.2 is a constant white PM noise source
with 60 Hz, 120 Hz and 180 Hz components added.
This kind of noise is usually caused by AC power
getting into the measurement system or the. source
under test. In the plot of So(f), one observes
discrete line spectra. Although S¢(f) is a measure
of spectral density, one can interpret the line
spectra with no loss of generality, although one
usually does not refer to spectral densities when
Figure 12.3 is the
time domain representation of the same white phase
modulation level with 60 Hz noise. Note that the
amplitude of oy(t) varies up and down depending on
sampling time.
the sensitivity to a periodic wave varies directly
as the sampling interval. This effect (which is
an alias effect) tool
filtering out a periodic wave imposed on a signal
By sampling in the time domain at integer
insensitive to the

characterizing discrete lines.

This is because in the time domain

is a very powerful for
source.

periods,
periodic (discrete line) term.

one 1is virtually
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For example, diurnal variations in data due to day
to day temperature, and other environ-
mental effects can be eliminated by sampling the
data once per day.

pressure,

This approach is useful for
data with only one periodic term.

Figure 12.4 shows the kind of plot one might
see of S¢(f) with vibration and acoustic sen-
sitivity in the signal
under vibration.

source with the device
Figure 12.5 shows the transla-
tion to the time domain of this effect. Also
noted in figure 12.4 is a (typical) flicker FM
behavior in the low frequency region. 1In the
translation to time domain (fig. 12.5), the flicker

FM behavior masks the white PM (with the super-
imposed vibration characteristic) for long aver-

aging times.
B
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Figure 12.6 shows examplies of plots of two
power law processes (S¢(f)) with a change in the
flicker FM level. (Example 1 is identical to the
example given XI.) Figure 12.7
cates the effect of a Tower flicker FM level as
translated to the time domain.
existence of both power
However for a given averaging time (or Fourier

in sec. indi-

Note again the
law noise processes.

frequency) one noise process may dominate over the
other,
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Excess device noise from transistors, capa-

citors, resistors, and the like can introduce a
low frequency noise which has been referred to as
"popcorn” noise because of its sonic qualities.
Figure 12.8 shows a plot of S¢(f) from a signal
source having such excess low frequency noise.
Figure 12.9

The rise

is the time domain representation.
in amplitude of o for long averaging
times is particularly aggravating. The solution
to this kind of problem if it is introduced by
devices is to carefully grade the devices in the
assembly and testing process.

Stages of amplification following a signal
source many times Tocal

rely on degenerate or

overall negative feedback schemes in order to
minimize the excess noise from active gain elements
This

However,

is the recommended
shift in the
negative feedback circuit or poor bandwidth in the

(such as transistors).

design approach. phase
gain elements can result in poor high frequency
Figure 12.10 a kind of

result one might see as a gradual rise in SQ(f)

noise behavior. shows

because of insufficient negative feed back at
high Fourier frequencies.

Section X discussed aliasing in the frequency
domain. Figure 12.11 shows the resultant measure-
ment anomaly due to digital sampling of a poorly
bandlimited (anti-aliased) white noise source.
Noise voltage above the sampling frequency fs is
Note
also that the stopband rippie characteristics are

folded

folded into the analysis region of interest.

into the high-frequency portion of the

passband. For a given sampling freguency, a
compromise exists between increasing the high-
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frequency extent of the analysis band and improving

the

anti-aliasing filter's stopband rejection.

Section X has an example of the filter requirements

for a particular case.

XIII.

CONCLUSION
This writing highiights major aspects of

time-domain and frequency-domain oscillator signal

measurements.
lectures presented by the authors.
have

The contents are patterned after
The authors

tried to be general in the treatment of

topics,  and bibliography is attached for readers

who would 1ike details about specific items.
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LIST OF SYMBOLS

Number of degrees of freedom

Fourier (cycle) frequency

Open-loop transfer function of a phase-locked loop

Transfer function of the loop filter of a phase-locked loop

Transfer function of a filter

Sensitivity of a linear phase detector in volts per radian

Number of counts accumulated by a time-interval counter

Quality factor of a resonance, equal to the ratio of the stored energy to the
energy lost in one cycle

Independent variable of the Laplace transform

Estimate of the two-sample or Allan variance

One-sided power spectral density of the fractional-frequency deviations

One-sided power spectral density of the phase deviations

Two-sided power spectral density of the phase deviations

Two-sided power spectral density of the phase deviations of the carrier

Two-sided power spectral density of the phase deviations of the pedestal

Two-sided power spectral density of the instantaneous voltage

Peak voltage of a signal generator

Output voltage of a phase detector

Voltage applied to the tuning clement of the voltage-controlled oscillator of a
phase-locked loop

Instantaneous voltage of a signal generator or other device

Time deviation required by a signal generator operating at nominal frequency v,

to accumulate phase equal to ¢{t).

Fourier transform of x(r)

Instantaneous fractional-frequency offset from nominal

Mean fractional-frequency offset over the kth interval

Exponent of f for a power-law spectral density

Frequency uncertainty due to the quantization of measurements

Damping constant of a phase-locked loop

Exponent of ¢ for a power-law Allan variance

Instantaneous frequency

Nominal frequency of a signal generator

Mean frequency over the interval 1, St < ¢,

Heterodyne frequency or difference frequency between two oscillators

Probability density of the chi-squared distribution

Sample variance of N fractional-frequency deviations, each averaged over a
period t spaced at intervals T

The two-sample or Allan variance of the fractional-frequency deviations

Modified Allan variance

Averaging iime

Period of the time base of a counter

Instantaneous phase deviation

Chi-squared distribution

Fourier (angular) frequency

Natural frequency of a phase-locked loop
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12.1 CONCEPTS, DEFINITIONS, AND MEASURES
OF STABILITY

This chapter deals with the measurement of the frequency or time stability
of precision oscillators. It is assumed that the average output frequency is
determined by a narrow-band circuit so that the signal is very nearly a sine
wave. To be specific, it is also assumed that the output is a voltage, which is
conventionally (Barnes et al., 1971) represented by the expression

V(t) = [V, + &) sin[2rvot + &(2)], (12-1)
where ¥, is the nominal peak voltage amplitude, &r) the deviation of
amplitude from nominal, v, the nominal fundamental frequency, and ¢(¢) the
deviation of phase from nominal.

When either specifying or measuring the noise in an oscillator, one must
consider the nature of the reference. This may be either a passive circuit such
as a narrow-band filter, another similar oscillator, or a set of oscillators,
synthesizers, and other signal-generating equipment. A reference with lower
noise than the device under test may be available, and in this case the
expressions developed in this chapter describe the noise in the oscillator
alone. However, a state-of-the-art device will have lower noise than any
available reference. In this case all the expressions below refer to the sum of
device and reference noise. The most common approach to solving this
problem is to compare two or more nearly identical devices. Under most
circumstances it is then reasonable to assume that each oscillator contributes
half of the measured noise.

The most direct and intuitive method of characterizing the properties of
a signal is to determine the two-sided spectrum of V{t), which is denoted
ST() (Rutman, 1978). The variable f is called a Fourier frequency and is
very closely related to the concept of a modulation frequency. A positive
f indicates a frequency above the carrier frequency v,, while a negative f
indicates a frequency lower than the carrier. Since the noise can in theory
modulate the carrier at all possible frequencies, a continuous function is
required to describe the modulation of ¥(z). S is called a spectral density and
ST(f) is the mean-square voltage { V(1)) in a unit bandwidth centered at f. It
is proportional to the rf power per unit bandwidth delivered by the oscillator
to a matched load. The total signal power is proportional to the mean square
voltage, which is also called the variance of the signal since the mean value of
V(1) is zero. The variance is therefore equal to the two-sided spectral density
integrated over all frequencies.

The two-sided spectrum is usually measured by an rf spectrum analyzer, a
device that functions like a bandpass filter followed by a bolometer, as shown
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4,
SANDPASS FILTER |V}  ueaN-sauare
Hit-10) METER v

OSCILLATOR
vit)

FIG. 12-1 An 1f spectrum analyzer. The device produces an output proportional to the
mean-square value of the signal passing through a tunable narrow-band filter centered at
frequency fo.

in Fig. 12-1. The spectrum of the filtered voltage V'(¢) is equal to the square
of the magnitude of the filter transfer function H(f — f,) multiplied by the
spectrum of the input signal (Cutler and Searle, 1966). The variance of the
filtered voltage is obtained from Parseval’s theorem:

0'3"(.{0) = J.

|H(f - f)PSTUN) df. (12-2)

If the bandpass filter is sufficiently narrow, so that ST /) changes negligibly
over its bandwidth, then Eq. (12-2) may be inverted. With this assumption,
the power spectrum is estimated from the measurement using Eq. (12-3):

SV(fo) = o3-(fo)/B, (12-3)

where B = |2 |H(f" — f,)|* df" is the noise bandwidth of the filter and fj, its
center frequency. Figure 12-2 shows a typical two-sided rf spectrum. For
many oscillators the spectrum has a Lorentzian shape, that is,

s oy _ XV Afian
S = T iR

The Lorentzian lineshape is completely described by the mean square voltage
{V?) and the full width at half maximum Af; .

(12-4)

sPn

FIG.12-2 The rf spectrum of a signal. It is often useful 10 divide the spectrum into the
carrier and the noise pedestal. The spectral density of the carrier exceeds that of the noise
pedestal for Fourier frequencies smaller in magnitude than f,.
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12.1.1 Relationship between the Power Spectrum and the
Phase Spectrum

The power spectrum differs from a delta function &(f) due to the presence
of the amplitude- and phase-noise terms, &(t) and ¢(t), respectively, included
in Eq. (12-1). Usually the noise modulation separates into two distinct
components, so that one observes a very narrow feature called the carrier
above the level of a relatively broad pedestal. The frequency that separates
the carrier and pedestal is denoted f,. Below this frequency the spectral
density of the carrier exceeds that of the pedestal. Assuming that the ampli-
tude noise is negligible compared to the phase noise and that the phase
modulation is small, the relationship between the power and phase spectra
is given by (Walls and DeMarchi, 1975)

l .
S{s(f)gyzie-we)x{‘s(f), if —f,.<f<f.,

S(f),  otherwise.

Sg¥(f) is the two-sided spectrum of the phase fluctuations, which divides
into a carrier component S>(f) and a pedestal component S}¥,(f); I(f.) is
given by

(12-5)

1) =L Se N df = L AN dr (12-6)

since above f, the pedestal dominates the noise spectrum. The variance of the
carrier is equal to (V§/2)e /Y, with the remaining variance in the pedestal. If
Av, is the width of the pedestal and Av, the width of the carrier, then the
power density in the carrier is equal to that in the pedestal when I(f)) =
In(Av,/Av;). For the pedestal, one may use the 3-dB linewidth for Av,
provided that j'}: S,(f)df < In 2. Otherwise the pedestal width is estimated
from [2,; Ss(f)df =In2. For the carrier, the linewidth is estimated by
calculating (3, 2 Sy.(f) df = In 2.

The foregoing analysis makes it possible to draw certain conclusions
concerning detection of the carrier. We use |, df to denote the integral over
the phase noise pedestal. If |, S,(/) df < In 2, then the carrier may be resolved
irrespective of detector bandwidth. When In(Av,/Av,) > [, S,(f)df > In2,
the carrier may be resolved by restricting the detection bandwidth. But when
fo Solf) df > In(Av,/Av,), the carrier can no longer be distinguished from the
pedestal since its spectral density is smaller.

12.1.2 The IEEE Recommended Measures of Frequency Stability

By the mid-1960s the problem of the specification of precision oscillators
had become extremely important, but there was very little uniformity among
manufacturers, metrologists, and applications engineers in the methods of
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performing measurements or the description of measurement results. This
situation was complicated by the difficulty of comparing the various
descriptions. A measure of stability is often used to summarize some
important feature of the performance of the standard. It may therefore not be
possible to translate from one measure to another even though the respective
measurement processes are fully described and all relevant parameters are
given. This situation resulted in a strong pressure to achieve a higher degree
of uniformity.

In order to reduce the difficulty of comparing devices measured in separate
laboratories, the IEEE convened a committee to recommend uniform
measures of frequency stability. The recommendations made by the com-
mittee are based on the rigorous statistical treatment of ideal oscillators that
obey a certain model (Barnes et al., 1971). Most importantly, these oscillators
are assumed to be elements of a stationary ensemble. A random process is
stationary if no translation of the time coordinate changes the probability
distribution of the process. That is, if one looks at the ensemble at one instant
of time, then the distribution in values for a process within the ensemble is
exactly the same as the distribution at any other instant of time. The elements
of the ensemble are not constant in time, but as one element changes value
other elements of the ensemble assume previous values. Thus, it is not
possible to determine the particular time when the measurement was made.

The stationary noise model has been adopted because many theoretical
results, particularly those related to spectral densities, are valid only for this
case. It is important for the statistician to exercise considerable care since
experimentally one may measure quantities approximately equal to either the
instantaneous frequency of the oscillator or the instantaneous phase. But the
ideal quantities approximated by these measurements may not both be
stationary. The instantaneous angular frequency is conventionally defined as
the time derivative of the total oscillator phase. Thus,

wft) = %[vaot + ()], (12-7)

and the instantaneous frequency is written

1d
V(l)="o+_‘£‘~

21[ (12-8)

For precision oscillators, the second term on the right-hand side is quite
small, and it is useful to define the fractional frequency

y(():——:——-——:— (12'9)
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where
x(t) = (1) 2nv, (12-10)

is the phase expressed in units of time. Alternatively, the phase could be
written as the integral of the frequency of the oscillator:

o) = ¢o + J:Zn[v(()) — vo] d6. (12-11)

However, the integral of a stationary process is generally not stationary.
Thus, indiscriminate use of Egs. (12-7) and (12-11) may violate the assump-
tions of the statistical model. This contradiction is avoided when one
accounts for the finite bandwidth of the measurement process. Although a
more detailed consideration of the statistics goes beyond the scope of this
treatment, it is very important to keep in mind the assumption that lie behind
the statistical analysis of oscillators. In order to analyze the behavior of real
oscillators, it is necessary to adopt a model of their performance. The model
must be consistent with observations of the device being simulated. To make
it easier to estimate the device parameters, the models usually include certain
predictable features of the oscillator performance, such as a linear frequency
drift. A statistical analysis is useful in estimating such parameters to remove
their effect from the data. It is just these procedures for estimating the
deterministic model parameters that have proved to be the most intractable.
A substantial fraction of the total noise power often occurs at Fourter
frequencies whose periods are of the same order as the data length or longer.
Thus, the process of estimating parameters may bias the noise residuals by
reducing the noise power at low Fourier frequencies. A general technique for
minimizing this problem in the case of oscillators actually observed in the
laboratory is discussed below.

It has been suggested that measurement techniques for frequency and time
constitute a hierarchy (Allan and Daams, 1975), with the measurement of the
total phase of the oscillator at the peak. Although more difficult to measure
with high precision than other quantities, the total phase has this status
owing to the fact that all other quantities can be derived from it.
Furthermore, missing measurements produce the least deleterious effect on a
time series consisting of samples of the total phase. Gaps in the data affect the
computation of various time-dependent quantities for times equal to or
shorter than the gap length, but have a negligible effect for times much longer
than the gap length. The lower levels of the hierarchy consist of the time
interval, frequency, and frequency fluctuation. When one measures a quan-
tity somewhere in this hierarchy and wishes to obtain a higher quantity, it is
necessary to integrate one or more times. In this case the problem of missing
data is quite serious. For example, if frequency is measured and one wants to
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know the time of a clock, one needs to perform the integration in Eq. (12-11).
The missing frequency measurements must be bridged by estimating the
average frequency over the gap, resulting in a time error that is propagated
forever. Thus, it is preferable to always make measurements at a level of the
measurement hierarchy equal to or above the level corresponding to the
quantity of principle interest. In the past this was rather difficult to do.
Measurement systems constructed from simple commercial equipment suf-
fered from dead time, that is, they were inactive for a period after performing
a measurement. To make matters worse, methods for measuring time or
phase had considerably worse noise performance than methods for measur-
ing frequency. As a result, many powerful statistical techniques were
developed to cope with these problems (Barnes, 1969: Allan, 1966). The effect
of dead time on the statistical analysis has been determined (Lesage and
Audoin, 1979b). Other techniques have been developed to combine short
data sets so that the parameters of clocks over long periods of time could be
estimated despite missing data (Lesage, 1983). The rationale for these
approaches is considerably diminished today. Low-noise techniques for the
measurement of oscillator phase have been developed. Now, commercial
equipment is capable of measuring the time or the total phase of an oscillator
with very high precision. Other equipment exists for measuring the time
interval. These devices use the same techniques that were previously
employed for the measurement of frequency and are very competitive in
performance.

The proliferation of microcomputers and microprocessors has had an
equally proiound effect on the field of time and frequency measurement.
There has been a dramatic increase in the ability of the metrologist to acquire
and process digital data. Many instruments are available with suitable
standard interfaces such as IEEE-583 or CAMAC (IEEE, 1975) and
TIEEE-488 (IEEE, 1978). As a result, there has been a dramatic change in
direction away from analog signal processing toward the digital, and this
process is accelerating daily. Techniques once used only by national
standards laboratories and other major centers of clock development and
analysis are now widespread. Consequently, this chapter will focus first on
the peak of the measurement hierarchy and the use of digital signal
processing. But the analysis is directed toward estimating the traditional
measures of frequency stability. Considerable attention will be paid to
problems associated with estimating the confidence of these stability meas-
ures and obtaining the maximum information from available data.

The IEEE has recommended as its first measure of frequency stability the
one-sided spectral density S,(f) of the instantaneous fractional-frequency
fluctuations y(¢). It is simply related to the spectral density of phase fluctua-
tions since differentiation of the time-dependent functions is equivalent to
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multiplication of their Fourier transforms by jo:

SAS) = Ivo*Self) = 2nf)'S.(f). (12-12)

Section 12.1.1 on the relationship between the power spectrum and the
phase spectrum described the analog method for the measurement of a
spectral density. If a voltage Vis the output of the oscillator, then the result of
the measurement is proportional to the rf power spectral density. But if the
voltage were proportional to the frequency or phase of the oscillator, then the
result of the measurement would be proportional to the spectral density of
the frequency or phase. The most common units of S,( f) are radians squared
per hertz.

Alternatively. the spectral density can be obtained by digital analysis of the
signal. For example, the quantity S, (f) can be calculated from the Fourier
transform of x(t). The relevant continuous Fourier-transform pair is defined
as follows:

X(f) = J”: x(f)e™ 2™ dr (12-13)

and

X0 = 51; f X(f)e " df. (12-14)

However, one does not generally have continuous knowledge of the phase of
the oscillator. Since it is relatively easy to measure x(r) at equally spaced time
intervals, we assume the existence of the series x,, where x, = x(It) for integer
values of . The discrete Fourier transform is defined by analogy to the
continuous transform (Cochran et al., 1967):

-]

X(N)= Y x(he i, (12-15)
Il=-~x
In practice the time series has finite length T consisting of N intervals of
length z, and it is not possible to compute the infinite sum. Nevertheless, it
remains possible to compute a spectrum that is not continuous in f but rather
has resolution Af, where

Af=1/T=1/Nz. (12-16)

The need to sum over all values of the index [ is removed by assuming that the
function x(¢) repeats itself with period T. The resulting spectrum contains no
information on the spectrum at Fourier frequencies less than 1/T. Truncation
of the time series also introduces spurious effects due to the turn-on and turn-
off transients. These problems can be minimized through the use of a window
function. The computed spectrum is actually the square of the magnitude of
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the window function multiplied by the desired spectrum. The use of a window
function reduces the variance of the spectrum estimate at the expense of
smearing out the spectrum to a small degree. With these changes but no
window function, we arrive at the discrete finite transform
N-1
X(nAf) = 3 Y x(kr)e~ sk, (12-17)
N /D
The spectral density of x(t) is computed from Eq. (12-17) by squaring the real
and imaginary components, adding the two together, and dividing by the
total time T:

{R[X(m AN} + {I[X(m AN}
T .

The digital method of estimating spectral densities has many advantages
over analog signal processing. Most important is the fact that it may be
computed from any set of equally spaced samples of a time series. As a result,
the technique is compatible with other methods of characterizing the signal,
that is, the sampled data can be stored and processed using a variety of
algorithms. In addition, each record of length T produces a single estimate of
the spectrum for each of the N frequencies Af,2 Af, ..., N Af. It is therefore
possible to estimate the entire spectrum much more quickly using the digital
technique than it would be using analog methods. The fast Fourier
transform, a very efficient algorithm for the computation of the discrete finite
transform, has opened the way to versatile self-contained, commercial
spectrum analysis. It is also very straightforward to compute the spectrum
from data acquired by computerized digital data acquisition systems.

A result of the finite sampling rate is that the upper frequency limit of the
digital spectrum analysis is 1/27, called the Nyquist frequency (Jenkins and
Watts, 1968). Power in the signal being analyzed that is at frequencies higher
than the Nyquist frequency affects the spectrum estimate for lower frequen-
cies. This problem is called aliasing. The out-of-band signal is rejected by
only approximately 6 dB per octave above the Nyquist frequency. Thus,
when significant out-of-band signals exist, they must be reduced by analog
filtering. One or more low-pass filters are usually sufficient for this purpose.

As its second measure of frequency stability, the IEEE recommended the
sample variance 62(z) of the fractional-frequency fluctuations. It is a measure
of the variability of the average frequency of an oscillator between two
adjacent measurement intervals. The average fractional-frequency deviation
¥, over the time interval from ¢, to 1, + 1 is defined as

SAmAf) = (12-18)

e +%
Vo = % f we)dr, (12-19)

i
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x(t)
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FIG. 12-3 Measurement process for the computation of the sample variance. The phase
difference between two oscillators is plotted on the ordinate. The measurement yields a set of
frequencies averaged over equal intervals t separated by dead time T~ 1.

from which it follows that

5, = Xt 9 = Xt (12-20)
T

The quality t is often referred to as the sampling time or the averaging time.
Equations (12-19) and (12-20) are not the only way to define mean frequency,
but they are the simplest. Other definitions lead to alternative measures of
stability that may have desirable properties.

Suppose that one has measured the time or frequency fluctuations between
a pair of precision oscillators and a stability analysis is desired. The process is
illustrated in Fig. 12-3. These are N values of the fractional frequency j;.
Each one is measured over a time 7, and measurements are repeated after
intervals of time T. If the measurement repetition time exceeds the averaging
time, then there is a dead time equal to T — t between each frequency
measurement, during which there is no information available.

There are many ways to analyze these data. A fairly general approach is the
N-sample variance defined by the relation

. 1 N 1 N 2
(G}(N, T, )y = <1-V—_—1- (v -~ L yk) > (12:21)
a=1

k=t

where the angle brackets denote the infinite time average. Frequently, Eq.
(12-21) does not converge as N — x, since some noise processes in oscillators
diverge rapidly at low Fourier frequencies. This implies that the precision
with which one estimates the variance does not improve simply as the sample
size is increased. For this reason, the two-sample variance with no dead time
is preferred. Also called the Allan variance, it converges for all the major
noise types observed in precision oscillators. It may be written as

o}1) = M-y — 7. (12-22)
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the important types of noise observed in frequency standards but the ratio of the traditional
variance to the two-sample variance is an increasing function of sample size for flicker frequency
noise and random-walk frequency noise.

The dependence of the classical variance on the number of samples is shown
in Fig. 12-4 for the case of no dead time. The quantity plotted is the ratio of
the N-sample variance to the Allan variance. Note that ¢7(t) has the same
value as the classical variance for the white-noise frequency modulation.
However, the classical variance grows without bound for flicker-frequency
and random-walk-frequency noises.

One may combine Egs. (12-20) and (12-22) to obtain an equation for g,(1)
in terms of the time-difference or time-deviation measurements;

a,z.(r) = {73 [x(t + 27) = 2x(t + 1) + x(1)]*). (12-23)

N discrete time readings may be used to estimate the variance

1 N=2 .

cir) = AN T 'zn (Xie2 = 2501 + %)% (12-24)
2 )} Sl

where i denotes the number of the measurement in the set of N and the
nominal spacing between measurements is . Since it has been assumed that
there is no dead time betwesn measurements, one can write  in Eq. (12-24) as
an integer multiple of t,, that is. T = mty, where 14 is the smallest spacing of
the data. In this case

1 N-2m

Y (Xieam = 2Xem + X)) (12:25)

2
oX(mry) = —————
Yo 2AN = 2mm?t S
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12.1.3 The Concepts of the Frequency Domain and the Time Domain

Spectral densities are measures of frequency stability in what is called the
frequency domain since they are functions of Fourier frequency. The Allan
variance, on the other hand, is an example of a time-domain measure. In a
strict mathematical sense, these two descriptions are connected by Fourier
transform relationships (Cutler and Searle, 1966). However, for many years
the inadequacy of measurement equipment created artificial barriers between
these two characterizations of the same noise process. As a result, many
specialized techniques have been developed to translate between the various
measures of stability (Allan, 1966: Burgoon and Fischer, 1978). The preceding
sections have demonstrated how easily both types of stability measures can
be computed from the same data provided that the measurement process
provides complete information. For example, both g3(mz,) and S,(m Af) can
be computed from evenly spaced samples of x(r). However, incomplete
information can result from either measurement dead time or interruptions in
the data acquisition process. In these cases translation techniques remain
valuable.

Both the spectral density and the Allan Variance are second-moment
measures of the time series x(). However, it is only possible to translate
unambiguously from the spectral density to the Allan variance, not the
reverse. To calculate the spectral density it is necessary to use the autocor-
relation function of the phase. The following discussion on power-law noise
processes further demounstrates this dichotomy. As we shall see, the Allan
variance for a fixed measurement bandwidth does not distinguish between all
of the noise processes that are commonly observed in precision oscillators.

12.1.4 Translation between the Spectral Density of Frequency
and the Allan Variance

The power-law model is most frequently used for describing oscillator
phase noise. It assumes that the spectral density of frequency fluctuations is
equal to the sum of terms, each of which varies as an integer power of
frequency. Thus, there are two quantities that completely specify S,(f) for a
particular power-law noise process: the slope on a log—log plot for a given
range of f and the amplitude. The slope is denoted by x and therefore f* is the
straight line on a log-log plot that relates S,( f) to f. The amplitude is denoted
h,. When we examine a plot of the spectral density of frequency fluctuations,
we represent it by the addition of all the power-law processes (Allan, 1966:
Vessot ef al., 1966) with the appropriate coefficients:

Sif)= Y hJr. (12-26)

21=-x
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TABLE 12-1
Correspondence between Common Power-Law Spectral Densities and the
Allan Variance®
Noise type SAN ad(r)

White phase hyf? 3 hy/(20)3 2

_ [1.038 + 3In2nf,z)) , 1
Flicker phase h S e MhE
White frequency hy $ho(1/1)
Flicker frequency hoyrt 2In(2)h.,
Random-walk frequency hoaf? 23 h_ gt

* Where necessary for convergence the speciral density has been assumed to
be zero for frequencies greater than the cutoff frequency f,.

This technique is most valuable when only a few terms in Eq. (12-26) are
required to describe the observed noise and each term dominates over several
decades of frequency. This situation often prevails. Five power-law noise
processes (Allan, 1966: Vessot et al., 1966) are common with precision
oscillators:

(1) random-walk frequency modulation x
(2) flicker frequency modulation a
(3) white frequency modulation x=
(4) flicker phase modulation -
(5) white phase modulation 2

The spectral density of frequency is an unambiguous description of the
oscillator noise. Thus, the spectrum can be used to compute the Allan
variance (Barnes er al., 1971):

2 2 = )
gy{t) = (_n;;r-)-f J-o So( f) sin*(nfz) df. (12-27)

However, Eq. (12-27) shows that the Allan variance is very sensitive to the @
high frequency dependence of the spectral density of phase, thereby neces-
sitating a detailed knowledge of the bandwidth-limiting elements in the
measurement setup. The integral has been computed for each of the power-
law noise processes, and the results are summarized in Table 12-1 (Barnes et
al., 1971). For x in the range —2 < 2 < 0, the Allan variance is proportional
to 1%, where u = —a — 1. When the log of the Allan variance is plotted as a
function of the log of the averaging time, the graph also consists of straight-
line segments with integer slopes. However, Table 12-1 also shows that even if

# Sce Appendix Note # 8
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the oscillator is reasonably modeled by power-law spectra, it is not practical
to distinguish between white phase noise and flicker phase noise from the
dependence of the Allan variance on . In both cases ¢? = 1/72.

12.1.5 The Modified Allan Variance

Table 12-1 also shows that the Allan variance has very different bandwidth
dependence for white phase noise and flicker phase noise. Therefore, these
noise types have been distinguished by varying the bandwidth of the
measurement system. If x(r) were measured, the noise type could be identified
by computing the spectrum. However, both the approach of making
measurements as a function of bandwidth and the computation of the
spectrum can be avoided by calculating a modified version of the Allan
variance. The algorithm for this variance has the effect of changing the
bandwidth inversely in proportion to the averaging time (Snyder, 1981 ; Allan
and Barnes, 1981).

Each reading of the time deviation x; has associated with it a measurement-
system bandwidth f; . Similarly, we can define a software bandwidth f, = f,/n,
which is 1/n times narrower than the hardware bandwidth. It can be realized
by averaging n adjacent x;'s. Based on this idea it is possible to define a
modified Allan variance that allows the reciprocal software bandwidth to
change linearly with the sample time <:

n 2
mod 63(5) = 77 <[1 S (Kieze = 2ian + x.-)] > (12:28)
T ni=
where © = nty. Equation (12-28) reduces to Eq. (12-23)for n = 1. One can see
that mod aﬁ(t) is the second difference of three time values, each of which is a
nonoverlapping average of n of the x;s. As n increases the software
bandwidth decreases as f,/n.

For a finite data set of N readings of x; (i =1 to N), mod ¢3(t) can be
estimated from the expression

1 N-3a+l n+j-1

mod (1) = . Xivqn = 2%, )2
o G'y(f) 212"-(1\? - 3n + l) jgl igj (Yi 2n 2‘| n + xl) ’
(12-29)

which is easy to program but takes more time to compute than the
corresponding equation (12-24) for 62(z).

Table 12-2 gives the relationship between the time-domain measure
mod ¢}(t) and its power-law spectral counterpart. In the right-hand column
are the asymptotic values of the ratio of the modified Allan variance to the
Allan variance. It is clear from the table that mod ¢;(z) is very useful for white

s See Appendix Note # 9
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TABLE 12-2

Correspondence between Common Power-Law Spectral Densities and the Modified Allan
Variance*

Noise type SN mod gi(t) mod a2/a?
. N 1
White phase hos? b B "
Flicker phase n S h, [1.038 + 3 In(2nf,1)] l )
(2n)? ?

White frequency hy hy 4t 0.5
Flicker frequency h.,f? h_.,(0.936) 0.674
Random-walk frequency hogf? h_y(S.42n 0.824

¢ Where necessary the spectral density has been assumed to be zero for frequencies greater than
the cutoff frequency /. The constant n ir the number of adjacent phase values that are averaged
10 produce the bandwidth reduction. The values in the last two columns are for the asympiotic
limit n = x. In practice, n only needs to be 10 or larger before the asymptotic limit is approached
within a few percent. When n = 1 the ratio in the last column is 1 in all cases.

phase modulation and flicker phase modulation, but for 2 <1 the con-
ventional Allan variance gives both an easier-to-interpret and an easier-to-
calculate measure of stability.

It is interesting to make a graph of x versus y for both the ordinary Allan
variance and the modified Allan variance, such as the one shown in Fig. 12-5.

R

ath

-2p \

-3 1 1 1 ! 1
-4 -3 -2 -1 [] 1 2

H

FIG. 12-5 Relationship between a power-law spectral density whose slope on a log-log plot
is 2 and the corresponding sample variance whose slope on a log-log plot is u. The solid line
describes the behavior of the Allan variance, while the dashed line shows the advantage of the
modified Allan variance for white phase noise and flicker phase noise.
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This graph allows one to determine power-law spectra for noninteger as well
as integer values of a. In the asymtotic limit the equation relating u and « for
the modified Allan variance is

o=—pu~-1 for -3 <2<3. - (12-30)

12.1.6 Determination of the Mean Frequency and Frequency Drift
of an Oscillator '

Before the techniques of the previous four sections can be meaningfully
applied to practical measurements, it is necessary to separate the deter-
ministic and random components of the time deviation x(r). Suppose, for
example, that an oscillator has significant drift, such as might be the case for a
quartz crystal oscillator. With no additional signal processing, the Allan
variance would be proportional to t2. The variance of the Allan variance
would be very small, further demonstrating that deterministic behavior has
been improperly described in statistical terms and the oscillator’s predict-
ability is much better than the Allan variance indicated. Unfortunately, it
is difficult to estimate the oscillator’s deterministic behavior without intro-
ducing a bias in the noise at Fourier frequencies comparable to the inverse
of the record length. In practice, it has been sufficient to consider two
deterministic terms in x(t): ‘

X(t) = xo + (Av/vo)t + 4Dt + x,(1) (12-31)

The first term on the right-hand side is the synchronization error. The second
term is due to imperfect knowledge of the mean frequency and is sometimes
called syntonization error. The quadratic term, which results from frequency
drift, is the most difficult problem for the statistical analysis because the Allan
variance is insensitive to both synchronization and syntonization errors.

For white noise, the optimum estimate of the process is the mean.
Therefore, a general statistical procedure that can be followed is to filter the
data until the residuals are white (Allan et al., 1974; Barnes and Allan, 1966).
For example, at short times the frequency fluctuations of atomic clocks are
usually white. Taking the first difference of Eq. (12-31), we find that

1) = %3 +Dr + 3‘-"—-“:;1‘—‘9 (12-32)
4]

and a linear least square fit to the frequency data yields the optimum estimate
of Av. However, the drift in atomic clocks is generally so small that the value
obtained for D will not be statistically significant when t is small enough to
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satisfy the assumption of white frequency noise. Thus, we are led to consider
the first difference of the frequency,

x (e + 27) - 2x,(t + 1) + x,(1)

w+o-a9_p . s . 1233

T T

Many atomic clocks are dominated by random walk of frequency noise for
long averaging times. Thus, the first difference of the frequency data (the
second difference of the phase data) is white, and the optimum estimate of the
drift is just the simple mean. If instead, a linear least square fit were removed
from the frequency data in this region of 1, then the random-walk residuals
would be biased, and it is likely that an optimistic estimate of ¢,(r) would be
obtained.

The optimum procedure would be different if the dominant noise type
were flicker of frequency, rather than random walk. But there is no simple
prescription that can be followed to estimate the drift in that case.
Fortunately, a maximum likelthood estimate of the prameters for some
typical cases has shown that the mean second difference of phase is still a
good estimator of frequency drift in the sense that it introduces negligible bias
in the Allan variance. Thus, in practice there is a simple prescription for
computing the Allan variance in the presence of significant drift. Starting
with the phase data, one forms the second difference and uses the simple
average to estimate the mean. The value of t chosen for creating these second
differences must be long enough so that the predominant noise process is
random-walk frequency modulation. After subtracting this estimate, the
second-difference data is integrated twice to recover phase data with drift
removed, and further analysis, including the computation of the Allan
variance, may proceed. Figures 12-6 through 12-10 illustrate the estimation
of drift. The quadratic dependence of the phase data in Fig. 12-6 nearly
obscures the noise. The first difference of this data produces the nearly linear
frequency dependence shown in Fig. 12-7, and the second difference produces
the residuals shown in Fig. 12-8, which appear to be nearly white. Rigorous
statistical analysis of this data indicates that the first difference of the
frequency is indeed white with 90% confidence. Next, the mean frequency
difference is subtracted. Then the residuals of Fig. 12-8 are integrated twice,
and the result is the estimate of the phase deviation with drift removed shown
in Fig. 12-9. Fig. 12-10illustrates the Allan variance of this data calculated by
three techniques. The squares were computed from the data of Fig. 12-6,
while the open circles were computed following the recommended procedure
for estimating the drift. The validity of the approach is illustrated by the black
dots, which are the result of a statistically optimum parameter estimation
procedure.
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FIG. 12-6 Measured phase difference between a frequency standard and a reference during
a 140-day experiment. The nearly quadratic form of the data effectively obscures the noise.
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FIG.12-7 One-day frequency averages obtained by taking the first differences of the data in
Fig. 12-6. The ordinate is the fractional difference of the daily frequency from a nominal value.
The nearly linear change in frequency with time is apparent, although the random deviations are
visible.
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FIG.12-8 Second difference of the data in Fig. 12-6. The second difference operation has
removed the nonrandom behavior and the residuals appear to be nearly white.

TN-79



210 SAMUEL R. STEIN

x(t)(usec)

) 740
TIME (DAYS)
FIG. 12-9 Phase variations of the frequency standard due to the residuals. obtained by

performing two integrations on the data of Fig. 12-8. The ordinate scale is expanded
approximately 10 times compared to Fig. 12-6.
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FI1G. 12-10 Logarithm of the square root of the Allan variance as a function of the
logarithm of the averaging time for three different computation methods. The squares were
computed from the data of Fig. 12-6 and show the effect of the drift. The open circles were
computed from the data of Fig. 12-9. The closed circles were computed using an optimum-
parameter estimation procedure.

12.1.7 Confidence of the Estimate and Overlapping Samples

Consider three phase or time measurements of one oscillator relative to
another at equally spaced intervals of time. From this phase data one can
obtain two adjacent values of average frequency and one can calculate a
single sample Allan variance (see Fig. 12-11). Of course, this estimate does not
have high precision or confidence, since it is based on only one frequency
difference.

For most commonly encountered oscillators, the first difference of the
frequency is a normally distributed variable with zero mean. However, the
square of 2 normally distributed variable is not normally distributed. This is
so because the square is always positive and the normal distribution is

TN-80
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x(1)

TIME

FIG. 12-11 Calculation of two average frequencies j, and j, by measuring the phase of an
oscillator x(7) at times ¢,, t3, and ;.

completely symmetric, with negative values being as likely as positive ones.
The resulting distribution is called a chi-squared distribution, and it has one
“degree of freedom™ since the distribution was obtained by considering the
squares of individual (i.e., one independent sample), normally distributed
variables (Jenkins and Watts, 1968).

In contrast, from five phase values four consecutive frequency values can
be calculated, as shown in Fig. 12-12. It is possible to take the first pair and
calculate a sample Allan variance. A second sample Allan variance can be
calculated from the second pair (i.e, the third and fourth frequency
measurements). The average of these two sample Allan variances provides an
improved estimate of the true Allan variance, and one would expect it to have
a tighter confidence interval than in the previous example. This could be
expressed with the aid of the chi-squared distribution with two degrees of
freedom.

However, there is another option. One could also consider the sample
Allan variance obtained from the second and third frequency measurements,
that is, the middle sample variance. This last sample Allan variance is not
independent of the other two, since it is made up of parts of each of the others.
But this does not mean that it cannot be used to improve the estimate of the
true Allan variance. It does mean that the new average of three sample Allan
variances is not distributed as chi squared with three degrees of freedom. The

7 = =
L ’a:: 3

'

x(1)

ty t t3 t, ty
TIME

FIG. 12-12 Calculation of [our frequency values §,, 7,. ¥, and j, from five phase
measurements at times f,, t;, t3, {4, and t5. The sample variance formed from 7, and j; and the
one formed from 7, and 7, are independent. The sample variance {ormed from y, and 7, is not
independent of the other two but does contain some additional information useful in estimating
the true sample variance.
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number of degrees of freedom depends on the underlying noise type, that is,
white frequency, flicker frequency, etc., and may have a fractional value.

Sample Allan variances are distributed as chi square according to the
equation

= (df)si/al, (12-34)

where sf is the sample Allan variance, df the number of degrees of freedom
(possibly not an integer), and o7 the true Allan variance, which we are
interested in knowing but can only estimate imperfectly.

The probability density for the chi-squared distribution is given by the
relation (Jenkins and Watts, 1968)

1

P*) = 292T(d[2) (2t R, (12-35)

where I'(df;2) is the gamma function, defined by the integral
-]
I'(z) =f x'"le™*dx. (12-36)
0

A typical distribution is shown in Fig. (12-13).

Chi-squared distributions are useful in determining confidence intervals for
variances and standard deviations, as shown in the following example.
Suppose one has a sample variance s? = 3.0 and it is known that this
variance has 10 degrees of freedom. The object is to calculate a range around
the sample value of s} = 3.0 that probably contains the true value ¢2. The
desired confidence is, say, 90%;. That is, 10% of the time the true value will
actually fall outside of the stated bounds. The usual way to proceed is to
allocate 5%; to the low end and 59%; to the high end for errors, leaving 90% in
the middle. This is arbitrary and a specific problem might dictate a different

sy ! 90% 1Y

PO

3.94 2
X
FIG. 12-13 Approximate form of a typical chi-squared distribution. For 10 degrees of

freedom. 5°; of the area under the curve corresponds to values of x* less than 3.94, and an
additional 5% corresponds 10 values of x* greater than 18.3.
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allocation. By referring to tables of the chi-squared distribution, one finds
that for 10 degrees of freedom (df = 10) the 5%, and 95%; points correspond to

1%(0.05) = 394,  x%(0.95) = 18.3. (12-37)

Thus, with 90%; probability the calculated sample variance s? = 3 satisfies the
inequality

3.94 < (df)s?/o} < 18.3, {12-38)
and this inequality can be rearranged in the form
1.64 < 62 < 7.61. (12-39)

The estimate s7 = 3 is a point estimate. The estimate 1.64 < g7 < 7.61 is
an interval estimate and should be interpreted to mean that 909 of the time
the interval calculated in this manner will contain the true ¢7.

12.1.8 Efficient Use of the Data and Determination of the
Degrees of Freedom

Typically, the sample variance is calculated from a data set using the
relation

1
N -1

N
Z (zn - 2)2’ (12.40)

n=]

“
[}
n

where it is implicitly assumed that the z,’s are random and uncorrelated (i.c.,
white) and where Z is the sample mean calculated from the same data set. If all
of this is true, then s? is chi-squared distributed and has N — 1 degrees of
freedom.

Consider the case of two oscillators being compared in phase with N values
of the phase difference obtained at equally spaced intervals 7. From these N
phase values one obtains N — | consecutive values of average frequency, and
from these one can compute N — 2 individual sample Allan variances (not all
independent) for T = t,. These N — 2 values can be averaged to obtain an
estimate of the Allan variance at 1 = 1.

The variance of this Allan variance has been calculated (Lesage and
Audoin, 1973; Yoshimura, 1978). This approach is less versatile than the
method of the previous section since it yields only symmetric error limits.
However, it is simple and easy to use. Let A(N) be the relative difference
between the sample Allan variance and the true value. Thus,

s = [1 + AN))a2(v). (12-41)
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TABLE 12-3

Variance of the Relative Difference between the Sample
Allan Variance and the True Value (C,/N)*

Noise type a C.
White phase 2 3.88
Flicker phase 1 388
White frequency 0 299
Flicker frequency -1 231
Random-walk frequency -2 2.25

* N is the number of phase measurements. The result is
accurate to better than 109, for N larger than 10.

The quantity A(N) has mean zero. For N larger than 10, the variance of A is
approximately

63(A) = C,/N. (12-42)

Table 12-3 gives the constant C, for the five major noise types.

Using the same set of data it is also possible to estimate the Allan variances
for integer multiples of the base sampling interval t = mr,. Now the
possibilities for overlapping sample Allan variances are even greater. For a
data set of N phase points, one can obtain 2 maximum of exactly N — 2m
sample Allan variances for © = mt,. Of course only (N — 1).2m of these are
generally independent. Still, the use of all of the data is well justified since the
confidence of the estimate is always improved by so doing. Consider the case
of an experiment extending for several weeks in duration with the aim of
getting estimates of the Allan variance for t values equal to a week or more.
As always, the purpose is to estimate the “true™ Allan variance as well as
possible, that is, with as tight an uncertainty as possible. Thus, one wants to
use the data as efficiently as possible. The most efficient use is to average all
possible sample Allan variances of a given t value that one can compute from
the data. This procedure is illustrated in Fig. 12-14.

In order to calculate confidence intervals for a sample variance, it is
necessary to know the number of degrees of freedom. This has been done by
both analytical and Monte Carlo techniques, and empirical equations have
been found that are accurate to 19, for white phase, white frequency, and
random-walk frequency modulation. The tolerance is somewhat larger for
flicker frequency and phase modulation (Howe et al., 1981). The empirical
equations for the degrees of freedom are given in Table 12-4. Table 12-5 gives
the degrees of freedom for selected values of N, the total number of phase
values, and m, the number of intervals averaged. Figure 12-15 illustrates the
number of degrees of freedom for all noise processes as a function of ¢ for the
case of 101 total phase measurements.
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FIG.12-14  [llustration of the case of = = 4z, for which the ratio of the number of fully
overlapping to nonoverlapping estimates of the variance is more than 8 for the 57 phase points
shown. When the averaging time for the computation of mean frequencies t exceeds the
sampling time t,, the number of fully overlapping mean frequencies is far larger than the aumber
of nonoverlapping frequencies. In general, for large N approximately 2m times as many
estimates of the sample variances can be computed using the fully overlapping technique.

TABLE 12-4

Number of Degrees of Freedom for Calculation of the Confidence of the
Estimate of a Sample Allan Variance®

Noise type df

(N + )N = 2m)
AN - m)

. R .
Flicker phase exp[ln(h l)ln((-"l + 1N 1))]
2n 4

White phase

N - N=2 4m? @
White frequency [3( 3 D - 2 N )] 3 zm+ 3
m m
Flicker frequency —7%'—-—% form=1
SN2
—_—
4miN -+ 3m) ormz2

N-=2(N=1?=3mN -1+ 4dm?

Random-walk frequency N =3
m N -3

“For = = mz, from N phase points spaced ¢, apart.
] 0
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TABLE 12-5

Number of Degrees of Freedom for Calculation of the Confidence of the Estimate of a Sample
Allan Variance for the Major Noise Types*

White Flicker White Flicker Random-walk
N m phase phase frequency frequency frequency
9 1 3.665 4.835 4.900 6.202 7.000
2 3.237 3.537 3.448 3.375 2.866
4 1.000 1.000 1.000 1.000 0.999
129 1 65.579 79.015 84.889 110.548 127.000
2 64.819 66.284 71.642 77.041 62.524
4 63.304 52.586 42.695 36.881 29.822
8 60.310 37.306 21.608 16.994 13.567
16 54.509 22.347 9.982 7.345 5.631
32 44.761 9.986 4.026 2.889 2.047
64 1.000 1.000 1.000 1.000 1.000
1025 1 526.373 625.071 682.222 889.675 1023.000
2 525.615 543.863 583.622 636.896 510.502
4 524.088 459.041 354.322 316.605 253.755
8 521.038 366.113 186.363 156.492 125.398
16 514.952 269.849 93.547 76.495 61.241
32 502.839 179.680 45947 36.610 29.210
64 478.886 104.743 21.997 16.861 13.288
128 432.509 50.487 10.003 7.281 5.516
256 354914 17.429 4.003 2.861 2.005
512 1.000 1.000 1.000 1.000 1.000

“ N is the number of equally spaced phase points that are taken m at a time to form the averaging
time.

12.1.9 Separating the Variances of the Oscillator and the Reference

A measured variance contains noise contributions from both the oscillator
under test and the reference. The individual contributions are easily sepa-
rated if it is known a priori that the reference is much less noisy than the
device under test or equal to it in performance. Otherwise, the individual
contributions can be estimated by comparing three devices (Barnes, 1966).
The three possible joint variances are denoted by ¢7. 6%, and 6}, while the
individual device variances are ¢7, 67, and of. The joint variances are
composed of the sum of the individual contributions under the assumption

that the oscillators are independent:
ol + oi,

= af + o‘f, (12‘43)

o~ \
[les
“

[S)
|

Oix = 0'.-2 + O'i.
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FIG. 12-15 Number of degrees of freedom as a function of averaging time for the case of 101
phase measurements: The heavy broken line is for random-walk frequency noise, the light
broken line is for flicker frequency noise, the dotted line is for white frequency noise, the heavy
solid line is for flicker phase noise, and the light solid line is for white phase noise.

An expression for each individual variance is obtained by adding two joint
variances and subtracting the third:

o} = Yo} + ok — ok
o} = 3o + o} ~ ab), (12-44)
of = Yok + ok ~ o))

This method works best if the three devices are comparable in performance.
Caution must be exercised since Egs. (12-44) may give a negative sample
Allan variance despite the fact that the true Allan variance is positive definite.
This is possible because the confidence interval of the estimate is sufficiently
large to include negative variances. Such a result is an indication that the
confidence intervals of the sample Allan variances are too large and that
more data is required.

122 DIRECT DIGITAL MEASUREMENT

12.2.1 Time-Interval Measurements

A common technique for measuring the phase difference between oscil-
lators having nearly equal nominal frequencies is the use of direct time-
interval measurements. In this section and those that follow, the symbols v,
and v,, are used to indicate the nominal values of v, and v,, respectively. In
the simplest form of this technique, a time-interval counter is started on some
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ACTUAL PHASE '
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FiG. 12-16 The phase difference measured by a time-interval counter is the phase difference
between the start signal and the stop signal modulo the period of the stop signal.

arbitrarily selected positive-going zero crossing of the signal from one
oscillator (started on v,, at time t,) and stopped in the next positive-going
zero crossing of the second oscillator (stopped on v,o at time t;). The
measured time difference is

x5(t)) — x,(t;) = — Pr.[1 + (V20 = Vi0)/V10)s (12-45)

where P is the reading of the time-interval counter and t. the period of its
time base (Allan et al., 1974). The units of the time difference is seconds of
oscillator number 1. Equation (12-45) demonstrates an important character-
istic of both time- and phase-difference measurements. Because of distortion
the phase of an oscillator is generally not well known except at zero crossings.
Thus, the quantity usually measured is x,(t;) — x,(t,). However, all analysis
techniques require the phase difference at the same time, and the translation
requires a correction that takes into account the difference in frequency
between the two oscillators. This correction is the reason for the second term
in the brackets on the right-hand side of Eq. (12-45).

The simple scheme described above measures a maximum accumulated
phase difference of one cycle of the signal. When the phase difference exceeds
one cycle the counter reading is periodic, as shown in Fig. 12-16. This
ambiguity can be reduced by dividing the signals from each oscillator before
the time-interval measurement. The complete system is shown in Fig. 12-17.
The effect of the divider is to increase the time interval before an ambiguity

DIVIDER
V‘ .
<N START
OSCIL‘LATOR TIME-
INTERVA
) DIVIDER coums:
2 N sros

OSCleLATOR

FIG. 12-17 Schematic diagram of the dividers used in conjunction with a time-interval
counter o increase the maximum measurable phase difference to N cycles of the stop signal.
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occurs to N/v,,, where N is the divisor. Such measurement systems are used
at many standards laboratories for the long-term measurement of atomic
clocks, whose output is usually divided down to 1 pulse/sec. Since time-
interval counters with resolution better than 0.1 nsec are available, this
measurement scheme is suitable for long-term performance monitoring,
yielding frequency-measurement precision of 107!* for 1-day averages.

12.2.2 Frequency Measurements

Average frequency is measured most directly using a frequency counter.
Used this way, the counter determines the number of whole cycles M
occurring during a time interval t given by the counter’s time base. Thus

¥W0.7) = (M + AM)/r = M/, (12-46)

where ¥(t,:t,) denotes the average frequency over the interval from ¢, to ¢,
and AM, the fractional cycle, is not measured by the counter. The starting
time is arbitrarily called ¢ = 0. Thus, the quantization error is given by

Avg/(vy < 1/M. (12-47)

12.2.3 Period Measurements

For low frequencies, the number of cycles counted may be small and the
quantization error can be very large. By measuring the period instead of the
frequency, it is possible to decrease the error without increasing the duration
of the measurement. A period counter measures the duration of M whole
cycles of the signal as N cycles of the time base 7. The fraction of a cycle AN
is not measured. Thus, we have

M = #0: M/voXN + AN)z, (12-48)
and therefore
W0; M/vo) = M/Nt, (12-49)
and the quantization error is
Avg/{v) < I/N. (12-50)

Frequency measurements are almost never used to characterize precision
oscillators, but period measurements are very common. A straightforward
extension of this method eliminates the bias potentially introduced by the
quantization error and permits the measurement of accumulated phase. The
counter must be capable of being read without halting the counting process.
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COUNTER
OSCILLATOR FLIP AND
OamEL 4 TIME BASE
DIVIDER FLOP AND
COUNTER

FIG. 12-18 Two-counter system to eliminate dead time in period measurements. The two
counters alternately count the number of cycles of the time base in N periods of the oscillator
under test.

Alternatively, a second counter may be used to begin counting the same time
base when the first counter stops. The second approach is illustrated in Fig.
12-18. This type of measurement system is sometimes called a chronograph.

12.3 SENSITIVITY-ENHANCEMENT METHODS

12.3.1 Heterodyne Techniques

It is possible for oscillators to be very stable, and values of o,(z) can be as
small as 107'% in some state-of-the-art standards. Thus, one often needs
measuring techniques capable of resolving very small fluctuations in y{t). One
of the most common techniques is the heterodune or beat-frequency
technique. In this method the signal {rom the oscillator under test is mixed
with a reference signal of almost the same frequency so that one is left with a
lower average frequency for analysis without reducing the frequency (or
phase) fluctuations themselves.

In principle, it is possible to analyze the most general measurement case,
where no restrictions are placed on the average frequency or phase difference
between the two oscillators under test. Equation 12-1 can be inverted as

2nvet + ¢(1) = arcsin[ Vi)V, ] {12-31)

and used to obtain the series ¢(mz) by sampling the voltage at regular time
intervals. This direct technique is not used, because it requires unobtainable
mixer performance characteristics. The high-level rf signals that are required
for low-noise phase measurements produce significant harmonic distortion,
so that the output of the phase detector deviates significantly from a sine
wave. Furthermore, the distortions are generally sensitive to level and
environmental perturbations. However, the phase relationships among the
various harmonics are very stable, so it is possible to use the repetition of one
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point on the waveform in order to count cycles. The positive-going zero
crossings are normally chosen in order to provide immunity from changes in
both the amplitude and symmetry of the waveform.

Consider two signals whose frequency difference is much less than the
frequency of either oscillator:

Vi(1) = Viosin[2rv ot + ¢4(2) + 0]
and (12-52)
Vo(t) = Vygsin[2mvyot + ¢(r) + ¢20],
where |[v;q — v39| <€ v, and the constants ¢, 4 and ¢,, represent the nominal
phases of the two signals.
Suppose that the two signals are mixed in a linear product detector and

filtered so that the signal at the sum frequency v, + v, is highly attenuated.
The result is

V(1) = V,cos[2mr(vyg — voo)t + @10 — D20 + &:() — @2(D], (12-53)

which may be characterized by any of the measurement techniques discussed
in Section 12.2. The amplitude ¥, of the mixer output is a function of the
mixer design, the input amplitudes, and the output termination (Walls et al.,
1976). Using the definition (12-10), we find that for the heterodyned signal

xy(t) = (1/27vy) Ag(2), (12-54)
where
Yy = V1o — V20l (12-55)
and
Ag(r) = ¢,(r) — ¢2(0). (12-56)
Equation (12-54) may be rewritten as
xu(t) = (vo/vi)x(1), (12-57)

from which we conclude that a given phase change corresponds to a larger
time deviation for the heterodyne signal than for the original signal. As a
result, the quantization error for the period measurement technique is
reduced by the factor vy /v,.

12.3.2 Homodyne Techniques

The limit of the heterodyne method, called homodyne, occurs when
Vio = V3o. In this case the output of the phase detector is given by

V(t) = Vocos[dio — 20 + &4l0) — $:(1)]. (12-58)

* See Appendix Note # 6
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The analysis of phase noise is accomplished by arranging that
®10 — P20 = n/2, which can be achieved with a phase shifter. Then,

V() = - Vo sin[o,(1) — 2(1)] = Vo[ éa(r) — ()] (12-59)

There are various methods by which one can control the signal V,(¢) so that
v;0 = V5o Without producing significant correlation between ¢,(1) and ¢,(z).
When any one of these methods is used, it is possible to use V{t) as a measure
of ¢(t). Two methods, delay lines and phase-locked loops (Gardner, 1966), are
described below.

12.3.2.1 DISCRIMINATOR AND DELAY LINE

The circuit of a discriminator or delay-line system for measuring phase
noise is illustrated in Fig. 12-19. The delayed signal is given by

Va(t) = Vi(t — tg) = Vaosin[2nvyo(t — tg) + @1(t — tg) + @10 + &,].
(12-60)

When the phase shifter is set for quadrature, ¢, — 2nv,ot4 = 7.2 and
Vz(l) = Vzo Sin[zﬂvlot + ¢x(t - td) + ¢10 + 7!,"2]. (12‘61)

The output of the phase detector is given by

V(t) = Vo[ oult — tg) — &,(0)). (12-62)
Substituting Eq. (12-62) into Eq. (12-20), we obtain
Wt = t4:0) = = V(1) 21vo Yoty (12-63)

and we see that the delay-line method can be used to produce samples of
#mt,) by varying the delay time. However, the technique is used more
frequently with a fixed delay by restricting its application to the region of *
much greater than the delay time, so that j{t — t,: t) is a good approximation
for the instantaneous frequency. Under this assumption spectrum analysis of

PHASE SHIFTER | 2! [DiscriminaTOR OR | Y2(¥)

1 ¢ DELAY LINE
Volt) ' vit)
( ) PHASE
OSCILLATOR DETECTOR

FIG.12-19 A delay-line phase-noise-measurement system. When the phase shifter is
adjusted so that V(1) is in phase quadrature with Vy(1), the output of the phase detector is
approximately equal to the instantaneous frequency deviation of the oscillator. The spectral
density of the source may be estimated for Fourier frequencies small compared to the inverse of
the delay time.
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the signal from the mixer can be used to estimate the spectral density of the
frequency fluctuations:

Sf) = e

vty

Frequency discriminators are applied in an analogous fashion. A resonant
circuit is often used to provide discrimination since it produces a phase shift
proportional to the frequency deviation from the resonant frequency. For
example, the phase shift on reflection from a resonance with loaded quality
factor Q is

———Syv(f) for f<1/my. (12-64)

¢ = arctan(2Qy) = 20y, (12-65)
provided that the frequency deviation is small compared to the bandwidth of
the resonance and the applied signal is nearly at the center frequency of the
discriminator. This can be accomplished either manuaily or with a frequency-
locked loop. The design of such a loop is similar to the phase-locked loop of
the next section. Once again, one can spectrum analyze the signal from the
mixer to obtain

S0 = === Svw(f) for f<vy/Q. (12-66)

(’Q)‘
The noise floor for measurements made with either a delay line or discrimi-
nator normally results from white voltage noise in the analysis circuitry and
is independent of the Fourier frequency. We denote the noise floor S, ,,
(minimum) and find the noise floor for frequency or phase measurements by

S,(noise limit) =

S J(noise limit) = Sy,v,(minimum).

(12-67)

Consequently, the discriminator or delay-line technique is limited in sensi-
tivity since the output voltage is proportional to the frequency deviations.
Greater sensitivity is possible using two oscillators in a phase-locked loop.
The noise in the reference is an important consideration, even though the
reference is passive in the case of a discriminator or a delay line. If the
oscillator has sufficiently low noise, then the circuits described measure the
variations of the discriminator center frequency or the delay variations in the
delay line.

f s /s ("Q)2

12.3.2.2 PHASE-LOCKED LOOP

The block diagram for the most general phase-locked loop that will be
considered here is shown in Fig. 12-20. The noise voltage summed into the
loop is a schematic way of representing @,(t), the open-loop phase noise of the
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FIG. 12-20 Block diagram of a phase-locked loop. The order of the loop is determined by
the filter transfer function. For convenience, noise in the oscillator under test is introduced at the
summing junction.

oscillator under test. Phase noise in the reference oscillator is denoted by
Grerl?)-

The purpose of using a phase-locked loop is simply to guarantee that the
two oscillators are, on the average, in phase quadrature. When the oscillators
are near quadrature, the voltage output of the phase detector is proportional
to the difference in phase between the two output signals.

Analysis of the phase-locked loop yields the result

S 1 G.qls)
¢0(s) = ¢n(\s{l + ch‘s)] + ¢rcf($)[m]0 (12'68)

where G,(s) is the open-loop transfer function defined by

KoK‘ F(S)
)

Goyls) = (12-69)

and ¢,(s) and ¢,,(s) are the Laplace transforms of the corresponding time-
varying quantities. We can also calculate the voltage output of the phase
detector,

Kd[¢ur(s) - ¢n(5)]

Vals) = 1469 (12-70)
as well as the feedback voltage to the varactor,
G
Wis) = FoVils) = S (4 45) ~ 4,51, (12-71)
Gels) "
Assuming that the phase noise of the two oscillators is not correlated,
K3 -
= — . : 2.72
Sy (w) T+ GuUol (S,,. (@) + S, ()] (1 )
0*G, (jw)®
D) = ——t ) 2.7
Sy, (w) T+ G, (ol [S,,. (@) + S, ()] (12-73)
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FIG. 12-21 Circuit diagram of the most common loop filter for a second-order phase-
locked loop. Resistor R, is required for stable operation. Capacitor C provides the low-
frequency gain needed to reduce the phase errors of the first-order loop.

Va -6 dB/OCTAVE

IFGw)

FIG. 12-22 Bode plot for the loop filter of Fig. 12-21.

Thus, if we know the behavior of G,.(jw), then we can relate the measured
spectrum of the voltage at the output of the phase detector or at the varactor
tuner to the sum of the spectral densities of the phase noise of the two
oscillators.

The loop filter is often chosen to be a pure gain. The resulting first-order
loop has a significant drawback: the two oscillators are offset from quadra-
ture by a phase shift proportional to their open-loop frequency difference. In
order to maintain system calibration, the operator must remove the fre-
quency offset from time to time. This problem can be eliminated by using a
second-order loop. Figure 12-21 illustrates one loop filter that can be used to
achieve the desired frequency response. The transfer function of this filter is

F(s) = (1 + st,)/s1, (12-74)

where 1, = R,C and t; = R,C. Figure 12-22 shows the Bode plot of the
frequency-response function of this filter. Substitution of Eq. (12-74) into Eq.
(12-69) yields the open-loop frequency-response function

©? + 2jlw,w

G ljw) = ————=——, (12-75)
where
W, = [KoKu/Tl]l'}z (12-76)
and
{= %t;wn. (12-77)
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FIG. 12-23 Bode plot of the open-loop frequency-response function for a phase-locked loop
having the loop filter of Fig. 12-21. Parameters were chosen to illustrate a stable condition.

The first requirement to be satisfied by the loop parameters is that the
closed loop be stable. Since the transfer function G,.(s) has no poles or zeros
for s > 0, a sufficient requirement for the phase-locked loop to be stable is
that the slope of the Bode plot of |G 4(jw)| be less steep than —12 dB/octave at
the point where |G, (jw)| = 1. The Bode plot of |G ,(jw)| is shown in Fig.
12-23 for a case where the loop operation is stable.

It is desirable for the loop to be nearly critically damped, that is, { = 1. At
critical damping the natural frequency of the loop is related to 7, by

Wy ;=1 = 2/1;5. (12-78)
Under the same conditions the unity gain frequency is
wl';.l = 4.12/‘/12. (12'79)

The second requirement to be satisfied by the phase-locked loop is related
to the accuracy with which spectral-density measurements can be made.
Substitution of Eq. (12-75) into Eq. (12-72) yields

R
Kio*
w)

(0? — wl)? + 4% 0%*w

Sy, () = 5 [Sore(@) + S, (w)]. (12-80)
Since the proportionality factor has a high pass response, it is possible to use
an essentially constant calibration to relate §y,(w) and S4(w). For example, if
we require that ‘

Siw) = Ki[S,, . [w) + S, (w)] (12-81)

with no more than 10% error for all Fourier frequencies greater than
2n rad/sec, then for the critically damped loop the requirement on 1, is
7, > 1.4 sec.
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The third requirement on loop performance is that the frequency offset
between the two oscillators produce negligible phase shift of the oscillators
from quadrature. In the ideal loop the phase error for a frequency error Av
introduced at time t = Q is

Derror = 2 Avt e™ @,

However, in the actual circuit there is a finite phase error due to the limited
loop gain of the amplifier of Fig. 12-21. Nevertheless, the phase error is
reduced by 10° compared to its value for a first-order loop. Typically, the
error is less than the residual phase error due to the voltage offset at the mixer
output and should be much less than 1°.

The feedback loop reduces the sensitivity of the system for measurements
of the phase spectral density for Fourier frequencies less than the unity-gain
frequency of the phase-locked loop. One way to avoid this problem is to
utilize the feedback voltage ¥;. Substituting Eq. (12-75) into Eq. (12-73), we
find that

2mviof - 42 wliw?)
(0? - 0})? + 4 2wiw?

Sylw) = (S, (@) + S, (0)]. (12-82)
For this case, the proportionality factor has a low pass response and a
constant calibration factor may be used to relate S, (w) to S ().

12.3.3 Multiple Conversion Methods

Quite often the beat frequency between the signal under test and the
laboratory reference is unsuitable or inconvenient for frequency-stability
measurements. The frequency may be too high for the available counters or
the heterodyne factor may be too small to yield the required noise enhance-
ment. Under these circumstances a second mixing stage in series with the first
can be used to produce the desired beat frequency. On the other hand, the
direct beat frequency between two oscillators may be too small. For example,
the frequencies of commercial cesium-beam frequency standards are usually
so close together that the beat frequency between two devices would be near
1 cycle/day, making it impossible to observe the stability at shorter times.
This limitation can be overcome by the use of two parallel mixing stages.

12.3.3.1 FREQUENCY SYNTHESIS

A commercial frequency synthesizer is usually the most convenient way to
produce arbitrary reference frequencies for stability measurements. A mixing
stage preceding the synthesizer can be used both to bring the signal into the
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FI1G. 12-24 Use of frequency synthesis to measure oscillators whose frequency differs
significantly from the available low-noise reference. It may be necessary to use a frequency
multiplier to bring the signal into the range of the available synthesizer or to overcome the
synthesizer's phase noise.

appropriate range and to enhance the oscillator noise compared to the short-
term phase noise of the synthesizer. Figure 12-24 demonstrates both aspects
of the technique.

The initial mixing stage from the microwave frequency to the rf results in a
substantial heterodyne factor, 77.5 for the example chosen. The output of the
first conversion stage lies within the range of low-noise commercial frequency
synthesizers, which makes it possible to obtain a fixed, low beat frequency
over a wide range of input frequencies. The initial mixing stage also reduces
the frequency synthesizer's contribution to the measurement-system noise.
Figure 12-25 shows the typical phase excursions of a high-quality commercial
synthesizer operated near 5 MHz.

Under some circumstances a frequency divider may be used to provide
the signal for the second mixing stage, as shown in Fig. 12-26. This technique
has the disadvantage of requiring a custom divider but results in much
lower measurement noise than the direct use of a synthesizer with a single
heterodyne stage.

x(t) o [

T

el
o 80,000
TIME (SEC)

FIG. 12-25 Typical phase excursions of a commercial frequency synthesizer.
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FIG. 12-26 Use of a simple divider as a substitute {or a commercial frequency synthesizer in

a heterodyne measurement system. Better noise performance can result from the initial mixing
stage.

12332 THE DUAL-MIXER TIME-DIFFERENCE
TECHNIQUE

There is no best answer to the question of how to make frequency-stability
measurements. However, by combining versatility with low-noise perform-
ance, the dual-mixer time-difference technique (Cutler and Searle, 1966: Allan
and Daams, 1975) shown in Fig. 12-27 comes close to the ideal. The original
motivation for this method was to use a transfer oscillator and two mixers in
parallel to permit short-term frequency-stability measurements between
oscillators that have an inconveniently small frequency difference. The
transfer oscillator is most easily realized with a frequency synthesizer locked
to one of the oscillators, designated oscillator 1 in Fig. 12-27. By convention
the frequency of the synthesizer is set low compared to the oscillator under
test, so we write the frequency of the synthesizer as

v, = v,(1 — I/R). (12-83)

The constant R is equal to the heterodyne factor, which can be seen by
calculating the beat frequency between oscillator 1 and the synthesizer:

vgr = v, — v, = v;/R. (12-84)
OSCILLATOR 1
- SCALER "
MIXER ZERO- 1
CROSSING
DETECTOR [—%—|START
FREQUENCY TIME-INTERVAL p
SYNTHESIZER COUNTER
ZERO- 9—{ STOP
: CROSSING L
MIXER DETECTOR SCALER .
©; =

OSCILLATOR 2

FIG. 12-27 A dual-mixer measurement system. The scalars measure the number of whole
cycles of elapsed phase, while the time-interval counter measures the fractional cycle.
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The combination of oscillator, frequency synthesizer, and mixer functions as
a divider and scaler 1 functions as the system clock, recording elapsed time in
units of cycles of oscillator 1.

The signals from oscillators 1 and 2 are represented according to Eq.
(12-52) with ¢, = 9,0 = 0, and the signa! from the synthesizer is written

V(1) = V,gcos[2mv,ot + @y(1)]. (12-85)

The phase of the synthesizer retards nearly linearly in time compared to the
phase of oscillators 1 and 2. At time ty the synthesizer reaches phase
quadrature with oscillator 1 and the beat signal crosses zero (in the positive
direction), producing a pulse from the zero-crossing detector and starting
the time-interval counter. At a later time ty the continued sweep of the
synthesizer has brought it into quadrature with oscillator 2, and a pulse is
produced that stops the time-interval counter. The phase difference between
the oscillators can be written in terms of the three counter readings:

balts) — brlty) = AN — M)m — 2n[Fg,(tp: tW)]Jc P, (12-86)

where N is the reading of scaler 2, M the reading of scaler 1, P the reading of
the time-interval counter, and 1, the period of its time base (Stein et al., 1983).
Comparison with Eq. (12-45) for direct time-interval measurements reveals
that the role of the scalers is to accumulate the coarse phase difference
between the oscillators, while the time-interval counter provides fine-grain
resolution of the fractional cycle. This process is illustrated in Fig. 12-28. The
advantage of the technique over direct time-interval measurements is that the
noise performance is improved by the large heterodyne factor, allowing time
resolution of 0.1 psec to be obtained. The synthesizer degrades the noise
performance very little since it contributes to the noise only over the interval
7. P.

x(t)

TIME

FIG.12-28 Total elapsed phase measured by the dual-mixer system of Fig. 12-27 (solid
linet. This phase measurement consists of two components: the number of full cycles that have
tlapsed is the step function plotted as a dashed line: the fractional cycle is the saw-tooth function
plotted as open circles.
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The average beat frequency ¥y,(t: £y) cannot be known exactly, but it may
be estimated with sufficient precision if it changes slowly compared to the
interval between measurements. If the primed and unprimed variables
represent two independent measurements, then

Vas(tu:ty) = (N = NY[RIM' = M)/vio + 2P = P)].  (12:87)

12.3.3.3 FREQUENCY MULTIPLICATION

A frequency multiplier produces n full cycles of the output signal for each
cycle of the input signal, where n is an integer determined by the design of the
device. Such a device is also a phase multiplier, that is, the total phase
accumulation of the output signal is n times as great as the phase accumu-
lation of the input signal:

Qe = 27V, t + Bondt) = 2n(nvi)t + nialt). (12-88)

It follows that the spectral density of the output signal is enhanced by a factor
of n? compared to the input signal,

S‘om(f) = n2S’la(f)’

making it easier to perform the necessary noise measurements. Similarly, it is
also easier to make Allan-variance measurements. If the oscillator under test
and the reference are both multiplied by the same factor, the beat frequency
will be n times larger than with no multiplication but the heterodyne factor
will be the same. The zero crossings that must be detected by the counter
have n times higher slope and more easily overcome the voltage noise in the
counter trigger circuits. The ability to measure frequency stability is only
enhanced if the multipliers have extremely low phase noise themselves. This is
the case for many modern muitipliers that are triggered by the zero crossings
of the input signal. As a result, the use of multipliers can reduce the
performance requirements on the phase detector and the following low-noise
amplifiers.

124 CONCLUSION

The 1EEE recommendations have achieved the goal of introducing
substantial uniformity in the specification of oscillator performance. The
Allan variance and the one-sided power spectral density of phase have proved
sufficient to evaluate oscillators for all common applications. In a few cases
more specialized measures are helpful in relating performance to the specific
application. For example, the rms time-prediction error is helpful in judging a
clock’s ability to keep time over long intervals (Allan and Hellwig, 1978).
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However, the specialized performance measures are generally calculable in
terms of the IEEE recommended measures.

Significant progress has been made during the last 15 years in measure-
ment techniques and data processing. These advances have obscured the
dividing line between the frequency domain and the time domain. Today the
spectral density and the variance are most often computed from the identical
input data set, the equally spaced time series of the phase deviations. The
choice of a specific measurement setup can be made mostly on a cost versus
performance basis. Perhaps the biggest advance in commercially available
equipment is the introduction of heterodyne measurement techniques for
time-domain (counter-based) measurements. As a result, the noise perform-
ance of these systems has improved dramatically.

One recommendation that should be made is to perform measurements as
high up in the measurement hierarchy as possible. Direct measurement of the
phase deviation is most desirable. This approach places the largest share of
the burden on the measurement equipment, minimizes long-term errors, and
maximizes data processing flexibility.
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Time and Frequency (Time-Domain) Characterization,
Estimation, and Prediction of Precision
Clocks and Oscillators

Invited Paper

DAVID W. ALLAN

Abstract—A tutorial review of some time-domain methods of char-
acterizing the performance of precision clocks and oscillators is pre-
sented. Characterizing both the systematic and random deviations is
considered. The Allan variance and the modified Allan variance are
defined, and methods of utilizing them are presented along with ranges
and areas of applicability. The standard deviation is contrasted and
shown not to be, in general, a good measure for precision clocks and
oscillators. Once a proper characterization mode! has been developed,
then optimum estimation and prediction techniques can be employed.
Some important cases are illustrated. As precision clocks and oscilla-
tors become increasingly important in society, communication of their
characteristics and specifications among the vendors, manufacturers,
design engineers. managers, and metrologists of this equipment be-
comes increasingly important.

INTRODUCTION

4 GWHAT THEN."" asked St. Augustine, *‘is time?

If no one asks me. I know what it is. If I wish
to explain it to him who asks me, I do not know."” Though
Einstein and others have taught us a lot since St. Augus-
tine. there are still many unanswered questions. In partic-
ular. can time be measured? It seems that it cannot; what
is measured is the time difference between two clocks.
The time of an event with reference to a particular clock
can be measured. If time cannot be measured, is it phys-
ical, an abstraction, or is it an artifact?

We conceptualize some of the laws of physics with time
as the independent variable. We attempt to approximate
our conceptualized ideal time by inverting these laws so
that time is the dependent variable. The fact is that time
as we now generate it is dependent upon defined origins,
a defined resonance in the cesium atom. interrogating
electronics. induced biases. timescale algorithms. and
random perturbations from the ideal. Hence, at a signifi-
cant level. time—as man generates it by the best means
available 1o him—is an artifact. Corollaries to this are that
every clock disagrees with every other clock essentially
always. and no clock keeps ideal or ““true’’ time in an
abstract sense except as we may choose to define it. Fre-
quency or time interval. on the other hand. is fundamental
to nature: hence the definition of the second can approach

Munuscript received May 11, 1987: revised June 15, 1987.

The author 1s with the Time and Frequency Division. National Bureau
of Standards. 325 Broadway. Boulder, CO 80303.

IEEE Log Number 8716461.

the ideal—down to some accuracy limit. Noise in nature
is also fundamental. Characterizing the random variations
of a clock opens the door to optimum estimation of en-
vironmental influences and to the design of optimum com-
bining algorithms for the generation of uniform time and
for providing a stable and accurate frequency reference.

Let us define V' (r) as the sine-wave voltage output of a
precision oscillator:

V(1) = V,sin ®(r) (1)

where ® (1) is the abstract but actual total time-dependent
accumulated phase starting from some arbitrary origin & (¢
= 0) = 0. We assume that the amplitude fluctuations are
negligible around ¥V,. Cases exist in which this assump-
tion is not valid, but we will not treat those in the context
of this paper. This lack of treatment has no impact on the
development or the conclusions in this paper. Since infi-
nite bandwidth measurement equipment is not available
1o us, we cannot measure instantaneous frequency; there-
fore »(t) = (1/2w) d®/dt is not measurable. We can
rewrite this equation with v, being a constant nominal fre-
quency and place all of the deviations in a residual phase
¢ (1):

V(t) = ¥y sin (2avt + ¢(1)). @ (2) *

We then define a quantity v(r) = (v(1) — »p)/vg. which

is dimensionless and which is the fractional or normalized

frequency deviation of »(r) from its nominal value. In-

tegrating y(r) yields the time deviation x(r), which has
the dimensions of time

1

x(n) = 50 (1) dr'. (3)

From this, the time deviation of a clock can be written as

a function of the phase deviation:

o(1)

.t(t) = ;;-_—V-(;
- i

(4)

SysTEMATIC MoDELS FOR CLOCKS AND OSCILLATORS

The next question one may ask is why does a clock
deviate from the ideal? We conceptualize two categories

& See Appendix Note # 11
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Fig. 1. Frequency y(r) and time x{¢) deviations due to frequency offset
and to frequency drift in clock. (a) Fractional frequency error versus
time. (b) Time error versus time.

of reasons, the first being systematics such as frequency
drift (D). frequency offset { vy), and time offset (xp). In
addition. there are systematic deviations that are often en-
vironmentally induced. The second category is the ran-
dom deviations e (). which are usually not thought to be
deterministic. In general, we may write

x(1) = xo + vt + 1/2 Dt° + €(1).

Though generally useful, the model in (5) does not apply
in all cases. e.g.. some oscillators have significant fre-
quency-modulation sidebands, and in others the fre-
quency drift D is not constant. In some clocks and oscil-
lators. e.g.. cesium-beam standards, setting D = O is
usually a better model.

Note that the quadratic D term occurs because x(¢) is
the integral of ¥(r). the fractional frequency. and is often
the predominant cause of time deviation. In Fig. 1 we
have simulated two systematic-error cases: a clock with
frequency offset. and a clock with negative frequency
drift. Figs. 2-6 summarize some of the important system-
atic influences on precision clocks and oscillators. In ad-
dition to Figs. 1-6, important systematic deviations may
include modulation sidebands, e.g., 60 Hz, 120 Hz, daily,
and annual dependences, which can be manifestations of
environmental effects such as deviations induced by vi-
brations, shock. radiation, humidity, and temperature.

® See Appendix Note # 12
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0SCILLATOR
QU RB H H Sﬁo.) CS

!

TEMPERATURE SENSITIVITY / deg X
Fig. 2. Nominal values for temperature coefficient for frequency stan-
dards: QU = quartz crystal, RB = rubidium gas cell, H = active hy-
drogen maser, H(pas) = passive hydrogen maser, and CS = cesium
beam.

OSCILLATOR
QU RB H H(pce) CS

i,

MACNETIC FIELD SENSITIVITY /

Fig. 3. Nominal values for magnetic field sensitivity for frequency stan-
dards: QU = quanz crystal, RB = rubidium gas cell, H = active hy-
drogen maser, H(pas) = passive hydrogen maser, and CS = cesium
beam.

OSCILLATOR
9 QU RB H H{pos) CS

10

1872

RESRCCUCIBILITY

Fig. 4. Nominal capability of frequency standard to reproduce same fre-
quency after period of time for standards: QU = quantz crystal, RB =
rubidium gas cell, H = active hydrogen maser, H(pas) = passive hy-
drogen maser, and CS = cesium beam.

OSCILLATOR
4 QU R8 H Hpas) CS

K

ABSOLUTE ACZURACY

Fig. 5. Nominal capability for frequency standard to produce frequency
determined by fundamental constants of nature for standards: QU =
quarntz crystal, RB = rubidium gas cell, H = active hydrogen maser,
H(pas) = passive hydrogen maser, and CS = cesium beam.
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TABLE 1
APPLICABLE OSCILLATORS AND RANGE OF APPLICABILITY

Typical Noise Types

@ Name Cs H-Active H-Passive Qu Rb

2 white-noise PM <100 s <lms

1 flicker-noise PM <ls

0 white-noise FM =210s 100s <72 10's =21s zls
-1 flicker-noise FM  =days 210's 2 days z1ls =10
~2 random-walk FM  2weeks =weeks 2 weeks =h =days

OSCILLATOR

QU RB H_H(pae) CS

w"

AU TI0NAL FREGIENCY UKICT 7 DAY

Fig. 6. Nominal values (ignoring sign) for frequency drift for frequency
standards: QU = guartz crystal, RB = rubidium gas cell, H = active
hydrogen maser, H(pas) = passive hydrogen maser, and CS = cesium
beam.

POWER LAW SPECTRA
R SN
" Mt AR g

Fig. 7. Simulated random processes commonly occurring in output signal
of atomic clocks. Power law spectra S( f) are proportional to w to some %
exponent, where f is Fourier frequency ((w = 2xf) and §,(f) =
w?S,( f)).

RANDOM MoDELS FOR CLOCKS AND OSCILLATORS

The random-frequency deviations of precision clocks
and oscillators can often be characterized by power-law
spectra S,( ) ~ f°, where fis the Fourier frequency and
a typically takes on integer values, i.e., =2, —1,0, 1,2
[1)-[4]. Fig. 7 shows noise samples corresponding to
these different power law spectra, and Table I shows the
nominal range of applicability of these power-law models.

TiMe-DOMAIN SIGNAL CHARACTERIZATION

Given a discrete set of time deviations x; taken in se-
quence for the measurable time difference between a pair
of clocks or between a clock and some primary reference,
and given that the nominal spacing between adjacent time
difference measurements is 7, (see Fig. 8 for an example),

* See Appendix Note # 13

then the average fractional frequency for the ith measure-
ment interval is
o _ X+t — Xi

w= (6)

To

where — 7, over y; denotes the average over an interval 7.

We can thus construct a set of discrete frequency values
from such a time-difference data set. If the standard de-
viation is calculated for this set of values, one can show
that for some kinds of power-law spectra encountered in
precision oscillators the standard deviation is divergent
[1], [2]. [5]. i.e., it does not converge to a well-defined
value and is a function of data length. Hence the standard
deviation is seldom useful and can be misleading in char-
acterizing clocks. An IEEE subcommittee has recom-
mended S,(f) in the frequency domain and a measure
05(1) in the time domain [1]. S,(f) is the one-sided
spectral density of y as a function of Fourier frequency f.
The latter is often called the Allan variance or two-sample
variance. The convergence of 0,(7) has been verified [1]-
[4] for the power law spectra of interest in precision clocks
and oscillators. The measure ai(r) is defined as [1]

((a¥)") (7)

o3(1) =

N | —

where Ay’ is the difference between adjacent fractional
frequency measurements, each sampled over an interval
7, and the brackets ¢ ) indicate an infinite time average
or expectation value. A pictorial description is shown in
Fig. 9 for a finite data set. A data set of the order of 100
points is more than adequate for convergence of o,(7),
though of course the confidence of the estimate will typ-
ically improve as the data length increases [6].

Given a discrete set of stored evenly spaced data, the
value of 7 can be varied in the software [7]. If 7 is the
minimum data spacing for the original stored data set y°,
then one can change the sampling time to 7 = n7g by av-

eraging n adjacent values of ¥ ™ to obtain a new fractional % %

frequency estimate y/, with sample time 7 as input to (7).
Note this is different from averaging adjacent values of x.
Hence in a very convenient way one can calculate o,(7)
as a function of 7, which will be shown to be very useful.
For a finite data set of M values of y"°, (7) for general 7
becomes (see Fig. 8 for an example computation of ¢,(7

s# See Appendix Note # 14
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Fig. 8. Simulated time deviation plot x(¢) with indicated sample time 7 over which each adjacent fractional frequency v, is
measured. Equations are for standard deviation and for estimate of a,{) for finite data set of M frequency measurements.
Often standard deviation diverges as data length increases when measuring long-term frequency stability of precision oscil-

lators, whereas 0,( 1) converges.

difference 1n elope = Ay = Nn-Ah

TIME DIFFERENCE

f— 7 s T——

-

a-”(?) x 1'-(Ay)z

TIME

Fig. 9. Pictorial of computation of Allan variance. Simulated time varia-
tions plotted are random walk. At set sample time 7, Ay = (x; = 2x, —
x,)/ 7 is computed. With time of measurement of x, 7 ahead of x, and
that of x. r ahead of x,. all possible values of Av are computed. Each
Ay is squared and average squared value determined. (3 ))°; taking 1/2
of this yields two-sample or Allan variance for that value of r. Value of
7 can then be changed either in hardware or software to determine Allan
variance for another value of 7.

To). ie.,n= l)
M=2n+1

1
2(M - 2n + 1)
where y;., and y; are still adjacent fractional frequen-
cies (i.e., no dead time exists between the measure-

o3(r) = Z (i -3 ®

ments), each averaged over 7 = nry, and
l k+n=1 x @
Vi=- X =t (9)*
n i=k

Alternately, one may write (see Fig. 9 for an example)

. !
o;(r) = 273 (M - 2n + 1)
M=-2n+1
% (Xiv2n — 2%4, + xi)z (10)

* See Appendix Note # 15

where x; is taken from the set of M + 1 = N discrete time
deviation measurements between a pair of clocks or os-
cillators, i = 1toM + 1:

~

Xeoy = 7o 2 VO + x,.

i=1

(11)

Equation (8) is obtained from a first difference on fre-
quency, and (10) from the second difference on the time;
they are mathematically identical, yielding the option of
using frequency or time (phase) data.

For power -law spectra the following proportionality ap-
plies: o)(r) ~ 7%, where u is typically constant for a
particular value of «. A simple and elegant relationship
exists between the spectral density exponent « (in the re-
lationship S,(f) ~ f*)and p, ie., p = —a — 1 (=3
<a=l)andp = -2 (a = 1) [8]. For example for
a significant range of 7 values, o,(7) ~ 7*/° is propor-
tional to 77'/?) for cesium. rubidium, and passive hy-
drogen maser frequency standards. Therefore u has the
value of —1, and hence o has the value of 0 (white-noise
frequency modulation). This is the classical noise exhib-
ited by an important set of atomic clocks for #'s beyond
a few seconds. In this case. o,( ) is equal to the standard
deviation. Fortunately, for most cases with precision
clocks and oscillators where = 1 s, the simple relation-
ship ¢ = —a — 1 is applicable. It is convenient to plot
log a, (T) versus log 7 to estimate the value of u and to
Ietn=2 1=0,1,2, - (1 = nry).

An ambiguity exists at u -2, one cannot conve-
niently tell whether the noise process is flicker-noise phase
modulation (PM), & = +1, or white-noise PM, a = +2.
This ambiguity can be resolved by realizing that for these
cases o,(7) depends on the measurement bandwidth [2],
[3]. One can construct a variable software bandwidth f,
by realizing the following [9]. [10]. In any measurement
system a hardware bandwidth f;, exists through which we
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TABLE 11
Classical Classical
Typical Noise Types Standard Standard

a Name

Deviation of x

Deviation of y

2 white-noise PM a,

™ 1:40,(r)/3 (constant)
1 flicker-noise PM  a,77? ~7-4,(r) Vin M/in2

0,(1) VI(N + D3N
~a,(7) V2(N + 1/3N

0 white-noise FM agr™! 7o * 0,(7g) V(M + 1)/6 a,(10)
—1 flicker-noise FM  a_,7° undefined 0, (1) VNInN/(2(N ~1)In2)
-2 random-walk FM  a_,7 undefined 0,(7) VN/2

*Note 7 is a general averaging time and 7, is the initial averaging time (7 = nr,, where a is an integer).
Also note that the last four entries in the fourth column and the last two entries in the fifth column go to
infinity as M or N go to infinity. M is the initial number of frequency difference measurements and N the
number of phase or time difference measurements N = M + 1. If the spectral density is given by S,(f)

= h,f°, then

i 2
a, = (;) sfhfohzb

2
a = (;;) (1.038 + 3 log, (27, 7)h)

o= ()%

a_, =2lag (2)h,

1
; (21’) h_s

a., =

®Note this equality assumes use of modified o3(7) = 93(7).

measure the phase difference or the time difference be-
tween a pair of oscillators or clocks and we define 7, =
1/ f,. In other words, 7, is the sample time period through
which the time or phase date are observed or averaged.
Averaging n time or phase readings increases the sample
time window to n7, = 7,. Let 7, = 1/f;; then f; = f,/n,
e., the software bandwidth is narrowed to f;. In other
words, f, = f,/n decreases as we average more values;
i.e., increase n (1 = nry). One can therefore construct a
second difference composed of time deviations so-aver-
aged and then define a modified o, (1) = (7) that will
remove the ambiguity through bandwxdth vanatlon

1
—2 -
o,(r) = 2r°n (N = 3n + 1) @
N=3a+1 ,sn+j-1 2
Z < Z (xi*Zn - 2xi+n +X,-)>
i=1 i=j
(12)

where N = M + 1, the number of time-deviation mea-
surements available from the data set. Now if Eﬁ(-r) -~

¥ thenp' = —a — 1 (1 < a < 3)[10], [11]. Thus
o, (r) is typically employed as a subroutine to remove the
amblgulty if 0,(7) ~ 77" This is because the p’ = —a
-1 relationsliip is valid as an asymptotic limit for large
nand a < 1 and is not valid in general; however, there
is evidence that o,(-r) may be a better measure [12]. Spe-
cifically, fora = 2 and 1, p' /2 equals —3/2 and -1,
respectively, providing a clean differentiation between
white-noise PM and flicker-noise PM.

If three or more independent oscillators or clocks are
available along with time (phase) or frequency measure-

s See Appendix Note # 16

ments between them, then it is possible to estimate a var-
iance for each oscillator or clock. Often there is a refer-
ence to which the rest are periodically measured at a
sampling rate 1/7,. If at each measurement the time or
frequency differences between the clocks are measured at
nominally the same time, then the time difference or fre-
quency difference can usually be estimated or calculated
between every possible pair in the set of oscillators or
clocks. Given a series of measurements, variances s,~2,- can
be calculated on the time or frequency data between all
pairs. It has been shown [13] that the individual clock
variances can be estimated using the following equations:

s (Bt-s)

B = Zs,,

m—l.<,

ol =

where

(13)

m is the number of clocks available in the set, and s =
0. If the variance measures used are a}(‘r) or '65 (7), then
(13) can be used to estimate the individual variances as a
function of 7.

Table II illustrates why one should not use the standard
deviation to characterize clocks. For the different kinds of
noise processes we list the standard deviation of the time
deviations and of the fractional frequency deviations as a
function of 0,(7). The divergent nature of the standard
deviation is apparent. Even for classical white-noise FM
the standard deviation of the time diverges as the square
root of the data length, i.e., the number of samples N [2].
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TABLE 111
Optimum
Typical Noise Types Prediction Time Error:
a Name x(1,) rms’ Asymptotic Form

2 white-noise PM 1, - 0,(1,)/ NE) constant
1 flicker-noise PM :r, "a,? 75) vin 1,/2ln 1 Vin 7,
0 white-noise FM 7,0 0,(1,) n/?

-1 flicker-noise FM 1, 0,(1,)/VIn2 »

-2 random-walk FM 1, ° 0,(1,) /2

“r, is the prediction interval.

TIME AND FREQUENCY ESTIMATION AND PREDICTION

Using 0,(7), 3,(7), §,(f), or S4(f), one can char-
acterize typical power law processes. Once characterized,
this opens the opportunity for determining optimum esti-
mates of values by employing the statistical theorem that
the optimum estimate of a white-noise process is the sim-
ple mean.

For example, consider the very common and very im-
portant case of white-noise FM typically found on the sig-
nals from cesium standards, rubidium standards, and pas-
sive hydrogen masers. The optimum estimate of the
frequency is the simple mean frequency, which is equiv-
alent to (xy — x;)/Mr,. It is still all too common within
our discipline to see our colleagues erroneously determin-
ing the frequency for these kinds of oscillators by calcu-
lating the slope from a linear least-squares fit to the time
deviations and quoting the standard deviation around that
fit as a measure of the clock performance. There are three
problems in proceeding this way. First, the frequency es-
timate is not optimum in 2 mean-square-error sense. It is
equivalent to throwing away about 20 percent of the data
and thereby increasing the cost in the case of a calibra-
tion. Second, the standard deviation diverges as the square
root of the data length. Third, the standard deviation is
significantly dependent on the filter form, e.g., linear least
squares, as well as the clock deviations. On the other
hand, such a filter is sometimes useful for assessing out-
liers. The optimum *‘end-point’’ method outlined earlier
has the risk that if either of the points is abnormal, (i.e.,
the mode! fails), the result will of course be adversely
effected. Therefore such a filter is useful to assess whether
there are outliers—paying special attention to the end
points. Also, if the measurement noise exceeds the com-
bined noise in the clocks, then the end points will be ad-
versely affected. The key message is that the end-point
method for estimating frequency is only optimum if the
noise is pure white FM, which is easy to determine from
a log g,(7) versus log 7 plot.

There are other useful, and maybe not so obvious, op-
timum estimators appropriate for time-difference data sets.

1) Given white-noise PM, the best time estimate is the
simple mean of the time deviations; the frequency
estimate then is the slope from a linear least-squares
fit to the time deviations, and the frequency drift D
is determined from a quadratic least-squares fit to
the time deviations per (1).

2) Given white-noise FM, the optimum estimate of the
time is the last value; the optimum-frequency esti-
mate is outlined in the previous paragraph, and the
optimum-frequency-drift estimate is derived from a
linear least-squares fit to the frequency.

3) Given random-walk FM, the current optimum time
estimate is the last value plus the last slope (clock
rate) times the time since the last value; the opti-
mum-frequency estimate is obtained from the last
slope of the time deviations; and the optimum-fre-
quency-drift estimate is calculated from the mean
second difference of the time deviations. Caution
needs to be exercised here, for typically there will
be higher frequency component noise in a real data
stream, such as white-noise FM, along with ran-
dom-walk FM, and this can significantly contami-
nate the drift estimate from a mean second differ-
ence. If random-walk FM is the predominant long-
term power-law process, which is often the case,
then the effect of high-frequency noise can be re-
duced by calculating the second difference from the
first, middle, and end-time deviation points of the
data set.

The flicker-noise cases are significantly more compli-
cated, though filters can be designed to approximate op-
timum estimation [14])-]16). As the data length increases
without limit, time is not defined for flicker-noise PM,
and frequency is not defined for flicker-noise FM. This
has some philosophical implications for the definitions of
time and frequency, unless some low-frequency cutoff
limits exist. If significant frequency drift exists in the data,
it should be optimally subtracted from the data or it will
bias the long-term values of ¢,(7):

Dr
o,(r) = > (14)

Once the power-law spectra are deduced for a pair of
oscillators or clocks, then one can also develop an opti-
mum predictor. Table III gives both the optimum predic-
tion uncertainty values for the various relevant pure
power-law spectra as well as their asymptotic forms. Spe-
cial forecasting techniques must be used for optimal pre-
diction when combinations of these processes are present
[17]. To illustrate how these concepts relate to real de-
vices, Fig. 10 shows a 6,(7) diagram for some interesting
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Fig. 10. Square root of Allan variance for variety of state-of-the-art pre-
cision oscillators including NBS-6, NBS primary frequency standard.

RMS TIME DEVIATION /'

LOG TAU, (seconds)

Fig. 11. From frequency stability characterization shown in Fig. 10, op-
timum prediction algorithms to minimize time error can be obtained.
Based on optimum prediction procedures rms time prediction error for
prediction interval 7, can be calculated for each oscillator shown in Fig.
10 and corresponding values are plotted in Fig. 11.

state-of-the-art oscillators, and Fig. 11 shows the rms time
prediction errors for the same set of oscillators.

CONCLUSION

In conclusion, it is clear that classical statistics do not
allow characterization of common kinds of random signal
variations found in precision oscillators. The two-sample
Allan variance provides a valuable and convergent mea-
sure of the power-law spectral-density models useful in
characterizing random deviations for most oscillators and
clocks. Once characterized, we can calculate optimum
time and frequency estimates as well as predicted values.
Characterizing the random variations also provides near-
optimum estimation of systematic effects, which often
cause the predominant time and frequency deviations. For
example, if we wanted to optimally determine the static
temperature dependence with the temperature set at two
different values, we would stabilize the oscillator at one
temperature and measure the frequency against a refer-
ence for a time 7,,, corresponding to the r for the nominal
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minimum o,(7) value. We would then change the tem-
perature to the other value and repeat the measurement
with the same criteria and note the Ay ™ between the two
optimally determined frequency values. If these two steps
are repeated several times, an arbitrarily good precision
for the temperature coefficient is achieved if it is linear.
The uncertainty is approximately given by a,(7,)/ VP,
where P is the number of Ay™ values obtained from
switching back and forth. Knowing the characteristics of
both the random and the systematic deviations of preci-
sion clocks and oscillators clearly is useful to the de-
signer, the manufacturer, the planner, and the user as well
as the vendor of these devices.

The aforementioned procedures usually work well if the
clocks or oscillators are in a reasonable environment. If
the environment is adverse, other procedures and analysis
methods may have to be employed. As a general rule it is
often useful to analyze the data in the frequency domain
as well as the time domain. The frequency domain is es-
pecially useful if there are bright lines, i.e., sidebands to
the carrier frequency. The effect of a modulation sideband
fwmon g,(7) can be calculated, and is given by [18]

(15)

where x,, is equal to the peak-to-peak or twice the ampli-
tude of the time-deviation modulation.

If one is trying to estimate the power-law spectral be-
havior between a pair of oscillators or clocks using 0,(7),
it is apparent from (15) that if significant modulation
sidebands are present on the signal, these can seriously
contaminate that estimate. However, if a ¢,(7) plot dis-
plays a character as given by (15), then the amplitude and
frequency of that modulation sideband can be estimated
from this time-domain analysis technique. In practice, this
approach is often used, but these modulation sidebands
can be more efficiently estimated in the frequency do-
main. If the measurement sampling rate 1 /7, is set equal
to f,., then the modulation sideband is aliased away and
has no effect on o,(7).

The best rule in all analysis is to use common sense.
Very often the most revealing information may be in a
plot of the raw time (phase) difference or frequency-dif-
ference residuals after some trend has been removed. Such
a plot is usually the first thing to look at when character-
izing clocks and oscillators. Caution here'is also impor-
tant as a pure random walk on the time residuals (white
FM) may be visually interpreted as having frequency
steps. This is especially true for flicker FM as often seen
in quartz-crystal oscillators. Following the time-residual
plot with a g,(7) analysis often answers the question as
to whether or not such steps are statistically significant.

X,
o,(1) = -? sin® (xf,7)
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EXTENDING THE RANGE AND ACCURACY OF PHASE NOISE MEASUREMENTS
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Suppary

This paper describes recent progress in extending
high accuracy measurements of phase noise in
oscillators and other devices for carrier frequencies
from the rf to the millimeter region and Fourier
frequencies up to 10% of the carrier (or a maximum of
about 1 GHz). A brief survey of traditional
precision techniques for measuring phase noise is
included as a basis for comparing their relative
performance and limitations. The single oscillator
techniques, although conceptually simple, require a
set of 5 to 10 references to adequately measure the
phase noise from 1 Hz to 1 GHz from the carrier. The
two oscillator technique yields excellent noise
floors if, for oscillator measurements, one has a
comparable or better oscillator for the reference
and, for other devices, either pairs of devices or a
reference oscillator with comparable or better noise.
We have developed several new calibration techniques
which, when combined with previous two oscillator
techniques, permits one to calibrate all factors
affecting the measurements of phase noise of
oscillator pairs to an accuracy which typically
exceeds 1 dB and in favorable cases can approach 0.4
dB. In order to illustrate this expanded two
oscillator approach, measurements at 5 MHz and 10 GHz
are described in detail. At 5 MHz we achieved
accuracies of about 0.6 dB for phase noise
measurements from 20 Hz to 100 kHz from the carrier.
At 10 GHz we achieved an accuracy of #0.6 dB for
phase noise measurements a few kHz from the carrier
degrading to about *1.5 dB, 1 GHz from the carrier.

I. Introduction

This paper describes recent progress at the National
Bureau of Standards (NBS) in extending high accuracy
measurements of phase noise in oscillators,
amplifiers, frequency synthesizers, and passive
components at carrier frequencies from the rf to the
millimeter region and Fourier frequencies up to 10%
of the carrier (or a maximum of about 1 GHz). An
examination of existing techniques for precision
phase noise measurements of oscillators[l-11] showed
that present approaches which don’t require a second
"reference" oscillator have good resolution or noise
floor for Fourier frequencies extending over only 1
or 2 decades.[7-10] Consequently, these approaches
require a set of 5 to 10 references, either delay
lines or high Q factor cavities, in order to
adequately measure the phase noise from 1 Hz to 1 GHz
from the carrier. Using the cavity approach would
require a entire set of reference cavities for each
carrier frequency measured. Similar considerations
also apply to phase noise measurements of the other
devices unless one can measure pairs of devices.

The limitations of the single oscillator techniques
led us to adopt a two oscillator method for all
measurements. This approach yields good resolution
or noise floor from essentially dc to the bandwidth
of the mixer if, for oscillator measurements, one has
a comparable or better oscillator for the reference

Contribution of the U.S. Government, not subject to.
copyright.
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and, for other devices, either pairs of devices or a
reference oscillator with comparable or better noise.

The major limitations in the accuracy of the two
oscillator method (which also apply to the single
oscillator methods) are the calibration of: the mixer
phase-to-voltage conversion factor, the amplifier
gain versus Fourier frequency, and the accuracy of
the spectrum analyzer. We have developed several new
calibration techniques which, when combined with
previous techniques, allow us to address each of
these limitations. The net result is the development
of a complete measurement concept that permits one to
calibrate all factors affecting the measurements of
phase noise of oscillator pairs to an accuracy which
typically exceeds 1 dB and in favorable cases can
approach 0.4 dB. For other types of devices the
limitations are similar if the noise of the reference
oscillator can be neglected. The ultimate accuracy
that can be easily achieved with this approach is now
limited by the accuracy of the attenuators in
available spectrum analyzers.

Measurements at 5 MHz and 10 GHz are described in
detail, in order to illustrate this expanded two
oscillator approach. Specifically we measure the
mixer phase-to-voltage conversion factor multiplied
by amplifier gain on all channels versus Fourier

. frequency using a new ultra-wideband phase modulator.

We then measure the absolute mixer conversion factor
multiplied by the amplifier gain at one Fourier
frequency, the effect of the phase-lock loop on the
measured noise voltage, and spectral density function
of the spectrum analyzers. These measurements are
used to normalize the relative gains of the noise
measurements on the various channels. At 5 MHz we
achieved accuracies of about $0.6 dB for phase noise
measurements from 20 Hz to 100 kHz from the carrier.
At 10 GHz we achieved an accuracy of #0.6 dB for
phase noise measurements a few kHz to 500 MHz from
the carrier. The accuracy degrades to about *1.5 dB,
1 GHz from the carrier.

of a No igna

The output of an oscillator can be expressed as

V(t) = [V, + e(t)] sin(2my t + ¢(t)), (1)
where V, {s the nominal peak output voltage, and v,
is the nominal frequency of the oscillator. The time
variations of amplitude have been incorporated into
€(t) and the time variations of the instantaneous
frequency, v(t), have been incorporated into ¢(t).
The instantaneous frequency is

dfé(t))

2rdt

v(t) = v, + (2)

The fractional frequency deviation is defined as

v(t) - v,  dlé(t)])

y(t) = (3)

v, 27y, dt
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Power spectral analysis of the output signal V(t)
combines the power in the carrier v, with the power
in ¢(t) and ¢(t) and therefore is not a good method
to characterize e(t) or é(t).

Since in many precision sources understanding the
variations in ¢(t) or y(t) is of primary importance,
we will confine the following discussion to
frequency-domain measures of y(t), neglecting e(t)
except in cases where it sets limits on the
measurement of y(t). The amplitude fluctuations,
e(t), can be reduced using limiters whereas ¢(t) can
be reduced in some cases by the use of narrow band
filters.

Spectral (Fourier) analysis of y(t) is often
expressed in terms of S,(f), the spectral density of
phase fluctuations in units of radians squared per Hz
bandwidth at Fourier frequency f from the carrier v,.
Alternately S (f), the spectral density of fractional
frequency fluctuations in a 1 Hz bandwidth at
Fourier frequency f from the carrier v, can be used

[1]. These are related as
vi
Se(£) = — s, (f) rad? /Hz O<f<o . (4)
S¢(f) can be intuitively understood as,
A¢2 (£)
Se(f) = —— (5)
BW

where A¢(f) is the rms phase deviation measured at
Fourier frequency f from the carrier in a bandwidth
BW. It should be noted that these are single-sided
spectral density measures containing the phase or
frequency fluctuations from both sides of the
carrier. The mean squared phase modulation in a
measurement bandwidth, BW, is given by

+BW/2

Ap2 (f) = Se (£) df . (6)

-BW/2

Other measures sometimes encountered are £(f),
dBC/Hz, and S, (f). These are related by [1-3]

Sy, (£) = v2S,(f) Hz?/Hz

Se(£) = 2(vy-f) + L(vy+f) = 2£(f) 7N

dBC/Hz = 10 log 2(f)

2(f) and dBC/Hz are single sideband measures of phase
noise. These are the revised definitions of £(f) and
dBC as per the most recent recommendation of the
Standards Coordinating Committee for Time and
Frequency of the IEEE [3]. With these revised
definitions £(f) and dBC/Hz are now defined for
arbitrarily large phase modulation, whereas
previously they were restricted to small angle
modulation. In some situations, especially where f
becomes a sizeable fraction of v,, the phase noise
spectrum is asymmetric about the carrier. In these
cases one should specify whether the upper sideband
noise £(v,+f) or the lower sideband noise £(v,-f) is
being referenced. These distinctions are becoming

* See Appendix Note # 6
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increasingly important as users require the
specification of phase noise near the carrier where
the phase excursions are large compared to 1 radian,
or at Fourier frequencies which exceed the bandwidth
of typical circuit elements.

The above measures provide the most powerful (and
detailed) analysis for evaluating types and levels of
fundamental noise and spectral density structure in
precision oscillators and signal handling equipment
as it allows one to examine individual Fourier
components of residual phase (or frequency)
modulation. @
%

I11. A, Two Oscillator Method

Fig. 1 shows the block diagram for a typical scheme
used to measure the phase noise of a precision source
using a double balanced mixer and a reference source.
Fig. 2 illustrates a similar technique for measuring
only the phase noise added in multipliers, dividers,
amplifiers, and passive components. It is very
important that the substitution oscillator be at the
same drive level, impedance, and at the equivalent
electrical length from the mixer as the signal coming
from the reference oscillator. This is dramatically
illustrated in Fig. 3, discussed below. The output
voltage of the mixer as a function of phase
deviation, A¢, between the two inputs to the mixer is
nominally given by

Voot = K cos A¢ (8)
Near quadrature (90° phase difference) this can be
approximated by
2n-1
Vou, = K464, where §¢ = [A¢ - x] <0.1 (9

where n is the integer to make 64 ~ 0. The voltage to
phase conversion ratio sensitivity, K;, is dependent
on the frequency, the drive level, and impedance of
both input signals, and the IF termination of the
mixer {4]. The combined spectral density of phase
noise of both input signals, the noise of the mixer,
and the amplitude noise from the IF amplifiers is

Measurement of § q,(f) Between Two Oscillators

Time Imerval Va j_L
[se=] sn{55) o
=

Analyzer

REF

Lrsqnnpunumuum

1- Phase Lock -}__Xr

[

= Radians
Fig. 1. Precision phase measurement system using a
spectrum analyzer. Calibration requires a recording
device to measure the slope at the zero crossing.
The accuracy is better than 0.4 dB from dc to 0.1 v,
Fourier frequency offset from the carrier v,.
Carrier frequencies from a few Hz to 10*! Hz can be
accommodated with this type of measurement system
[4].
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Measurement of Sq,(f) for Two Amplifiers
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Fig. 2.

Fourier frequency offset from carrier, This system
is suitable for measuring signal handling equipment,
multipliers, dividers, frequency synthesizers, as
well as passive components [4].

Precision phase measurement system featuring
self calibration to 0.4 dB accuracy from dc to 0.1 v,
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Fig. 3. Double-balanced mixer phase sensitivity at 5
MHz as a function of Fourier frequency for various

output terminations. The curves on the left were
obtained with 10 mW drive while those on the right
were obtained with 2 nW drive. The data demonstrate
a clear choice between constant, but low sensitivity
or much higher, but frequency dependent sensitivity
{a].

where V,(f) is the RMS noise voltage at Fourler
frequency f from the carrier measured after IF gain
G(f) in a noise bandwidth BW. Obviously BW must be
small compared to f£f. This is very important where
S4(f) is changing rapidly with f, e.g., S4(f) often
varies as £ 3 near the carrier. In Fig. 1, the
output of the second amplifier following the mixer
contains contributions from the phase noise of the
oscillators, the noise of the mixers, and the post
amplifiers for Fourier frequencies much larger than
the phase-lock loop bandwidth. In Fig. 2, the phase
noise of the oscillator cancels out to a high degree
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(often more than 20 dB). Termination of the mixer IF
port with 50 O maximizes the IF bandwidth, however,
termination with reactive loads can reduce the mixer
noise by = 6 dB, and increase K, by 3 to 6 dB as
shown in Fig. 3 (4). Accurate determination of K,
can be achieved by measuring the slope of the zero
crossing in volts/radian with an oscilloscope or
other recording device when the two oscillators are
beating slowly. For some applications the digitizer
in the spectrum analyzer can be used to measure both
the beat period and the slope in V/s at the zero
crossing. The time axis is easily calibrated since
one beat period equals 2x radians. The slope in
volts/radian is then calculated with a typical
accuracy of 0.2 dB. Estimates of K; obtained from
measurements of the peak to peak output voltage
induced can introduce errors as large as 6 dB in
Se(£) even if the amplitude of the other harmonics is
measured unless the phase relationship is also taken
into account [4]. S,(f) can be made independent of
the accuracy of the spectrum analyzer voltage
reference by comparing the level of an externally IF
signal (a pure tone is best), on the spectrum
analyzer used to measure V, with the level recorded
on the device used to measure K;.

The noise bandwidth of the spectrum analyzer also
needs to be verified. This calibration procedure is
sufficient for small Fourier frequencies but looses
precision and accuracy due to the problems
illustrated in Fig. 3 and the variations of amplifier
gain with Fourier frequency. If measurements need to
be made at Fourier frequencies near or below the
phase-lock-loop bandwidth, a probe signal can be
injected inside the phase-lock-loop and the
attenuation measured versus Fourier frequency.

Some care is necessary to assure that the spectrum
analyzer is not saturated by spurious signals such as
the power line frequency and its multiples.

Sometimes aliasing in the spectrum analyzer is a
problem. If narrow spectral features are to be
measured it is usually recommended that a flat top
window function (in the spectrum analyzer) be used.
In the region where the measured noise is changing
rapidly with Fourier frequency, the noise bandwidth
should be much smaller than the measurement
frequency. The approximate level of the noise floor
of the measurement system should be measured in order
to verify that it does not significantly bias the
measurements or, if necessary, to subtract its effect
from the results.

Typical best performance for various measurement
techniques is shown in Fig. 4. The two oscillator
approach exceeds the performance of almost all
available oscillators from below 0.1 MHz to over 100
GHz and is generally the technique of first choice
because of its versatility and simplicity. Figs. 10
- 12 give some examples. Phase noise measurements on
pairs of signal sources can be made with an absolute
accuracy better than 1 dB using the above calibration
procedure. Such accuracy is not always attainable
when the phase noise of the source exceeds that of
the added noise of the components under test (see
Fig. 2). The use of specialized high level mixers
with multiple diodes per leg increases the phase to
voltage conversion sensitivity, K; and therefore
reduces the contribution of IF amplifier noise {5] as
shown in Fig. 4. Phase noise measurements can
generally be made at Fourier frequencies from

approximately dc to 1/2 the source frequency. The
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major difficulty is designing a mixer terminations to
remove the source frequency from the output signal,
which would generally saturate the low noise
amplifiers following the mixer, without degrading the
signal-to-noise ratio. As mentioned earlier the
phase noise spectrum is quite likely asymmetric when
f exceeds the bandwidth of the tuned circuits in the
device under test. For example one expects that the
phase noise at 1/2v, is different than the phase
noise at 3/2v,.

Comparison of Noise Floor
for Different Techniques

10-13
F
-14
10-1 1 ms optical delay
10-15
e 10-%
-
%)
10-7
ixer systems
10-18 ' % ipli X
multiplier high level Mixer
10-1°
10-20
105 108
Fourier Frequency (Hz)
Fig. 4.

Curve A. The noise floor 5,(f) (resolutiom) of
typical double balanced mixer systems (e.g.
Fig. 1 and Fig. 2) at carrier frequencies
from 0.1 MHz to 26 GHz. Similar
performance possible to 100 GHz [5].

Curve B. The noise floor, S,(f), for a high level
mixer [5].

Curve C. The correlated component of S‘(f) between
two channels using high level mixers [5].

Curve D. The equivalent noise floor S,(f) of a 5 to
25 MHz frequency multiplier.

Curve E. Approximate phase noise floor of Fig. 8
using a 500 ns delay line.

Curve F. Approximate phase noise floor of Fig. 8

vhere a 1 ms delay has been achieved by
encoding the signal on an optical carrier
and transmitted it across a long optical
fiber to a detector.

Most double balanced mixers have a substantial non-
linearity that can be exploited to make phase
comparison between the reference source and odd
multiples of the reference frequency. Some mixers
even feature internal even harmonic generation. The
measurement block diagram looks identical to that of
in Fig. 1, except that the source under test is at an
odd (even) harmonic of the reference source. This
method is relatively efficient (as long as the
harmonics fall within the bandwidth of the mixer) for
multiples up to x5 although multiples as high as 25
have been used. The noise floor is approximately
degraded by the amount of reduction in the phase
sensitivity of the mixer. The phase noise of the

reference source is also higher at the multiplied
frequency as shown in Section III.F below.

anced_ P ance_U Corre n

Iechniques

The resolution of the many systems can be greatly
enhanced (typically 20 dB) by using correlation
techniques to separate the phase noise due to the
device under test from the noise in the mixer and IF
amplifier [5, 11}.

For purposes of illustration, consider the scheme
shown in Fig. 5. At the output of each double
balanced mixer there is a signal which is
proportional to the phase difference, A¢, between the
two oscillators and a noise term, Vg, due to
contributions from the mixer and amplifier. The
voltages at the input of each bandpass filter are

V, (BP filter input) = G, Aé(t) + C,Vy, ()  (11)

V,(BP filter imput) = G, A$(t) + C,Vy,(t),

where Vg, (t) and Vy,(t) are substantially
uncorrelated and C, and C, are constants. Each
bandpass filter produces a narrow band noise function
around its center frequency f:

V, (BP filter output) = G,{S,(f)}* B, ¥ cos [2xft +
$(t)}

+ C, [Syn; (£)]¥ B,¥ cos [2xft + n,(t)] (12)

V, (BP filter output) = G,[S,(f)]* B,% cos [2xfr +
¥(t)]

+ C,[Synz (£)]¥ B,¥ cos [2xft + n,(t)]

REF

:

Fig. 5. Correlation phase noise measurement system.

vhere B, and B, are the equivalent noise bandwidths
of filters 1 and 2 respectively. Both channels are
bandpass filtered in order to help eliminate aliasing
and dynamic range problems. The phases ¥(t), n;(t)
and n, (t) take on all values between 0 and 2x with
equal likelihood. They vary slowly compared to 1/f
and are substantially uncorrelated. When these two
voltages are multiplied together and low pass
filtered, only one term has finite average value.
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The output voltage is

V2, . =% G,G,S,(f) By MB,¥ + D;<cos{¥(t)-n;(t)]> (13)

o

+ D,<cos{y(t) - n,(t)]> + Dy<cosin, (t)-n,(t)]>, g 10r +0.5
so that S,(f) is given by g - w
= u >
(2)VE (£) S | =
S4(f) = (14) < | 0.0 >
G,G,/B, B, 2 | ’ %
For times long compared to Bl"'Bz"‘ the noise terms (ZD 3 a
D,, D, and D, tend towards zero as Jt. Limits in the n B
reduction of these terms are usually associated with < B
harmonics of 60 Hz pickup, dc offset drifts, and non- 0 L ; -05
linearities in the multiplier. Also if the isolation A Vo B
amplifiers have input current noise, they will pump VCO FREQUENCY
current through the source resistance. The resulting
noise voltage will appear coherently on both channels
and cannot be distinguished from real phase noise
between the two oscillators. One half of the noise Fig. 6. High-Q resonance used as a frequency
power appears in amplitude and one half in phase discriminator. Note that the peak response is
modulation. displaced from the center of the resonance by about
the half bandwidth.
Obviously the simple single frequency correlator used
in this example can be replaced by a fast digital This approach normally has the limitations that f
system which simultaneously computes the correlated must be small compared to the linewidth of the
phase noise for a large band of Fourier frequencies. cavity, and the effect of residual amplitude noise is
Typical results show a reduction in noise floor of difficult to remove; however, no reference source is
order 20 dB over the noise floor of a single channel needed. The calibration factors G(f)KdQ can be
(See Fig. 4). The great power of this technique is measured even for Fourier frequencies larger than
that it can be applied at any carrier frequency where vy/2Q by stepping the source frequency an amount dy
are available double balanced mixers. The primary (which is small compared to 1/2Q) and measuring the
limitations come from the bandwidth and non- output voltage versus the modulation frequency, f.

linearities in the cross correlator (5,11]}.
Differential techniques can be used to measure the

c ence Phase Modu inherent frequency (phase) fluctuations of two high-Q

resonators as shown in Fig. 7 [7]. The output

Another method of determining S, (f) uses phase voltage is of the form V,,, = 2QK4G(f) dy(f). The

modulation of the reference oscillator by a known phase noise spectrum of the resonators is then

amount. The ratio of the reference phase modulation obtained using Eq. 4.

to the rest of the spectrum then can be used for a

relative calibration. This approach can save an 2

enormous amount of time for measurements which are v, Ve (£) 1 v,

repeated a great many times. An adaptation of this Se(f) = |—m | — f< — a7

approach is utilized in the new NBS phase noise 2QfK,G(£) BW 2Q

system described in section IV below.

Measurement of the Inherent Phase Noise in High-Q Resonators

It is sometimes convenient to use a high-Q resonance REF
directly as a frequency discriminator as shown in
Fig. 6. The oscillator can be tuned 1/2 linewidth
(v,/2Q) away from line center ylelding a detected
amplitude signal of the form

oV, 2 4 v
1 .( _°_"_) — 10
SeM =\ zomam/ aw "7

Vour = G(£)kgQdy(f) [V +e(t)] (15)

This approach mixes frequency fluctuations between

the oscillator and reference resonance with the (::ﬁ
amplitude noise of the transmitted signal. By using = = = Jtccmmmmcmmo e
amplitude control (e.g. by processing to normalize Stope K4 G, G, Vors/radian — r
the data), one can reduce the effect of amplitude e
noise. {5] The measured noise at the detector is | |
then related to the phase fluctuation of the | |

reference resonance by x Radians
2 Fig. 7. Differential frequency discriminator using a
v Vy () 1 v, pair of high-Q resonators. In this approach the
Se(£) = —_— — for f< — . (16) phase noise of the source tends to cancel out.
fQk,G(£) BW 2Q
TN-133
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The phase noise in the source can cancel out by 20 to
40 dB depending on the similarity of resonant
frequencies Q’s and the transmission properties of
the two resonators. This approach was first used to
demonstrate that the inherent frequency stability of
precision quartz resonators exceeds the performance
of most quartz crystal controlled oscillators [7].

If only one resonance is used, the output includes
the phase fluctuations of both the source and the
resonator. The calibration is accomplished by
stepping the frequency of the source and measuring
the output voltage, i.e., AV = G(£)K!(f) 4v,. From
this measurement the phase spectrum can be calculated
as

Vy (£) 2 (1
S (f) = _ —1 . (18)
f KI(f) BW

Fig. 8A shows one method of implementing this
approach at X-band. The cavity has a loaded quality
factor of order 25,000. Fig. 8B shows the measured
frequency discriminator curve. Note that K!(f) is
constant for f<»v/(2Q) and decreases at values of f
larger than the half bandwidth of the resonance as

1
KI(f) ~ —— (19)

2Qf 2

1+ (—)

V°
The frequency dependence shown in eq. (19) can be
accurately determined by measuring AV when stepping
the source an amount Av, which is small compared to
ve/Q. versus the modulation frequency, f. This
approach has poor resolution near the carrier and
limited high frequency response. Therefore the
measurement of phase from close to the carrier out to
108 of the carrier could require a large set of
cavities with different Q factors. In order to
achieve the required Q factor for close in
measurements it may even be necessary to use
cryogenic techniques.

I1II. E. Delay Line Method

Another different approach uses a delay line to make
a pseudo reference which is retarded relative to the
incoming signal [7-10] as shown in Fig. 9.

The mixer output is of the form
vcut. = Z”tdeyody ’ (20)

and the input phase noise is given by

2

Ve (£) 1 1
S, (f) = E— _, f< — (21
2xfr G(E)K, BW T4

This approach is often used at microwave frequencies
when only one oscillator is available. In this
technique the ability to resolve phase noise close to
the carrier depends on the delay time. For example,
1f £ = 1 Hz and r, = 500 ns, then, (2xfr, )2 ~ 1071t
The noise floor is 110 dB higher at £ = 1 Hz than
that of the two oscillator method, decreasing as
1/f2. Recent advances make it possible to encode the

su (_'"__ L
()— M =\ZaraiK,/ aw

rf signal on an optical signal which then can be
transmitted down an optical fiber to achieve delays
up to the order of 102 s with an increase in the
noise floor to approximately -140 dB relative to 1
rad’/Hz. The noise floor can be reduced by ~20 to 40
dB using the correlation techniques described above
[11]). Note that the range of Fourier frequencies is
usually limited to less than - 1/r,. This technique
normally has good resolution over 1% to 2 decodes in
Fourier frequency. Therefore, measurements of phase
noise from close to the carrier out to 10% of the
carrier require a large set of different delay lines
and hardware including optical delay lines,
associated lasers, modulators, and detectors.

Measurement of Phase Noise using a High-Q Cavity

O D natnee]

AV = G(EKI(L) &y,

10.6 GHz 0SC )oem,

Sl :
S, (f) = — KI(E) <
* £ K (E) BY TT'7?§§’
Qutput Yo

& +300 mv

8

$

-4 0

3

o

=

@ -300mv —

=500 kHz 10.6 GHz +500 KH2
Frequency

Fig. 8. A. block diagram of a high Q resonator used
as a frequency discriminator. B. Frequency
discriminator curve for the scheme shown in A used at
X-band with a cavity having a loaded quality factor
of approximately 25,000,

Measurement of S¢ (f) Using a Delay Line

]
Selh = 8,11

2 q

| l/ZWl

1
Vou = 274K vody f< o

M e e e e e e

Slope K ,G(f) volts/radian ———— T

x Radians

Fig. 9. Delay line frequency discriminator.
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Phase Noise of Quartz Oscillators

-80 T T 1

-90 OLN 5 MHz N
-100 o LN 100 MHz -
—110 x{D 5 MHz

L L
2

-170

Sy(f) in dB rel to 1 rad?/Hz

L
£

Log Fourier Frequency (Hz)

Fig. 10. Phase noise performance of selected quartz
oscillators. The LN 5 MHz oscillator is driven at a
high level to reduce the wideband noise while the LD
S MHz oscillator is driven at a lower level to obtain
low phase noise close to the carrier.

Phase Noise at X Band
of Multiplied Quartz Oscillators
I 1 1
O LN 5MHz
o LN 100MHz |
x LD 5MHz

x —=X

-110 |-
-120
-130 |

Sy(f) in dB rel to 1 rad?/Hz

-140 . .

Log Fourier Frequency (Hz)

Fig. 11. Phase noise of the oscillators of Fig. 10
if multiplied to X-band in a perfect frequency
multiplier.

L F. Mult t Div

The use of perfect frequency multipliers (or
dividers) between the signal source and the double
balanced mixer increases (decreases) the phase noise
level [12] as

Syvy (£) = |—[ s,v (D) (22)

Y

where v, is the initial carrier frequency and v, is
the final carrier frequency. This can be used to

either increase or decrease the phase sensitivity of
the mixer system. Fig. 4 shows the noise of a

Added Phase Noise by Amplifiers
-100

—
Al MESFET 10.6 GHz
Bl MESFET 1.4 GHz -
C,D Siuptot GHz

-110

-120
-130
—140

-150

-160

Sy(f) in dB rel to 1 rad?/Hz

-170 1
0 1 2 3 4 5 6

Log Fourier Frequency (Hz)

Fig. 12. Curves A and B show the phase noise added
by selected GaAs MESFET amplifiers. Curve C shows
the phase noise added by a typical common emitter
silicon bipolar transistor with a "good" rf bypass on
the emitter lead. Curve D shows the typical
performance of the same amplifier with a small
unbypassed impedance (approximately
1/transconductance) in the emitter lead. The added
phase noise is generally independent of frequency
over a very large range.

specialized 5 to 25 MHz multiplier referred to the 5
MHz input. A potential problem with the use of the
multiplier approach comes from exceeding the linear
range of the mixer. Once the phase excursion, 44,
exceeds about 0.1 radian, non-linearities start to
become important and at A¢ ~ 1 radian, the
measurement is no longer valid {12]. An additional
practical problem is that low noise multipliers are
usually narrowband devices. Each significantly new
frequency generally requires a new set of frequency
multipliers.

\'] w_NBS ase Noi s ent System

The new NBS phase noise measurement systems are a
combination of the traditional two oscillator
approach shown in Figs. 1 and 2 plus the reference
phase modulation technique mentioned in section IIIC.
The complete block diagram is sketched in Fig. 13.
This approach yields the widest possible bandwidth
and the lowest phase noise of a single channel
system. It does, however, require the use of two
sources for oscillator measurements. From hardware
considerations we generally use 3 different phase
noise measurement systems. Test set A accepts
carrier frequencies from 5 to 1300 MHz and can
measure the phase noise from 1 Hz to about 10% of the
carrier or a maximum of 100 MHz. Test set B accepts
carrier frequencies from 1 GHz to 26 GHz and can
measure the phase noise from 0.01 Hz to about 500 MHz
from the carrier. Test set C accepts carrier
frequencies from about 2 to 26 GHz and can measure
the phase noise from 0.01 Hz to 1 GHz from the
carrier. Test set D accepts carrier frequencies from
33 to 50 GHz in WR22 waveguide and can measure the
phase noise from 0.01 Hz to about 1.3 GHz from the
carrier.

The construction of the phase modulator between the
reference source and the mixer will be described in
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detail elsewhere [12]. The low pass filter section
is used in order not to saturate the amplifiers with
the carrier feedthrough signal from the mixer. One
dc amplifier is used for phase noise measurements
from de to 100 kHz from the carrier. One ac
amplifier is used for phase noise measurements from
50 kHz to 32 MHz. This range is well matched for one
of our spectrum analyzers. The wideband ac amplifier
has a bandwidth of 50 kHz to 1.3 GHz and is used when
the desired measurement bandwidth exceeds 32 MHz.

The wide bandwidth spectrum analyzer also provides a
convenient way to observe the gross features of the
output phase noise and to identify any major spurious
outputs if present. In order to obtain the most
accurate measurement of the phase noise it is,
however, necessary to measure the amplitude of the
first IF signal at about 21 MHz in order to avoid the
variations in gains of the log amplifiers with
various environmental factors.

NOISE

J3 Ja4 SPECTRUM
\_@; & ..G‘V..z
9 7O 100 ez
DEVICE
UNDER
TEST
g7 Je SPECTMLM
- ANRL YZER
5;? 10 12 TO
= e
ACFERDNCT
DNUT
Je J18] SRECTALM
10 2 YO
g1 | .
—— g‘ isea
TO REFERENCE
COCILLATOR
Fig. 13. Generalized block diagram of the new NBS

phase noise measurement systems. The phase noise of
carrier frequencies from 1 MHz to 100 GHz can be
measured by varying the components in the phase
shifters and mixers. Dedicated measurement systems
covering 5 MHz to 50 GHz are described in the text.

IV, B. Measurement Sequence

1) The output power of the two sources to be
measured is typically set to between +5 and + 13 dBm
at the mixer. This takes into account the insertion
loss of the phase modulator. 1If the oscillators
don't posses sufficient internal isolation to prevent
unwanted frequency pulling, isolators (or isolation
amplifiers) are generally inserted between the
sources and the mixer.

2) The absolute sensitivity of the mixer and the dec
amplifier for converting small changes in phase to
voltage changes is determined in a way similar to the
traditional method, namely by allowing the two
oscillators to slowly beat. The output of the dc
amplifier is recorded by the digitizer in the FFT
connected to the dc amplifier in order to accurately
determine the period of the beat. In test sets C and
D an additional 50 MHz digitizer is used to average
and record the beat frequency. The time scale of the
digitizer is then expanded to approximately 10% of
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the beat period and pretrigerred at about -2V in
order to accurately determine the slope of the output
in volts per radian. This calculation, shown in eq.
(23) below, is typically accurate * 2% or 0.2 dB.

K = Volts/Second) (Period/(2x) (23)
3) The two sources to be measured are phase locked
together with sufficient bandwidth that the phase
excursions at the mixer are less than 0.1 radian.
The necessary phase lock gain is calculated using an
estimate for the noise of the oscillators and the
tuning rate for the reference oscillator. This is
then verified by noting the peak to peak excursions
of the dc amplifier and using the measured conversion
sensitivity measured in step 2 above. If the peak
phase excursions are in excess of 0.1 radian, then
the phase lock loop bandwidth is increased (if
possible) in order to satisfy this condition.

4) The modulator is driven by a reference frequency
(typically at +7 to +10 dBm) which steps through the
Fourier frequencies of interest and the detected RMS
voltage recorded on the appropriate spectrum
analyzer. This approach accurately yields the
relative gains of each amplifier and its respective
spectrum analyzer since it automatically accounts for
the effect of the phase lock loop and residual
frequency pulling as well as the termination of the
mixer and the variations in gain of the various
amplifiers with Fourier frequency. The amplitude of
the phase modulation on the carrier is constant in
amplitude to better than * 1.5 dB (typically *0.2dB
for £ < 500 MHz) for reference frequencies dc to
about 10% of the carrier frequency or a maximum of 1
GHz. Initial measurements of the prototype
modulator are shown in Fig. 14.

This measurement is then combined with the
measurement of the absolute mixer sensitivity
multiplied by the gain of the dc amplifier described
in step 2 above. The absolute gain of all the
amplifiers shown in Fig. 13 can generally be
determined to an accuracy of * 0.3 dB (1.5 dB for
Fourier frequencies from 500 MHz to 1 GHz) over the
Fourier frequencies of interest.

5) Next the spectral density function of the FFT is
verified. The level of the noise determined by the
FFT for the input of the noise source amplifier
sequentially shorted to ground, connected to ground
through a 100 kil metal film resister, and connected
to ground through 200 pF, is then recorded. From
these data one can determine the inherent noise
voltage and noise current of the noise source
amplifier plus the FFT as well as the noise of the
resistor to about * 0.25 dB which is the stated
accuracy of the FFT. This primary calibration of the
FFT can be carried out from about 20 Hz to over 50
kHz. Above 50 kHz, the noise gain of the amplifier
we used contributes a significant amount of noise.
With some compensation the noise is flat to within
0.2 dB from 20 Hz to 100 kHz. Next the noise source
is switched into the output of the mixer and the
relative noise spectrum of all the spectrum analyzers
is calibrated by knowing their relative gains. This
procedure verifies the voltage references and noise
bandwidths of the various spectrum analyzers.

6) The noise voltage is recorded on the three

spectrum analyzers over the Fourier frequencies of
interest, generally the same one used in step &
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above. The measured noise voltages are scaled using
the measured gains and the spectral density of phase
noise calculated. The overlapping ranges of the
various spectrum analyzers allows one the opportunity
to compare the measurements on the three spectrum
analyzers. Typically one can obtain S,(f) of the
oscillator pair to an accuracy of about * 0.6 dB at
Fourier frequency above 100 Hz. The agreement with
repeat measurements is often of order *+ 0.2 dB as
shown in Fig. 15,

7) The noise floor of the system is determined by
driving both sides of the measurement system with one
oscillator having a similar power and impedance level
as that used in these measurements. If the noise
floor is within 13 dB of that measured in step 7
above, corrections are made to the measurement data
to remove the bias generated by the noise floor.

Measurements of the amplitude accuracy of the phase
modulation side bands generated by the prototype
phase modulators are summarized in Fig. 15. The same
modulator was used for carrier frequencies from 5 to
300 MHz. The error in the phase modulation amplitude
is less than 0.5 dB for modulation frequencies from
dc to 10% of the carrier. The 10 GHz modulator also
maintains an accuracy of better than 0.5 dB out to

500 MHz from the carrier. At 1 GHz the modulation
amplitude is 1.5 dB high. Once this is measured it
can be taken into account in the calibration

procedure. The 45 GHz modulator results shown in
Fig. 15 should be attainable over the entire WR22
wavequide bandwidth.

The performance that can be obtained with this
measurement technique is illustrated by actual phase
noise data on oscillator pairs shown in Figs. 15 and
16. Typical accuracies are #0.6 dB with a noise
floor at about - 175 dB relative to 1 radian® /Hz.

The corrections applied to the raw data at 10 GHz are
shown in Fig. 17. At low frequencies the effect of
the phase-locked loop is apparent while at the higher
frequencies the roll-off of the amplifiers are
important. These effects have been emphasized here
in order to examine the ability of the calibration
process to correct for instrumentation gain
variations.

V., Conclusion

We have analyzed several traditional approaches to
making phase measurements and found that they all
lacked some element necessary for making phase noise
measurements from essentially dc out to 10% of the
carrier frequency with good phase noise floors and an
accuracy of order 1 dB. By combining several of the
techniques and adding a phase modulator which is
exceptionally flat from dc to about 10% of the
carrier frequency, we have been able to achieve
excellent phase noise floors, bandwidths of at least
108 of the carrier, and accuracies of order 0.6 dB.

Phase Modulation Error in dB
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Fig. 14 Measurement of the amplitude error of
modulation signal versus Fourier frequencies f, for
these prototype phase modulators. Curves labeled 5,
100, and 300 MHz were obtained with the modulator
used in 5 to 1,300 MHz test set. The curve labeled
10 GHz was obtained with the modulator for the 2 to
26 GHz test set. The curve labeled 45 GHz was
obtained with the WR22 test set.

Two Oscillator Calibration Test @ 5SMHz
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Fig. 15 Demonstration of calibration accuracy for
two oscillator concept. The curve labeled System A
shows the measured phase noise of a pair of 5 Mz
oscillators using the test set shown in Fig. 13. The
curve labeled System B shows the measured phase noise
of the same pair of 5 MHz oscillators using a totally
separate measurement system with the oscillators held
in phase quadrature with the measurement test set of
A. The curve labeled System B + A/4 shows the phase
noise of the same pair of oscillators using test set
B with and extra cable length of A/4 inserted into
each signal path. The agreement between the three
curves is in the worse case * 0.15 dB.
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Phase Noise at X Band
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Fig. 16 Phase noise measurement on a pair of 10.6
GHz sources using the new NBS measurement technique.
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Fig. 17 Correction factor applied to the measurement
data made to obtain the results of Fig. 16.
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1. Introduction

Techniques to characterize and to measure the frequency
and phase instabilities in frequency and time devices
and in recelved radio signals are of fundamental impor-
tance to all manufacturers and users of frequency and
time technology.

In 1964, a subcommittee on frequency stabilicy was form-
ed within the Inscitute of Electrical and Electronics
Engineers (IEEE) Scandards Commictee 14 and, lacter (in
1966), in the Technical Committee on Frequency and Time
within the Society of Instrumencation and Measurement
(SIM), to prepare an IEEE standard on frequency stabili-
ty. 1In 1969, this subcommittee completed a document
proposing definitions for measures on frequency and
phase scabilicies (Barnes, et al., 1971). These recom-
mended measures of instabilities in frequency generators
have gained general acceptance among frequency and time
users throughout the world.

In this paper, measures in the time and in the frequency
domains are reviewed. The particular choice as to which
domain is usad depends on the application. Howaver, the
users are reminded that conversions using mathematical
formulations (see Appendix I) from one domain to the
ocher can present problems.

Most of the major manufacturers now specify instability
charactaristics of their standards in terms of these
racommended measures. This paper thus defines and
forpalizes the general practice of more than a decade.

2. Measuges of Frequengy and Phase Inscabilicy

Frequency and phase inscabilities shall be measured in
terms of the instantaneous, normalized frequency depar-
ture y(z) from the nominal frequency v, and/or by phase
departure $(t), in radians, from the nominal phase 2xv,t
as follovs:

(e 1. dérey e
yes 23v0 dc 2$v0
)
0

where x(z) is the phase departure expressed in units of
time.

3 Charagtevization of Frequency and Phagse
nssabilic
a requ v

In the frequency domalin, frequency and phase in-
scabilizy is defined by any of the following one-
sided spectral densities (cthe Fourier frequency
rangss from 0 to e):

s Sec Appendix Note # 17

419

S,(f) of y(ct)
S,(f) of ¢(t)
S3(£) of $(v)
5. (f) of x(t).
These spectral densities are related by the
equations:
2
s n h—
JO =T sy
o]

s3(6) = (2282 5,06

s () » —i— 5.(f)
x 2 ¢
(2tv°)

A device or signal shall be characterized by a plot
of spectral density vs. Fourier frequency or by
tabulating discrete values or by equivalent means
such as a statement of power law(s) (Appendix I).

According to the conventional definition
(Kartaschoff, 1978) of £2(f) (pronounced "scripc
ell”), 2(f) is the ratio of the power in one side-
band due to phase modulation by noise (for a 1 Hz

bandwidth) to the total signal power (carrier plus
sidebands), that s,

Power density, one phase-noise modulation sidebard tz
Total sigral power

The conventional definition of #(f) is relaced to
s, (f) by

«(E) =

£(£) = 45, (£)

only if the mean squared phase deviation, <42 (f)> =
the integral of S,(f) from f to =, is much smaller
than one radfan. In other words, this relationship
is valid only for Fourier frequencies f far enough
from the carrier frequency and {s always violated
near the carrier.

Since S,(f) is the quancicy that i{s generally mea-
sured in frequency sctandards metrology, and £(f)
has become the prevailing measure of phase nolse
among manufacturers and users of frequency scan-
dards, 2{f) {s redefined as

2(£) = WS, (f)
This redefinicion {s intended to avoid erroneous

use of 2(f) in situations where the saall angle
approximation is not valid. In other words, S,(f)
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{s the preferred measure, since, unambiguously, {t
always can be measursd.

b.  Iime-Domain:

In the tine domain, frequency instabilicy shall be
defined by the two-sample deviation a, (1) which is
the squars root of the two-sample vari.ncc a,‘(r)
This variance, 0,3(r), has no dead-time between the
frequency samples and is also called the Allan

variance. For the sampling time r, we write:
2 1/, =2
7, (1) =3 <(yk+1 - YY) >
wvhere
+r x -
e ‘_,’-'_rk y(erde = —SEC

The symbol < > denotes an infinite time average.
In practice, the requirement of infinite time
average is never fulfilled; the use of the forego-
ing terus shall be permitted for finite time
averages. xE and x5 are time res{dual mea-
surenents uadc =t +r, k=1,2,3,

and 1/r is the noatkal £1c5s! saapfing rate which |
gives zeto dead time between frequency measure-
ments. “"Residual” implies the known syscematic
effects have been removed.

If dead time exists between the frequency departure
seasurements and this {s {gnored in the computation
of ¢,(r), resulting instability values will be
biased (except for white frequency noise). Some of
the biases have been studied and some correction
tables published [Barmes, 1969; Lesage, 1983;
Barnes and Allan, 1988]. Therefore, the term o,(r)
shall not be used to describe such biased measure-
ments. Racher, {f blased {nstability measures are
made, the information in the references should be
used to report an unbiased estimate.

If the initial sampling rate is specified as 1l/r;,
then {t has been shown that, in general, we may
obtain a more efficient estimate of o, (r) using

what i{s called "overlapping estimates."” This
estimate is obtained by computing
N-2m
- —t - 2
oy 2(N-22) 2 L e ™)
i=]

where ¥ i3 the number of original time residual
measurements spaced by r, (N=M+1l, where M is the
number of original fraquency measuraments of sample
tize r,) and r = mr,.

From the above equation, we see that a,’(r) acts
like a second-difference operator on the time
deviation residuals--providing a stationary measure
of che stochascic behavior even for nonstationary
processes. Additional variances, which may be used
to describe frequency inscabilicies, are defined in
Appendix II.

c. GClock-Time Pradiccion

The variation of the time difference between a real
clock and an {deal uniform time scale, also known
as tize incerval error, TIE, observad over a time
interval szarting a= time t, and ending at ty+¢t
shall be defined as:

420

RMSTIE = ¢ [—‘-
est

tg + €
TIE(L) = x(co+c) - x(to) = Ic y(t’)de’,
0

For fairly simple models, regression analysis can
provide efficient estimates of the TIE (Draper and
Sm{ch, 1966; CCIR, 1986). 1In general, there are
many estimators possible for any statiscical quan-
tity. 1Ideally, we would like an efficient and
unbiased estimator. Using the time domain measure
a,‘(r) defined i{n (b), the following estimate of
the standard deviation (RMS) of TIE and its assoc-
fated systematic departure due to a linear
frequency drift (or its uncertainty) can be used to
predict a probable time {nterval error of a clock
synchronized at t=t;=0 and lefc free running there-
after:

2 2 2 x(t ) 2 3
-t +o (r:c)+(-—9—)] ,
vo Ty

where "a" i{s the normalized linear frequency drifc
per unit of ctime (aging) or the uncertaianty in the
drifc escimate, o, the two-sample deviation of
the initial frequehcy adjustment, o,(r) the two-
sample deviation describing the random frequency
inscability of the clock at t=r, and x(t,) is the
initial synchronization uncertainty. The third
term in the brackets provides an optimum and un-
biased estimate (under the condition of an optimum
(RMS) prediction method) in the cases of white
noise ™ and/or random walk ™. The third term is
too optcimistic, by about a factor of 1.4, for
flicker noise FM, and too pessimiscic, by about a
factor of 3, for white nolse P¥.

This estimate is a useful and fairly simple approx-
imation. In general, a more complete error
analysis becomes difficule; L{f carried ouc, such an
analysis needs to include the methods of time pre-

diction, the uncertainties of che clock parameters,
using che confidence limits of measurements defined
below, the decalled clock noise models, syscematic
effects, etc.
4. Confidence Ligits of Wessuremengs
An estimaze for a, (r) can be made from a finice data set
with M mcasu'emencs of y, as follows:
M-1
- S N = .z 2 >
j=
or, Lf cthe data are ctime readings X,
-1
ay(r) = ‘—2—'1— (xj‘_,, - 2‘( | "
2r°(M-1) j=t
The 68 percent confidence interval (or error bar), I

for Caussian noise of a parcicular value o,(r) obzained

from
follo

a finite number of samples can be estimated as

where:

wSs:
I, = o, (r)r,M"

M = total number of data points used in the
estimate,

a = an {nteger as defined in Appendix I,

x; =& =0.99,
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x, = 0.87,
"2 = 0.71'.
K.y = 0.75,

As an exazple of the Gaussian model with M=100, a = -1
(flicker frequency nolise) and a,(r = 1 second) = 10733,
wve may wrice:

I, = a,(r)0(0.77)0(100)" = g,(r)e(0.077)

vhich gives:

o,(r = 1 second) = (1 £ 0.08) x 10712,

If M is szall, then the plus and minus confidence intar-
vals becoae asymmetric and the x, coefficients are not
valid; however, these confidence intervals can be calcu-
lated (Lesage and Audoin, 1973).

1f "overlapping" estimates are used, as outlined above,
then the confidence interval of the estimate can be
shown to be less than or equal to I, as given above
(Howe, Allan, Barnes, 1981).

5. Resoumendations for Characterizing or Reporting
Measuregencs of Frequency and Phase Inscabilicies

a. Nonrandom phenomena should be recognized, for
example:

° any observed time dependancy of the sca-
tistical measures should be stated;

° the method of modeling systematic
behavior should be specified (for ex-
ample, an estimate of the linear fre-
quency drift was obtained from the
coefficients of a linear least-squares
regression to M frequency measurements,
each with a specified averaging or sample
time r and measurement bandwidth f£,);

] the environmental sensictivities should be
stated (for example, the dependence of
frequency and/or phase on temperature,
magnetic field, barometric pressure,
vibration, etc.);

b. Relevant measurement or specification
paramecars should be given:

° the method of measurements;

-] the characteristics of the referencs
signal;”

o the nominal signal frequency v,;

o the measurement system bandwidch £, and
che corresponding low pass filter
response;

[ the total measurement time and the number

of measurementcs M;

° she calculation techniques (for example,
details of the window function when
estimating pover spectral densities from
time domain data, or the assumptions
about effects of dead-time when estimat-
ing the two-sample deviation o,(r));

° the confidences of the estimate (or error
bar) and ics statiscical probabilicy
(e.g. "thrae-sigma*);

421

° the environment during measurement;

° if a passive slement, such as a crystal
filter, is being measured in contrast to
a frequency and/or time generator.
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ARPENDIX I

1. wer-Law H

Power-law spectral densities are often employed as rea-
sonable and acecurate models of the random fluczuations
in precision oscillators. In practice, these random
fluctuacions can often be reprasented by the sum of five
independent noise processes, and hence:

+2
7 nt® for 0 < £ < £,
s, = a=-2 @

0 for £ > fh

where h,'s are constants, a's are incegers, and £, 1Is
the high frequency cut-off of a low pass filrer. High
frequency divergence is eliminated by the restriccions
on £ in this equation. The ldentification and charac-
terizacion of the five nolse processes are given in
Table 1, and shown in Fig. 1.
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2. gonversion Between Frequency and Time Doamafn

The operation of the counter, averaging the frequency
for a time r, may be thought of as a filtering opera-
tion. The transfer function, H(f), of this squivalent
filter {s then the Fourler transform of the impulse
response of the filter. The time domain frequency
instability is then given by

@ (M.T.r) = [ s,.(£) | K(E) §? df,
0

where S, (f) is the spectral density of frequency fluc-
tuations. 1/T is the measureaent rate (T-r is the dead
time betveen measursaents). In the case of the two-
sample varlance [H(£)|? {s 2(sin *x7£)/(xrf)?. The two-
sample variance can thus be computed from

f
h 4
2 - sip xrf
ay (r) 2 J Sy(f) 2 df .
0

Specifically, for the power law model given, the time
domain measure also follows a power law.

TABLE 1 - The functional characteristics of the independent noise processes
used in modeling frequency instability of oscillators

Slope characteristics of leg log plot
Frequency domain Time-domain
Description of ,(f) or §4(f) or
Nolse Process S3() S, (£) ai(r) a,(r) | Mod.o, ()
a s B B/2 m
andoa Walk Freq Modulation | -2 -4 1 172 1
Flicker Frequency Modulation -1 -3 0 0 0
Whice F:equohcy Modulation 0 -2 -1 -172 -1
[Flicker Phase Modulation 1 -1 -2 -1 -2
‘hice Phase Modulation 2 0 -2 -1 -3
5,0 = —BTrs, () = b1 A(r) - (r*

S,(f) = vih £2°% = vZh £ (S ma-2)
1 - 1
S;(f) = v h "2 = v 3 h, £

TABLE 2

,’(,) - |f|ulz

Mod.a, (r) =~ |r)®’

- Translation of frequency instability messures from spectral densities in

frequency domain to variances in time domain and vice versa (For 2xf,r » 1)

|

'
'
+

:;uctipcion of noise process ai(r) - S,(f) - ‘ S,(f) =

pangon Yl Fasuency ue s | dfro)e] Slrao)e
|[Flicker Frequency Modulatien Blf S, (£)]r° -;-[r° a§(r)] £ EZBL(H’ a;(r)] £3
i.'-’hi:c Frequency Modulation ClLE s,(E)fr? é[r* a§(r)}£° !-gc—[r" ,;(,)}f'z
EFl‘.ck.t Phase Modulation DI£ts, (£)]r"2 %[,z 0;0)] £ %—[rl °§(')]F"
éh‘hi:c Phase Modulation E|£2s,(£)]r? %[,z ’;(')] £ %[’z ’;('.)]fo

1.038 + 3 log, (2xf,r)

b4x?
A= -E- C= 1/2
B= 2log,2 D=
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2
2, . . L
’y (r) h_2 3 r <+ h_1 2105.2 + h° 2
1.038 + 3 log (2«f, r) it
+h e el
L an? el 2 2.2
(2%)°r

This ioplicictly assumes that the random driving mech-
anisa for each term is independent of the others. In
addition, there is the implicit assumption that the
aechanisa is valid over all Fourler frequencies, which
may not always be true.

The values of h, are characteristic models of oscillator
frequency noise. For integer values (as often seems %o
be the case for reasonable models), gy = -a - 1,

for -3Sa< 1, and y = -2 for a 2 1, whers ¢,%(r)-r*,

Table 2 gives the coefficiencs of the translation among
the frequency stabllity measures from time domain to
frequency domain and from frequency domain to time
doamain.

The slope characteristics of the five independent noise
processes ars plotted in the frequency and time domains
in Fig. 1 (log-log scale).

= 7
Log Sy (f) \\ 7-1 f1

Y

I
Log Fourier Frequency, f

|
\f
\
Log Se(f) f-3
i \
V f‘2
£t 3
L Ti
Log Fourier Frequenicy, f
! | |
N v %
Leg o (7) ~ T T
L1

Log Sample Time, ©

Slope characteristics of the five
independent noise processes.

FIGLRE 1
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Mod ¢, 3(r)

Instead of the use of ¢,2(r), a "Modified Variance* Mod
o,’(r) asy be used to c‘atactorizo frequency instabili-
tlies (Stein, 1985; Allan, 1987). It has the property of
yielding different dependence on r for white phase noise
and flicker phase noise. The dependence for Mod a,(r)
1s r°3/2 and ¢! respectively. Mod a,’(r) is defined

as:
N-Jml (m+]-1 2
T e | L
Mod ¢ (r) = (x -2x +x,)
y 2¢2 g2 (§-3m+1) {420 “Ti+m T
I=1 | i=j

where N i{s the original number of time measurements
spaced by r, and r = mr, the saaple time of choice
(N=M+1). A device or signal shall be characterized by a
plot of o,(r) or o,2(r) or Mod g,(r) or Mod a,2(r) vs.
sazpling time r, or by tabulating discrete values or by
equivalent means such as & statement of pover laws
(Appendix I).

2. Qsher Variances

Several other variances have been introduced by workers
in this field. In particular, before the introduction
of the two-sample variance, it was standard practice to
use the sample variance, 32, defined as

2 f
e fhosn (-‘-m;%f-‘)* df.

In practice it may be obtained from a set of measure-
ments of the frequency of the oscillator as

N
21 "'z
s“=2l (-
N =1 i

The sanple variance diverges for some types of noise
and, therefors, is not generally useful.

Other variances based on the structure function approach
can also be defined (Lindsey and Chi, 1976). For
example, there are the Hadamard variance, the three-
sample variance and the high pass variance (Rutzan
1978)., They are occasionally used in research and
sciencific works for specific purposes, such as
differenciating between differsnt types of noise and for
dealing with systematics and sidebands in tha spectrum.
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Abstract—Consider a signal generator whose instantaneous
output voltage V({) may be written as

V() = [Vo + €()] sin [2mot + ¢(0)]

where V, and », are the nominal amplitude and frequency, res-
pectively, of the output. Provided that e(t) and ¢(t) = (de/(dt)
are sufficiently small for all time ¢, one may define the fractional
instantaneous frequency deviation from nominal by the relation

_ o)
y(h) = 2

A proposed definition for the measure of frequency stability is
the spectral density S,(f) of the function y(f{) where the spectrum
is considered to be one sided on a per hertz basis.

An alternative definition for the measure of stability is the
infinite time average of the sample variance of two adjacent averages

of y(t); that is, if
1 thsy
a2 v a
T JL

where r is the averaging period, (o = lu + T,k =0,1,2 .-+ , o i8
arbitrary, and T is the time interval between the beginnings of
two successive measurements of average frequency; then the
second measure of stability is

or) = <(—y—_§—_yi>

where ( ) denotes infinite time average and where 7 = 1,
In practice, data records are of finite length and the infinite
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* See Appendix Note # 18

time averages implied in the definitions are normally not available;
thus estimates for the two measures must be used. Estimates of
S,(/) would be obtained from suitable averages either in the time
domain or the frequency domain. An obvious estimate for 0:(?) is

"2(9

i _yk>
m it

a:('r %

Parameters of the measuring system and estimating procedure
are of critical importance in the specification of frequency stability.
In practice, one should experimentally establish confidence limits
for an estimate of frequency stability by repeated trials.

GLOSSARY OF SYMBOLS
Bl(‘N: T “)»
Bﬂ(r) /"')

Bias function for variances based

on finite samples of a process

with a power-law spectral density.

(See {13].)

C. A real constant defined by (70).

Real constants.

A real, deterministic function of

time.

Expected value of the squared

second difference of z(f) with lag

time 7. See (80).

f Fourier frequency variable.

fa High-frequency cutoff of an ideal-

ized infinitely sharp cutoff low-pass

filter.

i Low-frequency cutoff of an ideal-
ized infinitely sharp cutoff, high-
pass filter.

g(t) A real function of time.

h, Positive real coefficient of f“ in a

power series expansion of the spec-

tral density of the function y(¢).

Integers, often a dummy index of

summation,

M Positive integer giving the number
of cycles averaged.

N Positive integer giving the number

of data points used in obtaining a

sample variance.

A nondeterministic function of time,

Autocovariance function of y(t).

See (58).

r Positive real number defined by

r=T/r

1'! Jl k) mln

n(t)
R,(T)
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S,(f)

8,()

to
b

140}
Ve
V.0
Var
v(t)
v ()
z(t)

2(t)
y(®

@)n

z.(t)

"
S — 1)

«t)

An intermediate term used in
deriving (23). The definition of S
is given by (64).

One-sided (power) spectral density
on a per hertz basis of the pure real
function g(f). The dimensions of
S,(f) are the dimensions of g*(t)/{.
A definition for the measure of fre-
quency stability. One-sided (power)
gpectral density of y(f) on a per
hertz basis. The dimensions of
S,(f) are Hz ™",

Time interval between the begin-
nings of two successive measure-
ments of average frequency.

Time variable.

An arbitrary fixed instant of time.
The time coordinate of the begin-
ning of the kth measurement of
average frequency. By definition,
b =L+ T, k=012 --.
Dummy variable of integration;
u = xfr.

Instantaneous output voltage of
signal generator. See (2).

Nominal peak amplitude of signal
generator output. See (2).
Instantaneous voltage of reference
gignal. See (40).

Peak amplitude of reference signal.
See (40).

Voitage output of ideal product
detector.

Low-pass filtered output of product
detector.

Real function of time related to the
phase of the signal V(¢) by z(t) =
[e(8))/ (27wo).

A predicted value for z(?).
Fractional frequency offset of V(t)
from the nominal frequency. See (7).
Average fractional frequency offset
during the kth measurement in-
terval. See (9).

The sample average of N successive
values of .. See (76).
Nondeterministic (noise) function
with (power) spectral density given
by (25).

Exponent of f for a power-law
spectral density.

Positive real constant.

The Kronecker § function defined

, {1, if r=1
by ér — 1) =
o ) 0, otherwise.

Amplitude fluctuations of signal.
See (2.
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i Exponent of r. See (29).
v(t) Instantaneous frequency of V{(¢).
Defined by
_ 14
w(l) = 9 4t $(1).
™ Nominal (constant) frequency of
V(¢).
x(t) The Fourler transform of n(t).
(N, T, 1) Sample variance of N averages

of y(f), each of duration r, and

spaced every T units of time.

See (10).

Average value of the sample van-

ance o;(N, T, 1).

ai(r) A second choice of the definition for
the measure of frequency stability.
Defined by oi(r) = (N = 2,

<U:(Ny Tv T))

T =1, 7))

ai(r) Time stability measure defined by
(7)) = A (r).

T Duration of averaging period of
y(t) to obtain F.. See (9).

®(1) Instantaneous phase of V(t). De-
fined by ®(t) = 2xvot + ¢(0).

10 Instantaneous phase fluctuations

about the ideal phase 2x,t. See (2).

vi(T, r) Mean-square time error for Doppler
radar. See (82).
w = 2xf Angular Fourier frequency variable.

I. InTRODUCTION

HE measurement of frequency and fluctuations in

frequency has received such great attention for

so many years that it is surprising that the con-
cept of frequency stability does not have a universally
accepted definition. At least part of the reason has been
that some uses are most readily described in the fre-
quency domain and other uses in the time domain, as
well as in combinations of the two. This situation is
further complicated by the fact that only recently have
noise models been presented that both adequately de-
scribe performance and allow a translation between the
time and frequency domains. Indeed, only recently has
it been recognized that there can be a wide discrepancy
between commonly used time domain measures them-
selves. Following the NASA-IEEE Symposium on Short-
Term Stability in 1964 and the Special Issue on Fre-
quency Stability in the ProcEepiNgs or THE IEEE,
February 1966, it now seems reasonable to propose a
definition of frequency stability. The present paper is
presented as technical background for an eventual IEEE
standard definition.

This paper attempts to present (as concisely as prac-
tical) adequate, self-consistent definitions of frequency
stability. Since more than one definition of frequency
stability is presented, an important part of this paper
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(perhaps the most important part) deals with transla-
tions among the suggested definitions of frequency sta-
bility. The applicability of these definitions to the more
common noise models is demonstrated.

Consistent with an attempt to be concise, the refer-
ences cited have been selected on the basis of being of
most value to the reader rather than on the basis of
being exhaustive. An exhaustive reference list covering
the subject of frequency stability would itself be a
voluminous publication.

Almost any signal generator is influenced to some ex-
tent by its environment. Thus observed frequency in-
stabilities may be traced, for example, to changes in
ambient temperature, supply voltages, magnetic field,
barometric pressure, humidity, physical vibration, or
even output loading, to mention the more obvious. While
these environmental influences may be extremely im-
portant for many applications, the definition of fre-
quency stability presented here is independent of these
causal factors. In effect, we cannot hope to present an
exhaustive list of environmental factors and a prescrip-
tion for handling each even though, in some cases, these
environmental factors may be by far the most im-
portant. Given a particular signal generator in a partic-
ular environment, one can obtain its frequency stability
with the measures presented below, but one should not
then expect an accurate prediction of frequency stability
in a new environment.

It is natural to expect any definition of stability to
involve various statistical considerations such as sta-
tionarity, ergodicity, average, variance, spectral density,
ete. There often exist fundamental difficulties in rigorous
attempts to bring these concepts into the laboratory. It
is worth considering, specifically, the concept of sta-
tionarity since it is a concept at the root of many statis-
tical discussions.

A random process is mathematically defined as sta-
tionary if every translation of the time coordinate maps
the ensemble onto itself. As a necessary condition, if one
looks at the ensemble at one instant of time ¢, the dis-
tribution in values within the ensemble is exactly the
same a8 at any other instant of time ¢. This is not to
imply that the elements of the ensemble are constant
in time, but, as one element changes value with time,
other elements of the ensemble assume the previous val-
ues. Looking at it in another way, by observing the
ensemble at some instant of time, one can deduce no
information as to when the particular instant was chosen.
This same sort of invariance of the joint distribution
holds for any set of times ¢,, £, ---, ts and its transla-
tiont, + r, b+ 1, -, ta + 7.

It is apparent that any ensemble that has a finite
past as well as a finite future cannot be stationary, and
this neatly excludes the real world and anything of
practical interest. The concept of stationarity does vio-
lence to concepts of causality since we implicitly feel
that current performance (i.e., the applicability of sta-
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tionary statistics) cannot be logically dependent upon
future events (i.e., if the process is terminated some time
in the distant future). Also, the verification of station-
arity would involve hypothetical measurements that are
not experimentally feasible, and therefore the concept of
stationarity is not directly relevant to experimentation.

Actuslly the utility of statistics is in the formation
of idealized models that reasonably describe significant
observables of real systems. One may, for example, con-
sider a hypothetical ensemble of noises with certain
properties (such as stationarity) as a model for a par-
ticular real device. If a model is to be acceptable, it
should have at least two properties: first, the model
should be tractable; that is, one should be able to easily
arrive at estimates for the elements of the models; and
second, the model should be consistent with observables
derived from the real device that it is simulating.

Notice that one does not need to know that the device
was selected from a stationary ensemble, but only that
the observables derived from the device are consistent
with, say, elements of a hypothetically stationary en-
semble. Notice also that the actual model used may
depend upon how clever the experimenter-theorist is in
generating models.

It is worth noting, however, that while some texts
on statistics give “tests for stationarity,” these tests are
almost always inadequate. Typically, these tests de-
termine only if there is a substantial fraction of the
noise power in Fourier frequencies whose periods are of
the same order as the data length or longer. While this
may be very important, it is not logically essential to
the concept of stationarity. If a nonstationary model
actually becomes common, it will almost surely be be-
cause it is useful or convenient and not because the
process is “actually nonstationary.” Indeed, the phrase
“actually nonstationary” appears to have no mesaning
in an operational sense. In short, stationarity (or non-
stationarity) is a property of models, not a property of
data [1].

Fortunately, many statistical models exist that ade-
quately describe most present-day signal generators;
many of these models are considered below. It is obvious
that one cannot guarantee that all signal generators are
adequately described by these models, but the authors
do feel they are adequate for the description of most
signal generators presently encountered.

I1. STATEMENT OF THE PROBLEM

To be useful, a measure of frequency stability must
allow one to predict performance of signal generators
used in a wide variety of situations as well as allow
one to make meaningful relative comparisons among
signal generators, One must be able to predict perform-
ance in devices that may most easily be described either
in the time domain, or in the frequency domain, or in
a combination of the two. This prediction of perform-
ance may involve actual distribution functions, and thus
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second moment measures (such as power spectra and
variances) are not totally adequate.

Two common types of equipment used to evaluate the
performance of a frequency source are (analog) spectrum
analyzers (frequency domain) and digital electronic
counters (time domain). On occasion the digital counter
data are converted to power spectra by computers. One
must realize that any piece of equipment simultaneously
has certain aspects most easily described in the time
domain and other aspects most easily described in the
frequency domain. For example, an electronic counter
has a high-frequency limitation, an experimental] spectra
are determined with finite time averages.

Research has established that ordinary oscillators dem-
onstrate noise, which appears to be a superposition of
causally generated signals and random nondeterministic
noises. The random noises include thermal noise, shot
noise, noises of undetermined origin (such as flicker
noise), and integrals of these noises.

One might well expect that for the more general cases
one would need to use a nonstationary model (not sta-
tionary even in the wide sense, i.e., the covariance sense).
Nonstationarity would, however, introduce significant dif-
ficulties in the passage between the frequency and time
domains. It is interesting to note that, so far, experi-
menters have seldom found a nonstationary (covariance)
model useful in describing actual oscillators.

In what follows, an attempt has been made to separate
general statements that hold for any noise or perturba-
tion from the statements that apply only to specific mod-
els. It is important that these distinctions be kept in
mind.

1II. BACKGROUND AND DEFINITIONS

To discuss the concept of frequency stability imme-
diately implies that frequency can change with time and
thus one is not considering Fourier frequencies (at least
at this point). The conventional definition of instantan-
eous (angular) frequency is the time rate of change of
phase; that is

da() _

at
where ®(t) is the instantaneous phase of the oscillator.
This paper uses the convention that time-dependent
frequencies of oscillators are denoted by +(¢) (cycle fre-
quency, hertz), and Fourier frequencies are denoted by
» (angular frequency) or f (cycle frequency, hertz) where
o = 2xf. In order for (1) to have meaning, the phase &(t)
must be a well-defined function. This restriction imme-
diately eliminates some “nonsinusoidal” signals such as
a pure random uncorrelated (“white”) noise. For most
real signal generators, the concept of phase is reasonably
amenable to an operational definition and this restric-
tion is not serious.

Of great importance to this paper is the concept of
spectral density, S,(f). The notation S,(f) is to repre-

2m(f) = (0) M
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sent the one-sided spectral density of the (pure reaj:
function g(t) on a per hertz basis; that is, the total
“power” or mean-square value of g(¢) is given by

ﬁmsxndﬁ

Since the spectral density is such an important con-
cept to what follows, it is worthwhile to present some
important references on spectrum estimation. There are
many references on the estimation of spectra from data
records, but worthy of special note are [2]-[5].

IV. DEFINITION OF MEASURES OF FREQUENCY STABILITY
(SEcOND-MOMENT TYPE)
A. General
Consider a signal generator whose instantaneous out-
put voltage V(¢) may be written as
V() = [V, + €(t)] sin [2xvet + o(1)] (2)

where V, and v, are the nominal amplitude and fre-
quency, respectively, of the output and it is assumed
that

()
=" 1 .
T« @
and
,———f(‘) K1 4)
ry,

for substantially all time ¢. Making use of (1) and (2)
one sees that

®(1) = 2xvet + o(f) (3)
and

W) = vo + 5= (0. (®)

Equations (3) and (4) are essential in order that ¢(¢)
may be defined conveniently and unambiguously (sec
measurement section).

Since (4) must be valid even to speak of an instantan-
eous frequency, there is no real need to distinguish
stability measures from instability measures. That is,
any fractional frequency stability measure will be far
from unity, and the chance of confusion is slight. It is
true that in a very strict sense people usually measure
instability and speak of stability. Because the chances of
confusion are so slight, the authors have chosen to con-
tinue in the custom of measuring “instability” and speak-
ing of stability (a number always much less than unity).

Of significant interest to many people is the radio fre-
quency (RF) spectral density Sy (f). This is of direct
concern in spectroscopy and radar, However, this is not
a good primary measure of frequency stability for two
reasons. First, fluctuations in the amplitude «(¢) contrib-
ute directly to Sy (f); and second, for many cases when
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e(t) is insignificant, the RF spectrum Sp(f) is not
uniquely related to the frequency fluctuations [6].

B. General:First Definition of the Measure of Frequency
Stability—Frequency Domain

By definition, let

= o)
y(t) = 21I'Vo ’ (7)

where ¢(¢) and v, are as in (2). Thus y(t) is the in-
stantaneous fractional frequency deviation from the nom-
inal frequency v.. A proposed definition of frequency
stability is the spectral density S, (f) of the instantaneous
fractional frequency fluctuations y (¢). The function S, (f)
has the dimensions of Hz.

One can show (7] that if Sp(f) is the spectral density
of the phase fluctuations, then

- (&) rs.0- ®

Thus a knowledge of the spectral density of the phase
fluctuations S,(f) allows a knowledge of the spectral
density of the frequency fluctuations S,(f), the first def-
inition of frequency stability. Of course, S,(f) cannot
be perfectly measured—this is the case for any physical
quantity ; useful estimates of S,(f) are, however, easily
obtainable.

C. General: Second Definition of the Measure of Fre-
quency Stability—Time Domain

The second definition is based on the sample variance of
the fractional frequency fluctuations. In order to present
this measure of frequency stability, define §, by the
relation

g = l f“" y(t) dt = ‘P(th + f) - ‘P(th)

rJ, 2xvoT

)

where ty., = & + T,k = 0,1, 2, --- , T is the repetition
interval for measurements of duration 7, and £, is arbitrary.
Conventional frequency counters measure the number of
cycles in a period r; that is, they measure »or(1 + #).
When r is 1 8 they count the number of »,(1 + #.).
The second measure of frequency stability, then, is
defined in analogy to the sample variance by the relation

ww.r =G S (-2 2a)), o

where (g) denotes the infinite time average of g. This
measure of frequency stability is dimensionless.

In many situations it would be wrong to assume that
(10) converges to a meaningful limit as N — . First,
of course, one cannot practically let N approach infinity
and, second, it is known that some actual noise processes
contain substantial fractions of the total noise power in
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the Fourier frequency range below one cycle per year.
In order to improve comparability of data, it is important
to specify particular N and T'. For the preferred definition
we recommend choosing N = 2and T = r (i.e., no dead
time between measurements). Writing (¢3(N =2, T =7, 7))
a8 ¢5(r), the Allan variance [8], the proposed measure of
frequency stability in the time domain may be written as
- - \2

oft) = (e 7 ) (an
for T = r.

Of course, the experimental estimate of ¢}(r) must be
obtained from finite samples of data, and one can never
obtain perfect confidence in the estimate; the true time
average is not realizable in a real situation. One estimates
o’(r) from a finite number (say, m) of values of 4}(2, r, 7)
and averages to obtain an estimate of o}(r). Appendix I
shows that the ensemble average of (2, r, r) is convergent
(i.e., a8 m — =) even for noise processes that do not have
convergent (¢3(N, r, 1)) a8 N — «. Therefore, d,(r) has
greater utility as an idealization than does (s}(x, 7, 7))
even though both involve assumptions of infinite averages.
In effect, increasing N causes «2(N, T, ) to become more
gensitive to the low-frequency components of S,(f). In
practice, one must distinguish between an experimental
estimate of a quantity (say, of ¢}(r)) and its idealized
value. It is reasonable to believe that extensions to the
concept of statistical (“quality”) control [9] may prove
useful here. One should, of course, specify the actual
number m of independent samples used for an estimate
of a3(r).

In summary, therefore, S,(f) is the proposed measure of
(instantaneous) frequency stability in the (Fourier)
frequency domain and o}(r) is the proposed measure of
frequency stability in the time domain.

D. Distributions

It is natural that people first become involved with
second moment measures of statistical quantities and only
later with actual distributions. This is certainly true with
frequency stability. While one can specify the argument
of a distribution function to be, say (§i.1 — %), it makes
sense to postpone such a specfication until a real use has
materialized for a particular distribution function. This
paper does not attempt to specify a preferred distribution
function for frequency fluctuations.

E. Treatment of Systematic Variations

1) General: The definition of frequency stability o}(r)
in the time domain is useful for many situations. However,
some oscillators, for example, exhibit an aging or almost
linear drift of frequency with time. For some applications,
this trend may be calculated and should be removed (8]
before estimating o} (r).

In general, a systematic trend is perfectly deterministic
(i.e., predictable) while the noise is nondeterministic.
Consider a function g(¢), which may be written in the form
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9(t) = ¢() + n(® (12)

where ¢(t) is some deterministic function of time and n(¢),
the noise, is a nondeterministic function of time. We will
define c(t) to be the systematic trend to the function g(z).
A problem of significance here is to determine when and
in what sense ¢(t) is measurable.

2) Specific Case—Linear Drift: As an example, if we
consider a typical quartz crystal oscillator whose fractional
frequency deviation is y(¢), we may let

o0 = 5 0. (13

With these conditions, c(t) is the drift rate of the oscil-
lator (e.g., 107°/day) and n(t) is related to the fre-
quency “noise” of the oscillator by a time derivative.
One sees that the time average of g(¢) becomes

1 te+ T
T /.

where c(¢) = ¢, is assumed to be the constant drift rate
of the oscillator. In order for ¢; to be an observable,
it is natural to expect the average of the noise term to
vanish, that is, converge to zero.

It is instructive to assume [8], [10] that in addition
to a linear drift, the oscillator is perturbed by a flicker
noise, i.e.,

o0 dt = ¢, + -;—, f“”n(t) at (14

S,(f) = {h-lf_ ] 0 < f S fl (15)
0: » ! > !l
where h_, is a constant (see Section V-A-2) and thus,
2
S.(f) = {(27) h-lf) 0 S f < jl (16)
0, f>h

for the oscillator we are considering. With these assump-
tions, it is seen that

lim :”n(t) dt = x(0) = 0 a7
and that
. . )
}.12 {vanance [? f‘ . n(t) dt]} =0 (18)

where x(f) is the fourier transform of n(t). Since S,(0)
= 0, «(0) must also vanish both in probability and in
mean square. Thus, not only does n(t) average to zero,
but one may obtain arbitrarily good confidence on the
result by longer averages,

Having shown that one can reliably estimate the drift
rate ¢, of this (common) oscillator, it is instructive to
attempt to fit a straight line to the frequency aging.
That is, let

g(t) = y(® (19)
and thus

glt) = co + &t — L) + n'() (20)
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where ¢, is the frequency intercept at ¢ = ¢, and ¢, is
the drift rate previously determined. A problem arises
here because

8. () = 8,()

11121. {varia.nce [% f‘ :HT n'(t) dt]} = ® (22)

for the noise model we have assumed. This follows from
the fact that the (infinite N) variance of a flicker noise
process is infinite [7], [8], [10]. Thus, ¢, cannot be
measured with any realistic precision, at least, in an
absolute sense.

We may interpret these results as follows. After ex-
perimenting with the oscillator for a period of time one
can fit an empirical equation to y(¢) of the form

21

and

y(O) = co + tes + n'(Y),

where n’(t) is nondeterministic. At some later time it is
possible to reevaluate the coefficients ¢, and c¢,. Accord-
ing to what has been said, the drift rate ¢; should be
reproducible to within the confidence estimates of the
experiment regardless of when it is reevaluated. For co,
however, this is not true. In fact, the more one attempts
to evaluate ¢, the larger the fluctuations are in the
result.

Depending on the spectral density of the noise term,
it may be possible to predict future measurements of
o and to place realistic confidence limits on the predic-
tion [11]. For the case considered here, however, these
confidence limits tend to infinity when the prediction
interval is increased. Thus, in & certain sense, ¢, I
“measurable” but it is not in statistical control (to use
the language of the quality control engineer [9]).

V. TRANSLATIONS AMONG FREQUENCY STABILITY
MEASURES

A. Frequency Domain to Time Domain

1) General: It is of value to define r = T'/r; that is,
r is the ratio of the time interval between successive
measurements to the duration of the averaging period.
Cutler has shown (see Appendix I) that

(3N, T, 7)) *
_ N ® fsin® (xf7)] _ sin® (xrfN7) )
W= 1).[0 4 8.,0) =y {1 Nsin? (ﬂff)} @

(23)

Equation (23) in principle allows one to calculate the
time-domain stability {s3(N, T, 7)) from the frequency-
domain stability S,(f).

2) Specific Model: A model that has been found use-
ful [8], [10]-[13] consists of a set of five independent
noise processes z,(t), n = —2, —1,0, 1,2, such that

* See Appendix Note # 19
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y(t) = z—z(t) + Z-l(‘) + Zo(t) + Zx(t) + 2,(t) (24)
and the spectral density of z, is given by
8. = {"“f - 01z (25)
0, j>flrn= _21—]':0)1121
where the h, are constants. Thus, S,(f) becomes
S,(f) = heof ™ + hoof T+ ho + haf + hf’, (26)

for 0 < f < f, and 8,(f) is assumed to be negligible beyond
this range. In effect, each z, contributes to both S,(f) and
(o3(N, T, r)) independently of the other z,. The con-
tributions of the z, to (¢3(N, T, r)) are tabulated in
Appendix II.

Any electronic device has a finite bandwidth and this
certainly applies to frequency-measuring equipment also.
For fractional frequency fluctuations y(f) whose spectral
density varies as

$,)~1, a2z2-1 @n

for the higher Fourier components, one sees (from
Appendix I) that (¢}(N, T, 7)) may depend on the exact
shape of the frequency cutoff. This is true because a
substantial fraction of the noise ‘‘power’’ may be in these
higher Fourier components. As a simplifying assumption,
this paper assumes a sharp cutoff in noise “power” at the
frequency f, for the noise models. It is apparent from the
tables of Appendix II that the time domain measure of
frequency stability may depend on f, in & very important
way, and, in some practical cases, the actual shape of the
frequency cutoff may be very important [7]. On the
other hand, there are many practical measurements
where the value of f, has little or no effect. Good practice,
however, dictates that the system noise bandwidth f,
should be specified with any results.

In actual practice, the model of (24)-(26) seems to fit
almost all real frequency sources. Typically, only two or
three of the h-coefficients are actually significant for a
real device and the others can be neglected. Because of
its applicability, this model is used in much of what
follows. Since the 2, are assumed to be independent noises,
it is normally sufficient to compute the effects for a
general z, and recognize that the superposition can be
accomplished by simple additions for their contributions
to Sv(j) or <d:(Nl T, T))-

B. Time Domain to Frequency Domain

1) General: For general (¢}(N, T, 7)) no simple pre-
scription is available for translation into the frequency
domain. For this reason, one might prefer S,(f) as a
general measure of frequency stability. This is especially
true for theoretical work.

2) Specific Model: Equations (24)-(26) form a realistic
model that fits the random nondeterministic noises found
on most signal generators. Obviously, if this is a good
model, then the tables in Appendix II may be used
(in reverse) to translate into the frequency domain.
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Allan [8] and Vessot [12] showed that if

S.(f) = {h.f‘, 0<f<Hh 8)
0, f>1h
where a i8 a constant, then
(N, T, )y ~ ", 2z, > 1 (29)

for N and r = T/r held constant. The constant u is
related to a by the mapping shown' in Fig. 1. If (28)
and (29) hold over a reasonable range for a signal gen-
erator, then (28) can be substituted into (23) and evaluated
to determine the constant A, from measurements of
{o3(N, T, v)). It should be noted that the model of (28)
and (29) may be easily extended to a superposition of
similar noises as in (26).

C. Translations Among the Time-Domain Measures

1) General: Since (s3(N, T, 7)) is a function of N, T,
and r (for some types of noise f, is also important), it is
very desirable to be able to translate among different.
sets of N, T, and r (f, held constant). This is, however,.
not possible in general.

2) Specific Model: It is useful to restrict consideration
to a case described by (28) and (29). Superpositions of
independent noises with different power-law types of
spectral densities (i.e., different ) can also be treated by
this technique, e.g., (26). One may define two ‘‘bias.
functions,” B, and B, by the relations [13)

2
BN, r, ) = H&.T. D)

@@, T, ) (30>
and
Bi(r, p) = g‘;ﬁ_——»a: 2.7, (31)

(,(2, 7, 7))

where r = T/r and u is related to a by the mapping of
Fig. 1. In words, B, is the ratio of the average variance
for N samples to the average variance for two samples
(everything else held constant), while B, is the ratio of
the average variance with dead time between measure--
ments (r # 1) to that of no dead time (r = 1 and with
N = 2 and r held constant). These functions are tabulated
in [13]. Figs. 2 and 3 show a computer plot of
B,(N, r = 1, u) and B,(r, ).

Suppose one has an experimental estimate of (s)(N,,
T,, r.)) and its spectral type is known, i.e., (28) and (29)
form a good model and u is known. Suppose also that one
wishes to know the variance at some other set of measure-
ment parameters N,, T,, 7, An unbiased estimate of
(o63(N,, T;, r;)) may be calculated by

11t should be noted that in Allan (8], the exponent a cor-
responds to the spectrum of phase fluctuations while variances.
are taken over average frequency fluctuations. In the present
paper, a is identical to the exponent a 4 2 in [8].
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Fig. 2. Function Byi(N, r = 1, u).

(oW oy 7 = (2]

T

. {B.(N,, r2, w)By(rs, w)
B\(N,,r\, 1)Ba(ry, »)

where r, = T,/m and r; = T/

8) General: While it is true that the concept of the
bias functions B; and B, could be extended to other
processes besides those with the power-law types of
spectral densities, this generalization has not been done.
Indeed, spectra of the form given in (28) [or super-
positions of such spectra as in (26)] seem to be the
most common types of nondeterministic noises encoun-
tered in signal generators and associated equipment. For
other types of fluctuations (such as causally generated
perturbations), translations must be handled on an in-
.dividual basis.

](U:(Nll Tl; 7I)>v (32)

V1. APPLICATIONS OF STABILITY MEASURES

Obviously, if one of the stability measures is exactly
the important parameter in the use of a signal generator,
the stability measure’s application is trivial. Some non-
trivial applications arise when one is interested in a dif-
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Fig. 3. Bias function Bi(r, a).

ferent parameter, such as in the use of an oscillator in
Doppler radar measurements or in clocks.

A. Doppler Radar

1) General: From its transmitted signal, a Doppler
radar receives from a moving target a frequency-shifted
return signal in the presence of other large signals. These
large signals can include clutter (ground return) and
transmitter leakage into the receiver (spillover). In-
stabilities of radar signals result in noise energy on the
clutter return, on spillover, and on local oscillators in
the equipment.

The limitations of subclutter visibility (SCV) rejce-
tions due to the radar signals themselves are related to
the RF power spectral density Sy(f). The quantity typi-
cally referred to is the carrier-to-noise ratio and can be
mathematically approximated by the quantity

~ SV(D .
[ surar

The effects of coherence of target return and other
radar parameters are amply considered in the literature
[14]-[17].

2) Special Case: Because FM effects generally pre-
dominate over AM effects, this carrier-to-noise ratio is
approximately given by [6]

— SV(f)
f., Su(f") df’

for many signal sources provided |[f — w| is sufficiently
greater than zero. (The factor of } arises from the fact
that S,(f) is a one-sided spectrum.) Thus, if f — v, is

~ %SW(U - VOI)v (33)
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a frequeney scparation {rom the carrier, the carrier-to-
noise ratio at that point is approximately

(, - )S(If—vol) (39

. 1
38.(f —wl) =3

B. Clock Errors

1) General: A clock is a device that counts the cycles
of a periodic phenomenon, Thus, the reading error z(t)
of a clock run from the signal given by (2) is

(35)

and the dimensions of z(t) are seconds.

If this clock is a secondary standard, then one could
have available some past history of z(t), the time error
relative to the standard clock. It often occurs that one
is interested in predicting the clock error z(¢) for some
future date, say t, + r, where t; is the present date.
Obviously, this is a problem in pure prediction and can
he handled by conventional methods [3].

2) Special Case: Although one could handle the predic-
tion of clock errors by the rigorous methods of prediction
theory, it is more common to use simpler prediction
methods [10], [11]. In particular, one often predicts a clock
error for the future by adding to the present error a
correction - that is derived from the current rate of gain
(or loss) of time. That is, the predicted error £({, + 7)
is related to the past history of z(f) by

- x(’n - T)] .
T
It is typical tolet T =
Thus, the mean-square error of prediction for T = r
becomes

(2lte + 1) — £(to + D]
= ([r(to + 1) = 22(te) + 2o — NI, (37)
which, with the aid of (11), can be written in the form

i((u + T) = x([n) + T[I(tn)

{elte + 1) — #(to + 1) = 27°%6% (). (38)
One can define a time stability measure o2(r) by
o(r) = r'ai(r). (39)

Clearly, however, the actual errors of prediction of clock
readings are dependent on the prediction algorithm used
and the utility of such a definition as ¢%(r) is not great.
Caution should be used in employing this definition.

VII. MeasureMENT TECHNIQUES FOR FREQUENCY
StaABILITY

A. Heterodyne Techniques (General)

It is possible for oscillators to be very stable and
values of o,(7) can be as small as 10-** in some state-of-
the-art equipment. Thus, one often needs measuring tech-
niques capable of resolving very small fluctuations in
* See Appendix Note # 20 ’

(36) *
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y(t). One of the most common techniques is a heterodyne
or beat frequency technique. In this method, the signal
from the oscillator to be tested is mixed with a reference
signal of almost the same frequency as the test oscillator
in order that one is left with a lower average frequency
for analysis without reducing the frequency (or phase)
fluctuations themselves. Following Vessot et al. [18],
consider an ideal reference oscillator whose output signal
is

V() = Vo, sin 2xvel (40)

and a second oscillator whose output voltage V(¢) is
given by (2): V{t) = (Vo + ()] sin [2xvet + o(8)]. Let
these two signals be mixed in a product detector; that is,
the output of the product detector v(f) is equal to the
product YV (t) X V,(t), where v is a constant (see Fig. 4).

Let v(¢), in turn, be processed by a sharp low-pass filter
with cutoff frequency f; such that

0 < fu <fh < (41)
One may write
YV V.00

= vV (Vo + €sin 2mv,t][sin (2mve! + ¢)]

it

o) = (V"'V") (1 + )[cos<p — cos (4mve! + ¢)].
(42)

Assume that cos [¢(f)] has essentially no power in Fourier
frequencies f in the region f > f{. The effect of the low-pass
filter then is to remove the second term on the extreme
right of (42); that is

(43)

V'(t) =y =5 V"' Vo (

1+ ;—) cos ().
1]

This separation of terms by the filter is correct only if
[[@(8)/2xx,)] << 1 for all ¢ (4).
The following two cases are of interest.

Case I: The relative phase of the oscillators is ad-
justed so that |¢(¢)] < 1 (in-phase condition) during
the period of measurement. Under these conditions

V() XL VoVo + 3 Varell), (44)
since cos ¢(t) = 1. That is to say one detects the ampli-
tude noise ¢(t) of the signal.

Case II: The relative phase of the oscillators is ad-
justed to be in approximate quadrature; that is

¢ = o) +3 (43)
where l¢’(t)! < 1. Under these conditions,
cos o() = sin ¢'(t) = ¢'(?) (46).
and
’ — Z Id 7 ’ Z 4 ’
vty = 5 Vo, V' () + 5 Voo (De(l). (47)
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Fig. 4. Heterodyne scheme.

If it is true that |[e(t)/Vo]| < 1 for all ¢ (3), then
* (47) becomes

V() =3 Vo V' (9; “®)

that is, v/(t) is proportional to the phase fluctuations.
Thus, in order to observe ¢'(¢) by this method, (3) and
(4) must be valid. For different average phase values,
mixtures of amplitude and phase noise are observed.
In order to maintain the two signals in quadrature for
long observational periods, the reference oscillator can
be a voltage-controlled oscillator (VCO) and one may
feed back the phase error voltage as defined in (48) to
control the frequency of the VCO [19]. In this condition
of the phase-locked oscillator, the voltage v’(¢) is the
analog of the phase fluctuations for Fourier frequencies
above the loop cutoff frequency of the locked loop. For
Fourier frequencies below the loop cutoff frequency of
the loop, v/(t) is the analog of frequency fluctuations.
In practice, one should measure the complete servo-loop

response.
B. Period Measurement

Assume one has an oscillator whose voltage output
may be represented by (2). If [[e(t)/Vo]| & 1 for all
¢ and the total phase

() = 210t + o(0) 6)]

is a monotonic function of time (that is, |[¢(t)/2xw]| < 1),
then the time ¢ between successive positive going zero
croesings of V (¢) is related to the average frequency during
the interval r. Specifically

1 1+ ).

T

(49)

If one lets r be the time between a positive going zero
crossing of V(t) and the Mth successive positive going
sero crossing, then

M

= =l + 4. (50)

If the variations Ar of the period are small compared to
the average period r,, Cutler and Searle [7] have shown
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that one may make a reasonable approximation to
(o3(N, T, 7,)) using period measurements.

C. Period Measurement With Heterodyning

Suppose that #(f) is a monotonic function of time.
The output of the filter of Section VII-A (43) becomes

VOr VO

v(t) v cos ¢(4) (51)
if |[e(t)/Vo]| <€ 1. Then one may measure the period

r of two successive positive zero crossings of v'(¢). Thus

1wl (52
and for the Mth positive crossover
_1__ = Vo Igul' (53)

The magnitude bars appear because cos (£} is an even
function of ¢(¢). It is impossible to determine by this
method alone whether ¢ is increasing with time or de-
creasing with time. Since ¥ may be very small (~10~"*
or 10** for very good oscillators), r may be quite long
and thus measurable with a good relative precision.

If the phase ¢(¢) is not monotonic, the true j, may be
near gero but one could still have many zeros of cos ¢(t)
and thus (52) and (53) would not be valid.

D. Frequency Counters
Assume the phase (either @ or ¢) is a montonic func-

tion of time. If one counts the number M of positive going
gero crossings in a period of time r, then the average fre-
quency of the signal is M/r. If we assume that the signal
is V(¢t) as defined in (2), then

M

i vo(l + #4). (54)
If we assume that the signal is v/(¢) as defined in (48),
then

(55)

M
T =% AR
Again, one measures only positive frequencies.

E. Frequency Discriminators

A frequency discriminator is a device that converts
frequency fluctuations into an analog voltage by means
of a dispersive element. For example, by slightly detuning
a resonant circuit from the signal V() the frequency
fluctuations (1/27)}¢(t) are converted to amplitude fluc-
tuations of the output signal. Provided the input amplitude
fluctuations [e(t)}/V, are insignificant, the output ampli-
tude Suctuations can be a good measure of the frequency
fluctuations. Obviously, more sophisticated frequency
discriminators exist (e.g., the cesium beam).
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From the analog voltage one may use analog spectrum
analyzers to determine S, (f}, the frequency stability. By
converting to digital data, other analyses are possible
on a computer.

F. Common Hazards

1) Errors Caused by Signal-Processing Equipment: The
intent of most frequency stability measurements is to
evaluate the source and not the measuring equipment.
Thus, one must know the performance of the measuring
system. Of obvious importance are such aspects of the
measuring equipment as noise level, dynamic range,
resolution (dead time), and frequency range.

It has been pointed out that the noise bandwidth f, is
very essential for the mathematical convergence of certain
expressions. Insofar as one wants to measure the signal
source, one must know that the measuring system is not
limiting the frequency response. At the very least, one
must recognize that the frequency limit of the measuring
gystem may be a very important, implicit parameter for
either o3(t) or S,(f). Indeed, one must account for any
deviations of the measuring system form ideality such as
a “nonflat” frequency response of the spectrum analyzer
itself.

Almost any electronic circuit that processes a signal
will, to some extent, convert amplitude fluctuations at the
input terminals into phase fluctuations at the output.
Thus, AM noise at the input will cause & time-varying
phase (or FM noise) at the output. This can impose im-
portant constraints on limiters and automatic gain control
(AGC) circuits when good frequency stability is needed.
Similarly, this imposes constraints on equipment used for
frequency stability measurements.

2) Analog Spectrum Analyzers (Frequency Domain):
Typical analog spectrum analyzers are very similar in
design to radio receivers of the superheterodyne type, and
thus certain design features are quite similar. For exam-
ple, image rejection (related to predetection bandwidth)
is very important. Similarly, the actual shape of the
analyzer’s frequency window is important since this af-
fects spectral resolution. As with receivers, dynamic
range can be critical for the analysis of weak signals in
the presence of substantial power in relatively narrow
bandwidths (e.g., 60 Hz).

The slewing rate of the analyzer must be consistent
with the analyzer’s frequency window and the post-detec-
tion bandwidth. If one has a frequency window of 1 Hzg,
one cannot reliably estimate the intensity of a bright
line unless the slewing rate is much slower than 1 Hz/s.
Additional post-detection filtering will further reduce the
maximum usable slewing rate.

8) Spectral Density Estimation from Time Domain
Data: It is beyond the scope of this paper to present a
comprehensive list of hazards for spectral density estima-
tion; one should consult the literature [2]-[5]. There
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are a few points, however, which are worthy of special
notice: &) data aliasing (similar to predetection band-
width problems); b) spectral resolution; and c¢) con-
fidence of the estimate.

4) Variances of Frequency Fluctuations o)(r): It is not
uncommon to have discrete frequency modulation of a
source such as that associated with the power supply
frequencies. The existence of discrete frequencies in S,(f)
can cause oi(r) to be a very rapidly changing function
of r. An interesting situation results when r is an exact
multiple of the period of the modulation frequency (e.g.,
one makes r = 1 s and there exists 60-Hz frequency
modulation on the signal). In this situation, ¢3(r = 1 8)
can be very optimistic relative to values with slightly
different values of 7.

One also must be concerned with the convergence
properties of o3(r) since not all noise processes will have
finite limits to the estimates of o}(r) (see Appendix I).
One must be as critically aware of any ‘‘dead time” in the
measurement process as of the system bandwidth.

&) Signal Source and Loading: In measuring frequency
stability one should specify the exact location in the
cireuit from which the signal is obtained and the nature
of the load used. It is obvious that the transfer character-
istics of the device being specified will depend on the load
and that the measured frequency stability might be
affected. If the load itself is not constant during the
measurements, one expects large effects on frequency
stability.

6) Confidence of the Estimate: As with any measurement
in science, one wants to know the confidence to assign to
numerical results. Thus, when one measures S,(f) or a}(r),
it is important to know the accuracies of these estimates.

a) The Allan Variance: It is apparent that a single
sample variance ¢2(4, 7, r) does not have good confidence,
but, by averaging many independent samples, one can
improve the accuracy of the estimate greatly. There is a
key point in this statement, “independent samples.” For
this argument to be true, it is important that one sample
variance be independent of the next. Since o}(2, 7, 7) is
related to the first difference of the frequency (11),
it is sufficient that the noise perturbing y(t) have ‘inde-
pendent increments,” i.e., that y(t) be a random walk.
In other words, it is sufficient that S,(f) ~ f~* for low
frequencies. One can show that for noise processes that
are more divergent at low frequencies' than f7*, it is
difficult (or impossible) to gain good confidence on
estimates of ¢l(r). For noise processes that are less
divergent than f~*, no problem exists.

It is worth noting that if we were interested in
(N = =, r, 7), then the limit noise would become
S,(f) ~ f° instead of f~* as it is for o3(2, , 7). Since most
real signal generators possess low-frequency divergent
noises, {(¢(2, r, r)) is more useful than o}(N = =, r, 7).

Although the sample variances ¢}(2, r, r) will not be
normally distributed, the variance of the average of m
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independent (nonoverlapping) samples of ¢I(2, 7, 7)
(i.e., the variance of the Allan variance) will decrease as
1/m provided the conditions on low-frequency divergence
are met. For sufficiently large m, the distribution of the
m sample averages of ¢}(2, r, ) will tend toward normal
(central limit theorem). It is thus possible to estimate
confidence intervals based on the normal distribution.

As always, one may be interested in r values approach-
ing the limits of available data. Clearly, when one is
interested in r values of the order of a year, one is severely
limited in the size of m, the number of samples of ¢2(2, r, 7).
Unfortunately, there seems to be no substitute for many
samples and one extends r at the expense of confidence in
the results. “Truth in packaging” dictates that the sample
size m be stated with the results.

b) Spectral Density: As before, one is referred to the
literature for discussions of spectrum estimation [2]-[5].
It is worth pointing out, however, that for S,(f) there are
basically two different types of averaging that can be
employed: sample averaging of independent estimates
of S,(f), and frequency averaging where the resolution
bandwidth is made much greater than the reciprocal data

length.

VIII. CoNcLusIONs

A good measure of frequency stability is the spectral
density S,(f) of fractional frequency fluctuations y(t).
An alternative is the expected variance of N sample
averages of y(t) taken over a duration r. With the begin-
ning of successive sample periods spaced every T units
of time, the variance is denoted by o}(N, T, 7). The
stability measure, then, is the expected value of many
measurements of o}(N, T, r) with N = 2 and T = 7;
that is, o)(r). For all real experiments one has a finite
bandwidth. In general, the time domain measure of
frequency stability ¢(r) is dependent on the noise band-
width of the system. Thus, there are four important
parameters to the time domain measure of frequency
stability.

N Number of sample averages (N = 2 for preferred
measure).

T Repetition time for successive sample averages
(T = r for preferred measure).
Duration of each sample average.

f» System noise bandwidth.

Translations among the various stability measures for
common hoise types are possible, but there are significant
reasons for choosing N = 2 and T = 7 for the preferred
measure of frequency stability in the time domain. This
measure, the Allan variance, (N = 2) has been referenced
by [12], [20]-{22] and more.

Although S,(f) appears to be a function of the single
variable f, actual experimental estimation procedures
for the spectral density involve a great many parameters.
Indeed, its experimental estimation can be at least as
involved as the estimation of o}(r).
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APPENDIX I

We want to derive (23) in the text. Starting from (10)
we have
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where (9) has been used. Now
w®)y(")) = B, - ) (57

where R,(r) is the autocorrelation function of y(t) and
is the Fourier transform of S,(f), the power spectral
density of y(t). Equation (57) is true provided that
y(t) is stationary (at least in the wide or covariance
sense), and that the average exists. If we assume the
power spectral density of y(t), S,(f) has low and high
frequency cutoffs f; and fu (if necessary) so that

[ 804

exists, then if y is a random variable, the average does
exist and we may safely assume stationarity.

In practice, the high-frequency cutoff f\ is always
present either in the device being measured or in the
measuring equipment itself. When the high-frequency
cutoff is necessary for convergence of integrals of S, (f)
(or is too low in frequency), the stability measure will
depend on f,. The latter case can occur when the measur-
ing equipment is too narrow-band. In fact, a useful
type of spectral analysis may be done by varying f\
purposefully [18].

The low-frequency cutoff f; may be taken to be much
smaller than the reciprocal of the longest time of inter-
est. The results of calculations as well as measurements
will be meaningful if they are independent of f; as f;
approaches zero. The range of exponents in power law
spectral densities for which this is true will be discussed
and are given in Fig. 1.

To continue, the derivation requires the Fourier trans-
form relationships between the autocorrelation function
and the power spectral density

S = 4 f " Ro(s) cos 22fr dr

R,(r) = fo " 8.(f) cos 2xfr df.

Using (58) and (57) in (56) gives

(58)
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R {f de(/)f dr

(UN, T, 7)) =

-j:h”dt’ cos 2ef(l — 1) ‘zlv ﬁl )ifo' df 8,(f)

: f v f Al cos 211(1'—1")}

i

- <7le1>7 {ﬁ,[f ar 5.0t |

af S,
U onfy

— cos 2nf[T'(G — %) + 7] — cos 2«f[T(j — 7) — f])]}.
(59)

(The interchanges in order of integration are permissible
here since the integrals are uniformly convergent with
the given restrictions on 8,(f).) The first summation in
the curly brackets is independent of the summation in-
dex n and thus gives just

(2 cos 2xfT(j — 1)

sin’ xfr.
=f*
The kernel in the second term in the curly brackets
may be further simplified

N f " df 8.(0) 60)

2 cos 2xfT'(j — 1) — cos 2xf(T(j — ©) + 1)

— cos 2xf(T(G — ©) — 7) = 4sin’ xfr cos 2xfT(j — 1).
(61)

The second term is then

- ([ S Bint opr 5 3 enn 20T - 9)- (02

(=] j=)

(The interchange of summation and integration is justi-
fied.) We must now do the double sum. Let

j—i=k
2xfT = z. (63)

Changing summation indices from ¢ and j to ¢ and &
gives for the sum

S = Zlv:icosx(j—-

Vel jel

N=-v

1)=E 3" cos kz.

Vel k=l=i

(64)

The region of summation over the discrete variables 1
and k is shown in Fig. § for N = 4.

The summand is independent of i so that one may inter-
change the order of summation and sum over ¢ first.
The summand is even in k and the contributions for
k < 0 are equal to those for k > 0, and so we may pull
out the term for k = 0 separately and write

Z(Nif coslcz:Nz-fl)-l- il

k=1 ial s+

S

(65)

2(% (N -k coskx) + N.

k=)

Ly

Fig. 5. Region of summation for ¢+ and k for N = 4.
This may be written as

ld & skz
S=N+2Re|N-=5]2e (66)

t dz k=1
where Re[U] means the real part of U and d/dz
is the differential operator. The series is a simple geo-
metric series and may be summed easily, giving

__];_d_] eo‘s_eiN:}
tdz] 1 —¢"

S=N+2Re{[N

_ 1 ele — N(l — ei:)}
—N+2Re{ 1sn’ /2

sin® N::/2
= §in® z/2 (67)

Combining everything we get, after some rearrangement,

(vf(N T, 7))
sin’ xfr sin’ rrfNr]
f dj S O) ( , )2 [ N! sinf ‘l‘ff‘f (68)
where r = T/r. This is the result given in (23).
We can determine a number of things very easily from

this equation. First let us change variables. Let xfr = u,
then

(es(N, T, 7))
sin’ Nru }
Nisin' ru

- e [, s -
()

The kernel behaves like 4* as 4 — 0 and likeu > asu — o
Therefore (¢}(N, T, 7)) is convergent for power law
spectral densities, S,(f) = h.f°, without any low- or high-
frequency cutoffs for -3 < a < 1. Using (69) for power
law spectral densities we find

(N, T, 7)) = 7" 7'h.C.,
= T‘hﬂcﬂl

-3<ax<l

p=—-a-—1
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and

@ Al ?
= [yt {1 -
N = Dx" o u

sin® Aru }
N?sin® ru

(70)

This is the basis for the plot in Fig. 1 in the text of u
versus a. For @ 2 1 we must include the high-frequency
cutoff h

For N = 2 and r = 1 the results are particularly sim-
ple. We have

(032, 7. 7)) =+ 7R,

2 f. a=-2 : 4
Tl A duu®""sin' u 71)

for power law spectral densities, For N = 2 and gen-
eral r we get

(@2, T, 7))

1 ® u
= 2‘;[, du Sv(;)

_ _ cos 2u(r+1) | cos 2u(r—1)
1—cos 2u-— cos 2ru+ D) + 2
. "
_2 'dus(£>sin’us'm’ ru 72)
xr Jo Arxr u

The first form in (72) is particularly simple and is also
useful for r = 1 in place of (71).

Let us discuss the case for « > 1 in a little more de-
tail. As mentioned above we must include the high-fre-
quency cutoff f, for convergence. The general behavior
can be seen most easily from (68). After placing the
factor r2 outside the integral and combining the factor
/2 with S,(f) we find that the remaining part of the
kernel consists of some constants and some oscillatory
terms. If 2xfsr 3> 1 it is apparent that the rapidly oscil-
lating terms contribute very little to the integral. Most
of the contribution comes from the integral over the
constant term causing the major portion of the = de-
pendence to be the =* factor outside the integral. This is
the reason for the vertical slope at 4 = —~2 in the
p versus « plot in Fig. 1 in the text.

One other point deserves some mention. The constant
term of the kernel discussed in the preceding paragraph
is different for r = 1 from the value for r 7% 1. This is
readily seen from (72) for N = 2; for r = 1 the constant
term is 3/2 while for r o« 1 it is 1. This is the reason
for & (r — 1), which appears in some of the results of
Appendix II. In practice, & (r — 1) does not have szero
width but is smeared out over a width of approximately
(2xfar)-1. If there must be dead time r # 1, it is wise to
" choose (r — 1) > (2xfar)tor (r — 1) < (2xfyr)? but
with 2#fyr > 1. In the latter case, one may assume
r=1.
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APPENDIX 1T

Let y(t) be a sample function of a random noise pro-
cess with a spectral density S,(f). The function y(t) is
assumed to be pure real and S, (f) is a one-sided spectrai
density relative to a cycle frequency (i.e., the dimensions
of S,(f) are that of y2 per hertz). (For additional info:-
mation see Appendix I, [7], [8], [18].)

Let z(t) be defined by the equation

() = 77 = y(0). 73)

Define the following. ¢, is arbltrary instant of time and
lasy = 8y 4 T; n=012, - (74)

S O ozt + 1) = z(t) -
ms,L y(h dt = ) 75)

@) = Z%. (76)

nel

and let fy be a high-frequency cutoff (infinitely sharp)
with 2#fyr > 1.

Definition:
(d:(N: T, T)) = <N l_ 1 Jo — (g)~)z> (77)
Special Case:
@ 1. = (2GR, 9
Special Case: A
oy(r) = (0y(2, 7, 7))
<[x(zn 27) — 2::(:o 7+ z(zo)ﬁ>, 79)
Definition:
Di(r) = ((z(te + 27) — 2z(to + 7) + z(t)]"). (80)
Consequence of Definitions:
Di(z) = 2:%(r) = 203(7). (81)
Definition:
VT, 7)) = [zt + T + 1) — 2(te + T)
- z(to + 1’) + I(to)]’>. (82)
Consequence of Definitions:
Vi(T, 1) = 2r°}(2, T, 7). (83)
Special Case:
¥i(r, 7) = Di(r). (84)
Random Walk y
h 2 — h-z
S (f) —’-T (S:(f) e (2’_)2,4)
r=l 0<rgh
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Quantity Relation
(@UN. T, ) 291M[m+n_11 r
(85)
2 k1 g 2 T
(dv(Nr T T)) h-z 12 'N, r=1 (86)
a(7) h—z'%m. N=2r=1 (87
Di(r) = 243(7) h_, 2(2”2; L (88)
viT, 7 h_,-@”—);L’—l—a(& -1 r>1
h-g-(z—”)%lm(g - 1), r<1. (39)
r
Flicker y
h_,
so =" (s.0=g5)
r="T/r, O0<{<f.
Quantity Relation

CEWT A by SO -

(=2mr)* In(r) + (er + 1D In (nr + 1)

+ (mr — 1)’ In |nr — 1]} (90)
A ) o)
-1
o¥(r) hey 22, (V= 2,r = 1) (92)
D7) = 2%(r) h_,-477In?2 (93)
vi(T, ) b= Inr+ 0+ 1D°In(r+1)
+ @ —1DInfr ~ 1] (94)
@ ~h_-27*2 + In7), r>>1
~ho 2T 2 ~Inr),  rKl. (95) *
White y (Random Walk z)
SO =h S0 = Gom
r=T/r, 0LfI<Hh.
Quantity Relation
@GN T, ) B, 2
ho dr(N + 1) |77, Nr <1 (96)
e AR I @7
2 h -1 .
a3(7) 21| N=2r=1 98)
D7) = 263(r) ho|7] (99)

* See Appendix Note # 21
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w:(Tv T) ho'lTl, r Z 1
ko' T, r<l1. (100)
Flicker z
S0 = h (800 = 252)
r="T/r, 2rfir D 1, 2nfi,T > 1, 0< <
Quantity Relation

(U:(‘Vv Tv 7)) hl * {2 + In (.Z‘I'f;.f)

+N(N 1)Z(V
1n[n—,r’%i_—-l]} r>1 (101) % %

N+ 1) ln N
h, —,é—(,—)— [ + In 2xfi7) — 1:',

_2
(2x)’

(ov(N, 7, 7))
r=1 (102)% *
h.':fé—’)—z {3[2 + In Rxfar)] — In 2}.

(103) % *

ay(7)
N=2r=1

Di(r) = 20%(7) @’%7-2{3[2 + In 2xfir)] — In 2} (104) % *

YT, 7) hl-(r_,%); 2+ In@rfhn)],  F> 1 E;l
(,) oy {3[2 + In(2xfin)] — In 2}
r=1 (105) % s
(f, @) 2+ In@riD)], rK1.
White
S0 =kt (8.0 = 2%)
r=T/7r 8 —1) = {1’ ifr=1
0, otherwise
Ufir>1, 0<f<f.
Quantity Relation
. N+ se—1 2
@1y R DY (106)
. N+1 2f,. ~
(@@, 1) hy @’ 1 (107)
. 34, i
a,(7) hz-(:)’r'—)f,r—, , N=2r=1 (108)
mm=%w)wg§ (109)
AT, ) he 2 + 86 — D] 21, (110)

@m)°
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Notes and Errata
See item 22 on page TN-340 of the Appendix for several corrections.  Click on the link for these equations to go there.
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Reprinted, with permission, from Report 580 of the International Radio Consultative
Committee (C.C.LR.), pp. 142-150, 1986.

CHARACTERIZATION OF FREQUENCY AND PHASE NOISE * @

(Study Programme 3B/7)
(1974-1978-1986)

1. Introduction

Techniques to characterize and to measure the frequency and phase instabilities in frequency generators
and received radio signals are of fundamental importance to users of frequency and time standards.

In 1964 a subcommittee on frequency stability was formed, within the Institute of Electrical and Electronic
Engineers (IEEE) Standards Committee 14 and later (in 1966) in the Technical Committee on Frequency and
Time within the Society of Instrumentation and Measurement (SIM), to prepare an IEEE standard on frequency
stability. In 1969, this subcommittee completed a document proposing definitions for measures on frequency and
phase stabilities. These recommended measures of stabilities in frequency generators have gained general
acceptance among frequency and time users throughout the world. Some of the major manufacturers now specify
stability characteristics of their standards in terms of these recommended measures.

Models of the instabilities may include both stationary and non-stationary random processes as well as
systematic processes. Concerning the apparently random processes, considerable progress has been made
[IEEE-NASA, 1964; IEEE, 1972] in characterizing these processes with reasonable statistical models. In contrast,
the presence of systematic changes of frequencies such as drifts should not bg modelled statistically, but should be
described in some reasonable analytic way as measured with respect to an adequate reference standard, e.g., linear
regression to determine a model for linear frequency drift. The separation between systematic and random parts
however is not always easy or obvious. The systematic effects generally become predominant in the fong term, and
thus it is extremely important to specify them in order to give a full characterization of a signal’s stability. This
Report presents some methods of characterizing the random processes and some important types of systematic
processes.

Since then, additional significant work has been accomplished. For example, Baugh [1971] illustrated the
properties of the Hadamard variance — a time-domain method of estimating discrete frequency modulation
sidebands — particularly appropriate for Fourier frequencies less than about 10 Hz; a mathematical analysis of
this technique has been made by Sauvage and Rutman [1973]; Rutman [1972] has suggested some alternative
time-domain measures while still giving general support to the subcommittee’s recommendations; De Prins erf al.
(1969) and De Prins and Cornelissen, [1971) have proposed alternatives for the measure of frequency stability in
the frequency domain with specific emphasis on sample averages of discrete spectra. A National Bureau of
Standards Monograph devotes Chapter 8 to the “Statistics of time and frequency data analysis™ [Blair, 1974]. This
chapter contains some measurement methods, and applications of both frequency-domain and time-domain
measures of frequency/phase instabilities. It also describes methods of conversion among various time-domain
measures of frequency stability, as well as conversion relationships from frequency-domain measures to time-
domain measures and vice versa. The effect of a finite number of measurements on the accuracy with which the
two-sample variance is determined has been specified [Lesage and Audoin, 1973, 1974 and 1976;
Yoshimura, 1978]. Box-Jenkins-type models have been applied for the interpretation of frequency stability
measurements [Barnes, 1976; Percival, 1976} and reviewed by Winkler [1976).

Lindsey and Chie {1976] have generalized the r.m.s. fractional frequency deviation and the two-sample
variance in the sense of providing a larger class of time-domain oscillator stability measures. They have developed
measures which characterize the random time-domain phase stability and the frequency stability of an oscillator’s
signal by the use of Kolmogorov structure functions. These measures are connected to the frequency-domain
stability measure S,(f) via the Mellin transform. In this theory, polynominal type drifts are included and some
theoretical convergence problems due to power-law type spectra are alleviated. They also show the close
relationship of these measures to the r.m.s. fractional deviation [Cutler and Searle, 1966] and to the two-sample
variance [Allan, 1966). And finally, they show that other members from the set of stability measures developed are
important in specifying performance and writing system specifications for applications such as radar, communica-
tions, and tracking system engineering work.

Other forms of limited sample variances have been discussed [Baugh, 1971; Lesage and Audoin, 1975;
Boileau and Picinbono, 1976] and a review of the classical and new approaches has been published
[Rutman, 1978} -

* See Appendix Note # 23 TN-162
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Frequency and phase instabilities may be characterized by random processes that can be represented
statistically in either the Fourier frequency domain or in the time domain [Blackman and Tukey, 1959} The
instantaneous, normalized frequency departure y(1) from the nominal frequency v, is related to the instantaneous-
phase fluctuation ¢ () about the nominal phase 2nv, ¢ by:

1 de(t) _ 2(_:_)

O T a2, @
20
x(1) e

where x(?) is the phase variation expressed in units of time.

2, Fourier frequency domain

In the Fourier frequency domain, frequency stability may be defined by several one-sided (the Fourier
frequency ranges from 0 to o) spectral densities such as: -

S,(/f) of y(1), Se() of @(1), Se() of (1), Sx(/f) of x(¢), etc.

These spectral densities are related by the equations:

sy(f) - ﬁ; sv(f) 03]
Vo

S (/) = 4n%% S, (/) 3)
1

SN = ooy Se() O]

Power-law spectral densities are often employed as reasonable models of the random rluctuations in
precision oscillators. In practice, it -has been recognized that these random fluctuations are the sum of five
independent noise processes and hente:

- ¥ ot for 0<f<,
S(N=4°"2 ()

0 for f > f,

where h,’s are constants, a's are integers, and f, is the high frequency cut-off of a low pass filter. Equations (2),
(3) and (4) are correct and consistent for stationary noises including phase noise. High frequency divergence is
eliminated by the restrictions on f in equation (5). The identification and characterization of the five noise
processes are given in Table I, and shown in Fig. 1. In practice, only two or three noise processes are sufficient to
describe the random frequency fluctuations in a specific oscillator; the others may be neglected.

3. Time-domain

Random frequency instability in the time-domain may be defined by several sample variances. The
recommended measure is the two-sample standard deviation which is the square root of the two-sample zero
dead-time variance 6,?(t) [von Neumann er al., 1941; Allan, 1966; Barnes et al., 1971] defined as:

< 0,2() = <(_}’1115—_&f> ©)

Whel'e T X 1

A Xe 4y ~Xk ,

V=7 y()dr = . and £ ., =4 + t (adjacent samples)
- ‘k

< > denotes an infinite time average. The x; and x,,, are time residual measurements made at ¢ and
Loy = 4 + 1, k=0,1,2,.., and 1/ is the fixed sampling rate which gives zero dead time between frequency
measurements. By “residual” it is understood that the known systematic effects have been removed.

TN-163



144 Rep. 580-2

If the initial sampling rate is specified as 1/1,, then it has been shown [Howe ef al, 1981] that in general
one may obtain a more efficient estimate of o,(t) using what is called “overlapping estimates”. This estimate is
obtained by computing equation (7).

N-2m

! T (Giezm = 2xiem + X )

2
M= N me

where N is the number of original time departure measurements spaced by to, (N = M + 1, where M is the
number of original frequency measurements of sample time, ty) and t = mt,. The corresponding confidence
intervals [Howe et al., 1981}, discussed in § 6, are smaller than those obtained by using equation (12), and the
estimate is still unbiased.

If dead time exists between the frequency departure measurements and this is ignored in computing
equation (6), it has been shown that the resulting stability values (which are no longer the Allan variances), will be
biased (except for the white frequency noise) as the frequency measurements are regrouped to estimate the stability
for mt, (m > 1). This bias has been studied and some tables for its correction published [Barnes, 1969;
Lesage, 1983].

A plot of a,(1) versus t for a frequency standard typically shows a behaviour consisting of elements as
shown in Fig. 1. The first part, with o,(t) ~ ="/ (white frequency noise) and/or o,(1) ~ t~' (white or flicker
phase noise) reflects the fundamental noise properties of the standard. In the case where 6,(t) ~ t~', it is not
practical to decide whether the oscillator is perturbed by white phase noise or by flicker phase noise. Alternative
techniques are suggested below. This is a limitation of the usefulness of 5,(t) when one wishes to study the nature
of the existing noise sources in the oscillator. A frequency-domain analysis is typically more adequate for Fourier
frequencies greater than about 1 Hz. This t=! and/or t~!/2 law continues with increasing averaging time until the
so-called flicker “floor” is reached, where o, (t) is independent of the averaging time 1. This behaviour is found in
almost all frequency standards; it depends on the particular frequency standard and is not fully understood in its
physical basis. Examples of probable causes for the flicker “floor™ are power supply voltage fluctuations, magnetic
field fluctuations, changes in components of the standard, and microwave power changes. Finally the curve shows
a deterioration of the stability with increasing averaging time. This occurs typically at times ranging from hours to
days, depending on the particular kind of standard.

A “modified Allan variance”, MOD o (1:), has been “developed {Allan and Barnes, 1981} which has the
property of yielding different depcndenccs on 1 for white phase noise and flicker phase noise. The dependences
for MOD o,(t) are T-%2 and 1~ respectively. The relationships between o,(t) and MOD o,(7) are also explained
in [Allan and Barnes, 1981; IEEE 1983, Lesage and Ayi, 1984 MOD o,(t) is estimated using the following
equation:

N-3m+1 me+j=1

! pX Y (Xiezm— 2Xiem + J‘i)]2 8)

MODG? (1) =
» () 22m*(N-3m+ 1) ;5 imj

where N is the original number of time measurements spaced by t;, and t = mt, the sample time of choice.
Properties and confidence of the estimate are discussed in Lesage and Ayi [1984). Jones and Tryon [1983] and
Barnes ef al. [1982) have developed maximum likelihood methods of estimating o,(t) for the specific models of
white frequency noise and random walk frequency noise, which has been shown to be a good model for
observation times longer than a few seconds for caesium beam standards.

4. Conversion between frequency and time domains

In general, if the spectral density of the normalized frequency fluctuations S,(f) is known, the two-sample
variance can be computed [Barnes et al., 1971; Rutman, 1972):

0,2(x) =2 / S T sin ;‘f df 9)
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FIGURE 1 - Slope characteristics of the five independent noise processes
(log scale)

Specifically, for the power law model given by equation (5), the time-domain measure also follows the
power law as derived by Cutler from equations (5) and (9).

1)
Oyz(t)-h_zg%)1+h_|210&2+ho% + h

1.038 + 3log. 22/ 7) +h Ky

@) +? @2n)? 12 (19)

Note. — The factor 1.038 in the fourth term of equation (10) is different from the value given in most previous
publications.
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The values of h, are characteristics of oscillator frequency noise. One may note for integer values (as often
seems to be the case) that p = —a — 1, for -3 S a S 1,and p~ ~2 for a 2 1 where o2 () ~ t*

These conversions have been verified experimentally {Brandenberger et al, 1971] and by computation
[Chi, 1977]. Table II gives the coefficients of the translation among the frequency stability measures from time
domain to frequency domain and from frequency domain to time domain.

The slope characteristics of the five independent noise processes are plotted in the frequency and time
domains in Fig. 1 (log log scale).

s. Measurement techniques

The spectral density of phase fluctuations S,(f) may be approximately measured using a phase-locked
loop and a low frequency wave analyzer [Meyer, 1970; Walls e al.,, 1976). A double-balanced mixer is used as the
phase detector in a lightly coupled phase lock loop. The measuring system uses available state-of-the-art electronic
components; also a very high quality oscillator is used as the reference. For very low Fourier frequencies (well
below 1 Hz), digital techniques have been used [Atkinson et al, 1963; De Prins er al, 1969; Babitch and
Oliverio, 1974]. New methods of measuring time (phase) and frequency stabilities have been introduced with
picosecond time precision [Allan and Daams, 1975), and of measuring the Fourier frequencies of phase noise with
30 dB more sensitivity than the previous state of the art [Walls et al., 1976].

Several measurement systems using frequency counters have been used to determine time-domain stability

with or without measurement dead time {Allan, 1974; Allan and Daams, 1975]. A system without any counter has

- also been developed [Rutman, 1974; Rutman and Sauvage, 1974]. Frequency measurements without dead time can

be made by sampling time intervals instead of measuring frequency directly. Problems encountered when dead

time exists between adjacent frequency measurements have also been discussed and solutions recommended

{Blair, 1974; Allan and Daams, 1975; Ricci and Peregrino, 1976]. Discrete spectra have been measured by
Groslambert et al. [1974).

6. Confidence limits of time domain measurements

A method of data acquisition is to measure time variations x; at intervals 1. Then o,(t) can be estimated
for any t = n1, (nis any positive integer) since one may use those x; values for which j is equal to nk. An
estimate for 0,(t) can be made from a data set with M measurements of ¥, as follows:

» 1 M3 212
8y (1) = 8, (t)‘-“’m Z 6 A , (1)
. J=1
or equivalent
n 1 M3 2| V2
8 (= |2r WD Z (xj42=2x;1 | + x) (12)
i=l

Thus, one can ascertain the dependence of 6,(t) as a function of T from a single data set in a very simple way.
For a given data set, M of course decreases as n increases.

To estimate the confidence interval or error bar for a Gaussian type of noise of a particular value o,(7)
obtained from a finite number of samples [Lesage and Audoin, 1973] have shown that:

Confidence Interval I, = o,(1) - K, - M~"> for M > 10 (13)

where:
M : total number of data points used in the estimate,
a: as defined in the previous section,
K; = K; = 0.99,
Ko = 0.87,
x_, = 0.77,
K., = 0.75.
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As an example of the Gaussian model with M = 100, a = —~1 (flicker frequency noise) and
o,(t = 1 second) = 10-12, one may write:

L =0,(1) K+ M™% = 06,(1) - (0.77) - (100)7'? = g,(x) - (0.077), (14)

which gives:

o,(t = 1second) = (1 + 0.08) x 10-12 (15)

A modified estimation procedure including dead-time between pairs of measurements has also been
developed [Yoshimura, 1978), showing the influence of frequency fluctuations auto-correlation.

7. Conclusion

The statistical methods for describing frequency and phase instability and the corresponding power law
spectral density model described are sufficient for describing oscillator instability on the short term. Equation (9)
shows that the spectral density can be unambiguously transformed into the time-domain measure. The converse is
not true in all cases but is true for the power law spectra often used to model precision oscillators.

Non-random variations are not covered by the model described. These can be either periodic or
monotonic. Periodic variations are to be analyzed by means of known methods of harmonic analysis. Monotonic
variations are described by linear or higher order drift terms.

TABLE 1 — The functional characteristics of five independent noise processes
Jor frequency instability of oscillators

Slope characteristics of log log plot
Frequency-domaine Time-domaine
Description of noise process
S, (N Se(f) or 5:(/) ol (1) o (v)
a fma~2 " w2
Random walk frequency ) -2 -4 1 %
Flicker frequency -1 -3 0 0
White frequency 0 -2 -1 -%
Flicker phase 1 -1 -2 -1
White phase ) 2 0 -2 -1
Sy(f)-haj‘ o’z(t)~|tl"
SeN =Vt ha PP m vl haf* (Bma-2 o)~ |t
1 - 1
Sx(f)-rnzhufn"mhuﬁ
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TABLE Il ~ Translation of frequency stability measures from spectral densities in
Jfrequency domain to variance in time domain and vice versa (for 2nfyt » 1)

Description of noise process 0} (1) = S$() = Se(f) =

» 2
Random walk frequency A [f1 s, (f)]t' % [1:“ oi (1:)]_[‘2 :::— [t" oi (t)]f"
Flicker frequency B [ fS,( j)]f‘) 1 [t° a? (t)] - _v_f,_ [t“ o’ (1)]]' -3
¥ B y B y
White frequency C[j"s. (/)]r' 1 [t' o? (t)]j" ﬁ [T' o’ (t)]f"
¥ C y C y
icker ph -1 -2 1 1 Vtz) 2 -1
Flicker phase D[f S, (f)]‘t o [1'2 ol (t)]f ) [fz 0,(T)lf
White phase E[f-25, (Nt 1 [r’ o’ (t)]f 2 % [r’ ol (r)]/"
'y E ¥ E ¥
4 4_1;2 D= 1.038 + 3 log. (2nfst)
6 an?
B = 2log.2 E- W
an?
C=1/2
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The roles which spectral density of fractional frequency fluctuations, two-sample variance, and
power spectra play in different parts of the electromagnetic spectrum are introduced. Their relationship
is discussed. Data acquisition in the frequency and the time domain is considered, and examples
are given throughout the spectrum. Recently proposed methods for the characterization of a single
high-quality frequency source are briefly described. Possible difficulties and limitations in the
interpretation of measurement results are specified, mostly in the presence of a dead time between
measurements. The link between past developments in the field, such as two-sample variance and
spectral analysis from time domain measurement, and recently introduced structure functions is

emphasized.

1. INTRODUCTION

Progress in the characterization of time and
frequency stability has been initiated owing to the
work of the various authors of papers delivered
at the IEEE-NASA Symposium on Short Term
Frequency Stability [1964] and of articles published
in a special issue of the Proceedings of the IEEE
[1966] . Presently widespread definitions of fre-
quency stability have been given by Barnes ef al.
[1971]. Many of the most important articles on
the subject of time and frequency have been gath-
ered in the NBS Monograph 140 [1974]. Since that
time, many papers have been published which
outline different aspects of the field. Owing to the
extent of the subject, they will be only partly
reviewed here. We will emphasize recently
proposed principles of measurements and recent

developments in the time domain characterization’
of frequency stability. The subject of time predic-

tion and modeling as well as its use for estimation
of the spectrum of frequency fluctuations [Percival,
1978] are beyond the scope of this paper. Recent
reviews which outline several different aspects of
the field of time and frequency characterization
have been published [Barnes, 1976; Winkler, 1976;
Barnes, 1977, Rutman, 1978; Kartaschoff, 1978].

2. DEFINITIONS: MODEL OF FREQUENCY
FLUCTUATIONS

The instantaneous output voltage of a frequency
generator can be written as

Copyright © 1979 by the American Geophysical Union.

* See Appendix Note # 24

v(t) = [V, + AV ()] cos [2mvyt + ¢(2)] )

where ¥V, and v, are constants which represent the
nominal amplitude and frequency, respectively.
AV (1) and ¢(r) denote time-dependent voltage and
phase variations.

Fractional amplitude fluctuations are defined by

et)= AV )/ V, @

A power spectral density of fractional amplitude
fluctuations S,(f) can be introduced if amplitude
fluctuations are random and stationary in the wide
sense. Usually, for high-quality frequency sources,
one has

fe() <1 (€)

and amplitude fluctuations are neglected. However,
it is known that amplitude fluctuations can be
converted into phase fluctuations in electronic cir-
cuits used for frequency metrology [Barillet and
Audoin, 1976; Bava et al., 1977a] and that they
may perturb measurement of phase fluctuations
[Brendelet al., 1977] . It is then likely that amplitude
fluctuations will become the subject of more de-
tailed analysis in the future.

According to the conventional definition of in-
stantaneous frequency we have

v(t) = v + (1/2m) (1) )
In a stable frequency generator the condition
[e@)/2mv, x 1 ®)

is generally satisfied.
We will use the following notations [Barnes et
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al., 1971]:

¢ (1) and y(r) = @(1)
™y, 27y,

x(1) = ©

where x(¢) and y(¢) are the fractional phase and
frequency fluctuations, respectively. The quantity
x(1) represents the fluctuation in the time defined
by the generator considered as a clock.

At first, we will make the following assumptions:

1. The quantities x(¢) and y(¢) are random func-
tions of time with zero mean values, which implies
that systematic trends are removed [Barnes et al.,
1971]. They might be due to ageing or to imperfect
decoupling from environmental changes such as
temperature, pressure, acceleration, or voltage.
Characterization of drifts will be considered in
section 8.

2. The statistical properties of the stable fre-
quency generators are described by a model which
is stationary of order 2. This point has been fully
discussed in the literature [Barnes et al., 1971,
Boileau and Picinbono, 1976; Barnes, 1976]). This
assumption allows one to derive useful results and
to define simple data processing for the charac-
terization of frequency stability.

Actual experimental practice shows that, besides
long-term frequency drifts, the frequency of a
high-quality frequency source can be perturbed by
a superposition of independent noise processes,
which can be adequately represented by random
fluctuations having the following one-sided power
spectral density of fractional frequency fluctua-
tions:

SN= hf* M

a=-—2

S,(f) is depicted in Figure 1. Its dimensions are
Hz~'. Lower values of a may be present in the
spectral density of frequency fluctuations. They
have not been clearly identified yet because of
experimental difficulties related to very long term
data acquisition and to control of experimental
conditions for long times. Moreover, the related
noise processes may be difficult to distinguish from
systematic drifts.

Finite duration of measurements introduces a
low-frequency cutoff which prevents one from
obtaining information at Fourier frequencies smaller

Fig. 1. Asymptotic log-log plot os S, (f) for commonly encoun-
tered noise processes.

than 1/0, approximately, where 8 is the total dura-
tion of the measurement [Cutler and Searle, 1966).
Alternatively, this made it possible to invoke physi-
cal arguments to remove some possible mathemat-
ical difficulties related to the divergence of S, (/f)
as f— 0 fora < 0.

Furthermore, high piss filtering is always present
in the measuring instruments or in the frequency
generator to be characterized. It insures conver-
gence conditions at the higher-frequency side of
the power spectra for « > 0.

The spectral density of fractional phase fluctua-
tions is also often considered. From (6), one can
write, at least formally,

5.0 =(1/4n1)S,() @®

The dimensions of S,(f) are s> Hz™'. Similarly,
the spectral density of phase fluctuations ¢(7) is
such as

S,U) = Qw,)'S,(f) ®

It is expressed in (rad)? Hz™'.

The quantity .#(f) [Halford et al., 1973) is
sometimes considered to characterize phase fluc-
tuations. If phase fluctuations at frequencies >f
are small compared with 1 rad, one has

LN =18, (10)

where S_(f) is the spectral density of phase fluc-
tuations of the frequency generator considered. The
definition of .#(f) implies a connection with the
radio frequency spectrum, and its use is not recom-
mended.

Since the class of noise processes for which y(t)
is stationary is broader than that for which the
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TABLE 1. Designation of noise processes

o Designation Class of Stationarity

stationary phase
fluctuations
stationary first-order
phase increments
stationary first-order
phase increments
stationary second-order
pbase increments
stationary second-order
phase increments

2 white noise of phase

1 flicker noise of phase

0 white noise of frequency
-1 flicker noise of frequency

-2 random walk of frequency

phase is stationary [Boileau and Picinbono, 1976],
S, (f) should preferably be used in mathematical
analysis. However, itis true that many experimental
setups transduce (?) into voltage fluctuations and
allow one to experimentally determine an estimate
of its power spectral density S_(f).

Table 1 shows the designations of the noise
processes considered. It also indicates the class
of stationarity to which they pertain, as will be
justified later on.

S (f) is one of the recommended definitions of
frequency stability [Barnes et al., 1971]. It gives
the widest information on frequency deviations y (¢)
within the limits stated previously.

3. NOISE PROCESSES IN FREQUENCY GENERATORS

The white phase noise (a = 2) predominates for
[ large enough. It is the result of the additive ther-
mal (for the lower part of the electromagnetic
spectrum, including microwaves) or quantum (for

TIME AND FREQUENCY 523

in the generation of the oscillation which is due
to white noise within the bandwidth of the fre-
quency-determining element of the oscillator [Bla-
quiére, 1953a, b]. It is often masked by other types
of noise but has been observed in lasers [Siegman
and Arrathoon, 1968] and more recently in masers
[Vessotet al., 1977] . The one-sided spectral density
of fractional frequency fluctuations is then kT/PQ*
of hv,/PQ? depending on the frequency range, as
stated above. Q is the quality factor of the fre-
quency-determining element.

White noise of frequency is typical of passive
frequency standards such as cesium beam tube and
rubidium cell devices as well as stabilized lasers.
It is related to the shot noise in the detection of
the resonance to which an oscillator is slaved [Cutler
and Searle, 1966] .

Flicker noise of frequency and the random walk
frequency noise for which a = —1 and -2, respec-
tively, are sources of limitation in the long-term
frequency stability of frequency sources. They are
observed in active devices as well as passive ones.
For instance, flicker and random walk frequency
noises have been observed in quartz crystal resona-
tors [ Wainwright et al., 1974] and rubidium masers
[Vanier et al., 1977}. The origin is not well under-
stood yet. It might be connected, in the first case,
with fluctuations in the phonon energy density
[Musha, 1975].

Figures 3 and 5 show, for the purpose of illustra-
tion, S, (f) for a hydrogen maser for 10° s f=<
3 Hz [Vessot et al., 1977] and for an iodine-
stabilized He-Ne laser for 107% < £ < 100 Hz [Cére:
et al., 1978]. In both cases, S, (f) is derived from

optical frequencies) noise which is unavoidably . the results of time domain frequency measurements

superimposed on the signal generated in the oscilla-
tor [Cutler and Searle, 1966) . It leads to a one-sided
spectral density S,(f) of the form FkIY?/v}P or
Fhv f?/v} P, depending on the frequency range,
where k is Boltzmann’s constant, A& is Planck’s
constant, T is the absolute temperature, F is the
noise figure of the components under consideration,
and P is the power delivered by atoms.

The flicker phase noise (« = 1)is generated mainly
in transistors, where this noise modulates the cur-
rent [Halford et al., 1968; Healey, 1972) . The theory
of this noise is not yet very well understood.
Diffusion processes across junctions of semicon-
ductor devices may produce this noise.

White noise of frequency (a = 0) is present in
oscillators. It is the result of the noise perturbation

9,(7)

n-l?

n-ll

Fig. 2. Frequency stability, characterized by the root mean
square of the two-sample varisnce of fractional frequency
fluctuation, of a hydrogen maser. The part of the graph with
a slope of —1 is typical of white noise of frequency.
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S(f) [Ha-]
0
n-“ \ /
e f i
ot 0t o 10?

Fig. 3. Spectral density of fractional frequency fluctuations
of a hydrogen maser. The parts of the graph with slopes 0
and 2 coincide with theoretical expectations.

(see section 6.4), as shown in Figures 2 and 4 but
is very close to theoretical limits specified above.

Itis worth pointing out here that in systems where
a frequency source is frequency slaved to a fre-
quency reference or phase locked to another fre-
quency generator the different kinds of noise in-
volved are filtered in the system [Cutler and Searle,
1966; C. Audoin, unpublished manuscript, 1976].
In these cases, at the output of the system, one
can find noise contributions pertaining to the model
(7) but appearing on the Fourier frequency scale
in an order different than that shown in Figure
1. This is depicted in Figures 6 and 7 for the case
of a cesium beam frequency standard consisting
of a good quartz crystal oscillator which is frequency
controlled by a cesium beam tube resonator.

The model for the frequency fluctuations is more
useful if the noise processes can be assumed to
be gaussian ones (in particular, momenta of all
orders can then be expressed with the help of
momenta of second order). The deviation of the
frequency being the result of a number of elementa-
ry perturbations, this assumption seems a reason-
able one. Furthermore, the normal distribution of

10- N T[s]

L "
1

- 10

Fig. 4. Frequency stability, characterized by the root mean
square of the two-sample variance of fractional frequency
fluctuations, of a He-Ne iodine-stabilized laser.
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Fig. 5. Spectral density of fractional frequency fluctuations
of a He-Ne iodine-stabilized laser. The solid line represents
the spectral density of fractional frequency fluctuations corre-
sponding to experimental results, and the dotted line represents
the expected value of S, (/).

y, the mean value of frequency fluctuations
averaged over time interval r as defined in (16),
has been experimentally checked fora = 2, 1, 0,
and —1 [Lesage and Audoin, 1973, 1977). This
is shown in Figure 8 for white noise of frequency,
for instance.

4. MEASUREMENTS IN THE FREQUENCY DOMAIN

Measurement of power spectral density of fre-
quency and phase fluctuations can be performed
in the frequency domain for Fourier frequencies
greater than a few 10 * Hz owing to the availability
of good low-frequency spectrum analyzers.

4.1.

Frequency discriminators are of current use to
characterize radio frequency and microwave gener-
ators. A resonant device such as a tuned circuit
or a microwave cavity acts as a transducer which

Use of a frequency discriminator

S, (f) ha-1

‘o.zz.

10~

D‘"l, f[Hx]
R

Fig. 6. Spectral density of fractional frequency fluctuations of
& good quartz crystal oscillator.

= See Appendix Note # 6
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Fig. 7. Spectral density of fractional frequency fluctuations
of the same quartz crystal oscillator as in Figure 6 but frequency
controlled by a Cs beam tube resonance.

transforms frequency to voltage fluctuations. This
method can be applied to optical frequency sources
t00, as shown in Figures 9 and 10. Here the source
is, for instance, a CW dye laser, and the frequency
selective device is a Fabry-Perot etalon. The second
light pass allows one to compensate for the effects
of amplitude fluctuations and to adjust to a null
the mean value of the output voltage. The slope
of this frequency discriminator equals 1 V MHz ™",
typically, with a good Fabry-Perot etalon in the
visible.

Cumulative Probability
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Fig. 8. Distribution of counting time results for white fre-
quency noise (cesium beam frequency standards, v+ = 10 s)
in Galtonian coordinates. Circles represent the cumulative prob-
ability corresponding to |r, — 1| with * = (r,). Solid lines
correspond to the normal distribution of the same width.
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Fig. 9. Principle of frequency to voltage transfer in a frequency
discriminator.

4.2,

This technique is well suited for the study of
frequency sources in the radio frequency domain
0.2 MHz < v, < 500 MHz, in a range where very
low noise balanced-diode mixers which utilize
Schottky barrier diodes are available. This tech-
nique has mainly been promoted by the National
Bureau of Standards [Shoaf, 1971; Walls and Stein,
1977].

Figure 11 shows the principle of the determination
of the phase fluctuations in frequency multipliers,
for instance. The two frequency multipliers are
driven by the same source. A phase shifter is
adjusted in order to satisfy the quadrature condition.

One then has @
v(t) = D¢, (1) — ¢:(¢)] (11)

where D is a constant and ¢, and ¢, are the phase
fluctuations introduced in the devices under test.
It is assumed that the mixer is properly used to
allow a balance of the phase and amplitude fluctua-
tions of the frequency source.

This technique is often used to characterize phase
fluctuations of two separate frequency sources of
the same frequency. The quadrature condition is

Use of a phase detector

F. P etalon dAiffengtial
Caser mplifier
Source [ K I“ s
A
Bhotoctlls

Fig. 10. Principle of frequency noise analysis of a dye laser.

* See Appendix Note # 25
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Fig. 11. Principle of measurement of phase noise with a high-qualtity balanced mixer used as a phase comparator,

insured by phase locking the reference oscillator,
number 2 of Figure 12, to the oscillator under test.
Fluctuations of the output voltage u(7) at frequen-
cies f larger than the frequency cutoff of the phase
loop are proportional to phase fluctuations of
oscillator number 1. On the contrary, components
of u(t) at frequencies smaller than the above fre-
quency cutoff are representative of frequency fluc-
tuations of oscillator number 1.

The requirement of having a reference oscillator
of the same quality as the oscillator to be tested
may be inconvenient. It has recently been shown
that the phase noise of a single oscillator can be
measured by using the mixer technique, but with
a delay line [Lance et al., 1977]. Figure 13 shows
a schematic of the setup. The signal from the
frequency source is split into two channels. The
reference channel includes a phase shifter for the
purpose of adjustment. It feeds one of the mixer
inputs. The other channel delays the signal before
it is applied to the second mixer input. It can be
seen that the power spectra density of the mixer
output is proportional to 2nf f,)’S’(f), where 1,
_ is the delay. The sensitivity of this technique is
then reduced for low Fourier frequencies. However,

Frequency
Source
nl
Phase
IComparator
e |
n.2 “(t)

] - b_» output

Frequency Control

Fig. 12. Principle of phase noise measurement of oscillators.
A phase lock loop insures the phase quadrature of the two
phase-compared signals.

some signal to noise enhancement can be achieved
in a more elaborate configuration with two differen-
tial delay line systems in which cross-spectrum
analysis is performed on the signal output from
the two delay line systems [Lance et al., 1978].

Another method has been proposed to determine
the power spectrum of fractional frequency fluctua-
tions of a single high-quality frequency source
[Groslambert, 1977). It is shown in Figure 14. Two
auxiliary oscillators, which do not need to be of
the same quality as the oscillator under test, are
used. They are phase locked to the frequency
generator to be characterized. The control voltages
v,(t) and v,(¢) are appropriately filtered in order
to obtain, at their outputs, a voltage v;(¢) = K, (¢,
— @) and vy (1) = K,(¢, — @), respectively, where
K, and K, are constants and the subscripts 0, I,.
and 2 refer to the oscillator under test, oscillator
number 1, and oscillator number 2, respectively.
It can be shown that the cross-correlation function
of v{ and v; is proportional to the autocorrelation
function of the frequency fluctuations of the
oscillator under test. Its spectral density of frac-
tional frequency fluctuations can then be obtained
via Fourier transform.

4.3. Precision of measurement in the frequency
domain

A spectrum analyzer includes a filter of bandwidth
Af, centered at frequency f, a nonlinear device
which measures the power in the filtered signal,
and a low pass filter which integrates the output
signal for the time T. The integration time T is
not infinite, and the filter bandwidth Af is not
extremely narrow. Only an estimate $(f, Af, T)
of S(f) can then be obtained. Well-known results
show that the precision p in the measurement of
the power spectral density of a gaussian process
is given by
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Phase
shifter ?
Frequency Phase Low-pass Output
source | ] comparator] © | filter [
Delay 8

Fig. 13. Principle of phase noise measurement of a single-frequency source with a delay line.

p=(T-Av)~"? @

No attempt has been made, to our knowledge, to
specify p more accurately for the different noise
processes which can be encountered in frequency
metrology of stable sources.

5. MEASUREMENTS IN THE TIME DOMAIN

Time and frequency counting techniques are well
known [Cutler and Searle, 1966]. They are the
easiest to implement to provide information on the
low-frequency content (f < 1 Hz) of the power
spectra of fractional frequency fluctuations.

5.1. The beat frequency method

A beat note at frequency v, is obtained from
two frequency sources under test, with frequencies
v, and v, respectively, such that v, = v/. If Ay,

Filter ';“)
Frequency
Generator Correlator
vt St é
2() Filter !
0sc.2

Fig. 14. Principle of phase noise measurement of a single high-
quality frequency source with a correlator.

* See Appendix Note # 26

(12) % and Av, denote the frequency fluctuations of the

two sources and Av, the frequency fluctuations of
the beat note, one has

Vo Vo

(13)

The fractional frequency fluctuations of the beat
note are then proportional to those of the frequen-
cies v, and v} but multiplied by the factor vy/v,
which is much larger than unity.

With stable generators at frequencies lower than
approximately 100 GHz the frequency fluctuations
are small enough that the beat note can be at low
frequency. The counter is then used as a period
meter, and a high precision in the measurement
is achievable.

Optical frequency standards show larger fre-
quency fluctuations in absolute value. For instance,
a laser stabilized at 500 THz (A = 0.6 pm) with
a fractional frequency stability of 1 X 10" exhibits
frequency fluctuations of 50 Hz. They can be easily
measured if the beat note is at 50 MHz, say, when
the counter is used as a frequency meter. In the
case of iodine-stabilized He-Ne lasers the beat note
is easily obtained by locking the two lasers to
different hyperfine components of the considered
iodine transition. Otherwise, the frequency offset
technique is used [Barger and Hall, 1969].

5.2.

The time difference method [Allan and Daams,
1975] must be used with time standards which
deliver pulses as time scale marks. Distant time
comparison and synchronization by TV pulses, light
pulses, Loran-C pulses, for instance, pertain to this
category. It provides information on the relative
phases of the two clocks under test.

Time interval measurements being very precise

The time difference method
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Fig. 15. Principle of the time difference method.

(a precision of 10-100 ns is typical, depending on
the class of the counter), they are also used with
c.w. frequency generators, as shown in Figure 15.
This method is then well suited to the case in which
the frequency sources under test have the same
nominal frequency v,, ¢.g., atomic frequency stan-
dards. An auxiliary frequency source, such as a
frequency synthesizer, with frequency v, allows
one to obtain, at the output of the mixers, two
beat notes at the desired frequency v, = |y, —
vol. After amplification the zero crossing of one
of the beat notes starts the time interval counter,
and the zero crossing of the other beat note stops
it. One has

x, = (ve/v Xxg — xg) (14

where x, is the fractional phase fluctuation of the
beat note and x, and x, that of the two frequency
standards. For instance, with v, = 5§ MHz, v, =
0.5 Hz, and a precision in the time interval measure-
ment of 0.1 us a precision of 10™'* s at the nominal
frequency v, is achieved.

6. CHARACTERIZATION OF FREQUENCY STABILITY
IN THE TIME DOMAIN

6.1. Significance of experimental data

It is well established that measurement in the
time domain with an electronic counter samples
phase increments and gives A_¢(¢,) defined as

Aot)=o¢t.+7 - @(t,) 15)

The phase increment A ¢(t,) is related to y,, the
average over time interval [¢,, ¢, + 7] of fractional
frequency fluctuations. We have

_— lk#" l
W=— S y(t')dt' = Ao (h) (16)
T 2

" m™T
where v, is the mean frequency of the processed
signal. _

Samples of y, can be combined in many different
ways. Some of those which have been considered
will be reviewed here. On the other hand, the
number of samples is finite, and the question arises
as to the related uncertainty in the characterization
of frequency stability and of the best use of the
data.

6.2. N-sample variance

The sequence of measurement is as shown in
Figure 16. The mean duration of each measurement
is 7, and T is the time interval between the begin-
nings of them.

In statistical estimation it is common to consider
sample variance [Papoulis, 1965]. The N-sample
variance of y, is defined as

1 N—l’l . | N-I — 2
o (N, T, D=y _1 (h-;zh)

-1 k=0 k=0

17)

where the factor N/(N — 1) removes bias in the
estimation.

The dependence of the expectation value of the
N-sample variance on the number N of samples,
the sample time 7, and the power spectral density
has been considered by Allan [1966]. We will only
consider special cases in the following.

It can be shown that computation of the average
of the N-sample variance introduces a filtering of
the power spectral density S, (f) [Barnes et al.,
1971]. We have

(0’:(N, T,7)) = S sy(/)l”(f)|24f (18)
1]
H (f)is the transfer function of a linear filter which
has the following expression:

aepo [sin‘rrf'r]z{l [shwaT ]’}
=5 nfr NsinnfT

(19)

LT T T

I ]

. T T
! ! ! o b

'u 'h.l t

Fig. 16. Sequence of time domain measurement.
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For f such that

nfT< | (20)
we have
NN +1)
|H(f))? = — (fT) Q1)

Equation (21) shows that for finite N the integral
in (18) will converge at the lower limit for a =
—1 and a = -2, as well as for a = 2, 1, and
0. One sees that very low frequency components
of S,(f) are best climinated for small values of
N.

6.3. Variance of time-averaged frequency
Sluctuations

When N goes to infinity, (o] (e, 7, 7)) becomes
a’(y,), the variance of time-averaged frequency
fluctuations or of the first difference of phase
fluctuations [Cutler and Searle, 1966] as given by

) = ()Y
where angle brackets denote mathematical expecta-
tion.

In the presence of a single-pole low-pass filter

with cutoff frequency f, we have the following re-
lation between o3(y,) and S,(/):

22

—_ - |
0=\ SV T IO 2
o (%) So U)l+(_f/f,)' DI 23
with
1H,0I* = [ s':;f T] 24y

Equation (24) shows that o’(y,) converges for a
= 2, 1, O but diverges for flicker noise of frequency
(e = —1) and random walk of frequency (a = —2).
The variance o’ (y,)is no longer used to characterize
frequency stability. However, it is useful to relate
the RF power spectral density to S,(f) [Rutman,
1974a] .

6.4. Two-sample variance
For the special case N = 2, (17) gives

(22 T, ) = 3 (Gaer = F)) @5)
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and we have
* 1
( : 2' T, ) = sy 2 H2 zd
o,( 1) So U)__—l+(f/f,) |H.(f)|*df
(26)
with
: 2
(DI = 2[ o/ ] smnfT? @)
nfT

For small f, such that wfT < 1, |H,(f)|* varies
asf. The integral in (26) is thus defined for flicker
noise of frequency (e« = —1) and random walk of
frequency (a« = —2), as well as for « = 2, 1, and
0. It is easy to show that the quantity (y,,, —
¥,) represents a second-order difference of phase
fluctuations. It follows that second-order phase
increments are stationary for a = —1 and -2 (as
specified in Table 1).

6.4.1. Two-sample variance without dead time.
The two-sample variance (Allan variance) without
dead time, for T = +, is now generally accepted
as the measure of frequency stability in the time
domain. One sets

a:(-r) = (03(2, T, 1)) (28)
Table 2 gives asymptotic expressions of aj('r) in
the cases 2mf,7 > 1 and 2nf_ 1 < 1. Expressions
of oj (1) in the presence of a sharp high-frequency
cutoff f, have been given by Barnes et al. [1971]
for the case 2wf, v >» 1.

One sees in Table 2 that o’ (1) has a characteristic
7 dependence for each type of noise considered,

TABLE 2. Asymptotic expressions of the two-sample variance
for the noise processes considered

a)(7)
S, 2nf > 1 nfrx ]
hs? 3h,f hzf2
8wr’ 2+
34, In 2w f.7)
S — 2h,f2In2
40y
) 2,2 2
ho - -3-‘" "ofc"'
2t
a_ S 2h_,1n2 2nih_f4
-2 21': 3 2
hof —;—h_,‘r nh_fr

%

&

* See Appendix Note # 27
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such as 0(r) = k/*. This is specified as follows
for 2nf.r > I

a |
2 2
1 p]
0 1

-1 0

-2 -1

For a = —1 the g (1) graph is a horizontal line,
which justifies the designation ‘flicker floor’ for
that part of the graph.

Usually, under experimental conditions the rela-
tion 2nf.v > | is satisfied. The noise processes
which perturb the oscillation can then be identified
from a o, () graph if it is assumed that the afore-
mentioned model of frequency fluctuations is valid.
Table 2 shows in which cases o)(r) depends on
the frequency cutoff. The latter must then be
specified.

The case 2=nf.r < 1 is useful for the analysis
of the effect of frequency of phase servocontrol
loops where the frequency fluctuations of the fre-
quency reference are low-pass filtered. Bias func-
tions have been given to relate (1) the two-sample
variance with and without dead time and (2) the
two-sample variance to the N-sample variance
[Barnes et al., 1971].

6.4.2. Two-sample variance with dead time. %

General expressions for the N-sample variance with
dead time have been given (Barnes et al., 1971]
for useful values of a if the condition 2w/, 7 >>
1 is satisfied. The case of the two-Ssample variance
with dead time has not been emphasized enough
yet. Table 3 compares the two-sample variance with
and without dead time when the condition 2nf_r
> 1 is fulfilled. The condition of negligible dead

TABLE 3. Comparison of the two-sample variance with and
without dead time for 2nf_r > 1

U:(zi T: 7)
SN Mf(T-D<l nf(T-7)>1
by Iy, [9A
8t 4mr’
by 38, In 2nf.7) h in(2nf7)
' 4nis? 2n’e?
ho ho/2'r holzr
h st 2h_,1n2 h i (Th)T>=
27
bt 5 h_,t n*h_, T

* See Appendix Note # 28

LI a}ll,l‘,rl»

0! 0! 1 0 00

Fig. 17. The solid line represents the variation of A_, (o}(2,
T, 7)) versus v/(T - =) for the flicker noise of frequency.
The dotted line represents the asymptotic value for (T — 1)
<

time is then 2uf (T — 1) < 1. Results for 2nf_r
<< 1 are also available {P. Lesage and C. Audoin,
private communication, 1978). Table 3 shows that
in the presence of -dead time, i.e., 2nf (T - 1)
> 1, the expression for the two-sample variance
is noticeably modified for @ = —1 and —2.

The case of the flicker noise of frequency is
particularly interesting. Figure 17 shows the varia-
tion of the two-sample variance with dead time
as a function of /(T — 7). The flicker floor does
not exist anymore if the value of this ratio is
modified when the sampling time t is changed. The
identification of the noise process which perturbs
the oscillation might then be wrong if the effect
of dead time is not taken into account.

6.5. Precision in the estimation of the two-sample
variance

Measurements are always of finite duration, and
therefore the number of available values of y, is
finite. We are then faced with the problem of the
precision in the estimation of the time domain
frequency stability measurement. This is an impor-
tant one because successive characterizations of
the frequency stability of a given device allow one
to get information on the stationarity of the pro-
cesses involved in the perturbation of its frequency
but within the limits of the precision of the charac-
terization. Precision in the estimation of the fre-
quency stability of individual oscillators of a set
of p frequency generators (p > 2) [Gray and Allan,

** See Appendix Note # 29
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1974] critically depends on the precision of the
p(p — 1)/2 frequency comparisons which can be
performed by arranging oscillators in pairs. Fur-
thermore, the uncertainty in the determination of
o,(7) translates directly into the uncertainty in
determining the h, coefficients if the frequency
generator is perturbed by noise processes modeled
by (7).

The precision in the estimation of time domain
measurements of frequency stability has been con-
sidered by several authors [Tausworthe, 1972; Le-
sage and Audoin, 1973, Yoshimura, 1978). It has
been determined for most of the experimental
situations which can be encountered in the two-
sample variance characterization of frequency
stability, with or without dead time (P. Lesage and
C. Audoin, private communication, 1978).

Calculation of the expectation value of the two-
sample variance according to (25) requires an infinite
number of data. But, in practice, only m counting
results are available, and one calculates the estimat-
ed average of the two-sample variance as follows:

-1 IE (Vrer = yk

One can easxly show that the expectation value
of 83(2, T, 7, m) equals the averaged two-sample
variance with dead time. Thus the finite number
of measurements does not introduce bias in the
estimation of the two-sample variance.

The estimated averaged two-sample variance
(EATSV) being a random function of m, we need
to characterize the uncertainty" in the estimation.
We thus introduce the variance of the EATSYV,
according to the common understanding of &
variance. We set

1852, T, v, m)

= ([0} T,7,m) - (0;, T, D] ")
With the expression (29) of the EATSV we get
o’ [0;(2, T, 1, m)]

[Z(m -1 ]2<7_z::2318,> 1))

E2))

82, T+, m= 29)

(30

with
Bi= (Vi = 7)) =202, T, 7))

The classical law of large numbers [Papoulis,
1965] which states that the true variance of a sum

. A(m) =
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of (m — 1) uncorrelated random variables decreases
as 1/(m — 1), even for small values of (m — 1),
does not apply here. We are considering the quanti-
ties 8, which are correlated because two adjacent
differences (y,,, — y,) and (¥,,, — ¥,.,) are ob-
viously not independent.

Equation (31) can also be written as

-1

l m-2

o’ 832, T, 7, m)) ——l——[l:‘l

_— —1-0r,| @
Y 2m-n 2" )] &3

with !
rk = (B,Bi-s)

I',, which does not depend on m, represents the
autocorrelation coefficient of B, and B,_,. Since
the same data are used in two adjacent pairs, the
autocorrelation coefficient I';, and possibly others,
differs from zero. Equation (33) then shows that
the 1/(m — 1) dependence also occurs for the
random variables considered, but asymptotically for
large enough values of (m — 1).

The variance of the EATSV can be related to
S,(f) if it is assumed that the quantities y, are
normally distributed. This is a reasonable assump-
tion, as shown in section 2.

It is useful to introduce A(m), the fractional
deviation of 83(2, T 7, m) defined as

G4

8@, T,r,m)— ()2, T, 1))
(0)(2, T, 1)

(33)

The standard deviation o [A(m)] defines the preci-
sion in the estimation of the two-sample variance.
Expressions for o [A(m)] which are valid for m
> 2 have been established for all possible values
of 2nf.r and 2nf (T — <) but will not be given
here.

In practice, the time domain frequency stability
of a frequency source is characterized by the
standard deviation (832, T, 7, m)] '/>. We there-
fore consider 8 defined as

e Tyml' - m'?
- (PR T,

(36)

o(d) specifies the precision in the estimation of
the time domain frequency stability measurement
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1
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Fig. 18. Variation of K, as a function of r = T/1 for the
commonly encountered noise processes and for 2nf,t = 10.

from a limited number of data and allows one to
draw error bars on a frequency stability graph.
For 2nf_t > |1 and m >> 1 we have

o(® =K m'"? 37N

The values of K_ are given as follows subject to
the condition that the dead time is negligible, i.e.,
nf(T-1) < 1:

a K,
2 0.99
1 0.99
0 0.87
-1 0.77
-2 0.75

In the presence of dead time the values of K
depend on the noise process considered as well
as the values of 2=nf.+ and r = T/+. Figure 18,
valid for 2nf_r = 10 shows that the dependence
of K_ with dead time is especially pronounced in
the vicinity of r = 1 for a = 1 and 2.

7. CHARACTERIZATION OF FREQUENCY STABILITY
VIA FILTERING OF PHASE OR FREQUENCY NOISE

Equations (27) and (28) show that the definition
of the time domain measurement of frequency
stability o’ (1) involves a filtering of S, (f) in a linear
filter. Figure 19 shows the impulse response of this
filter, which represents the sequence of measure-

h(Hd

O A=

Y-

-1

—

Fig. 19. Impuise response of a linear filter which represents
computation of two-sample variance.

ment for T = r, and Figure 20 depicts the related
transfer function. One can also consider the effect
of filtering a voltage proportional to y(t) or x(t)
in a physically realizable analog filter.

A high pass filter of cutoff frequency 1/t has
been considered [Rutman, 1974b; Rutman and
Sauvage, 1974]. Its input receives a voltage propor-
tional to x(¢). It is provided by a mixer used as
a phase comparator. The rms value of the filtered
signal is measured. When the frequency cutoff is
changed, this rms value shows the same u versus
a dependence as shown in section 6.4.1. More
interesting is a bandpass filter centered at the
variable frequency f = 1/2r but with a fixed value
of its quality factor. It allows one to distinguish
white and flicker noise of phase, as it gives p =
3 for @ = 2; the p versus a dependence being
otherwise unchanged for a = 1, 0, -1, and —2.

Similarly, a frequency discriminator, giving an
output proportional to y(¢), followed by two cas-
caded resistance-capacitance (RC) filters and a:rms
voltmeter allows one to obtain a useful approxi-
mation of the two-sample variance. The filters
insure low-pass and high-pass filtering with RC =
t/2 [Wiley, 1977].

g ()

[=]]
n
IS
(-

2ft

Fig. 20. Transfer function of the linear filter with impulse
response shown in Figure 19.
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8. SPECTRAL ANALYSIS INFERRED FROM TIME
DOMAIN MEASUREMENTS

The methods of time domain characterization of
frequency stability reviewed above allow one to
identify noise process if they are described by

2

S,N= ht
aw=-2
This may not be the case. Furthermore, it is of
interest to determine the power spectral density
of fractional frequency fluctuations for Fourier
frequencies lower than 1 Hz. In this region, time
domain measurements are the most convenient, and
the question arises as to their best use for spectral
analysis.

(8)

8.1.

Equations (24) and (27) show that calculation of
the variance of the second difference of phase
fluctuations (the two-sample variance) involves a
more selective filtering than calculation of the
variance of the first difference of phase fluctuations.
One can then consider higher-order differences
[Barnes, 1966; Lesage and Audoin, 1975a, b]. The
nth-order difference of phase fluctuations is denot-
ed as "A; (1), where T and T have the same
meaning as in section 6.1. and 6.2. This nth dif-
ference is defined by the following recursive equa-
tion:

Selective numerical filterirg

"Ar.e(t) = ('""A,‘,‘p(t, +T)-"""a 7. ®(l) (39
which introduces binomial coefficients C’_,. We
have

A e) = 2 =n'c,_lelt,+(n-1-0DT+1]

im0
—¢ly+(n-1-0)T]} (40

The transfer function H,(f, T, 1) of the linear filter
which represents the calculation of the variance
of the nth difference of phase fluctuations is given
by

n-1

y GinnfT)"'sinnfr

nT

H,(. T, )l = @n
It should be pointed out that for fr <« I, one
has

HU T0=QunfT)"" fr<xl 42)
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vFi;. 21. Impulse response of a linear filter which represents
computation of the variance of the 20th difference of phase
fluctuations. C| represents binomial coefficients.

Figure 21 shows the impulse response of the linear
filter which represents the calculation of the
variance of the 20th difference of phase fluctua-
tions, and Figure 22 shows the related transfer
function. A selective filtering is then involved
around frequency 1/2r.

_Such a variance is also known as a modified
Hadamard variance [Baugh, 1971). The spurious
responses at frequencies (2! + 1)/27, where [ is
an integer, can be eliminated by a proper weighting

)
|Hzo (o) I
3110°
2110°L
'l '
. J\ A A DT
0 1 3 S 7

Fig. 22. Transfer function of the linear filter considered in Figure
21,
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of measurement results or by filtering with the help
of an analog filter [Groslambert, 1976).

Such a technique of linear filtering has been used
to show that good quartz crystal oscillators exhibit
flicker noise of frequency for Fourier frequencies
as low as 10~ Hz [Lesage and Audoin, 1975b].
Furthermore, it is well suited to the design of
automated measurement setups [Peregrino and
Ricci, 1976; Groslambert, 1977].

The best use of experimental time domain data
for selective filtering has been considered by Boi-
leau [1976].

8.2. High-pass filtering

If frequency fluctuations y(z) are filtered in an
ideal high-pass filter with transfer function G,(f,,
/) such that

0 f</,
Go(fpf) = { l f >f| (43)
its output z(¢) is such that
44)

ot = X Gy f)S, (N = X SN
] N
Equation (44) shows that the derivative of o? is
-S,(f), and spectral analysis, and therefore
characterization of frequency stability, are possible,
in principle, by high-pass filtering.

Possible realization of the high-pass filter by
techniques of digital data processing have been
specified, such as the method of finite-time variance
and the method of finite-time frequency control.
Processing of finite-time data is aimed to properly
deal with the nonintegrable singularity of the power
spectral density at v = 0 [Boileau, 1975; Boileau
and Picinbono, 1976}. The method is well suited
to the analysis of drifts or slow frequency changes.
Practical use of this method has not been reported
yet.

8.3.

It has been shown in section 8.1. that spectral
analysis from the Hadamard variance or its modified
forms requires a series of measurements at time
interval v in order to specify the spectral density
at frequency 1/2+. Another point of view has been
considered [Boileau and Lecourtier, 1977). From
a set of measurements of y,, sampled at frequency
1/, it allows one to obtain an estimation of the

Use of the sample spectral density

spectral density for discrete values of the Fourier
frequency.

9. STRUCTURE FUNCTIONS OF OSCILLATOR
FRACTIONAL PHASE AND FREQUENCY
FLUCTUATIONS

Interest in the variance of nth-order difference
of phase fluctuations was recognized carly in the
field of time keeping (see for instance, Barnes
[1966]). This can be easily understood from (43),
which shows that an efficient filtering of low-
frequency components of frequency fluctuations
is then introduced. It allows one to deal properly
with frequency drifts, which will now be considered,
and poles of S, (f) of order 2(n — 1) at the origin.
It is equivalent to saying that the nth difference
of phase fluctuations allows one to consider random
processes with stationary nth-order phase incre-
ments.

This question has been formalized by Lindsey
and Chie [1976, 1977], who introduce structure
functions of oscillator phase fluctuations. The nth
order structure fuanction of phase fluctuations is
nothing else but the variance of the nth difference
of phase fluctuations, as considered in section 8.
Then, by definition, the nth-order structure function
of fractional phase fluctuations is given by

D@ =E(["s, . x(t)]"}

where E { -} means expectation value. The fractional
phase (or the clock reading) at time 7, is x(z,).
We assume T = 7.

Let us consider an oscillator, the phase ¢’(f)
of which is of the following form except for an
additive constant:

45)

H ’k
¢'(1) = 2 D=+ 00) (46)

where Q, is a random variable modeling the kth-
order frequency drift and ¢(¢) represents random
phase fluctuations. We then have

! ‘k
x'@)= Z; d,_, F + x(1) 47
and
1-1 th
Y= E d.;‘—! +y() (48)

k=1

where d, = Q, /2mv, is the normalized drift coeffi-
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cient and x(r) and y(7) have the same meaning as
in the preceding sections. The notations x’ and y’
refer to an oscillator with drift.

It can then be shown that we have

D™ (1) =1"E[d}_)]

2 ® sin®*(nf1) _
+2 So s’m_—(an)’ adf I=n (49
and
() 328 o sin®* (nf1)
D®() =2 So Sy(f)——~(2‘wf)2 d I>n (50)

If one applies (49) to the case of an oscillator
without drift, one can easily show that the following
equations are satisfied:

a*(y,) = (1/+*) D7) (S1)

and

o3 () = (1/2r*) D (v (%2)

This is indeed not surprising because apart from
more or less complicated mathematical formalism
the definitions of the considered variances and
structure functions are closely related, as has been
emphasized here.

Relations between sample variance and structure
functions have been given by Lindsey and Chie
[1976], whereas the relation between structure
functions and several different approaches of fre-
quency stability characterization has been analyzed
by Rutman [1977, 1978).

For the generally accepted noise model defined
by (7) the  dependence of higher-order structure
functions is the same as the two-sample vanance,
as shown in Table 4 [Lindsey and Chie, 1978b].
As stated above, structure functions of order n
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allow one to consider spectral densities which vary
as f* at the origin with a = —2(n - 1). For instance,
for n = 3 it is possible to characterize frequency
fluctuations of an oscillator with a power spectral
density of fractional frequency fluctuations given
by S,(/) = 22__, hf°. This oscillator exhibits
stationary third-order increments of phase fluctua-
tions.

In the presence of a frequency drift described
by a polynomial of degree [ ~ 1, structure functions
of degree n < I are meaningless: their computation
yields a time-dependent result. For n = [ the /th
structure function shows a long-term r dependence
proportional to 7¥. This dependence disappears for
n > l. Although a power spectral density of the
form f -~V would also give the structure functions
a variation of the form 7%, this variation does not
depend on n, provided that the function is meaning-
ful. It is then possible, at least in principle, to
identify frequency drifts and to specify their order.
This is illustrated in Figure 23 according to Lindsey
and Chie [1978b]. However, there are not yet
experimental proofs that such a characterization
is achievable in practice.

10. POWER SPECTRAL DENSITY OF STABLE
FREQUENCY SOURCES

The power emitted by a source of time-dependent
voltage v(¢) given by (1) is S, (v) dv in the frequency
range [v, v + dv], where S, (v) is the power spectral
density of the source. The dimensions of S, (v) are
V2 Hz~'. The main interest of power spectral
density, in frequency metrology, is related to high-
order frequency multiplication. We will only intro-
duce the subject by giving the relations between
S,(v) and S _(f) and stating present problems in
the field.

TABLE 4. Structure functions of orders 1, 2, 3, and 4 for fractional phase fluctuations of commonly encountered noise processes
for 2nfyr > |

5, D) D2(x) DO() D)
hof? ;1'7 oty 2—%; hof, “32- WA 2—31-75-1- hot,
hf E}r;h,ln(wj;f) i%h,ln(nf,f) ;S;Il,ln(ﬂf.f) g;h,ln(«fp)
h, 1hyr hot 3hor 10h,r
hos' 4h_,vIn2 6.75h_,1° 20.7h_g°
hoys? ;-n’h_,-r’ 2nh_y1’ SN K

From Lindsey and Chie [1978b)

TN-185



536 LESAGE AND AUDOIN
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Fig. 23. (Solid line) Two-sample variance of an oscillator
showing a linear frequency drift of 10”'° per day and flicker
noise of frequency given by S,(f) = 7.2 X 107 ™', (Dotted
line) The third difference of fractional phase fluctuation is
independent of the drift (according to Lindsey and Chie [1978b].

Negligible amplitude noise and gaussian phase
fluctuations being assumed, it is well known that
the autocorrelation function of v() is R, (7) given
by

Vi _
R(v) = Py cos2mv, T exp [~1(2mv,) o (1,)] (53)
As o*(y,) is only defined for stationary phase
fluctuations and for phase fluctuations with station-

ary first increments, the same is true for R (1) and
therefore S, (f).

10.1.

This is the simplest to deal with. If the frequency
of the source is perturbed by a broadband white
noise of frequency, one has S, (f) = h, and (y.)
= (h,/21). Whence

White noise of frequency

(39
T

<

Vs |l
R (1) = T cos 2y T €Xp (-—-—)
where 7, is the coherence time of the signal. We
have

7, = (mv2hy) ! (33)

The one-sided power spectral density is then repre-
sented by a Lorentzian given by

S.() = p2 2nAv
v *wan)? + 2n(v - v}

(56)

where Av is the half width at half maximum of
the power spectra defined as

2Av = mih, Y]

We obviously have 2wAv - r, = 1. If oscillators
are considered, one has h, = kT/PQ? in the
radiofrequency and microwave domain and A, =
hv,/PQ* in the optical frequency domain, where
P is the power delivered by the oscillator and Q
the quality factor of the frequency-determining
element. Table 5 gives theoretical values of co-
herence time and linewidth of good oscillators. It
is only intended to illustrate a comparison, often
made, of the spectral purity of oscillators. It must
be pointed out that, in practice, other noise pro-
cesses exist which modify these results. Even any
meaning of 7, and Av is removed if R, (7) is not
defined.

Multiplication of the frequency by n multiplies
Av and divides t_ by the factor n’.

10.2.

Presently available good quartz oscillators are
affected by white noise of phase. It is easy to show
from the definition (16) of y, that the following
equation is satisfied:

t 2mvere(y)] 2 = R,(0) - R, @)

where R (1) denotes the autocorrelation function
of the stationary phase fluctuations ¢(?).
The expression of the one-sided S, (v) then fol-
lows [Rutman, 1974a; Lindsey and Chie, 1978a]:
2
S.0) == e OB - w)

White noise of phase

(38

+S,(v-v)+3S,(v)*S,(v)+ ] (59

where the asterisk denotes convolution and the
bracket contains an infinite set of multiple-convolu-
tion products of S_(v) by itself. Such an equation
is not easily tractable. It is the reason why the

TABLE 5. Theoretical values of correlation time and power
spectrum linewidth for various oscillators
Oscillator vo, Hz h,, Hz™' 1,8 2Av, Hz
5-MHz
quariz xtal  §$x 10° 4x 1077 10" 3x 107"
H maser 14x10° 4x1077 107 3x 107t
He-Nelaser Sx 10 3x107® 107 30
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approximation of small-phase fluctuations is often
made. If R (0) = ¢ < 1, one has
Vo
§,(v) = Y e BV —vy)+ S, (v~ w)l (60)

In this approximation the power spectrum consists
of a carrier at frequency v, around which the
spectrum of the phase fluctuations is translated.

If the frequency of the signal is multiplied by
n, ge mean s&g_arcd frequency fluctuation becomes
n*¢>. If n*¢> « 1, the power spectral density
is then given by

V: —nel 2

S,(v)= T e W —nv,) + 0SS, (v - w)] (61)
The power in the carrier decreases, and the power
in the pedestal increases. The relative powers in

tha carriar P and in tha nadactal P ara than sivan
Uw valiivi 4 ¢ Qallu 11 wuv PGUGDIM ‘P alv vl yevu
by
e §
P.=c" (62)
T
P=1-e¢ 63)

respectively, where ¢ represents the mean squared
value of phase fluctuations at the signal frequency
considered. It has been proved that (62) and (63)
are valid, even if the condition ¢? < 1 is not
satisfied (F. Clerc, private communication, 1977).

§ Relative Power (48)

-S5O

o 0! o' 1 o o
@Qllilm)’

Fig. 24. Variation of the relative power in the carrier P, and
the pedestal P, as a function of ¢°, the mean squared phase
fluctuations.
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Figure 24 shows the variation of P_ and P, as
a function of ¢*. One easily understands that the
carrier may disappear if the multiplicative factor
is high enough. This has been theoretically and
experimentally investigated by Walls and de Marchi
[1975], Bava et al. {1977b], and Godone et al.
[1978]. A signal has been synthesized at 761 GHz,
starting from a 5-MHz quartz oscillator, which
verifies theoretical conclusions.

10.3.

Much work remains to be done to analyze proper-
ly the effect of noise such as the flicker noise of
frequency or the random walk of frequency which
contributes power very close to the carrier. The
very interesting semiempirical approach by Halford
[1971] has not yet been justified either theoretically
or experimentally in a convincing manner.

Other noise processes

11. CONCLUSION

Widely used theoretical and experimental meth-
ods for the characterization of frequency stability
in the time and frequency domain have been out-
lined. Recently used or proposed experimental
methods have been reviewed. The effect of dead
time on the interpretation of time domain measure-
ments, as well as on their precision has been
emphasized. Recently introduced structure func-
tions have been considered as well as their interest
for the elimination of frequency drifts. The prob-
lems in the relation between the radiofrequency
power spectral density and the power spectral
density of phase fluctuations have been briefly
summarized.
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Frequency sources contain noise that appears to be a superposition of
causally generated signals and random, nondeterministic noises. The random
noises include thermal noise, shot noise, and noises of undetermined origin
(such as flicker noise). The end result is time-dependent phase and amplitude
fluctuations. Measurements of these fluctuations characterize the frequency
source in terms of amplitude moduiation (AM) and phase modulation
(PM) noise (frequency stability).
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The term frequency stability encompasses the concepts of random noise,
intended and incidental modulation, and any other fluctuations of the output
frequency of a device. In general, frequency stability is the degree to which
an oscillating source produces the same frequency value throughout a
specified period of time. It is implicit in this general definition of frequency
stability that the stability of a given frequency decreases if anything except
a perfect sine function is the signal wave shape. .

Phase noise is the term most widely used to describe the characteristic
randomness of frequency stability. The term spectral purity refers to the
ratio of signal power to phase-noise sideband power. Measurements of phase
noise and AM noise are performed in the frequency domain using a spectrum
analyzer that provides a frequency window following the detector (double-
balanced mixer). Frequency stability can also be measured in the time
domain with a gated counter that provides a time window following the
detector.

Long-term stability is usually expressed in terms of parts per million per
hour, day, week, month, or year. This stability represents phenomena
caused by the aging process of circuit elements and of the material used in
the frequency-determining element. Short-term stability relates to frequency
changes of less than a few seconds duration about the nominal frequency.

Automated measurement systems have been developed for measuring the
combined phase noise of two signal sources (the two-oscillator technique)
and a single signal source (the single-oscillator technique), as reported by
Lance et al. (1977) and Seal and Lance (1981). When two source signals
are applied in quadrature to a phase-sensitive detector (double-balanced
mixer), the voltage fluctuations analogous to phase fluctuations are measured
at the detector output. The single-oscillator measurement system is usually
designed using a frequency cavity or a delay line as an FM discriminator.
Voltage fluctuations analogous to frequency fluctuations are measured at
the detector output.

The integrated phase noise can be calculated for any selected range of
Fourier frequencies. A representation of fluctuations in the frequency
domain is called spectral density graph. This graph is the distribution of
power variance versus frequency.

I1. Fundamental Concepts

In this presentation we shall attempt to conform to the definitions.
symbols, and terminology set forth by Barnes et al. (1970). The Greek
letter v represents frequency for carrier-related measures. Modulation-
related frequencies are designated f. If the carrier is considered as dc, the
frequencies measured with respect to the carrier are referred to as baseband,
offset from the carrier, modulation, noise, or Fourier frequencies.

TN-191



7. PHASE NOISE AND AM NOISE MEASUREMENTS 241
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FiG. | Sine wave characteristics: (a) voltage ¥ changes with time t as (b) amplitude
changes with phase angie ¢.

A sine wave generator produces a voltage that changes in time ¢ as the
amplitude ¥ changes with the phase angle ¢. shown in Fig. 1. Phase is mea-
sured from a zero crossing, as illustrated by plotting the phase angle as the
radius vector rotates at a constant angular rate determined by the frequency.
The ideal (perfect) sine-wave-related parameters are as follows: v, average
(nominal) frequency of the signal; v(¢), instantaneous frequency of a signal

1 d¢

V(t)=§;z‘d—t(t); (hH

V,, nominal peak amplitude of a signal source output; 7, period of an oscilla-
sion (1/ve); Q, signal (carrier) angular frequency (rate of change of phase
with time) in radians

Q = 2nvy; (2)

Q, instantaneous angular frequency; V(¢), instantaneous output voltage
of a signal. For the ideal sine wave signal of Fig. 1, in voits,

V(t) = Vysin(2rvyi). (3)

The basic relationship between phase ¢, frequency v,, and time interval
7 of the ideal sine wave is given in radians by the following:

¢ = 2av,T, 4)

where ¢(t) is the instantaneous phase of the signal voltage, V(¢), defined for
the ideal sine wave in radians as

o(t) = 2mvyt. (5)
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The instantaneous phase ¢(t) of V(¢) for the noisy signal is

(1) = 2nvot + (1), (6)

where ¢(r) is the instantaneous phase fluctuation about the ideal phase
2rvqt of Eq. (4).

The simplified illustration in Fig. | shows the sine-wave signal perturbed
for a short instant by noise. In the perturbed area, the Av and At relation-
ships correspond to other frequencies, as shown by the dashed-line wave-
forms. In this sense, frequency variations (phase noise) occur for a given
instant within the cycle.

The instantaneous output voltage V(r) of a signal generator or oscillator
is now

V() = [V, + &(t)] sin[2rvot + @(1)], @)

where ¥V, and v, are the nominal amplitude and frequency, respectively, and
&(r) and ¢(t) are the instantaneous amplitude and phase fluctuations of the
signal.

It is assumed in Eq. (7) that

é(1)

- <1 for all (1), #(t) = d¢/dr. ®8)
0

e(t)/Vo <1 and

Equation (7) can also be expressed as
V(T) = [V, + de(t)] sin[2mvot + ¢o + 0(1)], 9

where ¢, is a constant, § is the fluctuations operator, and é&(t) and d¢(t)
represent the fluctuations of signal amplitude and phase, respectively.
Frequency fluctuations év are related to phase fluctuations d¢, in hertz, by

gy = 2 _ 1d0e) (10)

i.e., radian frequency deviation is equal to the rate of change of phase devia-
tion (the first-time derivative of the instantaneous phase deviation).

The fluctuations of time interval dt are related to fluctuations of phase
4¢, in radians, by

0¢ = (2mvy)ot. (1)

In the following, y is defined as the fractional frequency fluctuation or fraction-
al frequency deviation. It is the dimensionless value of v normalized to the
average (nominal) signal frequency v,,

y = 0v/vg, (12)
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where y(¢) is the instantaneous fractional frequency deviation from the
nominal frequency v,.

A. NoOISE SIDEBANDS

Noise sidebands can be thought of as arising from a composite of low-
frequency signals. Each of these signais modulate the carrier-producing
components in both sidebands separated by the modulation frequency, as
illustrated in Fig. 2. The signal is represented by a pair of symmetrical
sidebands (pure AM) and a pair of antisymmetrical sidebands (pure FM).

The basis of measurement is that when noise modulation indices are
small, correlation noise can be neglected. Two signals are uncorrelated if
their phase and amplitudes have different time distributions so that they do
not cancel in a phase detector. The separation of the AM and FM components
are illustrated as a modulation phenomenon in Fig. 3. Amplitude fluctuations
can be measured with a simpie detector such as a crystal. Phase or frequency
fluctuations can be detected with a discriminator. Frequency modulation
(FM) noise or rms frequency deviation can also be measured with an am-
plitude (AM) detection system after the FM variations are converted to
AM variations, as shown in Fig. 3a. The FM-AM conversion is obtained
by applying two signals in phase quadrature (90°) at the inputs to a balanced
mixer (detector). This is illustrated in Fig. 3 by the 90° phase advances of
the carrier.

B. SpeCTRAL DENSITY

Stability in the frequency domain is commonly specified in terms of spectral
densities. There are several different, but closely related, spectral densities
that are relevant to the specification and measurement of stability of the
frequency, phase, period, amplitude, and power of signals. Concise, tutorial

CARRIER
CARRIER
CARRIER
Vo
v v v % Vp
Va % Vq % Vn

| | | AV

RADIAN FREQUENCY RADIAN FREQUENCY RADIAN FREQUENCY
(a) (b} (c)

FiG. 2 (a) Carrier and single upper sideband signals; (b) symmetrical sidebands (pure
AM); (c) an antisymmetrical pair of sidebands (pure FM).

TN-194



244 A. L. LANCE, W. D. SEAL, AND F. LABAAR

FM VARIATION
+

UPPER
v LOWER
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I..-- —— .._| C AM MEASURED
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Vg (CARRIER)

{a) (b)
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MEASURED
CARRIER AS (AM) UPPER SIDEBAND
v VARIATION -
° LOWER SIDEBAND
! \ :
90° ' S :
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t Vo 1
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' |
! }
]
1 !
(c) (d)

Fi1G. 3 (a) Relationships of the FM signal to the carrier: (b) relationship of the AM signal
to the carrier; (c) carrier advanced 90° to obtain FM-AM conversion ; (d) AM-FM conversion.

descriptions of twelve defined spectral densities and the relationships among
them were given by Shoaf et al. (1973) and Halford et al. (1973).

Recall that in the perturbed area of the sine wave in Fig. 1 the frequencies
are being produced for a given instant of time. This amount of time the signal
spends in producing another frequency is referred to as the probability
density of the generated frequencies relative to v,. The frequency domain
plotisillustrated in Fig. 4. A graph of these probability densities over a period
of time produces a continuous line and is called the Power spectral density.
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Yo

POWER (Hz')

-o0 f +on

FiG.4 A power density plot.

The spectral density is the distribution of total variance over frequency. The
units of power spectral density are power per hertz; therefore, a piot of power
spectral density obtained from amplitude (voltage) measurements requires
that the voltage measurements be squared.

The spectral density of power versus frequency, shown in Fig. 4, is a two-
sided spectral density because the range of Fourier frequencies f is from
minus infinity to plus infinity.

The notation S,( f) represents the two-sided spectral density of fluctations
of any specified time-dependent quantity g(¢t). Because the frequency band
is defined by the two limit frequencies of minus infinity and plus infinity,
the total mean-square fluctuation of that quantity is defined by

Gsideband = f_ Sq(f ) df- (13)

Two-sided spectral densities are useful mainly in pure mathematical analysis
involving Fourier transformations.
Similarly, for the one-sided spectral density,

Gusms = | SN U (14)
The two-sided and one-sided spectral densities are related as follows:
f s, df =zf s, df =f S, . (1)
- 0 0

where g, indicates one-sided and g, two-sided spectral densities. It is noted
that the one-sided density is twice as large as the corresponding two-sided

TN-196



246 A. L. LANCE, W. D. SEAL, AND F. LABAAR

spectral density. The terminology for single-sideband versus double-sideband
signals is totally distinct from the one-sided spectral density versus two-
sided spectral terminology. They are totally different concepts. The defini-
tions and concepts of spectral density are set forth in NBS Technical Note
632 (Shoaf et al., 1973).

C. SPECTRAL DENSITIES OF PHASE FLUCTUATIONS IN THE @ *
FREQUENCY DOMAIN

The spectral density S,(f) of the instantaneous fractional frequency
fluctuations y(t) is defined as a measure of frequency stability, as set forth
by Barnes et al. (1970). S,(f) is the one-sided spectral density of frequency
fluctuations on a “per hertz” basis, i.e., the dimensionality is Hz™'. The
range of Fourier frequency f is from zero to infinity. S,,(f), in hertz squared
per hertz. is the spectral density of frequency fluctuations év. It is calculated
as

(5vrms)2
bandwidth used in the measurement of v,

Self) = (16)

The range of the Fourier frequency f is from zero to infinity.

The spectral density of phase fluctuations is a normalized frequency domain
measure of phase fluctuation sidebands. S,,(f), in radians squared per
hertz. is the one-sided spectral density of the phase fluctuations on a “per
hertz” basis:

Sa¢(f) = 5d’rms

bandwidth used in the measurement of 6¢,

an

The power spectral densities of phase and frequency fluctuation are related by
Sse(S) = (v3/N)S, (). (18)

The range of the Fourier frequency f is from zero to infinity.
S;a(f). in radians squared Hertz squared per hertz is the spectral density
of angular frequency fluctuations 6€:

Ssalf) = 27)*S4(f). (19)
The defined spectral densities have the following relationships:
Sslf) = vaS,(f) = (121)*S,q(f) = [2S56(f); (20)

Soo(f) = (]/w)ZSm(f) = (vo/f)ZS,(f) = [Sav(f)/fz]- (21)

Note that Eq. (20) is hertz squared per hertz, whereas Eq. (21) is in radians
squared per hertz.
The term S p(v), in watts per hertz, is the spectral density of the (square

* See Appendix Note # 30
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root of) radio frequency power P. The power of a signal is dispersed over the
frequency spectrum owing to noise, instability, and modulation. This con-
cept is similar to the concept of spectral density of voltage fluctuations
Ss5,(f). Typically, S,,(f) is more convenient for characterizing a baseband
signal where voltage, rather than power, is relevant. S ;5(v) is typically
more convenient for characterizing the dispersion of the signal power in
the vicinity of the nominal carrier frequency v,. To relate the two spectral
densities, it is necessary to specify the impedance associated with the signal.

A definition of frequency stability that relates the actual sideband power
of phase fluctuations with respect to the carrier power level, discussed by
Glaze (1970), is called Z(f). For a signal with PM and with no AM, Z(/)
is the normalized version of § ;s(v), with its frequency parameter f refer-
enced to the signal’s average frequency v, as the origin such that f equals
v — vo. If the signal also has AM, £(f) is the normalized version of those
portions of § ;75(v) that are phase-modulation sidebands.

Because f is the Fourier frequency difference (v — v,), the range of f is
from minus v, to plus infinity. Since £(f) is a normalized density (phase

noise sideband power),
+
f L(Nrydf =1. @ (22)
v

Z(f) is defined as the ratio of the power in one sideband, referred to the
input carrier frequency on a per hertz of bandwidth spectral density basis,
to the total signal power, at Fourier frequency difference f from the carrier,
per one device. It is a normalized frequency domain measure of phase fluctua-
tion sidebands, expressed in decibels relative to the carrier per hertz:

. power density (one phase moduiation sideband)

= 23
2 carrier power (23)

For the types of signals under consideration, by definition the two phase-
noise sidebands (lower sideband and upper sideband, at — f and f from v,
respectively) of a signal are approximately coherent with each other, and
they are of approximately equal intensity.

It was previously show that the measurement of phase fluctuations (phase
noise) required driving a double-balanced mixer with two signals in phase
quadrature so the FM-AM conversion resulted in voltage fluctuations at
the mixer output that were analogous to the phase fluctuations. The opera-
tion of the mixer when it is driven at quadrature is such that the amplitudes
of the two phase sidebands are added linearly in the output of the mixer,
resulting in four times as much power in the output as would be present if
only one of the phase sidebands were allowed to contribute to the output

* See Appendix Note # 31
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of the mixer. Hence, for | /| < v,, and considering only the phase modulation
portion of the spectral density of the (square root of) power, we obtain

Sad) S D/Vems)* = 4LS szp(vo + S)I/(Pit) (24)
and, using the definition of £(f),
L(f) = [Ssp(vo + NINPe) = 15561 1)) (25)

Therefore, for the condition that the phase fluctuations occurring at rates
(f) and faster are small compared to one radian, a good approximation in
radians squared per hertz for one unit is

L(f) = 15,4 (26)

If the small angle condition is not met, Bessel-function algebra must be used
to relate ££(f) to Ssu(f).

The NBS-defined spectral density is usually expressed in decibels relative
to the carrier per hertz and is calculated for one unit as

Z(f) = 10 log[$S,,()]- @7

It is very important to note that the theory, definitions, and equations previously
set forth relate to a single device.

D. MOoDULATION THEORY AND SPECTRAL DENSITY
RELATIONSHIPS

Applying a sinusoidal frequency modulation f,, to a sinusoidal carrier
frequency v, produces a wave that is sinusoidally advanced and retarded
in phase as a function of times. The instantaneous voltage is expressed as,

V(t) = V, sin(2Qrvgt + A¢ sin 2nf 1), (28)

where A¢ is the peak phase deviation caused by the modulation signal.

The first term inside the parentheses represents the linearly progressing
phase of the carrier. The second term is the phase variation (advancing and
retarded) from the linearly progressing wave. The effects of modulation can
be expressed as residual f,, noise or as single-sideband phase noise. For
modulation by a single sinusoidal signal, the peak-frequency deviation of
the carrier (v) is

Ave = A - [, (29)
Ad = Avy/ f, (30)

where f, is the modulation frequency. This ratio of peak frequency deviation
to modulation frequency is called modulation index m so that A¢ = m and

m= Avg/fu. (31)
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The frequency spectrum of the modulated carrier contains frequency
components (sidebands) other than the carrier. Fbr small values of modula-
tion index (m < 1), as is the case with random phase noise, only the carrier
and first upper and lower sidebands are significantly high in energy. The
ratio of the amplitude of either single sideband to the amplitude of the

carrier is
Vip/Vo = mj2. (32)

This ratio 1s expressed in decibels below the carrier and is referred to as dBc
for the given bandwidth B:

Vio/Vo = 20 log(m/2) = 20 log(Ave/2f)

= 10 log(m/2)* = 10 log(Avy/2f)* (33)
If the frequency deviation is given in terms of its rms value, then
Avm, = AVO/'/\/E. (34)

Equation (33) now becomes

Vio/Vo = L(f) = 20 108(AVimy// 2frm)

(35)
= 10 108(AV;my/\/ 2fm)?-
The ratio of single sideband to carrier power in decibels (carrier) per hertz is
Z(f) = 20 log(Avimy/ fr) — 3 (36)
and, in decibels relative to one squared radian per hertz,
Ss6(f) = 20 log(Av my/ fm)- (37

The interrelationships of modulation index, peak frequency deviation,
rms frequency, and spectral density of phase fluctuations can be found from
the following:

Im = Avo/2fp = AV 2 - (38)
= 10 exp(L(f)/10) = 4S55(/): (39)
or
im = AV e/ U = /10 exp(L(f)/10) = /18,6(f): (40)
and

m= Avo/fm = 2Avm“/\/'m
= 2/10 exp(L())/10) = 2/} Ss6(f). 41)
The basic relationships are plotted in Fig. 5.
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E. NOISE PROCESSES

The spectral density plot of a typical oscillator’s output is usually a com-
bination of different noise processes. It is very useful and meaningful to
categorize these processes because the first job in evaluating a spectral
density plot is to determine which type of noise exists for the particular
range of Fourier frequencies.

The two basic categories are the discrete-frequency noise and the power-law
noise process. Discrete-frequency noise is a type of noise in which there is
a dominant observable probability, i.e., deterministic in that they can usually
be related to the mean frequency, power-line frequency, vibration frequencies,
or ac magnetic fields, or to Fourier components of the nominal frequency.
Discrete-frequency noise is illustrated in the frequency domain plot of Fig. 6.
These frequencies can have their own spectral density plots, which can be
defined as noise on noise.

Power-law noise processes are types of noise that produce a certain slope
on the one-sided spectral density plot. They are characterized by their
dependence on frequency. The spectral density plot of a typical oscillator
output is usually a combination of the various power-law processes.

In general, we can classify the power-law noise processes into five categor-
ies. These five processes are illustrated in Fig. 5, which can be referred to with
respect to the following description of each process.

(1) Randomwalk FM (random walk of frequency). The plot goes down as
1/f*. This noise is usually very close to the carrier and is difficult to measure.
It is usually related to the oscillator’s physical environment (mechanical
shock, vibration, temperature, or other environmental effects).

Power

Frequency

FiG. 6 A basic discrete-frequency signal display.
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(2) Flicker FM (flicker of frequency). The plot goes down as 1/f3. This
noise is typically related to the physical resonance mechanism of the active
oscillator or the design or choice of parts used for the electronic or power
supply, or even environmental properties. The time domain frequency
stability over extended periods is constant. In high-quality oscillators, this
noise may be marked by white FM (1/f?) or flicker phase modulation
oM (1j). It may be masked by drift in low-quality oscillators.

(3) White FM (white frequency, random walk of phase). The plot goes
down as 1/f%. A common type of noise found in passive-resonator frequency
standards. Cesium and rubidium frequency standards have white FM noise
characteristic because the oscillator (usually quartz) is locked to the reso-
nance feature of these devices. This noise gets better as a function of time
until it (usually) becomes flicker FM (1/f3) noise.

(4) Flicker oM (flicker modulation of phase). The plot goes down as
1/f. This noise may relate to the physical resonance mechanism in an oscil-
lator. It is common in the highest-quality oscillators. This noise can be
introduced by noisy electronics—amplifiers necessary to bring the signal
amplitude up to a usable level —and frequency multipliers. This noise can
be reduced by careful design and by hand-selecting all components.

(5) White $M (white phase). White phase noise plot is flat /°. Broadband
phase noise is generally produced in the same way as flicker ¢M (1/f). Late
stages of amplification are usually responsible. This noise can be kept low
by careful selection of components and by narrow-band filtering at the output.

The power-law processes are illustrated in Fig. S.

F. INTEGRATED PHASE NOISE

The integrated phase noise is a measure of the phase-noise contribution
(rms radians, rms degrees) over a designated range of Fourier frequencies.
The integration is a process of summation that must be performed on the
measured spectral density within the actual IF bandwidth (B) used in the
measurement of d¢,.,. Therefore, the spectral density S;,(f) must be un-
normalized to the particular bandwidth used in the measurement. Define
S.(f), in radians squared, as the unnormalized spectral density:

S.(f) = 2{10 exp(Z(f) + 10 log B)/10]. 42)

Then, the integrated phase noise over the band of Fourier frequencies (f; tof,)
where measurements are performed using a constant IF bandwidth, in radians
squared, is

f’l
Se(fito fi) = | Su«f)df. (43)
S
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or, in rms radians,

Se(fito f) = VL Su(f) + Su(f)) = = S.(fo, (44)
and the integrated phase noise in rms degrees is calculated as
S5(360/2m). (45)

The integrated phase noise in decibels relative to the carrier is calculated as
Sg = 10 log(}S3). (46)

The previous calculations correspond to the illustration in Fig. 7, which
includes two bandwidths (B1 and B2) over two ranges of Fourier frequencies.

[n the measurement program, different IF bandwidths are used as set
forth by Lance et al. (1977). The total integrated phase noise over the differ-
ent ranges of Fourier frequencies, which are measured at constant band-
widths as illustrated, is calculated in rms radians as follows:

St = v'(Snl)z + (Sp2)? + -+ + (Ssa)?, 47

where it is recalled that the summation is performed in terms of radians
squared.

FiG. 7 Integrated phase noise over Fourier frequency ranges at which measurements
were performed using constant bandwidth.
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G. AM NOoISE IN THE FREQUENCY DOMAIN

The spectral density of AM fluctuations of a signal follows the same
general derivation previously given for the spectral density of phase fiucta-
tions. Amplitude fluctuations de of the signal under test produces voltage
fluctuations 64 at the output of the mixer. Interpretating the mean-square
fluctuations d¢ and 4 in spectal density fashion, we obtain S,,( f), the spectral
density of amplitude fluctuations d¢ of a signal in volts squared per hertz:

Sslf) = Vo) [Ssalf N Arms)’]: (48)

The term »( /) is the normalized version of the amplitude modulation (AM)
portion of S 3(v), with its frequency parameter f referenced to the signal’s
average frequency v, taken as the origin such that the difference frequency
fequals v — v,. The range of Fourier frequency difference f is from minus
vo to plus infinity.

Theterm»( f)is defined as the ratio of the spectral density of one amplitude-
modulated sideband to the total signal power, at Fourier frequency difference
f from the signal’s average frequency v,, for a single specified signal or device.
The dimensionality is per hertz. #(f) and m(f) are similar functions; the
former is a measure of phase-modulated (PM) sidebands, the later is a cor-
responding measure of amplitude-modulated (AM) sidebands. We introduce
the symbol »(f) to have useful terminology for the important concept of
normalized AM sideband power.

For the types of signals under consideration, by definition the two ampli-
tude-fluctuation sidebands (lower sideband and upper sideband, at —f
f from vy, respectively) of a signal are coherent with each other. Also, they
are of equal intensity. The operation of the mixer when it is driven at colinear
phase is such that the amplitudes of the two AM sidebands are added linearly
in the output of the mixer, resulting in four times as much power in the output
as would be present if only one of the AM sidebands were allowed to contri-
bute to the output of the mixer. Hence, for | f| < vq,

SA(If[)/(Arms)2 = 4[8\/?{—!’("0 + f)]/Plou (49)

and, using the definition

m(f) =[S m(vo + )P (50)
we find, in decibels (carrier) per hertz,
m(f) = (1/2V)S;( f ). (51)
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III. Phase-Noise Measurements Using the Two-Oscillator
Technique

A functional block diagram of the two-oscillator system for measuring
phase noise is shown in Fig. 8. NBS has performed phase noise measurements
since 1967 using this basic system. The signal level and sideband levels can
be measured in terms of voltage or power. The low-pass filter prevents local
oscillator leakage power from overloading the spectrum analyzer when
baseband measurements are performed at the Fourier (offset) frequencies
of interest. Leakage signals will interfere with autoranging and with the
dynamic range of the spectrum analyzer.

The low-noise, high-gain preamplifier provides additional system sensi-
tivity by amplyfying the noise signals to be measured. Also, because spectrum
analyzers usually have high values of noise figure, this amplifier is very de-
sirable. As an example, if the high-gain preamplifier had a noise figure of
3 dB and the spectrum analyzer had a noise figure of 18 dB, the system sensi-
tivity at this point has been improved by 15 dB. The overall system sensitivity
would not necessarily be improved 15 dB in all cases, because the limiting
sensitivity could have been imposed by a noisy mixer.

NOISY SIGNAL
(THIS IS THE QUANTITY
TO BE MEASURED)
OSCILLATOR PHASE SHIFTER vaeap A
UNDER TEST
NOISE ONLY
SMALL
FLUCTUATIONS
S5off)
LOW-PASS ¢ SPECTRUM
MIXER FILTER ANALYZER
LOW-NOISE
AMPLIFIER

O\,

REFERENCE NO NOISE
OSCILLATOR

FiG. 8 The two-oscillator technique for measuring phase noise. Small fluctuations from
nominal voltage are equivalent to phase variations. The phase shifter adjusts the two signals
to qQuadrature in the mixer, which cancels carriers and converts phase noise to fluctuating dc
voltage.
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Assume that the reference oscillator is perfect (no phase noise), and that it
can be adjusted in frequency. Also, assume that both oscillators are extremely
stable, so that phase quadrature can be maintained without the use of an
external phase-locked loop or reference. The double-balanced mixer acts
as a phase detector so that when two input signals are identical in frequency
and are in phase quadrature, the output is a small fluctuating voltage. This
represents the phase-modulated (PM) sideband component of the signal
because, due to the quadrature of the signals at the mixer input, the mixer
converts the amplitude-modulated (AM) sideband components to FM, and
at the same time it converts the PM sideband components to AM. These
AM components can be detected with an amplitude detector, as shown in
Fig. 3.

If the two oscillator signals applied to the double-balanced mixer of Fig. 8
are slightly out of zero beat, a slow sinusoidal voltage with a peak-to-peak
voltage V,,, can be measured at the mixer output. If these same signals
are returned to zero beat and adjusted for phase quadrature, the output of
the mixer is a small fluctuating voltage (év) centered at zero volts. If the
fluctuating voltage is small compared to 4V, the phase quadrature con-
dition is being closely maintained and the “small angle” condition is being
met. Phase fluctuations in radians between the test and reference signals
(phases) are

0¢ = X¢, — &) (52)

These phase fluctuations produce voltage fluctuations at the output of the
mixer,

Sv =1V, 8¢, (53)

where phase angles are in radian measure and sin 6¢ = ¢ for small é¢
(8¢ < 1 rad). Solving for ¢, squaring both sides, and taking a time average
gives

(89> = &(80)* )/(Vup), (54)
where the angle brackets represent the time average.
For the sinusoidal beat signal,
Voup)? = 8(Vom)?. (55)

The mean-square fluctuations of phase ¢ and voltage dv interpreted in a
spectral density fashion gives the following in radians squared per hertz:

Ss6(f) = Sl )/ 2(Vems)*. (56)

Here, S,.( f), in volts squared per hertz, is the spectral density of the voltage
fluctuations at the mixer output. Because the spectrum analyzer measures
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rms voltage, the noise voltage is in units of volts per square root hertz, which
means volts per square root bandwidth. Therefore,

Sév(f) = [évrms/ \/E] = ((50",“)2/3, (57)

where B is the noise power bandwidth used in the measurement.

Because it was assumed that the reference oscillator did not contribute any
noise, the voltage fluctuations v, represent the oscillator under test, and
the spectral density of the phase fluctuations in terms of the voltage measure-
ments performed with the spectrum analyzer, in radians squared per hertz, is

S&db(f) = %[(5vrms)2/B(Vrms)2]' (58)
Equation (46) is sometimes expressed as
Sse(f) = Ss( /K2, (59

where K is the calibration factor in volts per radian. For sinusoidal beat
signals, the peak voltage of the signal equals the slope of the zero crossing
in volts per radian. Therefore, (V,)? = 2(¥,,,)%, which is the same as the
denominator in Eq. (56).

The term S,,(f) can be expressed in decibels relative to one square radian
per hertz by calculating 10 log S,,(f) of the previous equation:

Sso(f) = 20 108(00,me) — 20 log(V;r,) — 10 log(B) — 3. (60)

A correction of 2.5 is required for the tracking spectrum analyzer used in
these measurement systems. £( f) differs by 3 dB and is expressed in decibeis
(carrier) per hertz as

Z(f) = 20 log(6v,ms) — 20 log(V;rn,) — 10 log(B) — 6. (61)

A. Two Noisy OSCILLATORS

The measurement system of Fig. 6 yields the output noise from both
oscillators. If the reference oscillator is superior in performance as assumed
in the previous discussions, then one obtains a direct measure of the noise
characteristics of the oscillator under test.

If the reference and test oscillators are the same type, a useful approxima-
tion is to assume that the measured noise power is twice that associated
with one noisy oscillator. This approximation is in error by no more than
3 dB for the noisier oscillator, even if one oscillator is the major source of
noise. The equation for the spectral density of measured phase tluctuations
in radians squared per hertz is

S(’l'(f)

#2

Sse(f)

= 2(Vime)? = IZSM(f )

+ S56(S)
#1

(one device)

(62)

(two devices)
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The measured value is therefore divided by two to obtain the value for the
single oscillator. A determination of the noise of each oscillator can be made
if one has three oscillators that can be measured in all pair combinations.
The phase noise of each source 1, 2, and 3 is calculated as follows:

gl(f) = 10 ]og[i_(l()!u(f)/lo + 10Z1sU)10 _ 102’:3(!)/10)]’ (63)
yz(f) =10 log[%(loflz(f)/lo + 10%W10 102’13(1')/10)]’ (64)
_yS(f) = 10 log[%(l()y”‘f’“o + 10€2U10 _ 102’1:(1‘)/10)]‘ (65)

B. AUTOMATED PHASE-NOISE MEASUREMENTS USING THE
Two-OsciLLATOR TECHNIQUE

The automated phase-noise measurement system is shown in Fig. 9. It is
controlled by a programmable caiculator. Each step of the calibration and
measurement sequence is included in the program. The software program
controls frequency slection, bandwidth settings, settling time, amplitude
ranging, measurements, calculations, graphics, and data plotting. Normally,
the system is used to obtain a direct plot of #(f). The integrated phase noise
can be calculated for any selected range of Fourier frequencies.

A quasi-continuous plot of phase noise performance #(f) is obtained
by performing measurements at Fourier frequencies separated by the IF
bandwidth of the spectrum analyzer used during the measurement. Plots of
other defined parameters can be obtained and plotted as desired.

The IF bandwidth settings for the Fourier (offset) frequency-range
selections are shown in the following tabulation:

IF Fourier iF Fourier
bandwidth frequency  bandwidth frequency
(Hz) (kHz) (kHz) (kHz)
3 0.001-0.4 ] 40-100
10 0.4-1 3 100-400
30 1-4 10 400-1300
100 4-10
200 10-40

The particular range of Fourier frequencies is limited by the particular
spectrum analyzer used in the system. A fast Fourier analyzer (FFT) is also
incorporated in the system to measure phase noise from submillihertz to
25 kHz.

High-quality sources can be measured without multiplication to enhance
the phase noise prior to downconverting and measuring at baseband fre-
quencies. The measurements are not completely automated because the
calibration sequence requires several manual operations.
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FiG.9 An automated phase-noise measurement system.

C. CALIBRATION AND MEASUREMENTS USING THE
Two-OSCILLATOR SYSTEM

Z(f)is anormalized frequency domain measure of phase-fluctuation side-
band power. The noise power is measured relative to the carrier power
level. Correction must be applied because of the type of measurement and
the characteristics of the measurement equipment. The general procedure
for the calibration and measurement sequence includes the following:
measuring the noise power bandwidth for each IF bandwidth setting on the
Tracking Spectrum Analyzer (Section IILC.1); establishing a carrier refer-
ence power level referenced to the output of the mixer (Section II1.C.2);
obtaining phase quadrature of the two signals applied to the mixer (Section
II1.C.3); measuring the noise power at the selected Fourier frequencies
(Section II1.C.4); performing the calculations and plotting the data (Section
[I1.C.5); and measuring the system noise floor characteristics, usually re-
ferred to as the system sensitivity.

1.  Noise-Power Bandwidth

Approximations of analyzer-noise bandwidths are not adequate for phase
noise measurements and calculations. The IF noise-power bandwidth of the
tracking spectrum analyzer must be known and used in the calculations of
phase noise parameters. Figure 10 shows the results of measurements per-
formed using automated techniques. For example, with a 1-MHz signal
input to the tracking spectrum analyzer, the desired incremental frequency
changes covering the [F bandwidth are set by calculator control.
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F1G. 10 Plot of automated noise-power bandwidth.

The spectrum analyzer power output is recorded for each frequency setting
over the range, as illustrated in Fig. 10. The 40-dB level and the 100 incre-
ments in frequency are not the minimum permissible values. The recorded
can be plotted for each IF bandwidth, as illustrated, and the noise-power
bandwidth is calculated in hertz as

(P, + Py + Py + .-+ PI9)ASf

noise power bandwidth = -
peak power reading

.+ (66)

where Afis the frequency increment in hertz and the peak power is the maxi-
mum measured point obtained during the measurements. All power values
are in watts,

2. Setting the Carrier Power Reference Level

Recall from Section IIL.6 that for sinusoidal signals the peak voltage of
the signal equals the slope of the zero crossing, in volts per radian. A frequency
offset is established. and the peak power of the difference frequency is mea-
sured as the carrier-power reference level; this establishes the calibration
factor of the mixer in volts per radian.

Because the precision IF attenuator is used in the calibration process, one
must be aware that the impedance looking back into the mixer should be
50 Q. Also, the mixer output signal should be sinusoidal. Fischer (1978)
discussed the mixer as the “critical element” in the measurement system.
It i1s advisable to drive the mixer so that the sinusoidal signal is obtained
at the mixer output. In most of the TRW systems, the mixer drive levels are
10 dBm for the reference signal and about zero dBm for the unit under test.
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System sensitivity can be increased by driving the mixer with high-level
signals that lower the mixer output impedance to a few ohms. This presents
a problem in establishing the calibration factor of the mixer, because it
might be necessary to calibrate the mixer for different Fourier frequency
ranges.

The equation sensitivity = slope = beat-note amplitude does not hold
if the output of the mixer is not a sine wave. The Hewlett-Packard 3047
automated phase noise measurement system allows accurate calibration
of the phase-detector sensitivity even with high-level inputs by using the
derivative of the Fourier representation of the signal (the fundamental and
its harmonics). The slope at ¢ = 0 radians is given by

Asing — Bsin3¢ + Csin5¢ = Acos ¢ — 3B cos 3¢ + 5C cos 5¢
=A—-3B+5C+---. (67)
Referring to Fig. 9, the carrier-power reference level is obtained as follows.

(1) The precision IF step attenuator is set to a high value to prevent
overloading the spectrum analyzer (assume 50 dB as our example).

(2) The reference and test signals at the mixer inputs are set to approxi-
mately 10 dBm and 0 dBm, as previously discussed.

(3) If the frequency of one of the oscillators can be adjusted, adjust its
frequency for an IF output frequency in the range of 10 to 20 kHz. If neither
oscillator is adjustable, replace the osciilator under test with one that can
be adjusted as required and that can be set to the identical power level of the
oscillator under test.

(4) The resulting IF power level is measured by the spectrum analyzer,
and the measured value is corrected for the attentuator setting, which was
assumed to be 50 dB. The correction is necessary because this attenuator
will be set to its zero decibel indication during the measurements of noise
power. Assuming a spectrum analyzer reading of —40 dBm, the carrier-
power reference level is caiculated as

carrier power reference level = 50 dB — 40 dBm = 10 dBm. (68)
3. Phase Quadrature of the Mixer Input Signals

After the carrier-power reference has been established, the oscillator under
test and the reference oscillator are tuned to the same frequency, and the
original reference levels that were used during calibration are reestablished.
The quadrature adjustment depends on the type of system used. Three
possibilities, illustrated in Fig. 9, are described here.

(1) If the oscillators are very stable, have high-resolution tuning, and are
not phase-locked, the frequency of one oscillator is adjusted for zero dc
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voltage output of the mixer as indicated by the sensitive oscilloscope.
Note: Experience has shown that the quadrature setting is not critical if the
sources have low AM noise characteristics. As an example, experiments
performed using two HP 3335 synthesizers showed that degradation of the
phase-noise measurement became noticeable with a phase-quadrature
offset of 16 degrees.

(2) Ifthe common reference frequency is used, as illustrated in Fig. 9, then
it is necessary to include a phase shifter in the line between one of the oscil-
lators and the mixer (preferably between the attenuator and mixer). The
phase shifter i1s adjusted to obtain and maintain zero voits dc at the mixer
output. A correction for a nonzero dc value can be applied as exemplified by
the HP 3047 automated phase-noise measurement system.

(3) If one oscillator is phase-locked using a phase-locked loop, as shown
dotted in on Fig. 9, the frequency of the unit under test is adjusted for zero
dc output of the mixer as indicated on the oscilloscope.

A phase-locked loop is a feedback system whose function is to force a
voltage-controlled oscillator (VCO) to be coherent with a certain frequency,
i.e., it is highly correlated in both frequency and phase. The phase detector
1s a mixer circuit that mixes the input signal with the VCO signal. The mixer
output is v; + v,. when the loop is locked, the VCO duplicates the input
frequency so that the difference frequency is zero, and the output is a dc
voitage proportional to the phase difference. The low-pass filter removes
the sum frequency component but passes the dc component to control the
VCO. The time constant of the loop can be adjusted as needed by varying
amplifier gain and RC filtering within the loop.

A loose phase-locked loop is characterized by the following.

(1) The correction voltage varies as phase (in the short term) and phase
variations are therefore observed directly.

(2) The bandwidth of the servo response is small compared with the
Fourier frequency to be measured.

(3) The response time is very slow.

A tight phase-locked loop is characterized by the following,

(1) The correction voltage of the servo loop varies as frequency.

(2) The bandwidth of the servo response is relatively large.

(3) The response time is much smaller than the smallest time interval 1
at which measurements are performed.

Figure 11 shows the phase-noise characteristics of the H.P. 8640B synthe-
sizer measured at 512 MHz. The phase-locked-loop attenuation character-
istics extend to 10 kHz. The internal-oscillator-source characteristics are
plotted at Fourier frequencies beyond the loop-bandwidth cutoff at 10 kHz.
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FiG. |1 Phase-locked-loop characteristics of the H.P. 8640B signal generator. showing
the normalized phase-noise sideband power spectral density.

4. Measurements, Calculations, and Data Plots

The measurement sequence is automated except for the case where manual
adjustments are required to maintain phase quadrature of the signals. After
phase quadrature of the signals into the mixer is established, the [F atten-
uator is returned to the zero-decibel reference setting. This attenuator is
set to a high value [assumed to be 50 dB in Eq. (65)] to prevent saturation
of the spectrum analyzer during the calibration process.

The automated measurements are executed, and the direct measurement
and data plot of £(f) is obtained in decibels (carrier) per hertz using the
equation

Z(f) = — [carrier power level — (noise power level — 6 + 2.5
— 10log B — 3)]. (69)

The noise power (dBm) is measured relative to the carrier-power level
(dBm), and the remaining terms of the equation represent corrections that
must be applied because of the type of measurement and the characteristics
of the measurement equipment, as follows.

(1) The measurement of noise sidebands with the signals in phase
quadrature requires the —6-dB correction that is noted in Eq. (69).

(2) The nonlinearity of the spectrum analyzer’s logarithmic [F amplifier
results in compression of the noise peaks which, when average-detected,
require the 2.5-dB correction.

(3) The bandwidth correction is required because the spectrum analyzer
measurements of random or white noise are a function of the particular
bandwidth used in the measurement.
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(4) The —3-dB correction is required because this is a direct measure of
Z(f) of two oscillators, assuming that the oscillators are of a similar type
and that the noise contribution is the same for each oscillator. If one oscil-
lator is sufficiently superior to the other, this correction is not required.

Other defined spectral densities can be calculated and plotted as desired.
The plotted or stored value of the spectral density of phase fluctuations
in decibels relative to one square radian (dBc rad?/Hz) is calculated as

Si(f) = L(f) + 3. (70)

The spectral density of phase fluctuations, in radians squared per hertz, is
calculated as

Sss(f) = 10 exp(S,4(f)/10), (1)
The spectral density of frequency fluctuations, in hertz squared per hertz, is
Ss(f) = [28s6(f). (72)

where S;,(F) is in decibels with respect to 1 radian.

5. System Noise Floor Verification

A plot of the system noise floor (sensitivity) is obtained by repeating the
automated measurement procedures with the system modified as shown in
Fig. 12. Accurate measurements can be obtained using the configuration
shown in Fig. 12a. The reference source supplies 10 dBm to one side of the
mixer and 0 dBm to the other mixer input through equal path lengths;
phase quadrature is maintained with the phase shifter.

N (AW R 50-Q
TERMINATION

0d8m
+10 dBm
PHASE
SHIFTER
—r ~ +10 dBm
(a) (b)

Fi1G. 12 System configurations for measuring the system noise floor (sensitivity): (a)
configuration used for accurate measurements: (b) alternate configuration sometimes used.
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The configuration shown in Fig. 12b is sometimes used and does not
greatly degrade the noise floor because the reference signal of 10 dBm is
larger than the signal frequency. See Sections IV.B and IV.C 4 for additional
discussions related to system sensitivity and recommended system evaluation.

Proper selection of drive and output termination of the double-balanced
mixer can result in improvement by 15 to 25 dB in the performance of phase-
noise measurements, as discussed by Walls et al. (1976). The beat frequency
between the two oscillators can be a sine wave, as previously mentioned,
with proper low drive levels. This requires a proper terminating impedance
for the mixer. With high drive levels, the mixer output waveform will be
clipped. The slope of the clipped waveform at the zero crossings, illustrated
by Walls er al. (1976), is twice the slope of the sine wave and therefore im-
proves the noise floor sensitivity by 6 dB, i.e., the output signal, proportional
to the phase fluctuations, increases with drive level. This condition of clipping
requires characterization over the Fourier frequency range, as previously
mentioned for the Hewlett-Packard 3047 phase noise measurement system.
An amplifier can be used to increase the mixer drive levels for devices that

have insufficient output power to drive the double-balanced mixers.
~ Lower noise floors can be achieved using high-level mixers when available
drive levels are sufficient. A step-up transformer can be used to increase
the mixer drive voltage because the signal and noise power increase in the
same ratio, and the spectral density of phase of the device under test is un-
changed, but the noise floor of the measurement system is reduced.

Walls et al. (1976) used a correlation technique that consisted primarily
of two phase-noise measurement systems. At TRW the technique is used as
shown in Fig. 13. The cross spectrum is obtained with the fast Fourier
transform (FFT) analyzer that performs the product of the Fourier trans--
form of one signal and the complex conjugate of the Fourier transform of

O—

DUAL-
CHANNEL
FFT

vy v

@__

F1G. 13 Cross-spectrum measurement using the two-oscillator technique.
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the second signal. This cross spectrum, which is a phase-sensitive character-
istic, gives a phase and amplitude sensitivity measure directly. A signal-
to-noise enhancement greater than 20 dB can be achieved.

If the double-balanced phase noise measurement system does not provide
a noise floor sufficient for measuring a high-quality source. frequency
multiplier chains can be used if their inherent noise is 10-20 dB below the
measurement system noise. In frequency multiplication the noise increases
according to

10 log(final frequency/original frequency). (73) * @

PHASE-NOISE SIDEBAND POWER
{dBc /Hz)

10 102 103 10 10% 108
FOURIER FREQUENCY {Hz)
(a)

£(1) (dBc/Hz)

-160

gl oo gt oot ogoaaad g r el e aaal o ol e el g aaal
0.1 1 10 102 103 10 108 108 10’
f(Hz)
{b)

Fic. 14 Data plots of the automated phase-noise measurement system: (a) a high quality
5-MHz quartz oscillator; (b) combined noise of two H.P. 8662A synthesizers (subtract 3 dB
for a single unit).

& See Appendix Note # 32
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The following equation is used to correct for noise-floor contribution
P, in dBc/Hz, if desired or necessary:

ZL(f)corrected) = —Z(f) + 10 log[Pﬂf[’,————fﬂ] (74)
)

The correction for noise-floor contribution can also be obtained by using
the measurement of S,,( /) of Eq. (57). Measurement of S,,( /) of the oscillator
plus floor is obtained, then S,,( f) is obtained for the noise floor only. Then,

Ssl )| = Sal(f)

cor

= Ss(f)

(osc + nf)

(75)

nf

Figure 14a shows a phase noise plot of a very high-quality (5-MHz)
quartz oscillator, measured by the two-oscillator technique. The sharp
peaks below 1000 Hz represent the 60-Hz line frequency of the power supply
and its harmonics and are not part of the oscillator phase noise. Figure 14b
shows measurements to 0.02 Hz of the carrier at a frequency of 20 MHz.

IV. Single-Oscillator Phase-Noise Measurement Systems and *
Techniques

The phase-noise measurements of a single-oscillator are based on the @
measurement of frequency fluctuations using discriminator techniques. The
practical discriminator acts as a filter with finite bandwidth that suppresses
the carrier and the sidebands on both sides of the carrier. The ideal carrier-
suppression filter would provide infinite attentuation of the carrier and
zero attenutation of all other frequencies. The effective Q of the practical
discriminator determines how much the signals are attenuated.

Frequency discrimination at very high frequencies (VHF) has been ob-
tained using slope detectors and ratio detectors, by use of lumped circuit
elements of inductance and capacitance. At ultrahigh frequencies (UHF)
between the VHF and microwave regions, measurements can be performed
by beating, or heterodyning, the UHF signal with a local oscillator to obtain
a VHF signal that is analyzed with a discriminator in the VHF frequency
range. Those techniques provide a means for rejecting residual amplitude-
modulated (AM) noise on the signal under test. The VHF discriminators
usually employ a limiter or ratio detector.

Ashley et al. (1968) and Ondria (1968) have discussed the microwave
cavity discriminator that rejects AM noise, suppresses the carrier so that the
input level can be increased, and provides a high discriminated output to
improve the signal-to-noise floor ratio. The delay line used as an FM dis-
criminator has been discussed by Tykulsky (1966), Halford (1975), and

* See Appendix Note # 6
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FiG. 15 Single-oscillator phase-noise measurement techniques: (a) cavity discriminator;
(b) reflective-type delay-line discriminator; (c) one-way delay kine.

Ashley et al. (1968). Ashley er al. (1968) proposed the reflective-type delay-
line discriminator shown in Fig. 15b. The cavity can also be used to replace
delay line. The one-way delay line shown in Fig. 15¢ is implemented in the
TRW measurement systems. The theory and applications set forth in this
section are based on a system of this particular type.

A. THE DELAY LINE AS AN FM DISCRIMINATOR

1. The Single-Oscillator Measurement System

The single-oscillator signal is split into two channels in the system shown
in Fig. 15. One channel is called the nondelay or reference channel. It is also
referred to as the local-oscillator (LO) channel because the signal in this
channel drives the mixer at the prescribed impedance level (the usual LO
drive). The signal in the second channel arrives at the mixer through a delay
line. The two signals are adjusted for phase quadrature with the phase
shifter, and the output of the mixer is a fluctuating voltage, analogous to the
frequency fluctuations of the source, centered on approximately zero d¢
volts.

The delay line yields a phase shift by the time the signal arrives at the
balanced mixer. The phase shift depends on the instantaneous frequency of
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the signal. The presence of frequency modulation (FM) on the signal gives
rise to differential phase modulation (PM) at the output of the differential
delay and its associated (nondelay) reference line. This relationship is linear
if the delay t, is nondispersive. This is the property that allows the delay line
to be used as an FM discriminator. In general, the conversion factors are a
function of the delay (t4) and the Fourier frequency f but not of the carrier
frequency.
The differential phase shift of the nominal frequency v, caused by the delay
line is
Ad = 2nrvy 1y, (76)

where 1, is the time delay.
The phase fluctuations at the mixer are related to the frequency fluctuations
(at the rate f) by

O = 2ty Ov(f). (77)
The spectral density relationships are
Swlf)| = Qate Sulf) (78)
and
Sr)v(f) = fz Sa.»(f)‘ )]
Then,
Sse(S) = (Z“ﬁ'd)z Sse( f) (80)
dim osc

where the subscript dlm indicates delay-line method. From Eq. (56), the
spectral density of phase for the two-oscillator technique, in radians squared
per hertz, is

S )2
R RE il o]
because
Voip)? = B(0ms)? = HVp)? = 42t ems)’]
and
L) = 2SN (Voip)?) = (001me)* /4 Vems)* B (82)
per hertz.
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The sensitivity (noise floor) of the two-oscillator measurement system
includes the thermal and shot noise of the mixer and the noise of the base-
band preamplifier (referred to its input). This noise floor is measured with
the oscillator under test inoperative. The measurement system sensitivity of
the two-oscillator system, on a per hertz density basis (dBc/Hz) is

-(f(f)nf =10 ]og[z(évn)z/(vplp)zl (83)

where Jv, is the rms noise voltage measured in a one-hertz bandwidth.

The two-oscillator system therefore yields the output noise from both
oscillators. If the reference oscillator is superior in performance, as assumed
in the previous discussions, then one obtains a direct measure of the noise
characteristics of the oscillator under test. If the reference and test oscillators
are the same type, a useful approximation is to assume that the measured
noise power is twice that associated with one noisy oscillator. This approxi-
mation is in error by no more than 3 dB for the noisier oscillator. Substituting
in Eq. (80) and using the relationships in Eq. (56), we have, per hertz,

L) = 2Avm)* (V) 127f14)? (84)
d

im
Examination of this equation reveals the following.

(1) The term in the brackets represents the two-oscillator response.
Note that this term represents the noise floor of the two-oscillator method.
Therefore, adoption of the delay-line method results in a higher noise by the
factor (2nf14)* when compared with the two-oscillator measurement method.
The sensitivity (noise floor) for delay lines with different values of time delay
are illustrated in Fig. 17.

(2) Equation (84) also indicates that the measured value of £(f) is
periodic in w = 2xf. This is shown in Fig, 21. The first null in the responses
is at the Fourier frequency f = 1/74. The periodicity indicates that the cali-
bration range of the discriminator is limited and that valid measurements
occur only in the indicated range. as verified by the discriminator slope shown
in Fig. 16. (See Fig. 23.)

(3) The maximum value of (2nf74)* can be greater than unity (it is 4 at
f = 17214). This 6-dB advantage is utilized in the noise-floor measurement.
However, it is beyond the valid calibration range of the delay-line system.
The 6-dB advantage is offset by the line attenuation at microwave frequencies,
as discussed by Halford (1975).

The delay-line discriminator system has been analyzed in terms of a power-
limited system (a particular idealized system in which the choice of power
oscillator voltage, the attenuator of the delay line, and the conversion loss
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of the mixer are limited by the capability of the mixer) by Tykulsky (1966),
Halford (1975), and Ashley et al. (1977). For this particular case, Eq. (83)
indicates that an increase in the length of the delay line (to increase 1, for
decorrelation of Fourier frequencies closer to the carrier) results in an
increase in attenuation of the line, which causes a corresponding decrease
in V,,. The optimum length occurs where t4 is such that the decrease in

V. is approximately compensated by the increase in (2nf74), i.e., where
d 2nf14
— = 0. (85)
dty Vo

This condition occurs where the attenuation of the delay line is | Np
(8.686 dB). However, when the system is not power limited, the attenuation
of the delay line is not limited, because the input power to the delay line can
be adjusted to maintain V,,, at the desired value. The optimum delay-line
length is determined at a particular selectable frequency. However, since
the attenuation varies slowly (approximately proportional to the square root
of frequency), this characteristic allows near-optimum operation over a
considerable frequency range without appreciable degradation in the
measurements.

A practical view of the time delay (tr,) and Fourier-frequency functional
relationship can be obtained by reviewing the basic concepts of the dual-
channel time-delay measurement system discussed by Lance (1964). If the
differential delay between the two channels is zero, there is no phase differ-
ence at the detector output when a swept-frequency cw signal is applied
to the system. Figure 16 shows the detected output interference display when
a swept-frequency cw signal (zero to 4 MHz) is applied to a system that has

f=4MH
0 14 = 1500 nsec z

f=2MHz

FiG. 16 Swept-frequency interference display at the output of a dual-channel system
with a differential delay of 500 nsec.
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a differential delay of 500 nsec between the two channels. The signal ampli-
tudes are assumed to be almost equal, thus producing the familiar voltage-
standing-wave pattern or interference display. Because this is a two-channel
system, there is a null every 360°, as shown.

2. System Sensitivity (Noise Floor) When Using the
Differential Delay-Line Technique

Halford (1975) has shown that the sensitivity (noise floor) of the single-
oscillator differential delay-line technique is reduced relative to the two-
osciiiator techniques. The sensitivity is modified by the factor

S4 = 2(1 — cos 2nf1y). (86)
For wt, = 2ndt, < 1 a good approximation is
S3 = 2(1 — cos 2nf1y) = (WTa)*[1 — H(wte)?] = Qnfr)? = 6%, (87)

where 6 is the phase delay of the differential delay line evaluated at the
frequency /. Figure 17 shows the relative sensitivity (noise floor) of the two-
oscillator technique and the single-oscillator technique with different
delay-line lengths. The f ™2 slope is noted at Fourier frequencies beyond

-0~
-40
-60 |-
-80 =
520 nsec
- SINGLE
100 |- 260 nsec P OSCILLATOR

65 nsec

NOISE FLOOR (dBc¢ /Hz)

/

TWO OSCILLATORS
L i

10 102 103 104 10° 108 107
FOURIER FREQUENCY

FiG. 17 Relative sensitivity (noise floor) of single-oscillator and two-oscillator phase-
noise measurement systems.
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about | kHz. For Fourier frequencies closer to the carrier, the slope is f ~°.
i.e., the sum of the f ™2 slope of Eq. (87) and the f ~! flicker noise.

Phase-locked sources have phase-noise characteristics that cannot be
measured at close-in Fourier frequencies using this basic system. The
relative sensitivity of the system can be improved by using a dual (two-
channel) delay-line system and performing cross-spectrum analysis, which
will be presented in this chapter.

Labaar (1982) developed the delay-line rf bridge configuration shown in
Fig. 18. At microwave frequencies where a high-gain amplifier is available,
suppression of the carrier by the rf bridge allows amplification of the noise
going into the mixer. A relative sensitivity improvement of 35 dB has been
obtained without difficulty. The limitations of the technique depend on the
available rf power and the carrier suppression by the bridge. Naturally, if
the rf input to the bridge is high one must use the technique with adequate
precautions to prevent mixer damage that can occur by an accidental bridge
unbalance. Labaar (1982) indicated the added advantage of using the rf
bridge carrier-suppression technique when attempting to measure phase
noise close to the carrier when AM noise is present. Figure 19 shows the

. PHASE
SHIFTER
ATTENUATOR
VA
4
DELAY-LINE |
rf BRIDGE
VAAAS
DELAY LINE
L----» ..... e P .
AMPLIFIER
POWER
SPLITTER
uut '

N

PHASE
SHIFTER

FiG. 18 Carrier suppression using an rf bridge to increase relative sensitivity. (Courtesy
Instrument Society of America.)
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F1G. 19 Phase detector output (AM-PM crossover); 1, delay time.

mixer output for phase (PM) and amplitude (AM) noise in the single-
oscillator delay-line FM discriminator system. It is noted that the phase
noise and AM noise intersect and that the AM will therefore limit the mea-
surement accuracy near the carrier. Even though AM noise is much lower
than phase noise in most sources, and even though the AM is normally
suppressed about 20 dB, there is still AM at the mixer output. This output
is AM leakage and is caused by the finite isolation between the mixer ports.
The two-oscillator technique does not experience this problem to this
extent because the phase noise and AM noise maintain their relative rela-
tionships at the mixer output independent of the offset frequency from the
carrier.

B. CALIBRATION AND MEASUREMENTS USING THE DELAY
LINE AS AN FM DISCRIMINATOR

The block diagram of a practical single-oscillator phase noise measure-
ment system is shown in Fig. 20. The signals in the delay-line channel of the
system experience the one-way delay of the line. With adequate source
power, the system is not limited to the optimum 1 Np (8.686 dB) previously
discussed for a power-limited system. Measurements are performed using
the following operational procedures.

(1) Measure the tracking spectrum analyzer IF bandwidths as set forth
in Section II1.C.1.

(2) Establish the system power levels (Section IV.B.1).

(3) Establish the discriminator calibration factor (Section 1V.B.2).

(4) Measure and plot the oscillator characteristics in the automatic
system used (Section IV.B.3).

(5) Measure the system noise floor (sensitivity) (Section 1V.B.4).
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F1G. 20 Single-oscillator phase noise measurement system using the delay line as an
FM discriminator. (From Lance et al., 1977a.)

1. System Power Levels

The system power levels are set using attenuators, as shown in Fig. 20.
Because the characteristic impedance of attenuator No. 4 is 50 Q, mismatch
errors will occur if the mixer output impedance is not 50 Q. As previously
discussed, the mixer drive levels are set so that the mixer output signal, as
observed during calibration, is sinusoidal. This has been accomplished in
TRW systems with a reference (LO) signal level of 10 dBm and a mixer
input level of about 0 dBm from the delay line.

A power amplifier can be used to increase the source signal to the measure-
ment system. This amplifier must not contribute appreciable additional
noise to the signal.

2. Discriminator Calibration

The discriminator characteristics are measured as a function of frequency
and voltage. The hertz-per-volt sensitivity of the discriminator is defined
as the calibration factor (CF). The calibration process involves measuring
the effects of intentional modulation of the source (carrier) frequency. A
known modulation index must be obtained to calculate the calibration
factors of the discriminator. The modulation index is obtained by using
amplitude modulation to establish the carrier-to-sideband ratio when there
is considerable instability of the source or when the source cannot be fre-
quency modulated.
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It is convenient to consider the system equations and calibration techniques
in terms of frequency modulation of stable sources. If the source to be
measured cannot be frequency modulated, it must be replaced, during the
calibration process, with a modulatable source. The calibration process
will be described using a modulatable source and a 20-kHz modulation
frequency. However, other modulation frequencies can be used. The cali-
bration factor of this type discriminator has been found to be constant over
the usable Fourier frequency range, within the resolution of the measuring
technique. The calibration factor of the discriminator is established after the
system power levels have been set with the unit under test as the source.

The discriminator calibration procedures are as follows.

(1) Set attenuator No. 4 (Fig. 20) to 50 dB.

(2) Replace the oscillator under test with a signal generator or oscillator
that can be frequency modulated. The power output and operating frequency
of the generator must be set to the same precise frequency and amplitude
values that the oscillator under test will present to the system during the mea-

“surement process.

(3) Select a modulation frequency of 20 kHz and increase the modulation
until the carrier is reduced to the first Bessel null, as indicated on the spectrum
analyzer connected to coupler No. 1. This establishes a modulation index
(m = 2.405).

(4) Adjust the phase shifter for zero volts dc at the output of the mixer,
as indicated on the oscilloscope connected as shown in Fig. 20. This estab-
lishes the quadrature condition for the two inputs to the mixer. This quadrature
condition is continuously monitored and is adjusted if necessary.

(5) Tune the tracking spectrum analyzer to the modulation frequency
of 20 kHz. The power reading at this frequency is recorded in the program
and is corrected for the 50-dB setting of attenuator No. 4, which will be set
to zero decibel indication during the automated measurements.

P(dBm) = (—dBm power reading) + 50 dB (88)

This power level is converted to the equivalent rms voltage that the spectrum
analyzer would have read if the total signal had been applied:

Vims = +/10719/1000 + R. (89)

(6) The discriminator calibration factor can now be calculated because
this power in dBm can be converted to the corresponding rms voltage using
the following equation:

Voms = +/(10779/1000) x R, (%0)

where R = 50 Q in this system.
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(7) The discriminator calibration factor is calculated in hertz per volt as
CF = Mfu/\/ 2 Vimmy = 2405£/3/ 2 Vims- 91

The modulation index m for the first Bessel null as used in this technique
is 2.405. The modulation frequency is f,.

3. Measurement and Data Plotting

After the discriminator is calibrated, the modulated signal source is re-
placed with the frequency source to be measured. Quadrature of the signals
into the mixer is reestablished, attenuator No. 4 (Fig. 20) is set to 0 dB, and
the measurement process can begin.

The measurements, calculations, and data plotting are completely auto-
mated. The calculator program selects the Fourier frequency, performs
autoranging, and sets the bandwidth, and measurements of Fourier frequency
power are performed by the tracking spectrum analyzer. Each Fourier
frequency noise-power reading P, (dBm) is converted to the corresponding
rms voltage by

Dyems = +/ 10F2*2:9719/1000 x R. (92)
The rms frequency fluctuations are calculated as
5vrms = Ulrms X CF. (93)

The spectral density of frequency fluctuations in hertz squared per hertz is
calculated as

Sm-(f) = (6vrms)2/8v (94)

where B is the measured IF noise-power bandwidth of the spectrum analyzer.
The spectral density of phase fluctuations in radians squared per hertz is
calculated as

Sse(f) = Ssl NIf 2. (95)

The NBS-designated spectral density in decibels (carrier) per hertz is cal-
culated as

Z(f)ap = 10 log isao(f)- (96)

Spectral density is plotted in real time in our program. However, the data
can be stored and the desired spectral density can be plotted in other forms.
Integrated phase noise can be obtained as desired.
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4. Noise Floor Measurements

The relative sensitivity (noise floor) of the single-oscillator measurement
system is measured as shown in Fig. 12a for the two-oscillator technique.
The delay line must be removed and equal channel lengths constructed,
as in Fig. (12a). The same power levels used in the original calibration and
measurements are reestablished, and the noise floor is measured at specific
Fourier frequencies, using the same calibration-measurement technique,
or by repeating the automated measurement sequence.

A correction for the noise floor requires a measurement of the rms voltage
of the oscillator (v,,n) and a measurement of the noise floor rms voltage
(v2rms)- These voltages are used in the following equation to obtain the
corrected value:

Utms = \/(vlrms)2 - (UZrms)z' (97)

The value v, is then used in the calculation of frequency fluctuations.
If adequate memory is available, each value of v, ,,, can be stored and used
after the other set of measurements are performed at the same Fourier
frequencies.

The following technique was developed by Labaar (1982). Carrier sup-
pression is obtained using the rf bridge illustrated in Fig. 18. One can easily
improve sensitivity more than 40 dB. At 2.0 and 3.0 GHz 70-dB carrier
suppression was realized. In general, the improvement in sensitivity will
depend on the availability of an amplifier or adequate input power.

Figure 21 shows the different noise floors in a delay-line bridge discrimi-
nator. It is good measurement discipline to always determine these noise
floors; also, the measurements, displayed in Fig. 21, give a quick under-
standing of the physical process involved. The first trace is obtained by term-
inating the input of the baseband spectrum analyzer. The measured output
noise power is then a direct measure of the spectrum analyzer’s noise figure
(NF). The input noise is thermal noise and is usually indicated by “KTB,”
which is short for “the thermal noise power at absolute temperature of T
degrees K(elvin) per one hertz bandwidth (B). This KTB number is, at 18°C,
about - 174 dBm/Hz.

Figure 21a shows that trace number 1 for frequencies above about ! kHz is
level with a value of about — 150 dBm = —(174-24) dBm, which means that
the spectrum analyzer has an NF of 24 dB. At 20 Hz the NF has gone up to
about 48 dB. To improve the NF, a low-noise (NF, 2dB), low-frequency
(10 Hz-10 MHz) amplifier is inserted as a preamplifier. Terminating its
input now results in trace number 2. At the high frequency end, the measured
power goes up by about 12-13 dB, and the amplifiers gain is 34 dB. This
means that the NF is improved by 34 — 12-13 = 21-22 dB, which is an
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Fic. 21 (a) Noise contribution analysis: (b) phase noise test setup using a delay-line rf
bridge discriminator (rf = 2.8 GHz; O, termination points. NF, noise figure: LF. low frequency.
(From Seal and Lance, 1981.)

NF =~ 2-3 dB as expected, i.c., the first stage noise predominates. The low-
frequency end at 20 Hz gives an NF of 26 dB, which overall is quite an im-
provement.

In trace number 3 the mixer is included with it’s rf (signal) port terminated.
It is clear from this trace that certainly up to 100 kHz, the noise generated
by the mixer diodes being “pumped ™ by the LO signal dominates. This case
represents the “classic” delay-line discriminator. The last trace (number 4)
includes the low-noise, high-gain rf amplifier that can be used because the
carrier is suppressed in the delay-line rf bridge discriminator, in contrast
to the classic delay-line discriminator case. This trace shows that from | kHz
on up the measured output power is flat, representing a 2-3-dB NF.

At about 20-40 Hz, trace numbers 3 and 4 begin nearing their cross-
over floor. In this particular case, which is discussed in full by Labaar (1982),
the measurement systems noise floor (resolution) has been improved by
40 dB.

Figure 22 shows plots of phase noise as measured at two frequencies
using delay lines of different lengths. The delay line used measure at 600 MHz
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FiG. 22 Phase noise of 600-MHz oscillator multiplied to 2.4 GHz (From Lance et al.,
1977a.)

was about 500 nsec long, as noted by the first null, i.c., the reciprocal of the
Fourier frequency of 2 MHz is the approximate differential time delay.
Note that a shorter delay line (approximately 250 nsec differential) is used
to measure the higher frequency because the delay-line discriminator
calibration is valid only to a Fourier frequency at approximately 35% of
the Fourier frequency at which the first null occurs, if a linear transfer
function is assumed.

The actual transfer function of a delay-line discriminator (classic and rf
bridge types) is sinusoidal, as shown in Fig. 23a. The baseband spectrum
analyzer measures power in a finite bandwidth, and as a consequence it is
possible to measure through a transfer-function null if the noise power does
not change substantially over a spectrum-analyzer bandwidth. The following
power relations then hold:

o+Awi 2 P((U) w+Aw 2

Pmns(w) = I/Aw J‘ P(w') do' ~
w-Aw 2 Aw Jy-sw2

do' = P(w). (98)
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FiG. 23 Transfer functions for a delay-line rf bridge discriminator: (a) actual; (b)
approximate (linear) and ** correct " (sinusoidal). Phase noise: H.P. 8672A at 2.4 GHz.

Figure 23b shows the results using a linear approximation and the “cor-
rect” transfer function for a delay-line rf bridge discriminator. The correct
transfer function breaks down close to the null because the signal level
drops below the system’s noise floor, as explained by Labaar (1982).

Using the sinusoidal transfer function in the calculator software gives
correct results barring frequency intervals of 5 to 10 spectrum analyzer's
bandwidths (10 x 30 = 300 kHz) centered at the transfer function nulls.
These particular data were selected to illustrate the characteristics of the
system. Recall that one can easily make the noise floor 40 dB lower using
the rf bridge shown in Fig. 18.

C. DuaL DELAY-LINE DISCRIMINATOR
1. Phase Noise Measurements

The dual delay-line discriminator is shown in Fig. 24. This system was
suggested by Halford (1975) as a technique for lowering the noise floor
of the delay-line phase noise measurement system. The system consists of
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FiG. 24 A dual delay-line phase noise measurement system. (Courtesy Instrument Society

of America.)

two differential delay-line systems. The single-oscillator signal is applied
to both systems and cross-spectrum analysis is performed on the signal
output from the two delay-line systems. Signal processing is performed with
the Hewlett-Packard 5420A digital signal analyzer. The cross spectrum 1s
obtained by taking the product of the Fourier transform of one signal and
the complex conjugate of the Fourier transform of a second signal. It is
a phase-sensitive characteristic resulting in a complex product that serves
as a measurement of the relative phase of two signals. Cross spectrum gives
a phase- and amplitude-sensitive measurement directly. By performing
the product Sy( f) - Sx(f)*, a certain signal-to-noise enhancement is achieved.
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The low-noise amplifiers preceding the digital signal analyzer are used
when performing measurements at Fourier frequencies from | Hz to 25 kHz.
The amplifiers are not used when performing measurements below the
Fourier frequency of 1 Hz.

2. Calibrating the Dual Delay-Line System

Each delay line in the system is calibrated separately following the same
basic procedure set forth in Section IV.B. The Hewlett-Packard 5420
measures the one-sided spectral density of frequency fluctuations in hertz
squared per hertz. The spectral density of phase fluctuation in radians
squared per hertz can be calculated as

Sa¢(f) = Sav(f)/f2, 99

and
L) =S f)2f3, (100)

per hertz. The Hewlett-Packard 5420 measurement of S,,( /) in Hz?/Hz must,
therefore, be corrected by 1,2f 2. However, the f2 correction must be entered
in terms of radian frequency (w = 2xf). This conversion is accomplished by

L) = Sp X2 dn?/an?) = (2728, )]/ w)? (101)
per hertz since Eq. (100) can be stated in the following terms:

(2728, ))/4n’f 2.

Signal-to-noise enhancement greater than 20 dB has been obtained using
the dual-channel delay-line system.

D. MILLIMETER-WAVE PHASE-NOISE MEASUREMENTS
l. Spectral Density of Phase Fluctuations

The delay line used as an FM discriminator is based, in principle, on a
nondispersive delay line. However, a waveguide can be used as the delay
line because the Fourier frequency range of interest is a small percentage
of the operating bandwidth (seldom over 100 MHz), and the dispersion can
be considered negligible.

The calibration and measurement are performed as set forth in Section
IV.B. The modulation index m is usually established using the carrier-to-
sideband ratio that uses amplitude modulation because millimeter sources
are either unstable or cannot be modulated. The two approaches to measure-
ments at millimeter frequencies are shown in Figs. 25 and 26. Figure 25
shows the direct measurement using a waveguide delay line. This system
offers improved sensitivity if adequate input power is available. The rf bridge
and delay-line portion of the system differs from Fig. 18 because pre- and
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FiG. 25 Millimeter-wave phase noise measurements using a waveguide delay line. (From
Seal and Lance. 1981.)

post-bridge amplifiers with appropriate gain are not available, so the sensi-
tivity can equal the amount of carrier suppression.

Figure 26 shows the use of a harmonic mixer to downconvert to the
convenient lower frequency where post-bridge amplifiers are available.
The relatively low sensitivity to frequency drift that is characteristic of delay-
line discriminators becomes an advantage here. A separate calibration
generator is required, as shown in Fig. 25, and a power meter is used to assure
proper power levels during the calibration process.

2. SPECTRAL DENSITY OF AMPLITUDE FLUCTUATIONS

AM noise measurements require equal electrical length in the two channels
that supply the signals to the mixer. The delay line must be replaced with the
necessary length of transmission line to establish the equal-length condition
when the systems shown in Figs. 25 and 26 are used. The AM noise measure-
ment system is calibrated and the noise measurements are performed directly
in units of power for a direct measurement of »( ) in dBc/Hz. »(f) is the
spectral density of one modulation sideband divided by the total signal
power at a Fourier frequency difference f from the signal’s average frequency
vo. The system calibration establishes the detection characteristics in terms
of total power output at the IF port of the mixer (detector).
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FiG. 26 A millimeter-wave hybrid phase noise measurement system that produces [F
frequency and uses a delay-line discriminator at IF frequency. (From Seal and Lance, 1981.)
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The AM noise measurements are performed according to the following.

(1) A known AM modulation (carrier-sideband ratio) must be estab-
lished to calibrate this detector in terms of total power output at the IF port.
The modulation must be low enough so that the sidebands are at least
20 dB below the carrier. This is to keep the total added power due to the
modulation small enough to cause an insignificant change in the detector
characteristics.

(2) The rf power levels are adjusted for levels of approximately 10 dBm
at the reference port and 0 dBm at the test port of the mixer.
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(3) Approximately 40 dB is set in the precision IF attenuator. The system
is adjusted for an out-of-phase quadrature condition.

(4) The modulation frequency and power level are measured by the
automatic baseband spectrum analyzer. The total carrier-power reference
level is measured power, plus the carrier-sideband modulation ratio, plus
the IF attenuator setting.

(5) The AM modulation is removed. the IF attenuator set to 0 dB, and
the system re-checked to verify the out-of-phase quadrature (maximum dc
output from the mixer IF port). Noise (V,) is measured at the seiected Fourier
frequencies. A direct calculation of m( /) in dBc/Hz is

m(f) = [(modulation power (dBm) + carrier-sideband ratio (dB)
+ IF attenuation (dB) — noise power (dBm) + 2.5dB
— 10 log(BW)]. (102)

Figure 27 illustrates the measurements of AM and phase noise of two
GUNN oscillators that were offset in frequency by 1 GHz. The measurements
were performed using the coaxial delay-line system.
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FiG. 27 Phase noise and AM noise of 40- and 41-GHz Gunn oscillators. (From Seal
and Lance. 1981.)
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VY. Conclusion

The fundamentals and techniques for measurement of phase noise have
been set forth for two basic systems. The two-oscillator technique provides
the capability for measuring high-performance cw sources. The system
sensitivity is superior to the single-oscillator technique for measuring phase
noise very close to the carrier.

High-stability sources such as those used in frequency standards applica-
tions can be measured without using phase-locked loops. However, most
microwave sources exhibit frequency instability that requires phase-locked
loops to maintain the necessary quadrature conditions. The characteristics
of the phase-locked loops must be evaluated to obtain the source phase
noise characteristics. Also, in principle, one must have three sources at the
same frequency to characterize a given source. If three sources are not avail-
able, one must assume that either one source is superior in performance or
that they have equal phase noise contributions.

The single-oscillator technique employing the delay line as an FM dis-
criminator has adequate sensitivity for measuring most microwave sources.
The economic advantages of using this system include the fact that only
one source is required, phase-locked loops are not required, system configur-
ation is relatively inexpensive, and the system is inherently insensitive to
oscillator frequency drift.

The single-oscillator technique using the delay-line discriminator can
be adapted to measure the phase noise of pulsed sources. Pulsed sources
have been measured at 94 GHz by F. Labaar at TRW, Redondo Beach,
California.
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Summary

A fully automated measurement system has
been developed that combines many properties
previously realized with separate techniques.
This system is an extension of the dual mixer
time difference technique, and maintains its
important features: zero dead time, absolute
phase difference measurement, very high preci-
sion, the ability to measure oscillators of
equal frequency and the ability to make megsure-
ments at the time of the operator's choice.” For
one set of design parameters, the theoretical
resolution is 0.2 ps, the measurement noise is 2
ps rms and measurements may be made within 0.1 s
of any selected time. The dual mixer technique
has been extended by adding scalers which remove
the cycle ambiguity experienced in previous
realizations. In this respect, the system
functions like a divider plus clock, storing the
epoch of each device under test in hardware.

The automation is based on 2the ANSI/IEEE-
583 (CAMAC) interface standard. Each measure-
ment channel consists of a mixer, zero-crossing
detector, scaler and time interval counter.
Four channels fit in a double width CAMAC module
which in turn is installed in a standard CAMAC
crate. Controllers are available to interface
with a wide variety of computers as well as any
IEEE-488 compatible device. Two systems have
been in operation for several months. QOne
operates 24 hours a day, taking data from 15
clocks for the NBS time scale, and the other is
used for short duration laboratory experiments.

Review of the Dual Mixer
Time Difference Technique

It is advantageous tc measure time directly
rather than time fluctuations, frequency or
frequency fluctuationns. These measurements

constitute a hierarchy in which the subseguently
listed quantities may alwavs be calculated from
the previous ones. However, the reverse is not
true when there are gaps in the measurements.
In the past, freguency was usually not derived
from time measurements for short sample times
because time interval measurements could not be
performed with adeguate precision. The dual
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mixer technique, illustrated in Figure 1, made
it possible to realize the precision of the beat
frequency technique in time interval measure-
ments.

The signals from two oscillators (clocks) are
applied to two ports of a pair of double balan-
ced mixers. Another signal synthesized from one
of the oscillators is applied to the remaining
two ports of the mixer pair. The input signals
may be represented in the usual fashion

Vl(t) = V10 sin [2nv10t + ¢l(t)],
Vz(t) = V20 sin [vazot + ¢2(t)] and
Vs(t) = Vso cos [vasot + ¢S(t)]

where v (1-1/R) and R is a constant
usually heterodyne factor.

£811ed the

The low passed outputs of the two mixers

are
VBl = VBlo sin [¢1(t) -¢S(t)] and
VBZ = VBZO sin [¢2(t)-¢s(t)] where

d(t) = 2nvot + o(t).

The time interval counter starts at time t,, when
V,, crosses zero in the positive direction and
s%&ps at time t the time of the very next

positive zero croyging of VBZ‘ Thus
¢l(tM) - ¢S(tM) = 2Mn and
¢2(tN) - ¢S(tN) = 2Nn where

N and M are integers.

Subtracting the two equations in order to com-
pare the phases of oscillators 1 and 2, one
obtains

¢2(tN)-¢l(tM) = ¢S(tN)-¢S(tM)+2(N-M)n.

The phase of an oscillator at time t
be written in terms of its phase at tM and it

may
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average frequency over the interval tM < tN'
o(ty) = o(ty) + 2n[v(ty;t)1(ty-ty) and

when we apply this equation to both ¢2 and 05
we find

¢2(tM)-¢l(tM) = 2(N-M)n
-Zn[\)BZ(tM;tN)](tN-tM)
where Vgy = vy

Since M and N are not measureable with the
equipment in Figure 1, the dual mixer technique
has heretofore only been used to measure the
phase difference between two oscillators modulo
2n. We denote the period of the time interval
counter time base by t_ and the number of counts
recorded in a measurement by P. Then the phase
gifference between the two osciilators is given

Yy
[¢2(tM)-¢1(tM)]mod 2n = -2n[v82(tM;tN)]tcP

Figure 2 illustrates the output of the
measurement system over a period of time. If a
measurement begins and ends without the time
interval counter making a transition between
zero and its maximum value, e.g., t, < t, < t, <
t., then the phase difference can Be camculaged
fpom the data. If t_ < t, < tb <ty <t then
the data must be co?rectgh by~ 2n go cafculate
the phase difference. Experience has shown that
there are many measurement situations for which
the number of transitions of the time interval
counter which occur between t,, and t,, cannot be
known. For this reason, a mo&qficatign has been
developed which removes the ambiguity by measur-
ing M and N.

Extended Dual Mixer Time
Difference Measurement Technique

In order to configure the system to acquire
complete phase information, two scalers are
added to count the zero crossings of each mixer.
Figure 3 is the block diagram of a two channel
system. It is constructed from identical cir-
cuit modules and therefere contains an unused
time interval counter. However, this design
permits very straightforward and inexpensive
extension to the comparison of an arbitrarily
large number of oscillators with no need for
switching any signals.

The counter outputs are combined to form
the phase difference between oscillators.

@, (ty)=6; (ty) = 2(N =M dr + 2(N-Myn
-2n[682(tM;tN)]rCP

The first term is a constant which represents
the choice of the time origin and can be ig-
nored. The last two terms and their sum are
piotted in Figure 4.
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The average bheat frequency vg (tyity)
cannot be known exactly. However, Ft mJ@ ue
estimated with sufficient precision from the

revious pair of measurements designated ' and
'. The average frequency is approximately

Vg (tysty) = (N"=N')/[R(M"-M') /v + T (P'-P")]
provided that it changes sufficiently slowly
compared to the interval t,<t,. A typical value
for this error will be gvve# in the following
section.

Hardware Implementation

A1l measurement channels consist of a
mixer, zero-crossing detector, scaler and time
interval counter. Four such circuits can be
built in a double width CAMAC module. The
system is easily expanded to compare many oscil-
lators and a complete system for making phase
comparisons among four clocks is shown in Figure
5. We have chosen parameters which are reason-
able for comparing state-of-the-art atomic stan-
dards. Thus, the synthesizer is offsgt 10Hz
below oscillator # 1 and R = 5 x 10°. The
outputs from both mixers are approximately 10Hz.
The noise bandwidth is 100 Hz. The time inter-
val counter is twice the frequency of oscillator
#1 or approximate]gt 10 MHz. The quantization
error is 1/2R = 10 ° cycle or 0.2ps which is a
factor of ten smaller than the measurement
noise. As stated earlier, an error will result
from frequency changes which violate the con-
stancy assumption yﬁfd to estimate v ,,. A
change in v, by 10 during the interveazl be-
tween two ﬁ%asurements will result in a time
deviation error of 10ps. Thus, one must make
more closely spaced measurements for oscillators
which have large dynamic frequency changes than
for more stable devices. Two other sources of
inaccuracy are the sensitivities to the ampli-
tude and phase of the common oscillator. Figure
6 shows the measured value of x = ¢/2nv_ as a
function of the amplitude of the input %igna]
and the phase of the synthesizer.

The new measurement system has many desir-
able features and properties:
(1) It has very high resolution, Timited by the
internal counters to 0.2 ps and by noise to
approximately 2 ps.

It has much lower noise than divider based
measurement systems. However compromises
made to achieve low cost, low power, small
size and automatic operation degrade the
performance compared to state-of-the-art
systems for comparing 2 oscillators.

(2)

(3)
(4)

The operation is fully automatic.

NBS has developed a detailed opegating
manual for the equipment and software.
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Ail oscillators in the range of 5 MHz + 5
Hz may be compared. Other carrier frequen-
cies such as 1 MHz, 5.115 MHz, 10 MHz and
10.23 MHz are also usable. However, dif-
ferent carrier frequencies may not be mixed
on the same system. The system has been
successfully tested with an oscillator off-
set 4.6 Hz from nominal 5MHz. Measurements
were made at intervals of 2 hours between
which the system had to accumulate approx-
imately 2 x 10°n. The system has also bggn
tested with an oscillator offset 4 x 10 7,
and no errors were detected during a period
of 40 days.

A1l sampling times in the range of 1 second
to 16 days with a resolution of 0.1 second
are possible. Measurements may be made on
command or in a preprogrammed Sequence.

Measurements are synchronized precisely,
i.e. at the picosecond level, with the
reference clock. They may therefore be
synchronized with important user system
events, such as the switching times of a
FSK or PSK system.

A1l oscillators are compared synchronously
and all measurements are performed within a
maximum interval of 0.1 second. As a re-
sult, the phase of any oscillator needs to
be interpolated to the chosen measurement
time for an interval of 0.1 second maximum.
This capability, which 1is not present in
either single heterodyne measurement sy-
stems or switched measurement systems
eliminates a source of "measurement" error
which is generally much larger than the
noise induced errors. For example, inter-
pciation of the pbiie of a high performance
Cs clock (o, = 10 /11) over a period of 3
hours would produce approximately 1.5 ns
phase uncertainty. To maintain 4 ps accur-
acy requires measurements simultaneous to
0.1s.

There are no phase errors due to the swit-
ching of rf signals since there is no
switching anywhere in the analog measure-
ment system.

No appreciable phase errors are introduced
when it is necessary to change the refer-
ence clock since, as shown in Figure 6, the
peak error due to changes in synthesizer
phase is 20 ps.

The measurement system is capable of mea-
suring its own phase noise when the same
signal 1is applied to two input ports
Figure 7 shows the phase deviations between
two such channels over a period of 75,000
seconds and Figure 8 is the corresponding
Allan variance plot. Figure 9 shows the
phase deviations between 2 input channels
over a period of 40 days.

Since the IEEE-583 (CAMAC) interface stan-
dard has been followeda for all the custom
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hardware, the system may be easily inter-
faced to almost any instrument controlier.
NBS has already tested the system using a
large minicomputer, a small minicomputer
and a desk top calculator. Interfaces
between IEEE-583 and IEEE-488 controllers
are available and have been used success-
fully.

(13) The system is capable of camparing a very

large number of oscillators at a reasonable

cost per device.

There are also disadvantages to this mea-
surement system. The most important are:

(1) The complexity of the hardware is greater
than for some systems. It is possible
that this will reduce reliability.

(2) A high level of redundancy is difficult to
achieve. The system design stresses size,
power, convenience and cost, resulting in
an increase in the number of possible
single point failure mechanisms compared to
some other techniques. For example, a
CAMAC power supply failure will result in a
loss of data for all devices being measured.
(3) A substantial committment is required in
both specialized hardware and software.
(4) If an oscillator under test experiences a
phase jump which exceeds 1 cycle, the
measurement system records a jump with
incorrect absolute magnitude. As a result,
it may not be applicable to signals which
are frequency modulated with discontinuous
phase steps larger than 2n.

Conclusions

We have demonstrated a new phase measure-
ment system with very desirable properties: All
oscillators in the range of 5MHz * 5Hz may be
measured directly. The sampling times are only
restricted by the reqguirement that they exceed
onglfecond. The noise floor is o (2,1) = 3 x
10 *¢/1 in short term and the time deviations
are less than 100 ps. A1l circuitry is designed
as modules which allows expansion at modest
cost. Compatibility with a variety of computers
is insured through the use of the IEEE-583
interface and adapters are available to permit
use with an IEEE-488 controller. The system
makes it feasible to make completely automated
phase measurements at predetermined times on
large numbers of atomic clocks. It's own noise
is one-hundred times less than the state-of-the-
art in clock performance. It will be used in
the near future to make all measurement needed
to compute NBS atomic time, but it will also be
very valuable for any laboratory which uses
three or more atomic clocks.
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Abstract

We theoretically and experimentally investigate the biases
and the variances of Fast Fourier transdform (FFT) spectral es-
timates with different windows (data tapers) when used to an-
alyze power-law noise types f°, f~%, f~2 and f~*. Thereisa
wide body of literature for white noise but virtually no investiga-
tion of biases and variances of spectral estimates for power-law
noise spectra commonly seen in oscillators, amplifiers, mixers,
etc. Biases (errors) in some cases exceed 30 dB. The experi-
mental techniques introduced here permit one to analyze the
performance of virtually any window for any power-law noise.
This makes it possible to determine the level of a particular
noise type to a specified statistical accuracy for a particular
window.

1. Introduction

Fast Fourier transform (FFT) spectrum analyzers are very
commonly used to estimate the spectral density of noise. These
instruments often have several different windows (data tapers)
available for analyzing different types of spectra. For example,
in some applications spectral resolution is important; in others,
the precise amplitude of a widely resolved line is important: and
in still other applications, noise analysis is important. These
diverse applications require different types of windows.

We theoretically and experimentally investigate the biases
and variances of FFT spectral estimates with different windows
when used to analyze a number of common power-law noise
types. There is a wide body of literature for white noise but vir-
tually no investigation of these effects for the types of power-law
noise spectra commonly seen in oscillators, amplifiers, mixers,
etc. Specifically, we present theoretical results for the biases
associated with two common windows — the uniform and Han-
ning windows — when applied to power-law spectra varying
as f° f~? and f~*. We then introduce experimental tech-
niques for accurately determining the biases of any window and
use them to evaluate the biases of three different windows for
power-law spectra varying as f°, f~2, f~% and f~¢. As an ex-
ample we find with f~* noise that the uniform window can have
errors ranging from a few dB to over 30 dB, depending on the
length of span of the f~* noise.

We have also theoretically investigated the variances of
FFT spectral estimates with the uniform and Hanning windows
(confidence of the estimates) as a function of the power-law
noise type and as a function of the amount of data. We in-
troduce experimental techniques that make it relatively easy to
independently determine the variance of the spectral estimate
for virtually any window on any FFT spectrum analyzer. The
variance that is realized on a particular instrument depends not
only on the window but on the specific implementation in both
hardware and software. We find that the variance of the spec-
tral density estimates for white noise, f°, is very similar for
three specific windows available on one instrument and almost
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identical to that obtained by standard statistical analvsis. The
variances for spectral density estimates of f~* noise are only
4% higher than that of f° noise for two of the windows stud-
ied. The third window — the uniform window — does not yieid
usable results for either f~3 or f~* noise.

Based on this work it is now possible to determine the
minimum sumber of samples necessary to determine the level
of a particular noise type to a specified statistical accuracy as a
function of the window. To our knowledge this was previously
possible only for white noise — although the traditional results
are generally valid for noise that varied as f~/, where 3 was
equal to or less than 4.

II. Spectrum Analyzer Basics

The spectrum analyzer which was used in the experimen-
tal work reported here is fairly typical of a number of such in-
struments currently available from various manufacturers. The
basic measurement process generally consists of taking a string
of N, = 1024 digital samples of the input wave form, which we
represent here by X, X, ..., Xn,. The basic measurement
period was 4 ms. This vields a sampling time At = 3.90625 us.
Associated with the FFT of a time series with .V, data points,
there are usually (N, /2) + 1 = 513 frequencies

J

fi= N.av
The fundamental frequency f; is 250 Hz, and the Nyquist fre-
quency fn,;3 is 128 kHz. Since the spectrum analyzer uses
an anti-aliasing filter which significantly distorts the high fre-
quency portion of the spectrum, the instrument only displays
the measured spectrum for the lowest 400 nonzero frequencies,
namely, f; = 250 Hz, f; = 500 Hz, ..., fio = 100 kHz.

The exact details of how the spectrum analyzer estimates
the spectrum for X, ..., Xn, are unfortunately not provided
in the documentation supplied by the manufacturer, so the fol-
lowing must be regarded only as a reasonable guess on our part
as to its operation (see 1] for a good discussion on the basic
ideas behind a spectrum analyzer; two good general references
for spectral analysis are [2] and (4]). The sample mean,

1 N,
XEFZX"

LTt

is subtracted from each of the samples, and each of these “de-
meaned” samples is multipled by a window A, (sometimes called
a data taper) to produce

1=01,....N,/2

XM= h (X, - X).
The spectral estimate,
N, 2
ZX'(")C—IZII,- tat

t=]

Si(f,) = At ;=01 N2
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1s then computed using an FFT algorithm.

The subscript *1" on S(f,) indicates that this is the spec-
tral estimate formed from the first block of .V, samples. A
similar spectral estimate Sy(f;) is then formed from the second
block of contiguous data Xn,+1, X~,+2, - .- Xan,. o all, there
are N, different spectral estimates from N, contiguous blocks,
and the spectrum analyzer averages these together to form

Ny
S0 = g LS (1)

k=1

It is the statistical properties of $(f,) with which we are con-
cerned in this paper.

Unfortunately some important aspects of the windows are
not provided in the documentation for the instrument. One im-
portant detail is the manner in which the window is normalized.
There are two common normalizations:

N, N,
Z[h.(x,-)'()]’ =LZ(X.-X)2

and

No
Y nl=1 (2)

t=]

The first of these is common in engineering applications because
it ensures that the power in the windowed samples X f” is the
same as in the original demeaned samples; the second is equiv-
alent to the first in expectation and is computationaly more
convenient, but it can result in small discrepancies in power
levels. Either normalization affects only the level of the spec-
tral estimate and not its shape.

There are three windows built into the spectrum analyzer
used here. The first is the uniform (rectangular, default) win-
dow hﬁU) = l/m,. The second is the Hanning data window,
for which there are several slightly different definitions in the
literature. In lieu of specific details, we assume the following
symmetric definition:

h('H)=C(H) (1-«,;2(_'_—_022)‘ ISQS%‘

N,
=h 0 SerstsA

here CH) is a constant which forces the normalization in Equa-
tion (2). The third window is a proprietary “flattened peak”
window, about which little specific information is available (it
is evidently designed to accurately measure the heights of peaks
in a spectrum).

III. Expected Value and Bias of Spectral Estimates
IILLA. Theoretical Analysis

We need to assume a noise model for the X;'s in order
to determine the statistical properties of S(f;) in Equation (1).
We consider three different models, each of which is represented
in terms of a Gaussian white noise process ¢; with mean zero
and variance 02. The second-order properties of each model
are given by a spectral density function S(-) defined over the
interval [-1/(241),1/(2At)] in cycles/At. The first model is a
discrete parameter, white noise process ( f° noise):

X.=¢ and S(f)=dAt.

The second model is a discrete-parameter. random-waik process
(nominally f~? noise):
! 2

otAt
X = ¢, and S(f)= —ag———.
¢ .z-:x ‘ 52 4sin’ (7 fAL)
The third model is a discrete-parameter, random-run process
(nominally f~* poise):

L ol At
X(—Z:l;l(, and S(f)—m

Continuous parameter versions of these three models have been
used extensively in the literature as models for noise commoniy
seen in oscillators.

For each of the three models we have derived expressions
for E{5(f)}, the expected value of S(f). These expressions
depend on the window A, the number of samples .V, in each
block and — in the case of a random-run process — the num-
ber of blocks N;. The details behind these calculations will be
reported elsewhere {3|; here we merely summarize our conclu-
sions for the three models in combination with the uniform and
Hanning windows and N, = 1024.

First, for a white noise process,

E{5(£;)} = S(4,),

when the uniform window is used. For the Hanning window,
the above equality also holds to a very good approximation for
2 £ j <511 and to within 0.8 dB for j = 1 and 512 (the latter
is of no practical importance since the highest frequency index
given by the spectrum analyzer is j = 400). These theoretical
calculations agree with our experimental data except at f; (see
Table 1).
Second, for a random-walk process,

E{S(f))} = 28(4,),

when the uniform window is used, i.e., the expected value is
twice what it should be at all frequencies. This theoretical re-
sult has been verified by Monte Carlo simulations. but it does
not agree with our experimental data, which shows no signifi-
cant level shift in the estimated spectrum. The source of this
discrepancy is currently under investigation, but it may be due
to either (a) factors in the experimental data which effectively
make it band-limited, random-walk noise, i.e., its spectral shape
is markedly different from f~? for, say, 0 < f < f) or (b) an
incotrect guess on our part as to how the spectral estimate is
normalized by the spectrum analyzer. For the Hanning window,
we found that

7=12,...,512,

71 =12,...,512,

1.085(f;)
1485(1,)
1.155(f;)
1.075(f;)
1.045(/)
S(f5)

i.e., S(f,-) is essentially an unbiased spectral estimate except
for the lowest few frequencies. This theoretical result has been
verified by Monte Carlo simulations and also agrees in general
with our experimental data.

Third, for a random-run process,

E{S(f)} =Cn S,

J=1
J=2
1=3
=4
1=5
6 < 7 < 511 to within 3%,

E{8(f))} =

1 <5 £400.
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to a good appoximation when the uniform window is used.
where C, is a constant which depends on the number of blocks
N, and increases as N, increases. Thus the shape of E{S(f,)}
follows that of a random-walk process (f~?) rather than that
of a random-run process (f~*). This shape has been verified
experimentally (see the next subsection), but the dependence
of the level on N, has not. The increase in level of E{S(f,)} as
Ny increases is due to the fact that the expected value of the
sample variance of a block of N, samples increases with time
— by contrast, it is constant with time for the white noise and
random-walk cases. For the Hanning window, we found that
E{S(f))} =CW\,S(f;),  4<] <400,

to a good approximation, where again C), is a constant —
different from Cw, — which depends on the number of blocks
Ny and increases as N, increases. For frequencies less than
f4 the theoretical results indicate significant (greater than 4%)
distortion in the shape, but these do not agree in detail with the
experimental values reported in Table 1. For £, > f, the shape
has been verified experimentally, but the dependence of the level
on N, has not. The discrepancy in level between the theoretical
and experimental resuits is yet to be resolved, but it is probably
due to a mismatch between the assumed random-run model and
the true spectrum for the data (possibly band-limited random-
run).
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Requires Multiple Scans

st Rl

swn(t)

— L | ’\
‘—‘Js—i‘——,—J

3) Maasure Filter Transfer Punction h({f)

<

num

- =
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Figure 1. Outline of measurement procedure for determining
the biases in spectral estimators.

II1.B. Experimental Determination

The following procedure can be used to experimentally de-
_ termine the bias in the spectral estimate of any noise spectrum
using any window in a particular instrument. The basic concept
is to implement a filter that, when applied to white noise, mim-
ics the appraximate noise spectra of interest and then measures
the level of the white noise and the filter transfer function in a
way which has high precision and accuracy as illustrated in Fig-
ure 1. First, the level of a known white noise is measured over
a convenient range. The higher the frequency span the faster
that this is accomplished. Obviously, the chosen range must
be one over which the noise source is accurate. To obtain a

precision of order 0.2 dB generally requires 1000 samples. This
measurement verifies that the spectral density function and the
internal reference voitage of the FFT are accurately calibrated
and working properly. Virtually all of the windows accurately
determine the value of white noise if the first few channels are
ignored as explained above. Figure 2 shows the measurement
of a noise source, which has been independently determined to
have a noise spectral density of 99.8 dBV/Hz by the three win-
dows. (Appendix A shows the circuit diagram for this noise
source which has an accuracy of better than 0.2 dB for frequen-
cies from 20 to 20 kHz.)

RMS: 1000
-gs .
ofl (V) '
Tra X
HAMING :
'
FLATTIDED PRAX
- .
/01v
~ ¥ [
-103 !
START: 230 Mz BV 954.85 Hz STOP: 100 000 ™z

Figure 2. Spectral estimation of a white noise standard us-
ing the uniform, Hanning and the proprietary “Sattened peak”
windows.

Second, an approximately flat spectrum is measured over
the frequency range of interest. It is not important if there are
small variations in the leve] that change slowly over the fre-
quency span. Third, the transfer function of the filter is deter-
mined for the frequencies of interest using a very narrow spectral
source (typically an audio oscillator is sufficient). The very nar-
row source is accurately measured by the window since there is
no problem with either high frequency or low frequency noise
biasing the estimate. The use of a window with a flattened peak
response is helpful but not necessary if the frequency source is
sufficiently stable. This transfer function is then applied to the
measured white noise spectrum in step two above. This yields a
very accurate value for the “true” spectral density of the white
noise source as measured through the filter. This “true value” is
then compared to that obtained by the FFT analyzer. The dif-
ference between that measured in steps two and three and that
measured directly with the FFT is the bias in the spectral esti-
mate for that particular window and noise type. The accuracy
of this approach comes from the fact that the calibration has
been broken up into steps that can individually be determined
with high precision and very small bias. The primary assump-
tion is that the FFT analyzer is linear. Even this assumption
can be checked by using precision attenuators. If the known
white noise in step one does not extend to the frequencies of
interest, then there is an additional assumption that the FFT
is flat with frequency. This assumption is nearly always good
except perhaps near the last few channels where the effect of
the antialiasing filter might cause small inaccuracies.

Figures 3a and 3b show the “true” spectral estimate and
the estimates as measured on a particular instrument using the
uniform, Hanning, and the instrument’s proprietary “Hattened
peak™ windows for noise that varies as f~* over much of the
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Figures 3a (top) and 3b (bottom). Difference between the true
spectrum (top) which varies approximately as f~* and that
estimated by the uniform, Hanning and proprietary “Sattened
peak” windows (bottom).

range {from 1 kHz to 100 kHz. The scan is 0 to 100 kHz, and
1000 samples were taken for all curves. Note the considerable
difference between the spectral estimates for channels 1 to 3 for
the Hanning and proprietary “flattened peak” windows. These
results confirm the theoretical calculations above showing that,
for the Hanning window, the first 3 channels should be ignored.
For the “fattened peak” window, the first 14 channels should
be ignored. For both f~3 and f~* poise, the uniform window
does not yield usable spectral estimates over any portion of the
scan. Note in this example that at frequencies above 80 kHz
there is a small step in the spectral estimates. This is due
to digitizing errors of the signal due to quantization. If the
digitizer had more bits, these etrors would not occur. This
problem of dynamic range is common whenever the spectrum of
interest covers many decades. The usual solution is to use filters
to divide the spectrum into various frequency range segments
which are suitable for the dynamic range of the FFT.

Table 1 summarizes the measured experimental biases in
the spectral estimates of a particular instrument with three dif-
ferent windows for power-law noise types varying from f° to
f~*. This covers most of the random types of noise found in os-
cillators and signal processing equipment. We do not advocate
using the biases reported in this table to correct data — they

Table 1. Approximate Biases in FFT Spectral Estimates
noise type f°
channel # uniform Hanning flattened peak
1 19.6 dB 19.6 dB 20.1 dB
2 small small 16.7 dB
3 l ! 7.2dB
4 small
5 l
noise type f~14
chaanel # uniform Hanning flattened peak
1 unusable 8.6 dB 10.0 dB
2 0.4 dB 9.1dB
3 04 dB 4.0dB
4 small 1.2dB
5 ! 1.1dB
6 1.1dB
7 1.0 dB
8 0.8 dB
9 0.6 dB
10 0.6 dB
11 0.54dB
12 04 dB
13 0.4 dB
14 small
15 l

only indicate which channels should not be relied upon for data
analysis.

IV. Variances of Spectral Estimates

IV.A. Theoretical Analysis

We have derived expressions for var{5(f)} — the variance
of §(f) — for each of the three models considered in Section
II1.A. These expressions depend primarily on the number of
blocks Ny. Again, the details behind these calculations will be
reported elsewhere (3].

First, for a white noise process, the uniform window vields

var{S(f))} = S*(f,))/My, 1<) <511

while the Hanning window yields

N 0.695%(f;)/Ns, 7 =1
var{S(f;)} = § S*(f,)/Ns, 2<j <510
1.035%(£,)/Ny, j =511

These results are consistent with our experimental results and
with standard statistical theory.

Second, for a random-walk process, the uniform window
yields

var{5(£,)} = 5S%(f,)/ Ns.
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while the Hanning window yields

1.305%( f,)/ Vs, J =1;

2.2052(f,)/.'V5, ] =2
1-315:(f;’)/No, =3
& - 1.158 (f,)/N., 1=4
var{5(f,)} = { 1005°(f)/Ns, § = 5
1.065%(£;)/Mi, j=6;
1.045%(f;)/Ns, 5 =T,

S%(£,)/Na, 8 < j < 511 to within 3%.

Except for the few lowest frequencies, the results for the Han-
ning window agree with our experimental results and with stan-
dard statistical theory; however, the factor of five in the variance
for the uniform window disagrees with our experiments and with
standard theory (although it has been verified by Monte Carlo
techniques). The cause of this discrepancy is under investiga-
tion, but we think it is due to the band-limited nature of the
experimental data
Third, for a random-run process, the variance computa-
tions are not useful since the variance is dominated by the fact
that the expected value of the sample variance for each block of
samples increases with time. The agreement which we found be-
tween standard statistical theory and our experimental results
on the 1/N, rate of decrease of variance is undoubtedly due
to the band-limited nature of the experimental data. We will
"attempt to verify these conclusions in the future using Monte
Carlo techniques.

Ay MATH SORT (MAG 2 / BW)

10

/01v
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START, 290 Wz

STOP, 100 000 Ha

Figure 4. Comparison of the spectral estimate of f~¢ power-
law noise with 1000 samples with that obtained with 32 sam-
ples. The text explains how these two curves are used to obtain
the fractional RMS confidence of the spectral estimate for 32

samples.

IV.B. Experimental Determination

The following procedure can be used to experimentally de-
termine the variance of the spectral estimates of virtually any
type of noise spectrum with any type of window for a particular
instrument. Since the spectral density of interest is in general
nonwhite, we must determine both the “true value” and a way
to normalize the fractional error of the estimate as a function
of the number of samples. This can be done by making use
of the above theoretical analysis that shows that the variance
should decrease as the square root of the number of samples
since they are approximately statistically independent (in fact,
exactly so in the cases of white and random-walk noise). As an

example we have chosen to take .V, = 1000 blocks of the vanous
power-law noise types examined in III1.B above and compare the
value of the spectral estimate with that obtained from .V, = 32
blocks (see Figure 4). Since the variance of the 1000 block data
is about 32 times smaller than that of the 32 block data. it can
serve as ap accurate estimate of the “true value.” Let Sig0(f,}
represent this quantity at the j-th channel (frequency). By sub-
tracting the 1000 block data from the 32 block data at the j-th
channel, we then have one estimate of the error for the 32 block
data; by repeating this procedure over N. different channels
and N, different replications, we can obtain accurate estimates
of the variance for the 32 block data. Let $33:( f;) represent the
spectral estimate for the 32 block data at the j-th channel and
the i-th replication. To compensate for the variation in the level
of the spectral estimates with channel, it is necessary to divide
the error at the j-th channel by the “true value™ $1000(f,). The
mean square fractional error of the 32 block data for the noise
type under study is given by

N . . 2
2 _ 1 . (Su-(f;)"slooo(f;))
2T NN Z:Z  Swe(fy)

~ var{$:(f,)}
S(f)y

It is assumed that all channels with bias — as indicated in Ta-
ble 1 — have been excluded in the summation over j. It is also
important that the changes in the spectral density not exceed
the dynamic range of the digitizer because under this condition
the quantization errors — in addition to causing biases in the
spectral estimates as discussed earlier — can lead to situations
where the variance does not improve as N, increases. These val-
ues can be scaled to any number of blocks N, if care is taken to
avoid these quantization errors. Upper and lower approximate
67% confidence limits for S(f;) — the true spectral density at
channel ; — using Hanning, uniform and the proprietary “flat-
tened peak” windows for NV, approximately independent blocks
are given by

S5(£,)1 2 V(a, M)

where S'(f,) is the spectral estimate given by Equation (1) and
V(a, N,) is the fractional variance given in Table 2 for f° and

=0, -2, -3 and -4 (these results were obtained by averaging
over N.N. = 1200 channels). The variances obtained are very
close to those obtained from standard statistical analysis for

white noise, i.e.,
$U4,) (1 + ﬁ) .

Table 2. Confidence Intervals for FFT Spectral Estimates

power law window

noise type uniform Hanning flattened peak
° 1.02/vVN, 0.98/ VN, 0.98//N,
f? 1.02/VN, 1.04/vVN; 1.04/VN,
£ unusable 1.04/ VN, 1.04/VF;
f unusable 1.04/ VN, 1.04/ VN,

V. Conclusions

We have introduced experimental techniques to evaluate
the statistical properties of FFT spectral estimates for common
noise types found in oscillators, amplifiers, mixers and similar
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devices. and we have compared these with ‘heoretical calcua-
tions. We have used these techniques to study tbe biases and
vaniances of FFT spectral estimates using the uniform. Han-
ning. and a proprietary “flattened peak” window. The theo
retical analysis was greatly bampered because the instrument
manufacturer does not disclose the exact form of the “Battened
peak” window or the normalization procedure for the other win-
dows. Nevertheless. we obtained fair agreement between the
theoretical and the experimental analysis. The vanances of
the spectral estimation were virtually identical to a few per-
cent for f° to f~¢ noise except for the uniform window which
is incapable of measuring noise which falls off faster than f=7.
There was a very large difference in the biases of the first few
channels for the three windows. The Hanning window showed
significant biases in the first 3 channels while the proprietary
“flattened peak™ window showed large biases for f~* noise even
up to channe] 13. The Hanning window therefore yields useful
information over three times wider {requency range than the
proprietary “flattened peak”™ window. In the particular instru-
ment studied. the proprietary “fattened peak”™ window is the
best choice for estimating the height of a sarrow band source,
while the Hanning window is by far the best choice for spectral
analysis of common noise types found in oscillators, amplifiers,
mixers, etc. We have also shown that the 67% confidence levels
for spectra] estimation as a function of the aumber of contiguous
nonoverlapping biocks. .Vy, is approximateiy given by

<
LTe)
on

5=s,.<1=

<“_
e
-
N —

for white noise (f°) and by

S=Sn (1:-152_1)
VAN

for noise types f~? to f=*. This agrees to within 4% of that
found by standard statistical analysis for white noise. Using
this data one can now determune the number of sampies nec-
essary to estimate — to a given level of statistical uncertainty
— the spectrum of the various noise types commonly found in
oscillators, amplifiers, mixers. etc.
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Figure 5. Circuit diagram of a precision noise source.:

Appendix. Precision Noise Source

Figure § sbows the circuit diagram of s precision noise
source whose spectral density can be determined from first prin-
ciples to £0.2 dB over the frequency range from 20 Hz to 20 kHz.
The spectral density is basically given by the Johnson noise of
the 10° ohm resistor. V;? = 4kT R, where T is in Kelvin, and k is
Boltzmann's constant. Corrections due to the input noise volt-
age and noise current of the amplifier amount to about 0.2 dB

-

for the circuit elements shown. All resistors are precision 1%

metal film resistors. The output level can be switched from
-100 dBV/Hz to -80 dBV/Hz. By adjusting the noise-gain ca-
pacitors one can make the noise spectrum flat to withun 0.3 dB
out to 200 kHz. There is also provision to measure the :nput
noise voltage of the amplifier by shorting the input to ground
or the combined noise voltage and nmoise current by switchicg a
220 pF capacitor into the input instead of the 10° obm naise
resistor.
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A MODIFIED "ALLAN VARIANCE" WITH INCREASED
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Summar

Heretofore, the "ATlan Variance," o 2(t), has
become the de facto standard for measurxng oscil-
lator instability in the time-domain. Often
oscillator frequency instabilities are resonabl
modelable with a power law spectrum: S (f) ~ f“{
where y is the normalized frequency,”f is the
Fourier frequency, and a is a constant over some
range of Fourier frequencies. It has been shown
that for power law spectrum ¢ 2(tr) ~ 1", and that
p = -a-1 for -3<a< + 1, wheré t is the nomimal
sample time over which each value of y is measured.
The modified "Allan Variance" developed in this
paper yields y 2 -a-1 for al] a in the range -3<a,
which removes the previous ambiguity: p = -2 for
+1<a. In other words, with the modified "Allan
Variance" one can easily distinguish between white
phase noise (a = +2) and flicker phase noise
(a = +1) -- commonly occurring for the short term
instabilities of quartz crystal oscillators and
active hydrogen masers.

BLiTtar Notse Modeling; Power Law Seectruni
Time-Domain Stability; White Noise.
Introduction

The random fluctuations in precision oscil-
lators may often be characterized by a power law
spectrum:

S, = hy £, )
where y is the normalized frequency deviation, f
is the intensity of
the particular noise process, and o is constant
The typical values of «a
are: +2 (white noise phase modulation, PM); +1
(flicker noise PM); 0 (white noise frequency
FM); -1 (flicker noise FM); and -2
(random walk FM). The Allan variance, as it has
come to be known,1

is the Fourier frequency, hu

over some range of f.

modulation,

has been demonstrated as a very
useful statistical tool for characterizing these
various random processes with the exception that
if a = +1 or +2, the dependence on t is nominally
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It is not at all uncommon
for white PM and flicker PM to occur in precision
oscillators for v of the order of one second and
shorter.

the same, i.e., ~ t-2.

The modified Allan variance, as develop-
+1 and as
1-3 for a = +2. This yields a clear distinction in
the time domain between these heretofore somewhat

ed in this paper, depends as t-2 for a =

ambiguous processes.

Definition of "Allan Variance"

and Related Concepts

Define y, the normalized frequency deviation,
as

v(t) - v
N 2)

A\
4]

y(t) =

where v(t) is the output frequency of the oscilla-
tor being studied, and v,
frequency, but of a reference oscillator assumed

is nominally the same

for the moment without loss of generality to be
better than the test oscillator. The time devia-
tion from some arbitrary origin (t = 0) is the in-
tegral of the frequency deviations (from that

origin):

t
x(t) = fy(t') . at )
Q

The iED average frequency deviation over an inter-
val, 1, is
X - X
gy = O)

where the assumption is made that the time devia-
tion measurements are nominally spaced t apart.

TN-254



The "Allan Variance" is defined as:

Oyz(‘t) = i‘ <(§1+1 '§1)2> s (5)

where the brackets "< >" denote infinite time

average. Using equation (4), one may write:

.1 ]
90 = 3ux gy = gy T XD . (8)

It has been shown that typically Oyz(t)
varies as t¥, and that p = -a-1 for -3 <ag q.12
Hence, we see one of the dimensions of usefulness
of Oyz(t); i:e., ascertaining the dependence on t
allows an estimate of a (the power law spectral
type of noise). However, if o > +1, then p = -2,
and the t dependence becomes somewhat ambiguous as
to the type of noise in this region. It is inter-
esting to note that in the region a > +1, ayz(t)
is bandwidth (fh) dependent; i.e., the bandwidth
of the measurement system will affect the value of
Oy(t), and3furthermore, one may use the bandwidth
dependence™ to determine the value of o (see also
Appendix Ref. 2).

Development of the Modified Allan Variance

One may also write oyz(t) in terms of a

generalized autocovariance function:
=1 -

0, 2(1) = 7z [W,(V) - U, (201, Q)
where

U, (t) = 2[R (0) - R (V)] (8)
and where

R (1) = <x(t+1) -« x(t)> , (9)

the classical autocovariance function of x(t).
Using the Fourier transforms of generalized func-
tions, one may determine the coefficients relating
density to ayz(t). Ref. 1
It is of interest to
note that Ux(t) has the following approximate form

in the region o > + 1 (see Appendix Ref. 2):

the power spectral
gives these relationships.

a74

1 | “o*l -a+l
U () ~ a(e) lfn‘ﬁ}l - J1) (10)

Hence, one notes that by changing the reciprocal
bandwidth as well as =,
similar ways, depending on the value of a. From
this, one should be able to deduce the value of «,
since the bandwith dependence becomes stronger for

one affects o 2(t) in

a moving positive from +1, and the 1 dependence
becomes stronger as a moves negative from +1. One
can change the bandwidth in the hardware or in the
software. In the past, it has typically been done
in the hardware.3 James Snyder4 has shown that it
is relatively easy to change the bandwidth in the
data processing by a clever technique and we have
followed his lead.

a new variance analysis scheme which coincides

In particular, we have chosen

with the Allan variance at the minimum sample
time, Ty (i.e., minimum data spacing), but which
the bandwidth in the software as the
sample time, t, is changed.

Each reading of the time deviation, X;s has
associated with it an intrinsic nominal (hardware)
measurement system bandwidth, fh‘ Define

changes

= 5%?-; and similarly we may define a software
bandwidtn, fs = fh/n, which is 1/n times narrower
than the hardware bandwidth.

width can be realized by averaging n adjacent

This software band-

'g- = = 1
x;'s; T Ny, where T 1/fs. We have defined

s
a modified Allan variance which allows the recipro-
cal softwarerandwidth to change linearly with the

sample time, t:

n
- _1/11 - 2
Mod Oyz(t) = E;y<j; E (Xia2n = Pjan * xi)] an
i=1

where t = nt,. Eq. 11 clearly coincides with Eq.
6 for n=1.
have formed a second difference of three time
readings with each of the three being an average

of n of the xi's (with non-overlapping averages).

One can see that, in general, we

As n increases, the (software) bandwidth decreases
and this bandwidth varies just as f_ = fh/n.

For a finite data set of N Ireadings of X4
(i = 1toN), we may write an estimate:
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= 1
Mod Oyz(t) = FIRIN-IT)
(12)
N-3n+l n+j-1 2
pst DI CHOR g e

i=j

Eq. 12 is easy to program, but takes more time to
compute than for g (tr). This is only of signifi-
cance for the smaller computer or handheld calcu-
lator.

Comparisons, Tests, and Examples of Usage
of the Modified Allan Variance
We simulated various power law noise proces-
ses, and applied Eq. 12. Shown in Fig. 1 are the
resuiting t-dependences of the modified Allan
a=-2,-1,0, +1, and +2. The
solid Yines drawn are the anticipated or theoreti-
cal slopes for the particular noise process.

variances for
One
sees excellent agreement for white noise PM and
for flicker noise PM, and nominal agreement for
the others.

One can express Eq. 11 in terms of the gen-
eralized autocovariance function:

Mod o, 2(1) = Fobey {[4Ux(t) - U 20] - n
n-1
+ 2, (DI-6U (it,) + 80 ((n+i)1,)
-1 (13)
+ 8U (-1 - U ((2neidT,)
AL
In the range -3 < o < +1, one may write:
U (1) = aa) - ol , (14)

which when substituted in Eq. 13, and using Eq. 7,
yields

472

1 1
Mod g 2(1) = 0,2(1) {— + — — .
y y n n? an *1 (2n) a+l

-

-
(n-1) - [751'“‘1 + 4(n+i) o] 1s)
§

-2n+i) 0 4 g(n-1)"L - (2n—1)'“*fn

[
-

Since we know that Oyz(t) is well behaved in this
range and p = -a -1, it is of interest to look at
the ratio:

R(n) = Mod Oyz(t)/oyz(t).

=

As stated before, at n=1 (=t to) the ratio is
unity. One can evaluate Eq. 15 with a computer.
A reasonable empirical fit may be formed, which is

good to 0.5% or better of Eq. 15:

E_
R(n) = LRL~ P (16)

qn

which approaches p/q asymptotically as n ap-
proaches infinity, and is within 1¥ of p/q for
n> 8. Listed in Table 1 are the empirical values
of p, q, and E and the quality of fit for the
appropriate power law noise processes.

TABLE 1
Noise Type Mod oy(t)/cy(t)
Nase a 4 q € it Tty
White FM 0 1 2 2 parfect .707
Flicker FM -1 99.9 148 2.35 L4 .821
Random Walk FM =2 3 40 2.35 <X .908
Flicker Walk FM -3 1 1 - perfect 1

in reasonable
agreement with simulated results of Fig. 1(a)
through 1(e). The last row in Table 1, "flicker
walk" frequency modulation, is out of the range of
applicability of a, but the ratio, R(n), is still
convergent.

The results of Table 1 are

TN-256



The Ux(t) function for flicker noise PM is
extremely complicated and has not been developed,
but one can arrive at an empirical value for it.
The Ux(t) function 1s derivable for the other
power law spectral processes. Table 2 gives the
relationships between the time domain measure
Mod o0,2(t) and its power law spectral counterpart,
given in Eq. 1. Also listed in the right hand
column of Table 2 are the asymptotic values
of R(n):

TABLE 2
NoTse Type R(n)
_— Mod o (1) Comment L]
Nase L] y

3 fh
White PM +2 hz- Fe LI Exact 1

1.038 « 3ln(uht)
Flicker PH +1 hl' — i Empirical 1
White i R(n)
te 0 ho' b ot Exact 0.8

Fifcker FM -1 h_1 28n(2) - R(n) Empirical; Exact 0.674

Avatlable

Randoa Walk FM -2 Empirical; Exact 0.824

Available

. L

It is clear from Table 2 that Mod ayz(t) is
very useful for white PM and flicker noise PM, but
for o < +1 the conventional Allan variance, cyz(t),
gives both an easier-to-interpret and an easier-to-
calculate measure of stability.

It is interesting to make a graph of a versus
p for both the ordinary Allan variance and the
modified Allan variance. Shown in Fig. 2.is such
a graph. This graph allows one to determine power
law spectra for non-interger as well as interger
The dashed line for the modified
Allan variance has been intentionally moved to the

values of a.

left in Fig. 2 because for small values of n the
value of y will appear to be slightly more negative
that for oyz(t), even though for large n, they
both approach the same slope (i.e., the same
values of p). In fact, in the asymtotic limit,
the equation relating p and a for the modified

Allan variance is

o= -y -1, for =3 < g < +3 ., (17)

* See Appendix Note # 34

The value of p = -4 for a = +3 was verified empir-
ically with simulated data, and it appears that
for a > +3, p remains at -4.

A direct application for using the modified
Allan variance recently arose in the analysis of
atomic clock data as received from a Global
Positioning System (GPS) satellite. We were
interested in knowing the short-term characteris-
tics of the newly developed, high-accuracy NBS/GPS
receiver, as well as the propagation fluctuations.
Fig. 3 shows both o 2(t) and Mod o _2(t) for com-
parison, Using Mod oyz(r), we can tell that the
fundamental 1imiting noise process involved in the
system is white noise PM with the exciting result
that averaging for four minutes can allow one to
ascertain time difference to better than one
nanosecond excluding other systematic effects.

Conclusion

We have developed a supplemental measure, the
"Modified Allan Variance" (Mod cyz(t)), which has
very useful properties when analyzing oscillator
or signal stability in the presence of white noise
phase modulation or flicker noise phase modulation.
It also works reasonably well as a stability
measure for other commonly occuring noise processes
in precision oscillators.

We would recommend that for most time domain
analysis, ¢ _2(t) should be the first choice. If
oyz(t)’ depends on t as 1-!, then the modified
Allan variance can be used as a substitute to help
remove the ambiguity as to the noise processes.
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SIMULATED NOISE
(a) (b)

05¢~/2

o 1072
&
81072
=2
-4 1 [} -4 1 J
10 1 10 102 10 1 10 102
SAMPLE TIME, T SAMPLE TIME, T
(c) (D
r 022 ¢0
o 2 g_é_e.ﬂ_e_e_
e E,g’ - FLICKER FM
o o
o] o]
=2 so-2 1 | 2 . i j
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SAMPLE TIME, T SAMPLE TIME, T
i
(e)
10

RANDOM WALK FM

0.2r1/2

MOD 0 y (r)

3
f
-

1 10 102
SAMPLE TIME, T

Fig la-e. Mod Oy(t) using Eq. 12 was calculated for different sample times for
independently generated and simulated noise processes, which were
white phase noise, flicker phase noise, white frequency noise,
flicker frequency noise, and random walk frequency noise, respec-
tively. Mod o (1) was computed for 399 data points in each case.
One sees the excellent fit to the theory for white phase noise and
flicker phase noise, an important new contribution in the ability to
characterize oscillators having these noise processes.

474

TN-258



332

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-33, NO. 4, DECEMBER 1984

Copyright © 1984 IEEE. Reprinted, with permission, from IEEE Transactions on

I

nstrumentation and Measurements, Vol. IM-33, No. 4, pp. 332-336, December 1984,

Characterization of Frequency Stability: Analysis of
the Modified Allan Variance and Properties of
Its Estimate

PAUL LESAGE axp THEOPHANE AYI

Abstract— An analytical expression for the modified Allan variance is
given for each component of the model usually considered to describe
the frequency or phase fluctuations in frequency standards. The rela-
tion between the Allan variance and the modified Allan variance is
specified and compared with that of a previously published analysis.
The uncertainty on the estimate of the modified Allan variance calcu-
lated from a finite set of measurement data is discussed.

Manuscript received December 8, 1983; revised February 17, 1984,

The authors are with the Laboratoire de I'Horloge Atomique, Equipe
de Recherche du CNRS, associée a I'Université Paris-Sud, 91405 Orsay,
France.

TN-259



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-33, NO. 4, DECEMBER 1984

I. INTRODUCTION

Many works [1]-[5] have been devoted to the characteriza-
tion of the frequency stability of ultrastable frequency sources
and have shown that the frequency noise of a generator can be
easily characterized by means of the ‘“‘two-sample variance”
{2] of frequency fluctuations, which is also known as the
“Allan variance’ [2] in the special case where the dead time
between samples is zero.

An algorithm for frequency measurements has been devel-
oped by J. J. Snyder [6], [7]. It increases the resolution of
frequency meters, in the presence of white phase noise. It has
been considered in detail by D. W. Allan and J. A. Barnes (8].
They have defined a function called the “modified Allan
variance” and they have analyzed its properties for the com-
monly encountered components of phase or frequency fluctu-
ations [3]. For that purpose, the authors of [8] have expressed
the modified Allan variance in terms of the autocorrelation of
the phase fluctuations. For each noise component, they have
computed the modified Allan variance and deduced an empiri-
cal expression for the ratio between the modified Allan variance
and the Allan variance.

In this paper, we show that the analytical expression of this
ratio can be obtained directly, even for the noise components
for which the autocorrelation of phase functions is not defined
from the mathematical point of view. We give the theoretical
expressions and compare them with those published in [8].

The precision of the estimate of the modified Allan variance
is discussed and results related to white phase and white fre-
quency noises are presented.

II. BACKGROUND AND DEFINITIONS

In the time domain, the characterization of frequency stability
is currently achieved by means of the two-sample variance
(2] €02(2, T, 7)) of fractional frequency fluctuations. It is
defined as

(032, T, ™) = 4 {(Fker = 7ic)®) (H

where the quantity y, is the average value of the fractional fre-
quency fluctuations y(t) over the time interval (¢, fx +7)
such that

a 1 !k#f
Yk =— y(t)de.

T %

In (2), t; represents the moment at which the kth observation
time interval starts. We have

T>r7 (3)

where to is an arbitrary time origin, k is a positive integer, and
T is the time interval between the beginning of two successive
observations.

In all the following, we assume that the dead time between
samples is zero. We then have

T=r. 4)

In this special case, the two-sample variance is well known as
the Allan variance 0% ()

03 (1) ={03(2, 7, 7).

(2)

ty =tg +kT,

)

The relation between the Allan variance and y(¢) can be ex-
pressed as

l tsz'r tkwr 2
o3 (r) = F<lf y(1) dt-f y(1) dt, > (6)
T "

t +T

Equation (6) shows that 0}, (1) is proportional to the true vari-
ance of the output of a linear filter with input signal y(¢) and
impulse response i, (¢) in Fig. 1.

g P

:

Fig. 1. Variations with time of the linear filter impulse response which
represents the signal processing for the Allan variance calculation.

T T
T =
'.1_, '
—
r-‘-.“-‘—-‘-‘-—— “
e e———————
et pterarere—
1
———— | ‘
O

e pret——— !
[ S—— i

Fig. 2. Illustration of the algorithm considered for the measurement of
periodic signal frequency.

The fractional frequency fluctuations y(¢) are actually well
described by a conventional model which consists of a set of
five independent noise processes [2]. Taking into account the
finite bandwidth of the processed signal and assuming a single
pole filter, the one-sided power spectral density Sy (f)ofy(n)
can be written as

fd

2
1+ (L)
[+
where coefficients h, do not depend on f. The integer a equals

2,1,0,-1, and -2. f, is the 3-dB bandwidth of the hardware
filter.

Sy(f)=hy Q)

III. THE MODIFIED ALLAN VARIANCE

The main property of the algorithm developed by J. J.
Snyder is to increase the precision on the measure of periodic
signal frequency, in presence of white phase noise {7]. It con-
sists in dividing a time interval 7 into n cycles of clock period
To such as

(8)

Therefore, from a given observation time interval of duration
27, n overlapping time intervals of duration 7 can be obtained,
as depicted in Fig. 2. Another property of this algorithm is to
reduce the total observation time by a factor n/2.

Following this way, Allan and Barnes have introduced the
“modified Allan variance” [8] such as

1 1 n to+ (i+2n)7g
Mod 03 (1) = — [—- ’f 1) dt
od 03 (1) 273< " ;-Zx y(1)

to+ (i+m7o

to + (i+n)1o
-f y() dtl >

to +iTg

T=nT1,.

)

It can be easily seen from (9) that the calculation of each
statistical sample involved in the definition of Mod a}, (7)
requires a signal observation of duration 3r.

The impulse response h,(t) of the equivalent linear filter
consists in finite sum of n shifted impulse responses i, ().
We have

1.0
hy(2) == D hy(t - ito).

i=1

(10
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TABLE 1
ANALYTICAL EXPRESSION FOR THE MODIFIED ALLAN VARJIANCE WITHIN
CONDITION 2m fe1o 22> 1

NOISE TYPE

WHITE P M 2

h
FLICKER P M 1 1
L f +
_z_nlan n(2n ) .

4 mn%1

- (n -znmx-g‘[]}]

+71 (k+n)(k-2n)an{k +n) ¢21- (k-n)(k+2n)enik -n;oszlnk- k[(n +2k)en(k ¢.;)

h 2
WHITE F M o] o n 4t

— X ——

27 2n E

2h .en2 2 n-1 @
-1 4n” - 3 1
- [ - n+l, 1 L (n=k) x{%[(k +2n)en(k ¢2n)-(k-2n)2n(2n-k)J

FLICKER F M -1 n n“a2 k=l

RANDOM WALK F M

In order to illustrate (10), variations with time of the shifted
functions h;(z - ite) and of the impulse response h,(t) are
represented in Fig. 3(a) and (b), respectively, for n = 10.

Forn = 1, the Allan variance and the modified one are equal.
We have

Mod 0% (1) = 03,(7). (1D

One can express (9) in terms of the spectral density S, ( .
We have

2 “
Mod a},(r)=;2"—2‘r;"n£ —f—,Sy(f)Si!‘ﬂ (nfn7o) df

n-1 “
+22 (n- k)f —5 Sy (f) cos (2mfkTo)
k=1 o [

- sin* (nfn7g) df’. (12)

It should be noted that the integrals involved in (12) are con-
vergent for each noise component. The analytical expression
for the modified Allan variance can therefore be deduced
directly from this equation.

In the following, it is assumed that the condition 2nf, 7 >> 1
is fulfilled. This means that the hardware bandwidth of the
measurement system must be much larger than the reference
clock frequency.

We have calculated the modified Allan variance for each
noise component, Results are reported in Table 1. It appears
that the analytical expression for Mod oi, (7) isrelatively simple
except for flicker phase and flicker frequency noises where it
is given as a finite sum of functions depending on n. In order
to compare the Allan variance with the modified one, we

A
i=1 AT
) —  —
izd
- —
P —
=6 ___J—L___—_I———
e e
. —
1=9 —___]______\——J—
=10 _—I__—l—_—_—f——
t e+ T, e+ 2nT, te* 3T,
(a)
ahalh

(®)

Fig. 3. (a) The impulse response h,(t), associated with the modified
Allan variance calculation, represented as a sum of a shifted impuise
response Ay(#). It is assumed n=10. (b) Variations with time of
the impulse response &, (¢), in the special case where n = 10.

* See Appendix Note # 35
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TABLE 1
ANALYTICAL EXPRESSIONS AND ASYMPTOTICAL VALUS FOR R(n)
(Results Are Valid within Condition 2w fro >3 1)

1 1 n*—l—xn:I(n-k){4in(n2-‘)-in o oy 0

n2 3 Ln(vacnro) k=1 :Z —kT

2 *
0 —Z—n + 1 0.5
2n
) 01 @
1 {4n" -3n+1 1 n
————— Z(n-k = Hk+2n)en(k +2n}-(k - 2 2n -k
:g[ ek )x{z [0 s 2mante s 2m)-(x - 2manan - 1))
2

- (n-2k)2n ik - %]”

+ 4 (kem(k=2n)in(k +n) + K =n)(k +2n)enik -n's 3

ink - k[(n +2K)2n(k +3)

0.787

. _12 . _Il
8n 20n

8lz

consider the ratio R (n) defined in [8] as
R(n) = Mod 03 ()/03 (7). (13

The analytical expressions for R(n), deduced from Table I,
are reported in Table II. One can see that R(n) does not
depend on the product f, 1y, except for flicker phase noise
modulation. The asymptotic values of R(n) are also listed in
Table II.

Fig. 4 depicts the variations of R(n) with n. It shows that,
for large values of n, white phase and flicker phase noise
modulations have different dependences. As outlined in (8],
this gives a means to easily distinguish these two noise pro-
cesses, in the time domain. For large n, and fora=0,-1,-2,
R (n) remains a constant. Consequently the Allan variance can
be deduced from the modified one, for these noise processes.

A comparison with results of {8] shows a good agreement
for =2, 0 and -2. But, fora =1 and - 1, our expressions for
the modified Allan variance and ratio R (n) disagree, especially
for flicker phase noise modulation. This discrepancy might
be due to the fact thatin [8], Mod o}, (1) is expressed in terms
of the autocorrelation function of phase fluctuations which
is not defined fora = 1.

IV. UNCERTAINTY ON THE ESTIMATE OF THE
MODIFIED ALLAN VARIANCE

Equation (9) shows that the definition of the modified Allan
variance theoretically implies an infinite set of time intervals.

Practically, one can only estimate this quantity from a finite
set of m successive cycles similar to the one depicted in
Fig. 3(b).

Let Mod 65(1) be the estimated modified Allan variance

(EMAYV) such as
2

= i Zn: Ai.k}

mat V=1

1
Mod 62(1) = —— X 14
0d 0, (") 2r3n? (14)

0.825

Fig. 4. Variations with n of the ratio R(n), for fractional frequency
fluctuations with power law spectrum S, (f) = Ao - (1/1 + (fIf)?)f %,
within condition 2xf.rg >> 1. (*Fora = +1, R(n) is a function of f,
and g, The reported variations are for 2xf.rg = 10%.)

where

jto +(i+2n)rg+ (k~1)3ntg

Aj g = y(t)de

19+ (i+n)Tg + (k-1)3nTg

y(t)yde.

to+ (i+n)Tg+ (k-1)3nTo
) f (15)

to+irg+ (k~-1)anrg

* See Appendix Note # 35 TN-262
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The EMAYV is a random function of m. Its calculation requires
an observation time of duration 3m7.

We consider €, the fractional deviation of the EMAV relative
to the modified Allan variance defined as follows:

_ Mod 65 (1) - Mod 03 (7)
€ Mod 03 (7)

The standard deviation o(€) of € defines the relative uncertainty
on the measurement of the modified Allan variance, due to the
finite number of averaging cycies. We have

1 A200111/2
Mod o) {0® [Mod 53(n)]}

where 0 [Mod 62(7)] denotes the true variance of the EMAV
such as

0* [Mod 63 (1)) =([Mod 33(7)1*)~ [Mod 03 (7)]2.  (18)

We assume that the fluctuations y(¢) are normally distributed
[10]. One can therefore express {(Mod 63 (7)]*) as

m*([Mod 63(r)1?
=(m? + 2m) [Mod 63 (7))?

(16)

a(e) =

17

2

m=1 n-1
+4 3 (m-p){2 3 (n- i), +nly
p=1 i=]

(19)

where I, are integrals which depend on n and on the noise pro-
cess. We have

=S
8nrin?l, =f y({)
o !

X {6 cos 2nfrei - 4 cos 2nfre(i + n)
- 4 cos 2ifro(i - n) + cos 2nf1o(i + 2n)
+ cos 2nfro(i - 2n)} df. 20)

For each noise component, the expression for g(e) can be
deduced from the calculation of integrals involved in (20).
These expressions are generally lengthy and complicated except
for white phase and white frequency noise modulations, where
integrals /,, equal zero. We have limited the present analysis
to these two noise components. We get for a(e)

cos 6nnpfty

2
a(e) = — for a=2 and 0. Qn
We now compare (21) with previously published results related
to the estimate of the Allan variance [5]. For a given time
observation of duration 3m7, it can be easily deduced from
[5] that the relative uncertainty on the estimate of the Allan
variance varies asymptotically as 1.14 m~Y/2 and 1.0 m Y2 for
a =2 and 0, respectively. For these two noise components, the
uncertainty on the EMAV is larger than the uncertainty on the
estimated Allan variance, but of the same order of magnitude.

V. CONCLUSION

We have calculated the analytical expression for the modi-
fied Allan variance for each component of the model usually
considered to characterize random frequency fluctuations in
precision oscillators. These expressions have been compared
with previously published results and the link between the
Allan variance and the modified Allan variance has been
specified.

The uncertainty on the estimate of the modified Allan vari-

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-33, NO. 4, DECEMBER 1984

ance has been studied and numerical values have been reported
for white phase and white frequency noise modulations.

In conclusion, the modified Allan variance appears to be well
suited for removing the ambiguity between white and flicker
phase noise modulation. Nevertheless, the calculation of the
modified Allan variance requires signal processing which is
complicated, compared to the Allan variance. In the presence
of white or flicker phase noise, the Allan variance cannot be
easily deduced from the modified Allan variance. Further-
more, for a given source exhibiting different noise components,
the determination of the Allan variance from the modified
one is difficult to perform. For most of time-domain measure-
ments, the use of the Allan variance is preferred.
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THE MEASUREMENT OF LINEAR FREQUENCY DRIFT IN OSCILLATORS

James A. Barnes
Austron, Inc., Austin, Texas

ABSTRACT

A linear drift in frequency is an important element in most
stochastic models of oscillator performance. Quartz crystal
oscillators often have drifts in excess of a part in ten to
the tenth power per day. Even commercial cesium beam devices
often show drifts of a few parts in ten to the thirteenth per
year, There are many ways to estimate the drift rates from
data samples (e.g., regress the phase on a quadratic; regress
the frequency on a linear; compute the simple mean of the
first difference of frequency; use Kalman filters with a
drift term as one element in the state vector; and others).
Although most of these estimators are unbiased, they vary in
efficiency (i.e., confidence intervals). Further, the esti-
mation of confidence intervals using the standard analysis

of variance (typically associated with the specific estima-
tion technique) can give amazingly optimistic results. The
source of these problems is not an error in, say, the re-
gressions techniques, but rather the problems arise from
correlations within the residuals. That is, the oscillator
model is often not consistent with constraints on the analy-
sis technique or, in other words, some specific analysis
techniques are often inappropriate for the task at hand.

The appropriateness of a specific analysis technique is ecrit-
ically dependent on the oscillator model and can often be
checked with a simple "whiteness” test on the residuals.
Following a brief review of linear regression techniques,

the paper provides guidelines for appropriate drift estima-
tion for various oscillator models, including estimation of
realistic confidence intervals for the drift.

I. INTRODUCTION

Almost all oscillators display a superposition of random and deterministic

variations in frequency and phase. The most typical model used 1sl1]:

X(t)

= a + bet + Dret2/2 + ¢(t) (1)

where X(t) is the time (phase) error of the oscillator (or clock) relative to
some standard; a, b, and Dr are constants for the particular clock; and ¢(t) is

the random part.

X(t) is a random variable by virtue of its dependence on ¢(t).

* See Appendix Note # 36
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Even though one cannot predict future values of X(t) exactly, there are often
significant autocorrelations within the random parts of the model. These cor-
relations allow forecasts which can significantly reduce clock errors. Errors
in each element of the model (Eq. 1) contribute their own uncertainties to the
prediction. These time uncertainties depend on the duration of the forecast
interval, 1, as shown below in Table 1:

TABLE 1. GROWTH OF TIME ERRORS

MODEL ELEMENT CLOCK RMS TIME
NAME PARAMETER ERROR
Initial Time Error a Constant
Initial Freq Error b ~ 1T
Frequency Drift Dr ~ 12
Random Variations o(t) ~ 13/24

*The growth of time uncertainties due to the random component, ¢(t),
can have various time dependencies. The three-halves power-law
shown here is a “"worst case” model.[2

One of the most significant points provided by Table 1 is that eventually, the
linear drift term in the model over-powers all other uncertainties for suffi-
cliently long forecast intervals! While one can certainly measure (i.e., esti-
mate) the drift coefficient, Dr, and make corrections, there must always remain
some uncertalinty in the value used. That is, the effect of a drift correction
based on a measurement of Dr, is to reduce (hopefully!) the magnitude of the
drift error, but not remove it. Thus, even with drift corrections, the drift
term eventually dominates all time uncertainties in the model.

As with any random process, one wants not only the point estimate of a para-
meter, but one also wants the confidence interval. For example, one might be
happy to know that a particular value (e.g., clock time error) can be estimated
without bias, he may still want to know how large an error range he should
expect. Clearly, an error in the drift estimate (see Eq. 1) leads directly to
a time error and hence the drift confidence interval leads directly to a confi-
dence interval for the forecast time.

II. LEAST SQUARES REGRESSION OF PHASE ON A QUADRATIC
A conventional least squares regression of oscillator phase data on a quadratic
function reveals a great deal about the general problems. A slight modifica-

tion of Eq. 1 provides a conventional model used in regression analysis[3]:

X(£) = a + bet + crt2 + 4(t) (2)
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where ¢ = Dr/2. 1In regression analysis, it is customary to use the symbol "Y"

as the dependent variable and "X" as the independent variable. This is in con-
flict with usage in time and frequency where "X" and "Y" (time error and fre-
quency error, respectively) are dependent on a coarse measure of time, t, the
independent variable. This paper will follow the time and frequency custom even
though this may cause some confusion in the use of regression analysis text books.

The model given by Eq. 2 is complete if the random component, ¢(t), is a white
noise (i.e., random, uncorrelated, normally distributed, zero mean, and finite
variance).

IIT. EXAMPLE

One must emphasize here that ALL results regarding parameter error magnitudes
and their distributions are totally dependent on the adequacy of the model. A
primary source of errors is often autocorrelation of the residuals (contrary to
the explicit model assumptions). While simple visual inspection of the resi-
duals 1is often sufficient to recognize the autocorrelation problem, "whiteness
tests” can be more objective and precise.

This section analyzes a set of 94 hourly values of the time difference between
two oscillators. Figure 1 is a plot of the time difference (measured in micro-
seconds) between the two oscillators. The general curve of the data along with
the general expectation of frequency drift in crystal oscillators leads one to
try the quadratic behavior (Model #1; models #2 and #3 discussed below). While
it is not common to find white phase noise on oscillators at levels indicated on
the plot, that assumption will be made temporarily. The results of the regres-
sion are summarized in a conventional Analysis of Variance, Table 2.

TABLE 2. ANALYSIS OF VARIANCE QUADRATIC FIT TO PHASE
(Units: seconds squared)

SOURCE SUM OF SQUARES d.f. MEAN SQUARE
Regression 2.32E-9 3
Residuals 4.26E-12 91 4.68E~-14
Total 2.329E-9 94 2.48E-11

Coefficient of simple determination 0.99713

Parameters:

a = 1.10795E-5 (seconds) t-ratio = 161.98
b = 1.4034E-10 (sec/sec) t-ratio = 152.02
¢ = =3.7534E-16 (sec/sec?) t-ratio = -143.51
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Dr = 2c = -7.507E-16 (about =6.5E-11 per day)
Std. Error = 0.05231E-16

(Note: a is the value estimated for the a-parameter, etc.)

The Analysis of Variance, Table 2, above suggests an impressive fit of the data
to a quadratic function, with 99.71% of the variationg in the data "explained"”
by the regression. The estimated drift coefficient, Dr, is -7.507E~16 (sec/sec2)
or about -6.5E-11 per day --- 143 times the indicated standard error of the
estimate. However, Figure 2, a plot of the residuals, reveals significant auto-
correlations even visually and without sensitive tests. (The autocorrelations
can be recognized by the essentially smooth variations in the plot. See Fig. 5
as an example of a more nearly white data set.) It is true that the regression
reduced the peak-to-peak deviations from about 18 microseconds to less than one
microsecond. It is also true that the drift rate is an unbilased estimate of the
actual drift rate, but the model assumptions are NOT consistent with the auto-
correlation visible in Fig. 2. This means that the confidence intervals for the
parameters are not reliable. In fact, the analysis to follow will show just how
extremely optimistic these intervals really are.

At this point we can consider at least two other simple analysis schemes which
might provide more realistic estimates of the drift rate and its variance. Each
of the two analysis schemes has its own implicit model; they are:

(2) Regress the beat frequency on a straight line.
(Model: Linear frequency drift and white FM.)

(3) Remove a simple average from the second difference of the phase.
(Model: Linear frequency drift and random walk FM.)

Continuing with scheme 2, above, the (average) frequency, Y(t), 1s the first
difference of the phase data divided by the time interval between successive
data points. The regression model is:

Y(t) = b + Dret + e(t) (3) * @
where e(t) = [¢(t + 145) - ¢(t)]/t,. Following standard regression procedures as

before, the results are summarized in another Analysis of Variance Table, Table
3.

TABLE 3., ANALYSIS OF VARIANCE LINEAR FIT TO FREQUENCY
(Units: sec2/sec?)

SOURCE SUM_OF SQUARES d.f. MEAN SQUARE
Regression 1.879E-18 2
Residuals 2.084E-20 91 2.29E-22
Total 1.899E-18 93 2.042E-20

(Note: Taking the first differences of the original data set reduces the
number of data points from 94 to 93.)

* See Appendix Note # 37
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Coefficient of simple determination 0.9605

Parameters:

A

b = 1,049E-10 (sec/sec) t-ratio = 3,32

Dr = -7.635E-16 (sec/sec?) t-ratio = -4.70
Std. Error = 0.1624E-16 (sec/secz)

While the drift rate estimates for the two regressions are comparable in value
(-7.507E-16 and -7.635E-16), the standard errors of the drift estimates have
gone from 0.052E-16 to 0.162E-16 (a factor of 3). The linear regression's coef-
ficient of simple determination is 96.05% compared to 99.17Z for the quadratic
fit. Figure 3 shows the residuals from the linear fit and they appear more
nearly white. A cumulative periodogram[4] is a more objective test of white-
ness, however. The periodogram, Fig. 4, does not find the residuals acceptable
at all.

IV. DRIFT AND RANDOM WALK FM

In the absence of noise, the second difference of the phase would be a constant,
DreTol. 1If one assumes that the second difference of the noise part is white,
then one has the classic problem of estimating a constant (the drift term), in
the presence of white noise (the second difference of the phase noise)., Of
course, the optimum estimate of the drift term is just the simple mean of the
second difference divided by 102. The results are summarized below, Table 4:

TABLE 4. SIMPLE MEAN OF SECOND DIFFERENCE PHASE

Simple mean Dr = ~6.709E-16 t-ratio = -2.45

Degrees of Freedom = 91

Standard Deviation 8 = 26.2405E-16

Standard Deviation of the Mean = 2.7358E-16
Figure 5 shows the second difference of the phase after the mean was subtracted.
Visually, the data appear reasonably white, and the periodogram, Fig. 6, cannot
reject the null hypothesis of whiteness. Now the standard error of the drift
term is 2,735E-16, 52 times larger than that computed for the quadratic fit!
Indeed, the estimated drift term is only 2.45 times its standard error.
V. SUMMARY OF TESTS
The analyses reported above were all performed on a single data set. In order
to verify any conclusions, all three analyses used above were performed a total

of four times on four different data sets from the same pair of oscillators.
Table 5 summarizes the results:
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TABLE 5. SUMMARY OF DRIFT ESTIMATES
(Units of 1.E-16 sec/sec?)

ESTIMATION COMPUTED PASS

PROCEDURE DRIFT STANDARD WHITENESS
& MODEL ESTIMATE ERROR TESTS?
Quad Fit =7.507 .0523 No
(White PM
and Drift) -8.746 .0493 No
-6.479 .0645 No
"60468 00880 No
lst Difference -7.635 162 No
Linear Fit
(White FM -8.558 «206 No
and Drift)
"60443 0192 No
-6.253 «295 No
-6.710 2.736 Yes
Second Difference
Less Mean -7.462 9.335 No
(Random Walk
FM and Drift) -6.870 3.424 Yes

One can calculate the sample means and variances of the drift estimates for each
of the three procedures listed in Table 5, and compare these "external” estimates
with those values listed in the table under "Computed Standard Error,"” the
"internal” estimates. Of course the sample size is small and we do not expect
high precision in the results, but some conclusions can be drawn. The compari-
sons are shown in Table 6.

It is clear that the quadratic fit to the data displays a very optimistic inter-
nal estimate for the standard deviation of the drift rate. Other conclusions
are not so clear cut, but still some things can be said. Considering Table 5,
the "2nd Diff - Mean" residuals passed the whiteness test three times out of
four. The external estimate of the drift standard deviation lies between the
internal estimates based on the first and second differences. Since the oscil-
lators under test were crystal oscillators, one expects flicker FM to be present
at some level. One also expects the flicker FM behavior to lie between white FM
and random walk FM. This may be the explanation of the observed standard devia=-
tions, noted in Table 6.
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TABLE 6. STANDARD DEVIATIONS

EXTERNAL ESTIMATE INTERNAL ESTIMATE
(Std. Dev. of Drift (RMS Computed Std.
PROCEDURE Estimates from Col. Dev. Col. #3,
(Model) #2, Table 5) Table 5)

Quad Fit (White PM) 1.08 0.065

1st Diff - Lin 1.08 0.203

(White FM)

2nd Diff - Mean 0.44 5.45

(Rand Wlk FM)

VI. DISCUSSION

In all three of the analysis procedures used above, more parameters than just
the frequency drift rate were estimated. Indeed, this is generally the case.
The estimated parameters included the drift rate, the variance of the random
(white) noise component, and other parameters appropriate to the specific model
(e.g., the initial frequency offset for the first two models). If these other
parameters could be known precisely by some other means, then methods exist to
exploit this knowledge and get even better estimates of the drift rate. The
real problems, however, seem to require the estimate of several parameters in
addition to the drift rate, and it 1is not appropriate to just ignore unknown
model parameters.,

To this point, we have considered only three, rather ideal oscillator models,
and seldom does one encounter such simplicity. Typical models for commercial
cesium beam frequency standards include white FM, random walks FM, and frequency
drift. Unfortunately, none of the three estimation routines discussed above are
appropriate to such a model, This problem has been solved in some of the recent
work of Jones and Tryon[S]:[6]. Their estimation routines are based on Kalman
Filters and maximum likelihood estimators and these methods are appropriate for
the more complex models. For details, the reader is referred to the works of
Jones and Tryon.

Still left untreated are the models which, in addition to drift and other noises,
incorporate flicker noises, either in PM or FM or both. 1In principle, the

methods of Jones and Tryon could be applied to Kalman Filters which Incorporate

empirical flicker models 7], To the author's knowledge, however, no such analy-
ses have been reported.

VII. CONCLUSIONS

There are two primary conclusions to be drawn:

(1) The estimation of the linear frequency drift rates of oscillators
and the inclusion of realistic confidence intervals for these
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estimates are critically dependent on the adequacy of the model
used and, hence the adequacy of the analysis procedures.

(2) The estimation of the drift rate must be carried along with the
estimation of any and all other model parameters which are not
known precisely from other considerations (e.g., initial fre-
quency and time offsets, phase noise types, etc.)

More and more, scientists and engineers require clocks which can be relied on to
maintain accuracy relative to some master clock. Not only is it important to
know that on the average the clock runs well, but it is essential to have some
measure of time imprecision as the clock ages. For example, the uncertainties
might be expressed as, say,, 90X certain that the clock will be within 5 micro-
seconds of the master two weeks after synchronization. Such measures are what
statisticians call "interval estimates”™ (in contrast to point estimates) and
their estimations require interval estimates of the clock's model parameters.
Clearly, the parameter estimation routines must be reliable and based on sound
measurement practices. Some inappropriate estimation routines can be applied
to clocks and oscillators and give dangerously optimistic forecasts of
performance.,
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APPENDIX A

REGRESSION ANALYSIS
(Equally Spaced Data)

We begin with the continuous model equation:
X(t) = a + bet + c'tZ2 + ¢(t) (A1)

We assume that the data is in the form of discrete readings of the dependent
variable X(t) at the regular intervals given by:

t = nT, (A2)
Equation (Al) can then be written in the obvious form:

Xy, = a + 15 b'n + 152 c*n? + ¢(n7y) (A3)
forn=1, 2, 3 ..., N,

Next, we define the matrices:

1 1 17 ~x; 7
1 2 4 Xy
1 3 9 X3
N = X =
| 1~ N2 | xy |
T =1 0o 0T
0 7o 0
__0 0 ro%i
—— N —1- —-N —— e —
! Xq J Xq Sy
1 1
N N
(ND)'X = | 15} X n = Te<| JXpgn[ = T*| Spx
1 1
N N
o2 § X n? % X n? Snax |
- - - — - -
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where four quantities must be calculated from the data:

N N
Sy = Z Xn Snnx = Z Xn n2
nal n=1
N N
Snx = Z Xp n Sxx = Z an
n=] n=1
Define
a
B -|o
c

With these definitions, Eq. A3 can be rewritten in the matrix form:
X = NTB + ¢ (A4)

and the coefficients, B, which minimize the squared errors are given by:

o)

=
]
o>

=T+ (NN)L . (NX) (a5)

0>

The advantage of evenly spaced data for these regressions is that, with a bit of
algebra, the matrix, ( N'N )~1l, can be written down in closed form:

A B C
(NN )L = B D E + 1/6 (A6)
c E F
where
A=3[3(N+1) +2] B

B = -18 (2N + 1)

c =30

D =12 (2N + 1) (8N + 11) / [(N + 1) (N + 2)]
E =-180 / (N + 2)

F=180/ [(N+1) (N+ 2)]
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and
G=N(N-1) (N=-2)
Also, the inverse of T is just:
1 0 0

171 = 0 1/t, O
0 0 1/t42

The complete solution for the regression parameters can be summarized as follows:

There are four quantities which must calculate from the data:

N N
S = Z X Snnx ™ Z Xn n?
n=1 n=]
N N
Spx = Z X n Sxx = 2 xn2
n=1 n=1

forn=1, 2, 3, ..., N. Based on these four quantities, the regression param-
eters are calculated from the seven following equations:

[~ 1

= (A Sy + 15 B Sy + 102 C Sanx) / G

= (B Sy + 15D Spx + To2 E Spnx) / (G 7p)

o>

~ 2 2
c= (CSx +15E Syx + 15 F Sppx) / (6 157)
5a2 =62 A/ 6

5,2 =382 D/ (6 1o2)

5.2 =62 F/ (G 1oh)
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where the coefficients A, B, C, etc., are given by:

A

3 [3N(N+ 1) + 2]
B = -18 (2N + 1)
c = 30

D = 12 (2N + 1) (8N + 11) / [(N + 1) (N + 2)]

E = -180 / (N + 2)

F = 180/ [(N + 1) (N + 2)]
and

G = N(N-1) (N-2).

In matrix form, the error variance for forecast values 1is:
Var (%) =02 [1 + N (N'N-1 M)

where Ny' = [l ng ng] and 1y ny is the date for the forecast point, ;(k. That
is, n; = N + K and K is the number of lags past the last data point at lag N.
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APPENDIX B

REGRESSIONS ON LINEAR AND CUBIC FUNCTIONS

The matrixes (N'N)~! for the linear fit and cubic fit, which correspond to Eq.
A6 in Appendix A are as follows:

For the linear fit:

A B
(NN~ = 1/0D
B C
where
A = 2 (28 + 1)
B = -6
cC = 12/ (N+1)
and
D = N(N-1)
For the cubic fit:
A B c D 7]
-l B E F G L/ K
C F H I
| D G 1 J |
where
A = 8 (2N + 1) (N+ N+ 3)

B = =20 (6N2 + 6N + 5)

C = 120 (2N + 1)

D = =140

E = 200 (6N% + 27 N3 + 42 N2 + 30 N+ 11) / L
F = =300 (N+ 1) (3N +5) (3N + 2) / L

G = 280 (6N2 + ISN + 11) / L
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and

K

L

360 (2N + 1) (9N +13) / L
-4200 (N +1) / L

2800 / L

N (N=-1) (N-2) (N~ 3)

(N+1) (N+ 2) (N+ 3).

The restrictions on these equations are that the data is evenly spaced begin-

ning with n = 1 to n = N, and no missing values.

For error estimates (and their

distributions) to be valid, the residuals must be random, uncorrelated, (i.e.,

white).
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QUESTIONS AND ANSWERS

MR. ALLAN:

We have found the second difference drift estimator to be useful for
the random walk FM process. One has to be careful when you apply it,
because if you use overlapping second differences, for example, if
you have a cesium beam, and you have white noise FM out to several
days and then random walk FM beyond that point, and you are making
hourly or 2 hour measurements, if you use the mean of the second
differences, you can show that all the middle terms cancel, and in
fact you are looking at the frequency at the beginning of the run and

the frequency at the end of the run to compute the frequency drift and
that's very poor.

DR. BARNES:

My comment would be: There again the problem is in the model, and not

in the arithmatic. The models applied here were 3 very simple models,
very simple, simpler than you will run into in life. It was pure random
walk plus a drift or pure frequency noise plus a drift, or pure random
walk of frequency noise plus a drift and it did not approach at all any
of the noise complex models where you would have both white frequency and
random walk frequency and a drift. That's got to be handled separately,
I'm not even totally sure how to perform it in all cases at this point.

MR. McCASKILL:

I would like to know if you would comment on the value of the sample time
and the reason why, of course, is that the mean second difference does
depend on the sample time? For instance, if you wanted to estimate the
aging rate or change in linear change of frequency, what value of sample
time would you use in order to make that correction. So, really, the
question is, how does the sample time enter into your calculations?

DR. BARNES:

At least I will try to answer in part. I don't know in all cases, I'm
sure, but if you have a complex noise process where you have at short
term different noise behavior than in long term, it may benefit you to
take a longer sampling time and effectively not look at the short term,
and then one of the simple models might apply. I honestly haven't
looked in great detail at how to choose the sample time. It is an
interesting question. )
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MR. McCASKILL:

Well, let me go further, because we had the benefit of being out at

NBS and talking with Dr. Allan earlier and he suggested that we use

the mean second difference, and the only problem is if we want to
calculate or correct for our aging rate at a tau of five days or ten
days, and you calculate the mean second difference, you come up with
exactly the Allan Variance. What appears is that in order to come up
with the number for the aging rate, you have to calculate the mean
second difference using a sample time whenever you take your differences
of longer than, let's say, ten days sample time. So we use, of course,
the regression model, but we use on the order of two or three weeks in
order to calculate an aging rate correction for, say, something like the
rubidium in the NAVSTAR 3 clock. It looks like in order to come up
with a valid value for the Allan Variance of five or ten day sample

time you have to calculate the aging rate at a longer, maybe two or
three times longer sample time.

. DR. BARNES:

Dave Allan, do you think you can answer that?

MR. ALLAN:

Not to go into details, but if you assume that in the longer term you

have random walk frequency modulation as the predominant noise process
in a clock, which seems to be true for rubidium, cesium and hydrogen,

you can do a very simple thing. You can take the full data length

and take the time at the beginning, the time in the middle and the

time in the end and construct a second difference, and that's your
drifc.

There is still the issue of the confidence interval on that. If you
really want to verify your confidence interval, you have to have enough
data to do a regression. You need enough data to test to be sure the
model is good.

DR. WINKLER:

That argument is fourteen years old, because we have been critized
here. I still believe that for a practical case where you depend on
measurements which are contaminated and maybe even contaminated by
arbitrarily large errors if they are digital. These, theoretical
advantages that you have outlined may not be as important as the
benefits which you get when you make a least square regression. In
this case you can immediately identify the wrong data. Otherwise, if
you put the data into an algorithm you may not know how much your data
is contaminated. So for practical applications, the first model even
though theoretically it is poor, it still gives reasonable estimates
of the drift and you have residuals which let you identify wrong phase
values immediately.
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DR. BARNES:

I think that's true and you may have different reasons to do regression
analysis, if your purpose is to measure a drift and understand the
confidence intervals, then I think what has been presented is reasonable,
if you have as your purpose to look--to see if there are indications of
funny behavior in a curve that has such strong curvature or drift that
you can't get it on graph paper without doing that, I think it is a very
reasonable thing to do. I think looking at the data is one of the
healthiest things any analyst can do.
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The accepted definition of frequency stability in the time domain is
the two-sample variance (or Allan variance). It is based on the
measurement of average frequencies over adjacent time intervals,
with no "dead time" between the intervals. The primary advantages
of the Allan variance are that (1) it is convergent for many
encountered noise models for which the conventional variance is
divergent; (2) it can distinguish between many important and
different spectral noise types; (3) the two-sample approach relates
to many practical implementations; for example, the rms change of an
oscillator’s frequency from one period to the next; and (4) Allan
variances can be easily estimated at integer multiples of the sample
interval.

In 1974 a table of bias functions which related variance estimates
with various configurations of number of samples and dead time to
the Allan variance was published [1]. The tables were based on
noises with pure power-law spectral densities.

Often situations occur that unavoidably have dead time between
measurements, but still the conventional variances are not
convergent. Some of these applications are outside of the time-and-
frequency field. Also, the dead times are often distributed
throughout a given average, and this distributed dead time is not
treated in the 1974 tables.

This paper reviews the bias functions B, (N,r,u), and B, (r,u) and
introduces a new bias function, B;(2,M,r,u), to handle the commonly
occurring cases of the effect of distributed dead time on the
computed variances. Some convenient and easy-to-interpret
asymptotic limits are reported. A set of tables for the bias
functions are included at the end of this paper.

Key words: Allan variance; bias functions; data sampling and dead
time; dead time between the measurement; definition of frequency
stability; distributed dead time; two-sample variance
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1. Introduction

The sample mean and variance indicate respectively the approximate magnitude
of a quantity and its uncertainty. For many situations a continuous function
of time is sampled, or measured, at fairly regular intervals. Sampling is not
always instantaneous. It takes a finite time and provides an "average
reading." If the underlying process (or noise) is random and uncorrelated in
time, then the fluctuations are said to be "white" noise. In this situation,

the sample mean and variance calculated by the conventional formulas,

1 N
m=—x L Yn:
n=1

(1)

1 N -
SZ = N-1 X (}’n _m)Z ’
n=1

provide the needed information. The "bar" over the y in eq (1) above denotes
the average over a finite time interval. 1In time and frequency work, y is
defined as the average fractional (or normalized) frequency deviation from
nominal over an interval 7 and at some specified measurement time. As in
science generally, the physical model determines the appropriate mathematical
model. For the white noise model, the sample mean and variance are the

mainstays of most analyses.

Although white noise is a common model for many physical processes, more
general noise models are being identified and used. In precise time and
frequency measurement, for example, there are two quantities of great
interest: instantaneous frequency and phase. These two quantities by
definition are exactly related by a differential. (We are NOT considering
Fourier frequencies at this point.) That is, the instantaneous frequency is
the time rate of change of phase. Thus, if we were employing a model of white
frequency-modulation (white FM) noise, then the phase noise is the integral of
the white FM noise, commonly called a Brownian motion or random walk.
Therefore, depending on whether we are currently interested in phase or
frequency, the sample mean and variance may or may not be appropriate.

2
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By definition, white noise has a power spectral density (PSD) that is constant
with Fourier frequency. Since random walk noise is the integral of white
noise, the power spectral density of a random walk varies as l/f2 (where f is
the Fourier frequency) [2]. We encounter noise models whose power spectral
densities are various power laws of their Fourier frequencies. Flicker noise
is very common and is defined as a noise whose power spectral density varies
as 1/f over a relevant spectral range. If an oscillator’s instantaneous
frequency is well modeled by flicker noise, then its phase would be the

integral of the flicker noise. It would have a PSD which varied as 1/f3.

Noise models whose PSD’s are power laws of the Fourier frequency but not
integer exponents are possible as well but not as common. This paper
considers power-law PSD’'s of a quantity y(t); y(t) is a continuous sample
function which can be measured at regular intervals. For noises whose PSD’s
vary as f* with a < -1 at low frequencies, the conventional sample mean and
variance given in eq (1) do not converge as N gets large {2, 3]. This lack of
convergence renders the sample mean and variance ineffective and often

misleading in some situations.

Although the sample mean and variance have limitations, other time-domain
statistics can be convergent and quite useful. The quantities that we
consider in this paper depend significantly on the details of the sampling
procedures. Indeed, each sampling scheme has its own bias, and this is the

motivation for the bias functions discussed in this paper.
2. The Allan Variance

Recognizing that for particular types of noise, the conventional sample
variance fails to converge as the number of samples, N, grows, Allan suggested
that we set N = 2 and average many of these two-sample variances to get a
convergent and stable measure of the spread of the quantity in question [3].

This is what has come to be called the Allan variance.
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More specifically let us consider a sample function of time as indicated in
figure 1. A measurement consists of averaging y(t) over the interval 7. The
next measurement begins at a time T after the beginning of the previous
measurement interval. There is no logical reason why T must be as large as 7
or larger--if T < r, then the second measurement begins before the first is
completed, which is unusual but possible. When T = r, there is no dead time

between measurements.

The accepted definition of the Allan variance is the expected value of a two-
sample variance with no dead time between successive measurements. In

symbols, the Allan variance is given by
02(1) = HE[(¥us1-Yn)?], (2)

where there is no dead time between the two sample averages for the Allan

variance and the E[+] denotes the expectation operator.
3. The Bias Function B, (N,r,p)

Define N to be the number of sample averages of y(t) used in eq (1) to
estimate a sample variance (N = 2 for an Allan variance). Also define r to be
the ratio of T to 7 (r = 1 when there is no dead time between measurements).
The parameter p is related to the exponent of the power law of the PSD of the
process y(t). If a is the exponent in the power-law spectrum for y(t), then
the Allan variance varies as r raised to the py power, where a and u are
related as shown in figure 2 [2-4]. We can use estimates of p to infer a, the
spectral type. The ambiguity in a for g = -2 has been resolved by using a
modified 05(7) [5-71.

Often data cannot be taken without dead time between sample averages, and it
is useful to consider other than two-sample variances. We will define the

bias function B, (N,r,u) by the ratio,

o? (N,
B, (N,r,u) = —2—("—L— , 3)
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where 0% (N,T,r) is the expected sample variance given in eq (1) and based on N
measurements at intervals T and averaged over a time r and r = T/7r. In words,
B, (N,r,u) is the ratio of the expected variance for N measurements to the
expected variance for two samples (everything else held constant). The
variances on the right in eq (3) depend implicitly on the noise type even
though 4 or a are not shown as independent variables. The noise-type
parameter, u, is shown as an independent variable for all of the bias
functions in this paper, because the values of the ratio of these variances
explicitly depend on p as will be derived later in the paper. Allan showed
that if N and r are held constant, then the a, u relationship shown in figure
2 is the same; that is, we can still infer the spectral type from the 7

dependence using the equation a = -p-1, -2 < a4 < 2 [3].
4. The Bias Function B, (r,u)

The bias function B, (r,u) is defined in [1] by the relation,

_ o*(@,T,r) _ _o%(2,T,7)
Bz(r,}l) - 02(2’1.’1,) - 0’3(1’) . (4)

In words, B,(r,u) is the ratio of the expected two-sample variance with dead
time to that without dead time (with N = 2 and r the same for both variances).
A plot of the B,(r,u) function is shown in figure 3. The bias functions B,
and B, represent biases relative to N = 2 rather than infinity; that is, the
ratio of the N sample variance (with or without dead time) to the Allan
variance and the ratio of the two-sample dead-time variance to the Allan

variance respectively.

5. The Bias Function By (N,M,r,u)

Consider the case where a great many measurements are available with dead time
between each pair of measurements (T, > r,). The measurements are averaged
over the time interval r_,, the spacing between the beginning of one
measurement to the next is T,, and it may not be convenient to retake the
data. We might want to estimate the Allan variance at, say, multiples M of

5
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the averaging time r,. 1If we average groups of the measurements of y(t), then
the dead times between the original measurements are distributed periodically

throughout the new average measurements (see figure 4). Define

_ g M-l
Yi = S5 L Yao (5)

n=1
where ¥y, are the raw or original measurements based on dead time T,-7,.
Also define the two-sample variance with distributed dead time as

UZ(Z’M’T’T) = %E[(§1_;1+M)2]) (6)
with 7 = Mr, and T = MT,.

We can now define B, as the ratio of the N-sample variance with distributed
dead time to the N-sample variance with dead time accumulated at the end as in

figure 1:

o? (N,M,T, 1)

By (N,M,r,p) = SZWN.T.r)

(7)

Although B, (N,M,r,u) is defined for general N, the tables in the Appendix
confine treatment to the case where N = 2. There is little value in extending
the tables to include general N. Though the variances on the right in eq (7)
depend explicitly on N, T and 7, the ratio B; (N,M,r,u) depends on the ratio

r = T/r, and on u as developed later in this paper.

In words, B;(2,M,r,u) is the ratio of the expected two-sample variance with
periodically distributed dead time, as shown in figure 4, to the expected two-
sample variance with all the dead time grouped together as shown in figure 1.
Both the numerator and the denominator have the same total averaging time and
dead time, but they are apportioned differently. The product B, (r,u) -

B; (2,M,r,u) is the distributed dead-time variance over the Allan variance for

a particular T, r, M and u.
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Some useful asymptotic forms of B, can be found. In the case of large M and

M > r, we may write that

B, = l—%—ﬁ, 1<us<2,
(8)
4 In(2 -
By~ T In(r) +3° K=0

One simple and important conclusion from these two equations is that for the
cases of flicker FM noise and random-walk FM noise, the r* dependence for
large r is the same whether or not there is periodically distributed dead
time. The values of the variances differ only by a constant, and in the
latter case the constant is 1. This conclusion is also true for white FM

noise, and in this case the constant is also 1.

In the cases r » 1 and -2 s y < -1, we may write for the asymptotic behavior
of B,

By =M*, a= -p-1, (9)

as was determined empirically. In this region of power-law spectrum the B,

function has an M* dependence for an f* spectrum.

6. The Bias Functions

The bias functions can be written fairly simply by first defining the
function,

F(A) = 2a%**2 - (A + 1)#*2 - (A - 1)|#*2, (10)

The bias functions become

N-1 N-n
1+73 - F(nr)
By (N,r,p) = — N . (11)
7
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By (r.m) = i, (12)

as given in [1], and

M-1
2M + MeF(Mr) - ) (M-n)[2F(nr)-F((M+n)r) -F((M-n)r)]
n=1

B3(2,M,r,p) = (Mu,+2)[F(r) T 2] ’

(13)

as indicated in the appendix.

For up = 0, eqs (11), (12), and (13) are the indeterminate form 0/0 and must be
evaluated by 1'Hopital’s rule. Special attention must also be given when
expressions of the form 0° arise. We verified a random sampling of the table
entries using noise simulation and Monte Carlo techniques. No errors were
detected. The results in this paper differ some from those in [8], which
suggests that there may be some mistakes. Tables for the three bias functions

are listed at the end of the paper (note that the computer print-out did not

).

have a symbol for Greek mu
7. Examples of the Use of the Bias Functions

The spectral type, that is, the value of u, may be inferred by varying r, the
sample time. However, another useful way of determining the value of u is by
using B, (N,r,u) as follows: calculate an estimate of a%(N,T,r) and 03(2,T,r)

and hence B, (N,r,u); then use the tables to infer the value of u.

Suppose one has an experimental value for aﬁ(Nl, T,, r,) and its spectral
type is known, that is, p is known. Suppose also that one wishes to know the
variance at some other set of measurement parameters, N,, T,, 7,. An unbiased

estimate of ag(Nz,Tz,rz) may be calculated by the equation:

2 _ [z2)* [BL(Np,x, ,u)B,(xy,4) 2
oy M2, T2.72) = (ri] [Bl<N1,r1,u>Bz(r1,u> oy (N Tyr) - (4)

where r, = T,/r, and r, = T,/7,.
1 1/71 2 2/T2
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Since the time-domain definition for frequency stability is the Allan
variance, it behooves us, where possible, to relate other variances to the
Allan variance. If we have an N-sample variance on data with dead-time T-r

and we know the power-law spectral type (the value of u), then we may write

o (N,T, 1)
B]_ (N’r’“) Bz(r,l»‘)

0% (1) = (15)

If we have an N-sample variance where each data entry is an average of M

samples with distributed dead time, then we may write

2
2 - av(N)M,T:T) 16
ay(T) Bl(Nir!I“) Bz(rvl") B3(N)M,r;p). ( )
8. Conclusion
For some important power-law spectral density models often used in
characterizing precision oscillators (Sy(f) ~ f*, a=-2, -1, 0, +1, +2), we

have studied the effects on variances when there is dead time between the
frequency samples, and the frequency samples are averaged to increase the
integration time. Since dead time between measurements is a common problem
throughout metrology, the analysis here has broader applicability than just to
time and frequency. Specifically, this kind of analysis has been used with
gage blocks and standard volt cells--showing that the classical variance may

be non-convergent in some cases [9].

Heretofore, the Allan variance has been shown to have some convenient
theoretical properties in relation to power-law spectra as the integration or
sample time is varied (if ayz(r) ~ 7, then a = -y -1, -2 <y < 2). Since
o,(r), by definition, is estimated from data with no dead time, the sample or
integration time can be unambiguously changed to investigate the 7 dependence.
From our analysis, we have concluded that for the asymptotic limit of several
samples being averaged with dead time present in the data, the 7 dependence of
the variances is the same. The a = -p -1 relationship still remains valid for
white FM noise (u = -1, a = 0), flicker FM noise (¢ = 0, a = -1), and for

9
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random-walk FM noise (g = +1, a = -2). The asymptotic limit is approached as
the product of number of samples averaged and the initial data sample time,
7,, becomes larger than the dead time (M > r). The variances so obtained

differ only by a constant, which can be calculated as given in this paper.

A knowledge of the appropriate power-law spectral model is required to

translate a distributed dead-time variance to the corresponding value of the
Allan variance. In principle, the power-law spectral model can be estimated
from the 7# dependence, using the variance analysis on the data as outlined

above.
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B, (2,r,p)
B, (N,r,2)
B, (N,1,1)
B, (N,1,p)

Bl (Nilil“)

B, (N,r,-1)
B, (N,r,-2)
B, (0, )
B, (1,p)
B, (r,2)
B, (r,1)
B, (r,-1)

BZ (r,-2)

By (2,M,1,p)
B, (2,M,r,-2)
B, (2,r,p)
B;(2,M,1,2)
B, (2,M,r,-1)

Table 1. Table of some bias function identities

1

(N(N+1)) /6

N/2

(N(1-N*))/[(2(N-1)(1-2#)] for u=0
N 1n(N)/[2(N-1) 1n(2)] for p=0
1 for p < 0

[2/(N(N-1)] Nzl (N-n) - n* for u >0
n=1
l1ifr=21
1ifr=1o0ro0
0
1
r?

Br - 1)/2 ifr=1
rif0=sr=<1
lifr=1

0 if r=0

1 if r=1

2/3 otherwise

1

M

1

1

1 forr=z1
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TWO MEASUREMENTS OF A SET WITH DEAD TIME

Figure 1. Illustration of two fractional frequency samples with dead time, T-r, between the samples.
This is two of a set of adjatent frequency measurements, each averaged over an interval r, needed
to calculate a two-sample variance from a data set.
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Figure 2. A plot of the relationship between the frequency-domain power-law
spectral-density exponent a and the time-domain two-sample Allan variance
exponent s (a = -pu-1, -2 < uy <2 anda 21 for g = -2). Also shown is the
similar relationship between a and the modified Allan variance with exponent
on r of p' (a=-p'-1, -4 < p' < 2). The pointing arrows indicate the mu-
alpha relationship (a vs. p or pu') for which the particular variance applies.
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THE BIAS FUNCTION, B; (r,u)

Figure 3. A three dimensional plot of the bias function B, (r,p), where
r = T/r, and the dead time is T - r. The "fin" at r = 1 and p = -2 approaches
zero width as the measurement bandwidth approaches infinity (see appendix ref.

(31).
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TWO AVERAGES WITH FOUR MEASUREMENTS
EACH FROM A SET WITH DEAD TIME

Figure 4. An illustration of determining two averages, each taken over four measurements. In this
illustration the original data have a sample time r, and a dead time T, - r,. The two averages each have a
distributed sample time 47, = r, and a distributed dead time 4(T, - r,) =T - r, since in this case M = 4,
These two averages are two of a set similar averages with distributed sample times and dead times needed to
calculate a two-sample distributed sample-time and dead-time variance -- the numerator for the bias function
B,. The denominator for B, is a two-sample variance with no distributed sample time or dead time but with T =
MT, and 7 = Mr, and dead time T - r.



Appendix

With reference to figure 1, the frequency sampling window has an equivalent
phase sampling window. The intent is to evaluate the variance, S(M), of the
sampled phase function in terms of the phase autocorrelation function, R(7r).
The process here is to correctly account for terms and cross-terms coming from
squaring and averaging the samples for each M. The B;(2,M,r,u) function can

then be obtained from the relation,

B3 (Z’M’rs“) = —ﬂn)_—y

S(1)-M#*2
for appropriate M, r, and u. The denominator is just the two-sample variance
with dead time for MT and M7 (in accordance with the definition of
B;(2,M,r,u)). The factors common to the numerator and denominator are ignored
in the following.
For M = 1, the variance S(1) is just
S(1) = 4-R(0) - 4-R(r) - 4-R(T) + 2:-R(T+r) + 2R(T-71),
where use has been made of the definition of the autocorrelation function,
R(T) = E[¢(t) - ¢(t+T)].
It is convenient to define a function G(T) as
G(T) = 2:R(T) - R(T+7r) - R(T-7).
Similarly, S(2) can now be written in the form,

S(2) = 8-R(0) - 8:-R(7r) + 2-G(T) - 4-G(2T) - 2-G(3T).

Following this procedure, we can verify that the general S(M) is just
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S(M) = 4-M-R(0) - 4-M-R(7) - 2-M-G(MT)

M-1
+2 Y  (M-n)[2-G(nT) - G((M+n)T) - G((M-n)T)].
n=1

Following the work of Barnes and Allan [2,3], we can define the function U(r)
by the relation,

U(r) = 2:R(0) - 2:R(7),
and also define
F(nr) = G(nT)/U(7),

where r = T/7. The function U(r) for power-law power spectral densities has

the form,
|1,|y,+2
4-gut2’
which yields
F(nr) = 2-(nr)#*2 - (nr+l)**? -|nr-1|#*2,

Finally, the working relation can be written as

M-1
2‘M + M-F(Mr) -) (M-n) [2-F(nr) - F((M+n)r) - F((M-n)r)]
n=1

[2 + F(xr)] - M#*2

B3 (2,M,r,ﬂ') =
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Bl(N,r,mu) for r= ,01

M\ N= 4 8 16 2 (4] 128 25 512 1024 IN
=2 ¢ {,000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E+00  1,000E+00
-1.8 ¢ L0SIE+00 1.200E400 1.360E4¢00 1.SASE+00 1.7726400 2,089E400 2.349E+00 2.454E+00 2.494E+00  2.512£+00
-1.6 1 11996400  1L4BTE400  1,893E4+00 2,45SE400  3.239E+00 4, 440E+00  5.505E+00  6.002£+00  46.198E+00  6,309E+00
-1.4 1 1.328E400  1.8S4E400  2,688E400 3.991E+00  6.054E+00  9.500E+00 1,2826401  1.454E401  1.532E401  1.565E+01
“1.2 ¢ 14826400  2,346E+00  3.880E400  6.598E400 I I4SE401  2.026E401 2.947E+01  3.484E+01  3.TH4EH01 3. 9B0E+0!
<1t 1.66TE4O0  3.000E+00 S.66TEH00  1.100E+01  2.147E+01  4.255E401  6.628E+01  8,190E+01  9.064E+01  1.000E+02
-8 i 1.BBAEH00 3,860E400 8,303E4+00 1.828E+01  4.041E+01  B.A91E+01 1. M3E+02  1.868EH02  2.137E402  2.519E+02
“ub 1 2J134E400  4.959E400  1.205E401  2.97TE401  T.296E40)  1.49TEX02  2,995E+02  A.076E402  4.851E+02  6.423E402
-4 3 2,07E400  6,279E400  1,703E401  4.655E401  1.247E402  3,106E+02 S5.814E+02 8.357E+02 1.043E+03  1.71E+03
=2 8 ATTEH00  T.TIAE+00  2,296E+01  6.834E+01  1.976E402 S.220E402  1.036E+03  1.5B0E+03  2,084E+03  S5.981E+03
0 i 2,91F+00 9.07SE400  2.909E+01 9.2826+01  2.85TE+02 7.951E+02 1.6726403 2.719EX03  3,828E+03

21 3,089E+00  1.01BE401 3. MABE+01 11426402 3.763+02 [.0STEX03  2.446E+03  4.263€403  4.453E403

4 1 3,203400 1.0956+01  3.85TE+01  1,354E+02 A.572E+02 1.390E403  3.287E403 4.1726+03  1.014E+04

o6 32686400 1.1A3E+01  4.133E+01  1.495E402 S.221E+02  1.6A9EH03  4.142E403  B.419E403  1.514E+04

8 1 3,3026+00 1.170E+01  4.303E+01 1,590E402 5.7086402 1.869E403  4.991E+03  1.104E+04  2,189E+04

1 ¢ 33198400  1.185E401 A, 403E+01  1,653E402  6.068E#02  2.055E+03  S5.842E403  1.412E404  3.109E+04

1.2 ¢ 3.3276+00  1.1926401 4, 461E+01  1.693€+02 6.330E+02 2.215€403 &.717E403 17828404  4.3836+04

1.4 5 3,330E400 1.196E401 4. 494E+01  1,720E402 4.S30E402  2.359E403  7.HA0E+03  2.Z34E+04 5. 169E+04

106 5 3.3326+400  1.198E+01  A4,SIAEH01  1,738E402  6.488E402 2.493E+03  B.637E+03  2.793E+04  B.457E+04

1.8 ¢ 3.333E+00  1,199E401  4,526E+01  1.7SOE402 6.819E+02  2.623E403  9.737E+03  3.493E+04  1.231E+05

2t 3333400 1.2006+01  4,533E401  1,760E402  6,933E402  2.7526+03  1.097E+04  A.370E+04 1, TAFEH0S

BI(N,r,mu) for r= ,03

L TR I | 8 16 32 o4 128 256 512 1024 INF
-2 ¢ 1.000E+00  1.000E+00  1,000E+00 1.000E+00  1,000E+00 1,000E+00 1.000E+00  1.000E+00  1.000E+00  1.000E+00
=18 1 1091E+00  1.211E+00  1.366E+00  1.5736+00 1.B27E+00  1.950E+00  1.995E+00  2.010E+00  2,015E+00  2.016E+00
“1o6 1 11996400 1,491E+00  1.910E400  2.5326400 3.341E+00 3.782E400  3.963E+00  4,030E+00  4.033E+00  4.064E+00
-1.4 1 1.329B400  1,863E400  2.719E+00 A, 1336400  4.080E+00  7.268E+00  7.B15E+00  B.044E+00 8.13SE+00  8.191EH0
-1.2 ¢ 1.484E+00  2.305E+00  3.916E+00 4.768E+00  1,093E+01 1.378E+01 1.525€+01 1.59SE+01 1.626E+01  1,651E+01
-1 P LL&OTEHO0  3.000E+00  S5.867E+00  1,100E+01  1,928E+01  2,560E+01 2.929E+01 3.127EH01  3.229E+401  3.333E+01
-8 1 1.878E400  3.825E400 B, 141E+00  1,7S3E+01  3.304E+01  4.426E401  S.499E+01  6.029E+01  &4.381E+01  4.770E+0}
=6t 2. 114E+00  A,B38E+00 1, J4TE40]  2,706E+01  S.MAIE+0!  B.049E+01  9.997E+01  1.134E402  1.225E402  1.403E+02
-4 2.3626400  6.005E+00  1.566E+01  3.993E+01  B8.524E401  1.335E+02  1.744E+02  2.064E+02  2,314E402  3,099E+02
-2 % 2.604E400  7,2426400  2.047E+01  5.5B1E+01  1,259E+02 2.094E402  2.89TE402  3.619E+02 4.256E+02  B.571E402
0 1 2.819E+00 B8.430E400  2,5A6E+01  7.348E401 1. 748E+02 3.096E+02  A.568E+02  6.082E+02 7.611E+02

28 2,9926+00  9.460E+00  3.013E+01  9,127E+01 2,286E+02 4.324E+02 6.8S56E+02  9.834E+02  1.328E+03

A4 3.UI8EH00  1,027E+01 3. 4128401 1.077E402  2.8335E+02  S5.7S50E+02  9.840E+02  1.541E+03  2.277E+03

6 1 3.203E+00 1,087E+01  3.728E+01 1.220E402 3.3726+402 7.3576+02 1.376E+03  2,36AE+03  3.848E+03

8 1 3.257E400  1.12BE401  3.966E+01  1.339E402 3.887E+02  9.1526+02 1.879E+03  3.580E403 &, SSAEH03

T8 3.290E+00 1.155E+01  4.141E+01  1.437E+02 4.3826402 1,117EH03  2.533E403 5.395E+03 1.114E+04

1.2 ¢+ 3.309+00  1,1726401  4.26TE+01  1.518E+02 4.887E+02 1,348E+03 3.3926+03 8.128E+03 1.903E+04

1.4 ¢ 3,3206400 1.18AE+01  4,360E+01 1.5B8E+02 5.3526402 1,615E403 A.S53SE403  1.228E+04  3.274E+04

1.6 3 3.3276+00  1.191E+01 4. A31EH01  1,4650E+02 5.851E+02  1.930E+03  6.048E+03  1.864E+04  5.6B4E+04

1.8 & 3.331E+00 1.196E+01 4.48TE+01  1.706E+02 6.374E4+02 2,304E+03 B8.142E+03 2,8B49E+04  9.934E+04

2t 330 1,200E401  4.533E401  1.760E+0Z  6.933E+402  2.7S52E+03  1.097E+04  A.378E+04  1.T49EH0S
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BI(N,r,mu} for r= .t

M\ & 4 8 16 krd o4 128 256 512 1074 INF
=2 ¢ 1,000E+00 1.000E+00 1.000E+00 1.,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E+00
~1.8 :  1,093E+00 1.226E+00 1.438E+00 1.SATE+00 1.S79E+00 1.5B4E+00  1.586E+00 1.585E400  1.584E+400  1.583€+00
16t 1L,205E400  1.5226400  2,021E400  2,329E400 2, M9E400  2.490E400  2.502£+00  2.505E400  2.505E+00  2.504E+00
-1.4 ¢ 1,337E400 1.907E400  2,8326400 3.477E+00 3.T72E+00 3.8926400 3.938E+00  3.954E+00  3.960E+00  3.9626+00
=1.2 ¢ LAGIEH00  2.396E+00  3.931E+00 S5.125E400 S.7SIEH00  6.044E+00 6. 1TTEH00  6.23SE+00  6.260E400  6.278E+00
-1 P 1.66TE+00  3.000E400 S.37SEH0  7,429E+00 8.453E+00  9.3126400  9.4652E400 9.825E+00  9.9126+00  1.000E+01
-8 ¢ 1,860E+00 3.720E+00 7.204E400 1,055E+01 1,281E+01 1.419E401 1.5026401  1.550E+01 1.577E+01  1.614E40%
b 3 2,065E+00  4,540E+00  9.423E+00 1.441E+01  1.859E+01  2.137E+01  2.328E+01  2,4528+01 2.537E401  2.702E+01
-4 b 2,273k400  S5.430E400  1.199€4+01  1.971E401  2.6426401 3.477E+01  3.592+01 3.910E+01  4,153E401 4.922E+01
=2 f 0 24728400 6.344E400  1.481E+01  2.585E401  3.473E401 4, 66AE401  S.542€+01  6.314E+01  4.989E+01 1. 154E402
0 2.453E400 7.2346E+00  1.779E401  3.300E+01  5.003E401 4.771E401 8.564E+01  1.037E+02  1.219E402

2 ¢ 2,810E+00 8,065E+00  2.080E+01 4.111E+01  &6.690E+01  9,.7S50E+01  1.331E+02 1.741E402  2.214E+02

4 i 2,90E+00  8.B04E+00  2,376E+01  5,015E401  B.B16E401 1, 397E+02  2.084E+02 2,993E+02 4. 194E+02

b 3 3.043E+00 9. M45E400  2,663E+01  6.014E+01 11496402  1.999E+02 3.295E+02 5.265E402  8.254E+02

8 3.IZBEH00  9.989E400  2.938E+01  T.118E+01  1.487E402  2,8426+402  S.26%E+02 9. 46LEH02  1.678BE+03

! i 3.1B4E+00  1.045E+01  3.204E+01 B.347E+01  1.918E+402 4.114E402 8.523€+02 1.735E403  3.500E+03

1.2 ¢ 3.2306+00  1.0B4E+01  3.463E+0!  9.7286401 2.470E+02 5.943E+402 1.394E#03  3.2326+03  7.453€+03

1.4 ¢ 3.2656+00 1.118E+01 3.721E+01 1.1306+02 3.183E+02 8.636E+02 2,304E+03 6.103E¢03 1.613E+04

Lé 1 3.203E+00 1, 1476401  3.982E+01  1.309E+02 4.1136+02  1.263E+03  3.B43E+03  1.166E+04  3.535E+04

1.8 & 33MSEH00  1.174E+01  4.252E401  1,517E402  S5.330E+02  1.858E403 L. 46TEH03  2.250E+04  7.830E+04

2 3.333k+00  1.200E401  4,S33E+01 1 TH0EH0Z  6.933E402  2.7526403  1.09TE+04 A 37SE404 1. T49E405

BIIN,r.mu) for r= .3

M\ N 4 & 16 32 64 128 256 512 1024 IN
-2 & 1,000E+00  1,000E+00 1.000E+00  1,000E+00 1,000E+00  1.000E+00  1,000E+00 1.000E+00  1,000E+00  1.000E+00
=1.8 ¢ 1L124E400  1.226E+00  1.259E+00  1.265E+00  1.26SE+00  1.263E+00  1,262E400 1.261E400  1,261E+00  1.260E+00
16 2 1.204E+00  1.475E+400  1.5H4E+00  1,589E+00  1.59AE+00  1.598E+00  1.593E+400  1.591E+00  1,5RE+00  1.590E+00
-1.4 ¢ 1.3B8E+400 1,759E+00 1.925E+00 1.983E+00  2,009E+00  2.014E+00 2,015E400 2.0156+00  2,014E+00  2.013E+00
=12 ¢ 1.5Z7E+00  2.068E+00  2.351E+00  2.479E+00  2,534E+00  2.054E+00  Z2.563E400  2.54%E+00  2.570E+00  2,571E+00
-1 Y LLGETEXD0  2,805E+00  2,850E+00  3,087E+00  3.209E+00  3.271E+00  3.302E400  3.318E+00  3.326E400 3. 3I33EHN
=Bt LLB0GEF00  2,749E+00  3.435E400  3.B47E+00  4.093E+00  4.239E+00  4.3256400  4.376E400  4.405E400 A MTE+(D
=6t LLGA3E+00 3. 160E+00  4.1226+00  4,B04E+00  S5.275€400  5.5956+00 5.812E400  S5.958E+00  6.056E4+00 4, 25ZE+00
=4t 2.076E400  3.5T7E400 4, 927E+00  6,024E400  6.889E+00  7.564E+00  B.0B4E+00 8. A87E+00  B.795E+(0  9.776E+0
=2 2203400 4,021E400  S.877E400  7.S9TE400  9.147E400  1,053E+01  1.17SE401  1.282E+01  1.377E401  2,017E401
0 i Z.323400 44926400 7.000E+00  9.651E400  1.238E+01  1.51SEX01  1.796E+01  2,079E401 2, 363E+01

2 F 2,M40E400  4.994E+00  8.336E+00  1,234E+01  1.710E+01  2.260E+01  2.897E401  3.6326+01  4.479E+401

At 25508400 5.530E400  9.940E+00  1.59%E401  2,411E+01  3.493E+01  4.926E401  6.823E+01  9.330E+0!

b1 2,654E400  6.106E+00  1.187E401  2,089E+01  3.472E+01 5.581E+01  B.784EH01 1, 365E+02  2,103E+02

B 1 2.754E+00  6.729E+00 1. A2E401  2.756E+01  5,098E+01  9.187E+0!  1,632E+02  2.B874E+02  5.037E+02

! t o 2,852E+00  7.406E400  1.70BE+0f  3.473E+01  7.418E+01 1.5526402 3.1326402  6.2926402 1.261E+03

1.2 1 Z2,947E+00  B.14TE+00  2.059E+01  4,9426+01 1.157E402 2.678E402 6.170E402 1.419E+03  3,261E+(3

1.4 1 3.0426+00 8,963%+00 2.493E+01 6.709E+01 1.781E+02 4.703E+02 1.241E+03 3.2726+03  8.4631E+03

1.6t 31376400  9.848E+00  3.030E+01  9.185E+01  2.774E+02 8.381E+02  2.535E403  7.673+03  2.324E+04

1.8 ¢ 3.234E+00 1.087E+01  3,699E+01  1,26TE+02  4,364E+02 1.511E403  5.245€+03  1.823E+04  6,343E+04

2t 3.333400  1,200E401 4533401 1.760E402  6.933E402 2, 7S2E403  1.09TE+04  4.378E+04 1, TA9EH05
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Bl(N,r,mu) for r= |

L TR Y | 8 16 32 o4 128 256 512 1024 IN
-2 ¢ B.33%-01 7.500E-01 7.083%-01 4.875E-01 &.771E-01 &.719%E-01  6.693E-01 6.680E-01  6,6736-01  6.667E-01
-1.8 ¢ 8.581E-01 7.827E-01 7.431E-01 7.226E-01 7.122E-01 7.0686-01 7.042€-01 7.028E-01 7.021E-01 7.014E-01
~1.6 ¢ B.866E-01 8.221E-01 7.844E-01 7.6728-01 7.570E-01 7.517E-01 7.4906-01 7.476E-01 7.4686-01  7.461E-01
-1.4 §  9.19%-01 8.700E-01 8.410E-01 B8.2456-01 B,154E-01 8.105E-01 B.079E-01 8.065E-01 8,056E-01  8.051E-0!
=12 ¢ 9.569%-01 9.284E-01 9,105€-01 8.9976-01 8.933E-01 8.897E-01 8.877e-01 8.864E-01 8.860£-01 8.854E-01
-1 % 1.000E+00 1.000E4+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E400  1.000E+00  1.000E+00
-8 ¢ 1.050E+00 1.088E+00 1. 117E+00 1.137E+00 1.1506400 1.140E+00 1.1656+00 1.149E+00  {,171E+00 1. 175E+00
=6t LI0TEHO0  1.197E+00  1,271E400  1,327E+00  1,370E400 1.401E+00 1.422E+00 1.438E+00 1.M48E+00  1.470E+00
=4 3 L17E+00 L3300 LLAJSEH00  1.S99E400  1.700E+00 17826400  1.BATE+00  1.B98E+00  1,938E+400  2.065E+00
=2 LLATEHO0  1.502E400  1.7S4E400  1.994E400  2,214E400 2.41BE400  2.599E+00  2.759E+00  2,900E+00  3.843E+00
0 ¢ 1,300 1.714E400  2,133E400 2.581E400  3.048E+400 3.528E+00  4.016E+400  4.505%E+00 5, 0056+00

2% LABKE+0  1.982€+00  2,658E+00 3. 471E+00  4.432£+400 5.555E400 6.858E+00  8.363E+00  1,010E+0)

A1 1L5AGE+00 2320400  3.391E400  4.BALE+00  6.801E+00  9.407E+00  1.287E+01  1.7MEHO!  2.350E+01

o6 1 LOTTEH00  2.7S0E+00 4. 424E+00  7,006E+00  1.096E+01  1.69BE+01  2.614E401  4.005E+01  6.114E+0)

8 1 LBZVE+00  3.299E+00 T.694E+00  1.045€401  1.BAIE401  3.230E4+01  5.652E+01 9.8728+01 1.722£+02

1 ¢ 2,000E+00 4.000E+00 8.000E+00  1.600E401 3.200E+01  6.400E+01  1.2B0E+02  2,560E+02  S,120E+02

1.2 ¢ 2.198E+00  4.900E+00  1.104E+01  2,506E+0! S5.717€+01 1.308E+02 2.9998+02 4.881E+02  1.580E+03

1.4 5 2,426E400  6.059E+00  1,546E+01  3.999E+01 1.044E+02 2,733E402 7.2026402 1.897E+03  5.003E+03

1.6 3 2,68BE+00  7.555E+00  2.191E401  6.479€+01 1.938E+02 5.833E402 1.762E+03 S5.331E+03  1.615E+04

1.8 2,988E400 9.450E+00  3.13BE+01  1.0636402 3.686E+02 1,260E403  4.3726+403  1.519E+04  5.286E+04

2% 3,333+00  1.200E401  A4.S33E401  1.T60E402  6.933E+02  2.7S26+03  1.097E+04  4,378E+04  1.749E+0D

BYN,r,mu) for r= 1,01

Mo\ N 8 g 16 32 64 12e 256 512 1024 IN
=2t 1,000E+00 1.000E+00 1.000E400 1.000E+00 1,000E+00 1.000E+00  1.000E+00  1.000E+D0  1.000E+00  1.000E+00
-1.8 1 9.IS6E-01  B.682€-01 8.425E-01 8,288£-01 8.217E-01 8.181E-01 B.162E-01  8.153E-01  8.148E-01  8,143E-0!
-1.6 ¢ 9.098E-01 8,564E-01 8.244E-01 8,098E-01 8.009E-01 7.943E-01 7.938E-01  7.926E-01 7.920E-01  7.913t-0t
-1.4 t 9.286E-01  B.B40E-01  B8.573-01 8.419E-01 8.333E-01 8.287E-01 8.2626-01 8,249E-01 B.242€-01  8,235E-0t
-1,2 1 9.599E-01  9.331E-01  9.160E-01  9.056E-01 8.993E-01 6.960E-01 8.940E-01 8,929E-01 8.924E-01 8.917E-01
-1t 1.000E+00  1,000E+00 1.000E+00 1{.000E+00 1,000E+00 1,000E+00 1.000E+00  1.000€+00 1.000E+00  1.000E+)0
=& 1 10488400 1,085E400 1.1136400 1.133E400 1. 147E+00  1.ISSE400  1.141E400  1.165E+00  1,167E400 1, 170E+00
=6t LIOAEHO0 1L193E400  1.265E+00  1.321E400  1.36264+00  1.393E+00 1 414E400  1.429E+00 1. 440E400 1. 461EI0
-4t LU168E+00  1.327E400  1.468E400  1.589E+400  1.689E+00  1.770E+00  1.835E+00 1.885E+00  1.924E+00  2,050E+00
=2 0 LL243E+00 1 A9SE+00 1. 7AZEH00  1.980E+00  2.200E400  2,400E+00  2.579E+00  2.737E#00  2.877E+00  3.829E+00
0t 1329400  1.706E400  2.120E400  2.563E400  3.025E+00  3.500E+00  3.984E+00  4.4726400 4, 963E+00

2008 LAZBE+00 19726400 2,6A2E+00 3. MTE400 4, 800E400  S5.5126400  4.BOME+00D  8.296E4+00  1.002E+01

A LSALE40G  2,309E+00  3.371E400  4.B14E400 4. 7SAE+00  9.340E400  1.2778+01  1.731E+01  2.332£+01

b2 1L6T2EH00  2,738E+00 4. 400E+00  6,963E400  1.089E+01  1,687E+01  2.597E+01  3,978E+01  6.073E+01

£ 1 1.BZ2E400  3.285E+00  5,844E+00  1.039E401  1,630E401  3.Z126+01  5.4196401  9.BI4E+01  1,712E402

1t 1,995E+00  3,985E+00  7.966E+00  1,593E401  3.185E+01 6. 369E+01  1.274E402  2.547E+02  5,095E+02

1.2 ¢ 2.194E+00  4.885E+00 1.100E401  2,497E401  5,695E401  1.303E402 2.987E+02  6.854E+02  1.573E+03

1.4 @ 2,4226+00  6,045E+00 1,542E401 3.988E+01 1.041E+02 2.730E+02 7.180E+02 1.892£+03 4,988E+03

1ob 1 2,685E+00  7,5426+00  2,187E+01 6. 464E401  1.934E402 5.8226+02 1.758€403  5.321E+03  1.611E+04

1.8 ¢ 2.986E+00  9.4826+00  3,135E401  1.0626402 3.643E+02 1.259E+03  4.367E+03  1.518E+04  5,280E+04

2t 3.3R3;+00  1.200E401  4,533+01  1,760E402  6,933EH02  2.752E+03  1.097E+04  4.378E404  1.T4A9EH0S
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BU(N,r,mu) for r= 1.}

L TR | 8 113 R 6 128 26 512 1024 INF
-2 ¢ 1,000E+00 1.000E+00 1.000E+00 1,000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  {.000E+00
-1.8 ¢ 9.527E-01 9.243-01 9.0826-01 8.994E-01 B8.948E-0 B8.924E-01 8,911E-01 8.905€-01 8.90%€-0f 8.898E-01
1.6 ¢ 9.MSE-01  9.088E-01 B8.831E-0! 8,709%E-0t 8.6A26-01 8.607E-01 8.588c-01 8.578E-01 8.574E-01  8.56%-01
-1,4 ¢ 9.49%-01 9.I57E-01 B8.9486-01 8,825E-01 8.755E-01 B.717E-01 8.694E-0! 8.6856-01 8.4680E-01 8.674E-01
-1.2 ¢ 9,696E-01  9.4826-01  9.341E-0!  9.254E-01 9.201E-0f 9.171E-01 9.154E-0! 9.1456-01  9.140E-01  9.134E-01
-1 ¢ 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E+00  1.000E+00  1.000E+00  1.000E+00
-8 t 1,040E+00 1.0726400 1.096E+00 1. 114E+00 1,126E4+00 1.134E+00 1.139%E+00 1.1426400 1.144E+00 1.147E+00
-6 3 1,088E+00  1.166E+00  1.230E400 1.2B1E+00  1.319E4+00 1.344E+00 1.364E+00  1.379E+00 1,389E400  1.40BE+00
=4 1 LIATE+00 1.288E400  1.416E+00  1,526E+00 1. 617E400  1.692€+00 1.7SIE400  1.79TEH00  1,832€+00  1.948E+00
=2 L21ITE+00 1 A44E+00  1L67IEH00  1,889E+00  2,091E400  2.27SE+00  2.440E+00  2,S586E+00  2.714E+00  3.593E+00
0 2 1.298E+00 1.643E+00  2,026E400  2.435E+00 2,863E+00 3.304E+00 3.7526+00 4,205E+00  4,641E+00

W23 1393400 1.898E+00  2.521E+00  3.272E400  4,160E+00  S5.199E+00 4.404E+00  7.797E+00  9.402E+00

4 15048400 2,2238400  3.219E+00  4,57SE+00  4,399E+00  8.828E+00  1,209E+01  1.632+01  2.197E+01

6T 1,633E400  2.640E400  4,213E+00  4.439E+00  1,035E401  1.602E+01  2.463E401 3.771E+01  5,7SAE+01

£ 1 1783400 3.177E400  S.637E400  9.954E+00  1,7S0E+01  3.068E+401  S5.365E401  9.364E+01  1.634E+02

1 P 1.957E+00  3.870E+00  7.696E+00  1.535E+01  3,065E+01 6. 128E+01  1.225E402  2.449E+02  4.898E+02

1.2 ¢ 2,1506+00  4.766E+00  1.069E+01  2.4226+01  5,521E+01  1,263E+02 2.894E+02  6.640E+02  1.524E403

1.4 @ 2,3%1E+00  5.929E+00  1.50BE+01  3.897E+01  1,016E402 2.466E+02  7.011E+02 1.BATEH03  4,.B70E+03

1.6 % 2.660E400  7.443E+00  Z.1D4E+01  6.364E+01  1,904E+02 S5.730E+02 1.731E+03 5.237E+03  1.584E+04

1.8 ¢ 2.97Z&+00  9.4186400 3.111E+01  1.053E+02  3,414E+02 1.249E+03 4.333E+03 1.506E+04  5,238E+04

21 3.33E+00  1.2008401  4.533E+01  1.760B402  6.933E402  2.752E+03  1.097E+04 4, 378E+04 |, TA9E4OS

Bi(N,r.ms) for r= 2

MUy N 4 8 16 R 64 128 25¢ $12 1024 INF
-2 ! 1,000E+00  1.000E+00 1.000E+00 1.000£+00  1,000E+00 1.000E+00 1,000E+00 1.000E+00  1,000E+0C  1.000E+00
-1.8 1 9.901E-01  9.836E-01 9.796E-01 9.774E-01 9,761E-01  9.75%€-01  9.752E-01 9.730£-01  9.749E-01  9.748£-01
-1b b 9.BASE-01  9.737E-01  9,649E-01  9.430E-01  9,607E-01  9.595€-01  9.569E-01  9.584E-01 9.584E-01  9.5826-01
-1.4 ¢ 9,837E-01 9.719€-01  9.4641E-01 9,593E-01 9,563E-01 9.550E-01 9.541E-01 9.537E-01 9.534E-01 9.532¢-0!
=1,2 9.886E-01  9.799E-01  9.73BE-01  9,699E-01  9.675E-01  9.461E-01  9.653E-01  9.648E-01  9,6A6E-01 . 643E-01
-1 P 1,000E+00  1,000E+00  1.000E+00  {.000E+0C  1,000E+00  1,000E+00 1,000E+00 1,000E400 1,000E+00  1.000E+00
& 1 1L019E400  1.035E+00  1.048E+00  1.058E+00  1.064E+00  1,069%E+00 1,0726+00 1.074E+00 1,075€+00 1.077E+00
b1 1L0AEHO0  1.090E+00  1.126E+00  1.156E400  1,178E+00  1.195E+00 1.207E400 1,215E+00 1,221E+00  1.233E+00
-4t 1,0B4E400  1L168E+00  1,246E400  1,315E+00  1.373E400  1.A20E400  1.4STE+Q0  1.A87E+00  {,509E+00  1.583E+X0
<2 3 LI33EH00 LL27TEH0D 1L425E+00  1,568E400  1,702E400  1.824E+00  1.934E+00  2,031E+00 2. 117E+00  2.704E+00
0 1 11956400 1.427E+00  1.68BE400  1.971E+00  2,267E+00  2.573E400  2.884E400  3.198E+00  3.519E+00

L2008 1273400 1.629E400  2,07SE+00  2,61SE+00  3.204E+00  4.005E+00  4.876E+00  5.882E+00  7,042E+00

A 1L3SEH00 1L901E400 2.6MEH00  3.45%E+00  5.025E+00  4.BATEHD0  9.257E400 1. ZA7EH01  1,470E+0)

WA b LLABAEHD0  2,268E+00  3.485E+00  5.371E+00  B.262E+00  1.267E+01  1.937EH!  2.955E+01  4.498E+01

B 1.628E400  2.750E400  4.733E+00  8.215E+00 1. A31E+01  2.494E+01  A.3ATEHOL  7,576E+01  1,320E402

1 t o 1.B00E+00  3.400E+00  6.600E+00  1.300E+01  2,580E+01  5.140E+01 1.026E+02  2.050E+02  4.098E+02

1.2 2.0076+00  4.271E+00  9.409E+00  2,114E+01  4,B00E+01  1.096E+02 2.5106+02 S.756E+02  1.321E+03

1.4 2,2556+00  S.439E+00  1.346E+01  3.512E+01  9.142E+01  2,395E+02  4.299€402  1,4659E+02  4,374E+03

1.4 2,5526+00  7.01ZE400 2,014E+01  5,93%+01 1.773E+02 5.334E+02 1.411E+03 4.8746403 1,476E+04

1.6 ¢ 2.908E+00 9.1326+00 3.006E+01 1.017€+02 3.487E+02 1.205E+03 A4.179E+03  1.453E+04  5.033E+04

2t 3.333%+00  1.200E+01  A.S33E40!  1,760E402  6.933E+02  2.752E+03  1.097E+0A  4,378E+04 1, 7A9EH0S
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BI(N,r,mu) for r= 4
[ TRANEE Y ) 8 16 2 64
=2 ¢ 1,000E400 1,000E+00 1.000E+00 1,000E+00  1,000E+00
-1.8 :  9.974E-01 9.95TE-01  9.946E-01 9,940E-01  9,934E-0f
1.4 & 9.9526-01 9.918E-01  9.896E-01 9.B8BAE-01  9.874E-01
-1.4 ¢ 9.941E-01 9,898E-01 9.86%E-01 9.851E-01  9,840E-01
-1.2 ¢ 9,953-01 9.916E-01 9.890E-01 9,873%-01 9.8462¢-01
-1 : 1.000E+00 {,000E+00 1.000E+00 1.000E+00  1,000E+00
-8 ¢ 1,010E+00 1.019E+00 1.026E+00 1,031E+00 1,035E+00
-6t 1,027E+00 1.053E+00 1.075E+00 1,093E+00 1,107E+00
-4 ¢ 1,054E+00  1.10%6+00 1,160E+00 1.205E+00  1.243E+00
=2 3 1.092E400  L.194E+00  1.29BE+00  1,3996+00  1,.494E+00
0 1 1.144E400 1.3186400 1,S14E400 1,726E400  1,949E+00
L2 ¢ 1,214E+00  1.495E+00  1.BABE+00  2,275E+00  2,783E+00
4t 1,3038+00 1.7426400  2,.356E+00 3. 196E+00 4, 326E+00
b0 0 1L415E+00  2.0826+00  3.129E+00  4,748E+00  7,229E+00
8 1.595E+00  2,548E+00 4.303E400 7,385E+00  1,278E+01
1 tOLL727E+00  3.182E400  6.091E+00  1.191E+01  2,355€+01
1.2 ¢ 1,938E+00 4,045E+00 8,826E+00  1.974E+01  4,472E+01
1.4 @ Z.194E+00 5.219E+00 1.303E+01  3,340E+01  B.484E+01
1.6 ¢ Z2,504E+00 4.B19E+00 1,952E+01 S5.745E+01 1,715E+02
1.8 ¢ Z.879E+00 9.006E+00 2.960E+01  1,000E+02 3.431E+02
2 P OX3C;EA00 1,200E+401  4.933E401  1,TE0EH0Z2  4,933E+02
Bi(N,r m:) for r= 8

My A N= 4 8 16 32 b4
-2 ! 1,000E+00  1.000E+00  1.000E+00  1.000E+00  1.000E+00
-1.8 ¢ 9.993k-01 9.988E-01 9.98S5E-01  9,983E-01 9,982£-01
-1.6 9.984E-01  9.973E-01  9.96bE-01 9.9626-01  9.960£-01
~1.4 t 9,9782-01  9.961E-01 9.950E-01  9,984E-01  9,940E-0!
1.2 0 9.980E-01  9.943E-01 9.952E-01  9.945E-01  9.940E-0!
-1 i 1.000E+00  1,000E+00  1.000E400  1,000E+00  1,000E+00
-6 ¢ 1,006E400 1,011E+00 1.014E+00  1,017E400 1,020E+00
-6t 1L,017E+00 1,033€+00  1,047E+00  1,0S8E+00  1,067E+00
-4 ¢ 1LO37E400  1,079E+00 1. 1106400 1, 1428400  1,168E+00
=02t 1,06%E400 1LIASE400  1,223E+00  1,299E400 1, 37TIE+00
0 O LLIIAE400 1.235E+00 1. A13E400 1, 5SAE+00  1,743E+00

4 1 IBIE+0)  1,420E+00  1,720E400  2,083E+00  2,514E+00
A8 1L268E400  1.65TE400  2,2026400  2,946E+00 3, 949E+00
Wb 1 1L3B0E+00  1,991E400  2,950E+00  4,433E+00  6.T06E+00
Bt 1.521E+00  2.4S3E400 4, 101E+00  6.996E+00  1.206E401
1 P 1.696E+00  3,087E+00  S.870E+00 1, 143E+01 2, 2597E+01
1.2 ¢ 19108400  3,933€+00 B,590E+00  1.917E+01 4, 341E+01
1.4 ¢ 2.1706400 S.135E+00 1.279E401 3,276E+01  8,515€+401
1.6 ¢ 2,486E+00  6.7S1E+00  1,930E+01  5,678E+01  1.695E402
1.8 ¢ 2.870E+00 B.963E+00 2,945E401  9.951E+01  3,413E+02
pd t 3.333%400 1.200E401  4,533E+01  1.760E+02  6.933+02

23

128 256 512 1024 INF
1,000E+00  1.000E+00  1.000E+00  1.000E4+00  1.000E+00
9,935€-01 9.934E-01  9.933E-01  9.933%E-01 9,933E-01
9.873-01  9.870E-01 9.869%€-01 9.849E-01  9.848€-01
9.834E-01  9.831E-01 9.829E-01 9.829E-01  9.828E-01
9.856E-01 9.853-01 9.851E-01  9.850E-01  9.849E-01
1.000E+00  1.000E+00 1.000E+00  1.000E+00  1.000E+0C
1.0376+00  1.03%E+00  1.040E+00  1.041E+00  1,0426+00
1. 1176400  1.1248400 1.129E+00 1.132E+00  1.140E+00
1.274E400  1.299E+00 1.318E+00 1.333E+00 1.382E+00
1.580E+00  1.65BE+00 1.727E+00  1.788E+00  2.204E+00
21798400  2,A14E+00  2,851E+00  2.890E+00

3.377E+00  4.067E+00  4.865E+00  5,784E+00

S.B34E+00  7.837E+00  1.0A9%E+01  1,399E+01

1.101E+01  1.676E401  2.SS0E+01  3.875E+01

2.219E+01  3.B40E401  &.7186401  1.170E+02

4.682£+01  9.336E+01  1.B45E+02  3.726E+02

1.020E402  2.334E+02  5.396E402  1.229E+03

2,275E+02  5.981E+02  1.57SE+03  4.154E403

S.160E+02  1.958E+403  4.714E+03  1.428E+04

1.186E403 4. 112E403  1.429E+04  4,9726404

2.7526+03  1.097E+04  4.378E+04  1,749E+05

126 256 512 1024 INF
1.000E+00  1.000E+00  1.000E+00  1.000E+00  1,000E+00
9.981E-01  9.981E-01 9.981E-01 9.981E-01  ¢.981E-01
9.958E-01 9.958E-01 9.957E-01 9.957E-01  9.957E-01
9.937E-01  9.934€-01  9.936E-01 9.93%-01  9.935E-01
9.93€-01 9.936E-01 9.935E-01 9.935€-01  9.934E-01
1.000E+00  1,000E+00  1.000E+00  1.000E+00  1.000E+0C
1,021E+00  1.0226+00  1.0226400  1.023E+00  1.023E+00
1,073E+00  1.078E+00  1.081E+00  1.083E+00  1.088E+00
1.189%6+00  1,207e+00  1.220E+00 1.231E+00  1,264E+00
1.436E400  1.494E+00  1.544E+00  1,592E+00  1,905E+00
1.949E+00  2,137E+00  2.328E+00  2,S520E+00

3.019E+00  3.606E+00  4.284E+00  5.066E+00
S.2086E+00  7.0626400  9.414E+00  1,2526+01

1.017E+01  1,5MAE+01  2.345E+01  3,55%E+01

2.090E+01  3.630E+01  6.315E+01  1,099E+02

4.483E+01  8,935E401  1.784EH02  3.565E+02

9.898E+01  2.2656+02 S5.19%E+0Z 1.1926+03

2.230E+02  5.862E402  1.5MAEH03  4.071E+03

5.09%6+02  1.540E403  4,658E+03  1.411E+04

1.179E+03  4,090E+03 1. 421E+04  4,945E+04

2.7526+03  1.097E4+04  4.378E+04  1.749E405
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Bl(N,r.mu) for r= 16

M\ N 4 8 16 k7l b4 128 256 512 1024 IN
-2 1 1,000E400 1,000E+00 1.000E+00 1.000E+00 1,000E+00 1,0006+00 1.0006+00 1.000E+00  1,000E+00  1.000E+00
-1.8 ¢t 9.9986-01 9.997E-01 9.996E-01 9.995E-01 9.99%-01 9.995E-01 9.99%-01 9.993E-01 9.995E-01 9.995E-01
“Lb t 9.995E-01  9.991E-01  9.989E-01  9.987E-01 9.987E-01  9.986E-01 9.986E-01 9.986E-01 9.986E-01  9.984E-01
1.4 ¢ 9.992-01  9.985E-01 9.98BIE-01  9.979%-01 9.977E-01 9.976E-01 9.976E-01  9.976E-01 9.97SE-01  9.975E-01
“1.2 ¢ 9.991E-01 9,9B4E-01 9.979E-01  9.976E-01 9.974E-01 9.97%-01 9.972%-01 9.97%-01 9.972%-01 9.971E-01
-1 : 10006400 1,000E400 1.000E+00  1.000E+00 1,000E+00 1,000E+00 1.000E+00  1.000E+00  1.000E+00  1.000E+00
-8 ¢ 1,0036400 1.006E+00 1.008E+00 1,010E+00 1.011E+00 1.0126400 1.0126+00 1.013E+00 1.013E+00 1.013€+00
-6 3 1,011E+00 1.021E+00 1.030E+00 1.037E+00 1.043E+00 1,047E+00 1,050E+00 1.0526+00 1.053E+00  1.056E+00
-4t 1,026E+00 1.053€+00 1,078E400 1.101E+00 1. 119400 1,135E+00 1.147E+00 1.1STE+00 1.164E400 1.1B8E+00
-2 % 1,054E400 1,113F400 1, 174E400 1,2336400 1,289E+00 1.339E+00 1,385E400 1.425E400 1.451E400  1.705E+00
0 ¢ 1.097E+00 1.214E400  1.344E+400 1.489E+00 1.639E400 1. 794E400 1.952E+00  2.1128+00  2,273%+00

W2 0 11605400 1,3726+00  1,837E+00  1.958E+00  2.340E+00 2.787E+00 3.307E+00  3,907E+00  4.599E+00

A1 LL2M7EH00  1.606E+00  2.108E+00  2.794E+00  3.717E+00  4.950E400 4.587E+00  8.TSAE+00  1.1628+01

W6t 1,360E400  1.939E+00  2.848E+400  4,254E+00  6.A05E+00  9.494E400 1. 469E+01  2.228E401  3.379E+01

8 1 1,504E+400 2.404E+00  3.99TE+00 4. 794E+00 1169401  2.023+01  3.5126+01  6.106E+01  1.062£+02

1t 1.6BIE+00  3.043E+00  5.766E400  1,121E401  2,211E401  4.389E+01 8.747E+01  1.78EH02  3.489E402

1,2 ¢ 1,898E+00  3.914E+00 B A91E+00  1.894E+01  4,285E+01  9.769E+01  2,236E+02 5.127E+02  1.177E403

1.4 ¢ 2.161E+00 5.104E400 1,270E+01  3.251E+01 8.450E+01 2,213E+02 5.817E+02 1.5326403  4.039E+03

1.6 & 2.480E+00  6.727E+00  1.923E+01  5.654E+01 1,688E+02 5.077E+02 1.533+03  4.63%E+03  1,405E+04

1.8 ¢ 2,866E+00  B.949E+00  2.980E+01  9.934E+01  3,406E+02 [,177E+03  4,083E403  1.419E+04  4,934E+04

2t 3.333k+00  1.200E+01  4.533E401 1,760E402  6,933E407 2.752€+03  1.097E+04  A.378E+04  1.749E+05

Bi{N,r,mu} for r= 32

Mu\ N A 8 16 32 64 128 256 512 1024 INF
“2 1 1,000E+00 1.000E400 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00 1,000E+00  1.000E+00  1.000E+00
-1,8 t 9,999E-01 9.999E-01 9.999E-01 9.999E-01 9.999E-01 9.998E-01 9.998E-01 9.998E-01 9.998E-01 9.998€-01
“1,6 @ 9.998E-01 9.%97E-01  9.996E-01  9.994E-01 9.996E-01 9.99E-01 9.99%E-01 9.995E-01 9.995E-01  9.995E-01
S1.4 ¢ 9.997E-01 9.994E-01  9.99%-01 9.992E-01 9.991E-01 9.991E-01 9.991E-01 9.991E-01 9.991E-01  9.991E-01
S1LZ2 0 9.996E-01  9.993E-01  9.991E-01  9.990E-01 9.98%E-01 9.988E-01 9.988£-01 9.9BBE-01 9.988E-01  9.988E-0I
-1 i 1,000E400  1.000E+00  1.000E+00  1.000E+00  1.000E+00  1,000E+00  1.000E+00  1.000E+00  1,000E+00  1.000€+00
-8 ! 1,002E+400 1.003E+00 1.0056+00 1.006E+00 1.006E+00 1.007E+00  1,007E+00 1.007E+00 1.007E+00  1.008E+00
-6 1 1.00TE+O0  1,014E+00 1.019E+00  1,024E400 1,028E+00 1,030E+00 1,032E400 1,033E+00 1,034E+00  1,034E+00
-4t 1LOI9E+00  1,03%E+400  1,057E+00 1,073E400 1,087E+00 1.098E+00 1. 107E+00 1.114E+00 1 119E+00  1.136E+00
.2t 1LOA3E400  1.090E400  1.139E400 1.186E+00 1.230E+400 1,271E+00 1.30TE+00  1.339E400 1.368E+00  1.363E+00
0 ¢ 1.083E+00 1,1B4E+00 1,297E+00  1.420E400 1,550E+00 1.683E+00 1.B19E+00  1.95TE+00  2,095E+00

W20 b 1L 146E400  1,338E+00  1.S79E400  1.871E+00  2.2186+00  2.625E+00 3.097E+00  3.643E+00  4,2726+00

WAt 12336400 15728400 2.046E400  2,493E+00  3,565E+00 4.729E+00  6.27SE+00  8.320E400  1.102£+01

b1 1L34BE400  1.908E400  2.787E+00 4. 14TE+00  6.231E+00  9.408E+00  1.424E+01  2.108E+01  3.270E+0!

W& 1 1LA98E400  2.378E+00  3.940E400  6,685E+00 1. 1A9E401  1,984E+01  3.447E+01  5.992E+01  1.042E+02

1 t 0 1LATAE#00  3.021E+00  S.716E+00  1.111E+01  2.188E+01  4,384E+01 B.656E+01 17288402  3.433E+0Z

1.2 ¢ 1.893+00 3,898E400 8. MBE+00  1.B83E+01 4, 261E+01  9.714E+01  2.223E402 5.097E+02  1.170E+03

1.4 ¢ 2,1588400 S.091E+00  1.266E+01  3.2426+01  8.425E+01  2,206E+02 5.799E402  1.527E+03  4.027E+03

1. 3 2,4786+00  6.7196+400  1.920E+01  S.6A6E+01  1.6856+02 S5.070E+02  1.531E+403  4.6326+03  1,403E+04

1,8 ¢ 2.865E400 B.945E+00  2.938E+01  9.928E+01  3.4056+02  1.174E+03  4.081E+03 1. 418E+04  4.934E+04

2 r 33300 1,200E401  4.533E+01  1.740E+02  6.933E+02  2.752E403  1.097E404  4,378E+04  1.TAFE#0S
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Bl(N,r,au) for r= &4

MmN & 8 16 R 64 128 236 S12 1024 IN
-2 % 1.000E400 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00  1,000E+00  1.000E+00  1.000E+00
-1.8 ¢ 1,000E#00 1,000E400 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E400 1.000E+00  1.000E400  1.000E+00
1.6t 9.999E-01  9.999E-01  9.999E-01  9.999E-01 9.999E-01  9.999E-01 9.998E-01 9.998E-01 9.990E-01  9.998E-01
-1.4 ¢ 9.999E-01 9.998E-01 9.997€-01 9.997E-01 9.997E-01 9.99TE-01 9.997E-01 9.996E-01 9.996E-01  9.994E-01
-1.2 ¢ 9.9986-01 9.997E-0!  9.996E-01 9.995€-01 9.995€-01 9.995E-01 9.99%E-01 9.99E-01 9.995E-01 9.995E-01
-1 ¢ 1,000E400 1,000E400 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E+00  1,000E+00
-8 ¢ 1.001E+00 1,0026+00 1.003E400 1.003c+00 1.004E+00 1.004E+00 1,004E+00 1.004E+00 1,004E+00 1,004E+00
=6 1 1,005E+00 1.009E+00 1.013E+00 1.016E+00 1.018E+00 1.0206+00 1.02iE+00 1.0226+00 1.0226+00 1.024E+00
=4 3 1,014E400 1,028E400  1.0426+00 1.054E+00  1.044E+00 1.0726+00 1,078E+00  1.083E+00 1.087E+00  1.100E+00
=2 ¢ 1,0356400 1,073E+00 1 1126400 5. ISIEH00  1,187E400  1.220E400 1. 249E400  J.27SE400  1.298E400  1.456E+00
0 ¢ 1,073+00 1.161E+00 1.261E400  1.369E+00 1,4826400 1.600E+00 1.719€+00 1.840E+00  1.961E+00

+2 0 1,135E+00  1,313E400  1,536E+00  1,800E400 2,129E+00  2.506E+00  2,944E+00  3.450E+00  4,033E+00

At L2246400  1.5A8E+00  2,003E400  2,624E+00  3,441E+00  4.578E+400  6.060E+00  8.023E+00  1.062E+01

6 3 L3MEH00  1.889E400  2.749E+00  4.080E+00 6, 119E400 9.229E+00  1.396E+01  2.114E+01  3.203E+01

85 1.489E+400  2.363E400  3.909E400  6.624E400 1, 137E+01  1,964E+01  3.411E401  S.929E401  1.031E+02

18 [.6T0E#00  3.010E+00 S5.691E+00 1.105E+401 2,177E401 4.3226+01 8.611E+01 1.719€+02  3.435E402

1.2 1 1.890E+00  3.891E+00 8.429E+00  1.879E+01 A4.251E+01  9.690E+01  2.218E+0Z 5.085E+02 1.167E+03

1.4 ¢ 2,156E+00 5.087E+00  1.265E+01 3.238E+01 8.415E+01 2.204E+02 S5.793E+02  1.526E+03  4,022E+03

1.6 1 24778400 6.716E+00  1.919E401  S.644E401  1,685E+02 S5.067E+02  1.530E+03  4.430E+03  1.402E+04

1.8 ¢ 2.8656+00 8.943E+00 2.938E401 9.927E+01  3.404E+02  1.176E+03  4.080E+03  1.418E+04  4,933E+04

2 1 3.333kE+00  1.200E+01  4,533E401  1.760E+02  4.933E+02  2,7526403  1.097E+04  4.37BE+04  1.749E+05

BI(N,r,mu) for r= 125

MuVN 4 e 16 k74 &4 128 256 512 1024 INF
-2 ¢ 1,000E+00  1,000E400  1.Q00E+00  1,000E+00 1,000E+00 1,000E+00  1.000E+00  1,000E400  1.000E+00  1,000E+00
-1.8 ¢ 1,000E400  {.000E+00  1.000E+00 1,000E+00 [.000E+00  1.000£400 {,000E+00 1.000E+00  {.000E+00  1,000E+00
1.6 & L.000E+00  1,000E+00  1,000E+00 1,000E+00  1,000E+00  1,000E+00  9.999E-01  9,999%E-01  9.99%E-01  9.999E-01
-1,4 1 1.000E+00  9.999E-01  9.999E-01 9.999E-01  9,999E-01 9.999E-01 9.99%E-0! 9.99%E-01 9.99%E-01  9.999E-01
-1.2 1 9.999E-01  9.9%9E-01  9.99BE-01  9.998E-01  9.998E-01  9.998E-01 9.998E-01 9,998E-01 9.998E-01  9.998E-01
-1 ¢ 1.000E+0G  1,000E+00  1.000E+00  1,000E+00  1,000E400 1.000E+00  1,000E+00  {,000E+00  1,000E+00  1.000E+00
-8 ¢ LLOOIEXOG  1,001E+00  1.002E400 1,0026+00 1.002E+00  1.002E400 1.0026+00 1,0026+400 1.0026+00  1.002E+00
bt 1.003E400  1,006E+00  1.008E400 1,0106+00 1,0126+00 1.013E+00 1.014E+00 1,014E+00 1,0156+00 {.015E+00
-4 1.010E+00  1,021E+00  1.031E+00  1.040E+00 1,047E+00 1.053E+400 1.058E+00 1.0626+00 1.065E400  1.074E+00
-2 10296400  1,0606+00 1.0926+00 1.124E+00 1,153E+00 1.1B1E+00 1.205E+00 1,226E+00 1.243E+00 1.37SE+00
O 1.0656+00 1. 144E+00  1.2326+400  1.329E+00 1,430E+00  1.534E+00  1,640E+00 1, 748E+00  1,856E+00

2% LIZTEHD0 1,294E400  1.S04E+00  1.7S9E+00  2.062E+00  2.416E+00  2,827E+00  3,303E+00  3.851E+00

LA 1L217E400 15326400 1.973E400  2,576E+00  3.388E+00  4,471E+00  5.909E+00  7.BI3E+00  1.033E+0§

&1 1L3RE400  1.877EHO0  2.725E+00  4.037E+400  4.0MBE+00  9.115E+00  1.378E+01  2,084E+01  3.160E+01

£ 1 L ABOEH00  2,334E+00  3.891E+00  6,589E+00  1.131E+01  1.995E+01  3,391E+01  5,893E+01  1,025E+07

1 D 1LA68E+00  3.00SE+00  5.479E+00  1.103E+0!  2.172E+01 A4 311E#01  8.589E+01 1. 714E+02  3.426E402

1.2 ¢ 1.8B9E+00  3.887E+00 8.421E400 1.B877E+01  4.246E401  9,680E+01  2.215E+402 S.079E+02 1. 164E+03

1.4 ¢ 2.156E+00  5.085E+00 1.265E+01  3.237E401 8.411E#01  2,203E402 S5.790E402  1.525€+03  4.021E+03

1.6 1 ZA77E+00  6.715E+00  1.919E+01  5.643E+01 1.684E402 5.047E+02  1.530E+03  4.629E+03  1.402E+04

1.8 1 2.845E+0)  8.983E+00  2.93BE+01  9.926E+01  3.404E+02  1.176E+03  4.080E#03  1.418E+04  4,932E+04

2 ¢ 3.333E+00 1.200E+01  4.533401  1.760EH02  6,933E407  2.7526+03  1.09TE+04  4,378E+04  1.TA9E40S
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Bl(N,r,au) for r= 25

[, TERN 8 16 R o 128 236 512 1024 IN
=2 ¢ 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E400 1.000E+00  1,000E+00 1,000E+00  1.000E+00  1.000E+00
-1.8 ¢ 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00 1.000E+00  1,000E+00
-1.6 ¢ 1.000E400 1.000E+00 1.000E+00 1,000E+00 1,000E+00 1.000E+00  1.000E+00 1.000E+00 1,000E+00  1.000E+00
-1.4 ¢ 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 9.999€-01 9.999E-01 9.999E-01
L2 3 1.000E+00 9.999E-01 9.999E-01 9.999E-01 9.99%E-01 9.999%E-01 9.999E-01 9.999E-01 9.999%-01  9.999E-01
-1 t 1.000E400 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E400 1,000E+00 1.000E+00  1,000E+00
-8 ¢ 1,000E400 1.001E+00 1.001E+00 1,001E+00 1,001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00  1.001E+00
=6 ¢ 1,0026+00  1,004E+00  1.00SE+00 1,007E+00 1.008E+00 §.00BE+00 1.009E+400 1.009€+00 1.010E400 1,010€4+00
-4 1 1L008E400  1.016E+00  1.023E+00  1,029E400 1.035E400 1.039E+00 1.043E+00 1.046E+00 1.048E+00  1,055E+00
=2 i 1.024E+00  1.050E+00 1.077E+00  1,1036+00 1,127E+00 1,150E+00 1.170E+00 1,188E+00 1,204E+00 1,311E+Q0
0 ¢ 1,059E+00 1.130E+00 1,210E+00 1.296E+00 1.388E+00 1.482£+400 1.STTE4+00 1.674E+400 1.7726+00

22 f LA2EX00  1.280E400 1. 479E400  1.T22E400  2,009E400  2,.346E+00  2,.737E+00  3.189E+00  3.710E+00

A2 12126400 15208400 1.952E+00  2,5A1E+00  3.335E+00  4.394E+00  5.800E+00  7,6626+00  1.012£+01

6 5 1.333E400  1,869E+00  2.709E+00  4,010E+00  6,003E400  9.042E+00  1.344E+01  2,068E401 3, 1326401

8 1 1.4B4E+00  2,350E400  3.BBIE+00  6,570E+00  1,127€+01  1,948E+01  3,380E+01 5.873€+01  1.022€+02

1 P 1.64BE+00  3,003E+00  5.673E+00 1.101E+01  2.169E401  4,305E401 8.578E+01  1.7126402  3.421E+02

1.2 ¢ 1.889E+00  3,884E+00  B.41BE400  1.874E+01  A4.284E+01  9,675E401  2,214E+02  S.0TTE402  1.165E+03

1.4 ¢ 2,156E+00  S.084E+00  1.264E+01 3,234E+01 8.410E+01 2,20ZE+02 5.789E+02 1.525+03  4,020E+03

Lé 0 2,877E+00  &.71SE+00  1.919E+01  S.442E+01  1.484E+02  S.066E402  1.530E403  4,629E+02 1. 402X+04

1.8 & 2,8636+00 8,943E+00  2.938E+01  9.926E+01  3.404E+02 1.176E403  4,0B0E+03 1.418E+04  4,932E+04

2 r 333EH00 1L.200E401  4,533E401  1.760E+02  4,933E+02  2,752E+03  1.097E+04  4,378E+04 1, 749E+05

Bl(N,r,mu) for r = 512

Moy N 4 £ 16 3R &4 128 256 512 1024 INF
=2t LO0OE+0C  1L000EHD0  1.000E+00  1,000E+00  1,000E+00  1.000E+00  1.000E+00  1.000E+00  1.000E+00 1, 000E+00
-1.8 & 1.000E+D0  1.000E+00  1.000E+00  1.000E+00  1.000E+00  1,000E+00  1.000E+00  1,000E+00  1.000E+00 1, 000E+00
-6 2 1,000E+00  1.000E+400  1.000E+00  1,000E+00  1,000E+00  1.000E+00  1,000E+00  1.000E+00  1.000E+00  1,000E+00
-L4 : 1L000E+00  1,000E+00  1.000E+00  1.000E+00  1,000E+00  1.000E+00  1,000E+00  1,000E+00  1.000E+00 1, 000E+00
1.2 ¢ 1L000E+00  1,000E+00  1.O00E+00  1,000E+00  1,000E400  1,000E+00  1.000E+00  1,000E400  1.000E+00 1, 000E+00
-1 PO LL000E+00  1L000E+00  1.000E+00  1,000E+00  1.000E+00  1.000E400  1,000E400  1,000E+00  1,000E+00  1.000E+((
=51 1LO00E+00  1,000E+00  1.OOIE+00  1.001E+00  1,001E+00  1,001E+00 1,001E+00 1, 001E+00  1.00IE+00  1.001E+00
=63 LL00IE+00  1.003E+00  1.004E+00  1,004E+00  1.005E+00  1.006E+00  1.006E+00  1.006E+00  1,006E+00  {.OUTE+D0
-4 1 1L00AE+00 1L012E+400  1.017E400  1,0226+00  1.026E+00  1,030E+00  1.032E+00  1.034E+00  1,036E+00  1.041Z+00
-2 1020E+00  1.042E+00  1.068E+00  1,086E+00  1,107E400  1.125E400 1. 1426400 1,1576+00 1. 170E+0C  1,261E+00
G 1.0S4E+(0 1L 118E+0C  1.191E+00  1.270E400  1.352E400  1.438E+00  1,526E+00 1.614E+00  1.703E+00

25 LILGEH0 1, 268EH00 1 AG0E400  1,692E+00  1,967E+00  2,290E+00  2,64SE+00  3.098E400  3.598E+00

A0 LL209E400 1LSI12E400 1.936E400  2,516E400  3.Z96E+00  4.33BE400  5,721E400  7.553E400  9.973E+00

b1 L3RMEH00 1.86AE+00  2,699E+00  3.992E+00  5.973E400  B8.994E+00  1.359E401  2,054E+(1 3. 114E+01

£ LAGZEAO0 2,347E400  3.87SE400  4,558E+00  1,125E4+01  1.945E401  3,373E+01  S.86ZE+01  1.020E+0Z

1 POLLGETE400  3,001E400  S5.670E+00  1.101E+01  2,16BE+01  4,303E+01  8,572E+01  1.711E+02  3.419E+02

1,2 ¢ 1.889E+00  3.885E+00  B.416E+00  1.B76E+01  4.243E+01  9.473E+01  2.214E+0Z  5.076E+0Z  1,165E+03

1.8 ¢ 2,1S6E+00  S.084E+00  1,268E+01  3,234E+01 8, 410E401  2,2026402 S5,789E402  1,525E+02  4.020£+03

Lod 1 2.4778+00  4.714E400  1,919E+01  S.6426401  1.684E402  S5.066E+02  1.530E+02  4.420E+03  1,802E+04

1.8 ¢ 2,86S5E+00  8.943E+00  Z.93BE+01  9.926E401  3.404E+02  1.176E402  4,080E+02  1,418E+04  4,9326+04

2t 3333400 1LZ200E401  AJS3BEH01 LLTH0E40Z  4.93E+02 Z,TSZEH0D 1L097E+04  4,370E+04 1. TAGE+0S
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BI(N,r,au) for r = 1024

4 8 16 2 A 128 25 512 1024 INF
1,000E400  1,000E400 1,000E+00 1,000E+00 1,000E+00 {,000E+00 1.000E+00 1.000E+00  1,000E+00 1.000E+00
1.000E+00  1.000E+00  1,000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1.000E+00
1.000E400  §,000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00
1.000E400  1.000E+00  1,000E+00 1.000E+00 1,000E+00 1.000E+00  §.000E+00  1.000E+00 1.000E+00  1.000E+00
1.000E+00 1,000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00  1.000E+00  1,000E+00
1.000E+00  1,000E400  1,000E+00 1,000E+00 1,000E400 1,000E+00 1.000E+00 1.000E+00  1.000E+00 1, 000E+00
1.000E+00  1,000E+00 1,000E+00 1.000E+00 1.000E+00 1,000E+00 1,000E+00 1.000E+00  1.000E+00  1,000E+00
1.001E+00  1.0026+00 1.0026+00 1.003E+00 1.003E+00 1,004E+00 1,004E400 1.004E+00 1.004E+00 1,004E+00
1.004E+00  1,009E+00 1,013E+00 1.017€+00 1.020E400 1.0226+00 1,024E+00 1.026E+00 1.027E+00 1.031E+00
1,017E400  1,035E+00 1.054E+00 1,073E+00 1.090E+00 1.106E+00 1.120E400 1.1326+00 1,144E+00 1,220E+00
1.0496+00 1,108E+00 1.175E400 1, 248E+00 1,3246400 1,4026400 1,483E+00 1.564E+00 1,645E+00

11126400  1.2596+00 1. 844E400  1,668E+00 1.934E+00 2.245E+00 2,807E+00  3.025E+00  3.S07E+00

1.206E+00  1,505E+00  1,924E+00 2,497E+00 3. 268E+00 4. 297E+00 5.6636+00 7.4722+00 9.8626+00

1.330E+00  1.B40E+00  2,693E+00 3.980E+00 S5.953E+00 8.963E+00 1.354E+01 2.049E+01 3,102£+01

1.4826+00  2,345E+00 3.8726+00  6,552E+00 1.124E+01 1.9426+01  3.369E+01 S.855E+01  1.018€+02

1.667E400  3.001E+00  S5.468£+400 1.100E+01 2,147E+01 4.301E+01 8.569E+01 1. 7T11E#02  3,418E+02

1.889E+00  3,885E+00 8.416E+00 1,876E+01 4.243E401 9.6726+01  2.213+02 5.075E402 1, 165403

2, 1566400  S.084E+00  1.264E+01 3,236E+01  8.409%E+01 2,2026+02 S5.789E+02 1.525E+03  4.020E+03

2, 47TE+00  6.714E400  1,919E+01  S.6426+01  1,684E+02 S5.064E+02  1.530E+03  4,628E+03  1.4026+04

2.865E400  B8,943E+00  2,938E+01  9,926E+01  3.404E+02 1.176E+03  4,080E+03  1,418E+04  4,9326+04

3.3B3E+00 1,200E401  4,333E401 1, 760E402  6.933E+02 2.7526+02  1.097E+04  4,37BE+04  1,749E+05

BIIN,r,mu) for r = 2048

4 8 16 32 64 128 256 512 1024 INF
1.000E+00  1,000E400 1.000E+00  1.000E+00 {.000E+00  1,000E+00  1.000E+00 1.000E+00  1,0006+00  1,000E+00
1.000E+00  1.000E+00  1.000E+00 1,000E+00  1,000E+00  1,000E+00  1.000E+00 1.000E+00  1,000E+00  1.0D00E+00
1.000E+00  1.000E+00  1.000E+00  1,000E+00  1.000E+00 1,000E+00 1.000E+00  1,000E+00 1,000E+00  1.000E+00
1.000E+00  1,000E4+00 1.000E+00  1.000E+00 1.000E+00  1,000E+00 1,000E+00 1,000E+00  1,000E+00 1,000E+00
1.000E+00  1,000E400  1.000E+00  1,000E+00 1.000E+00 1.000E+00 1,000E400 1.000E+00  1.000E+00  1.000E+00
1.000E+00  1.000E+00  1,000E+00 1,000E+00 1.000E+00  1,000E+00  1.000E+00  1,000E+00  1,000E+00  1.000E+00
1.000E+00  1,000E+00  1,000E+00 1,000E+00 [.000E+00 1.000E+00 1.000E+400 1.000E+00 1.000E+00  1.000E+00
1.001E+00  1,001E+00 1.002E+00 1.00264+00 1.002E+00 1.0026+00 1.003E+00 1,003€+00 1,003E+00 1.003E+00
1,003+00  1,007E+00  1,010E400 1,012E400 1.0156+00 1,017E+00 1.018E+00 1.019E+00 1{.020E+00 1.023E+00
1.014E+00  1,030E400 1.046E+00 1,061E+00 1.076E+00 1.089E+00 1.101E+00 1,112E+00 1,1226400  1.1B6E+00
1.045E+00  1,100E+00  1.1626400 1,229E+00 1,299E+00 1.3726+00 1.444E+00  1.521E+00  1.596E+00
1.108E+00  1,251E+00  1.431E+00  1.648E+00 1.906E+00 2.209E+00  2.560E+00  2,966E+00  3,434E+00

1.208E+00  1.501E+400  1.916E+00 2.483E+00 3. 247E+00  4,266E+00  S5.620E+00 7.4126400  9.780E+00

1.3206400  1.898E+00  2.688E+400 3.9726+00 S5.941E400 8.9426+00 1.351E+01  2,044E+01  3,095E+01

1,4626400  2,345E+00  3.870E+00  &4,548E+00 1,123E+01 1.941E+01 3.367E+01 5.6851E+01  1.0186+02
1,667E+00  3,000E+00  S.66TE+00  1,100E+0]1  2.167E+05  4.301E+0)  8.568E+01 1.710E+02  3.417E+02

1,8856+00  3.885E400 B.4156400 1.875E+01 4,243E+01 9.6726+01  2.213€+02 S5.075E+02  1.165E403

2.156E+00  S5,084E+00  1.264E+01 3.236E+01 8.409E+01 2,202E+02 5.789E+02  1,525€+03  4,020€+03

2. 4776400 4, 714E+00  1.919E+01  S.6428401  1,684E+02 5,064E+02 1.530E+403 4.428E+03 1.402E+04
2.8656+00  B.943E400  2,938E401  9,.926E+01  3.404E+02  1.176E+03  A,080E+03  1.41BE+04  4,932€+04

3,3228+00 1,200E401  4,533E+01  1.760E402 6.933E+02 2.7526+03 1.097E+04  A.37BE+04 |, TA9E+0S
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for r = INFINITY

2

b4

128

256

512

1. 0DDE+00
1.091E+00
1. 198E+(0
1.327E+00
1. 4626+00
1, 667E+00
1. 889E+00
2, 156E+00
2, 477E+00
2, 865E+00
3.333E+00

1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.210E+00
1487800
1.854E+00
2.343E+00
3.000E+00
3.883E+00
5.084E+00
6.714E+00
8. 943E+00
1. 200E+01

1, 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+)0
1. 000E+00
1, 360E+00
1.890E+400
2. 6BOE+00
3.8467E+00
S, 66TE+00
8, 415E+00
1. 264E+01
1,919E+01
2. 938E+01
4,533E+01

1. 000E+00
1.000E+00
1. 000E+00
1, 000E+00
1, 000E+00
1., 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. R1E+00
2. 441E+00
3. 958€+00
6. S43E+00
1.100€+01
1.875€+01
3.236E+01
S. 6428401
9.926E+01
1. 760€+02

1. 000E+00
1. 000E+00
1. 000E+00
1,000E+00
1. 000E+00
1, 000E+00
1, 000E+00
1. 000E +00
1. 000E+00
1. 000E+00
1. 000E+0:
1. 757E+00
3. 184E+00
S. 916E+00
1.1236+01
2.16TE01
4, 243£+01
8. 409E+01
1. 684E+02
3. 404E+02
6. 933E+02
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1. 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1., 000E+00
1.000E+00
1. 000E+00
1. 000E+00
2.009E+00
4, 1746400
8. 903E+00
1.940E+01
4.300E+01
9.6726+01
2. 2026402
5. 066E+02
1.176E403
2.7526403

1. 000E+00
1. 000E+00
1. 000E+00
1. 000€+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1., 000E+00
1. 000E+00
2, 303E+00
S. 489€+00
1. 3445401
3.364E+01
8.567E401
2.21%+02
5. 789£402
1. 5306403
4,080E+03
1.097E+04

1. 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+0G
1. 000E+00
1. 000E +(
1. D00E+00
1. 000E+00
2, 6426400
7.231£400
2,034E+01
5. BA4E+01
1. 710E+02
S.075E+02
1,5296+03
4, 6286402
1, 418E+04
4, 378E+04

3. 417E402
1. 165E+03
4,020E403
1. 4026+04
4, 932E+04
1. 7496405

1. 000E+00:
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
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B2{r mu)

W\ r= 0001 0003 .001 003 .01 .03 .1 .3 3 g
<2t b.66TE-01  6.66TE-01  6.66TE-01  6,86TE-01  6.667E-01  &6.667E-01  6.667E-01  6.687E-01  6.46TE-01  6.667E-01
-1.8 ¢ 1.1126-01 1,38%-01 1.7626-01 2,19%-01 2.793%-01 3.479E-01 &.431E-01 5.366E-01  6.264E-01  6.889E-01
<1.6 ¢ 1.8746-02 2.908€-02 4.708E-02 7.306E-02 1.183E-01 1.B36E-01  2.979%E-01 A.693%-01 5.901E-01  7.013€-01
<14 ¢ 320503 6.194E-03 1.276E-02 2,44TE-02 S.0B1E-02 9.820€-02 2.0326-01 3.999%-01 5,57%-01 7.041E-0t
<1.2 1 S5.584E-08 1, 34%-03 3.525-03 B.489-03 2.22%-02 5.3626-02 1.410E-01 3.MME-01 5.27%-01 7.05%-01
-1 ¢ 1,0006-04 3.000E-04 1,000E-03 3.000E-03 1.000E-02 3.000E-02 1.000E-01  3.000€-01  5.0006-01  7.000€E-01
~8 1 1.862-05 4.9B4E-05 2,949E-04 1.101E-03 A4.6626-03 1.73F-02 7.271E-02 2.64%-01 4.74%E-01  6,914E-01
-b 1 3.687E-06 1.TIE-05 9.231E-05 4.280E-04 2,206E-03 1.047E-02 5.438E-02 2.351E-01 4.317E-01  .806E-01
-4 3 B.121E-07  4.676E-06 3.1746-05 1.B09E-04 1,208E-03 6.66AE-03  4.195E-02 2.112-01 4.30%-01 &, 683E-01
-2 b I59E-07 1,S10E-05 1.260E-05 8.506E-05 4.921E-04 4.507E-03 3.30E-02 1,913%-01 4.103E-01  6.546€-01
0 ¢ 7.TE-08 6,200E-07 6,065E-06 4.745E-05 4.404E-04 3.250E-03 2,742€-02 1,750E-01 3.913E-01  6.401E-01
W2 3 3.906E-08  3.397E-07 3.594E-06 3.048E-05 3.100E-04 2.494E-03 2.316E-02 1.611E-01 3.740E-01  6.251E-01
A4t 2,590E-08  2.311€-07 2,530E-06 2.226E-05 2.3BIE-04 2,0206-03 2,006€-02 1.492£-01 3.574E-01  6.097E-01
4 1 2,013-08  1.8086-07 2,001E-06 1,780€-05 1.9556-04 1,708€-03 1.773E-02 1.3B0E-01 3.414E-01 5.943%-01
8 ¢ 1.700E-08 1.529E-07 1.49TE-06 1.524E-05 1.483€-04 1,493€-08 1.593€-02 1.297E-01 3.267E-01 5.789€-01
1 ¢ 1.500E-08 1.350E-07 1.500E-06 1.349€-05 1.49E-04 1.3376-03 1.4506-02 1.21%-01 3.125E-01  5.63%-0!
1.2 ¢ 1,357-08 1.221E-07 1,3%4E-06 1.221E-05 1,359E-04 1.206E-03 1.33%€-02 1.141E-01 2.989%E-01  5.463E-01
1.4 ¢ 1,2456-08  1.120E-07 1,245E-06 1.120E-05 1.244E-04 1.118€-03 1,233%-02 1.074E-01 2.859%E-01  5.333€-01
1.6 ¢ 1,15%-08 1,0376-07 1.152£-06 1,037€-05 1.1526-04 1.036E-03 1.147E-02 1.0126-01 2.735€-01 5. 184E-01
1.8 ¢ 1.076-08 9.64%-08 1.0726-06 9.6A5E-06 {.0726-04 9.442€-04 1.070E-02 9.541E-02 2.5615€-01 5.042%-01
2t 1,0006-08 ©.000E-08 1.000€-06 9.000E-06 1,000E-04 9.000E-04 1,000E-02 9.000E-02 2.500E-01 4.900E-01
29
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My r=z | 1.01 1.1 2 4 ] 16 2 64 128
=2t 1,000E400 6.66TE-01  6.64TE-01  6.66TE-01  6.66TE-01  6.46TE-01  4.667E-01  &6.66TE-01  6.667TE-01  6.647E-01
-1.8 ¢ 1,000E+00 8.614E-01 7.083E-01 7.196E-01 7.0626-01 7,020€-01 7.018€E-01 7.01%E-01 7.015E-01 7.014€-0t
-1.4 ¢ {,000E+00 9,429%-01 B,708E-01 7,.787E-01 7.561E-01  7.494E-0f 7.472£-01 7.468E-01 7.462€-01 7.4626-01
-1.4 : 1.000E+00 9.776E-0f 9.281E-01 B,444E-01 8.1926-01 8.103%-01 8.071E-01 8.096E-01 8.05%-01 8.052-01
-1.2 ¢ 1.000E+00 9.929E-01 9.493%-0f 9.181E-01 8.990E-01 B.9126-01 8.879E-01 8,86%€-01 8.859%E-01  8.854E-01
-1t LO000E+00 1.0006+00 1.000E+00 §.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1,000E+00  1.000E+00
=8 ¢ 1.000E+00 1.004E400 1,024E400 1,091E+00 1.128E+00 1,148E+00 1.159E+00 1.166E+00 1.170E+00 1.172%+00
=6 1 1,000E400 1.006E+00 1,083E+00 1,1926400 1.290E400 1.351E+00 1,3926400 [.418E+00 1.434E+00 1.M47E+00
=4 1 1,0006400 1.007E+00 1,060E+00 1.304E+00 1.494E+00 1.633E+00 1.738E+00 1.817E+00 1.877E+00 1.923€+00
=2 ¢t 1,0006+00 1.009E+00 1,075E+00 1.429€+00 1.7S26+00 2.027E+00 2,265E+00 2.4726+00 2.452+00 2.809E+00
0 ¢ 1,000E400 1.010E+00 1,089E+00 1.564E+00 2.076E+00 2.581E400 3.0826+00 3.582E+00 4.082€+00  4.582£+00
«2 ¢ {.000E400 1.011E+00 1.102E+00 1,718E+00 2.489E+00 3.344E400  4.365E+00  5.514E400  6.834E400  8.351E+00
4t 10006400 1.0126400 1.114E400 1.884E400 3.007E400 4.473E+00  4.404E+00  8.951E+00 1.231E+01  1.674E+01
6 ¢ 1,000E+00 1.013€+00 1,126E+00 2.071E+00 3.4656E+00  6.051E+00 9.473€+00  1,516E+01  2.348E+01  3.609%E+01
8t 1.0006+00 1.014E400 1.138E+00 2.275E+00 4. 47SE+00 B, 297E+00  1.49SE+01  2.453E401  4.649E401  8.179E+0%
1 ¢ 1LO00E+00  1.01SE+00  1.150E+00  2.500E+00 S.500E+00 1.150E+01  2.330E+01 4. 7TH0E+01  9.550E+01  1.915E+02
1.2 ¢ 1.000E+00  1.016E400 1.1626400 2,74TE+00 4.7846+00 1.407E+01  3.741E+01 B.0ME+0!  1.991E+02 4.579E+02
1.4 ¢ 1.000E+00 1.017E+00 1.174E+00 3,018E+00 B.3B9E+00 2.259E+01 4.008E+01 1.590E+02 4.201E+02 1.109E403
1.6 1,0006+00 1.018E400 1,186E+00 3,316E+00 1.039E+01 3.188E+01 9.706E+01 2.947E+02 8.937E+02  2.710E403
1.8 ¢ 1.000E+00 1.0196+00 1.198E+00 3.6426400 1.289E+01 4.513€+01 1.574E+02 5.4835E+02 1.910E+03  6.453€+03
2 ¢ 1.000E+00  1,020E400 1.210E+00 4.000E+00  1.600E+01  6.400E+01  2.560E+02  1,024E403  4.094E+03  1.638E+04
My r= 25 512 1024 2048 4094 IN

221 L.b6TE-01 6.6ATE-O1  6.66TE-01  6.66TE-01  6,6LTE-01  6,66TE-0L

-1.2 ¢ 7.014E-01  7.014E-01  7,014E-01  7.014E-01 7.014E-0f  7.014E-01

sl 3 T.M41E-01 T.461E-01  7.41E-01  7.461E-01 7.M41E-01  7.441E-01

-1.4 ¢ B.051E-01 8,051E-01 8.051E-01 8.051E-01 8.051E-01 8.051E-01

-1.Z2 ¢ 8.855E-01 8.854E-0! 8.854E-01 6.854E-01 B.854E-01 &, 854E-01

-1 P LO00E+00  1.000E+D0  1,000E+00  1.000E+00  1.000E+00  1.000E+00

=8 LIT3EC00 LL174E400 1L 1T74E400  1L174E400 1L 1T4E400 1. 1TSEHO0

Sob 8 LLASSEH00  1L460E400  1.463E400  1.465E400 1, 46TEHO0  1,470E+00

-4 1 1.957E+00  1,983E+00  2.003E+00  2,018E+00  2,029E+00 2, 065E+00

=2 b ZGABEHD0 3.064E400 3. 16TEH00  3.257E+00  3.336E400  3.863E+00

O3 5.08E+00  S5.582E+00  6.0826+00 6.5828+00  7.082E+00

2P LLOOSEX01  1.209E401  1,439E+01  1,703E401  2.006E+01

41 Z,25%+01 3.031E+01  4,050E+01  5,394E+01  7,167E401

A8 S5.521E+01  B.418E401  1.281E+0Z  1.947E402 2, 955E+02

81 1LLA9E-02 2,493E402  4.346E402  7.571E402  1.319E+03

18 2.E3%E+02  7.6TSE402  1.536E+03  3.0726403 6, 1A4E+03

1.2 ¢ 1.0526+03  2.4186+03 5,556E+03 1.277E+04  2.933E+04

L4 ¢ 2,9266403  7.72TE03  2,039E+04  5.382E+04  1.420E+05

1.6 5 B.215E+03  2.490E+04  7.549E+04  2,288E+05  4.937E405

1.8 5 2.31TE+04  8.067E+04  2,809E+05  9.7626405 3. M06E+06

2 % 6.SSE+04  2,621E05  1.049E+06  4.194E+06  1.4TBEHOT7
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1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1, 000E+00
1., 000E+00
1. 000E+00
1. 000E+00)

2. 000E+00
2,2146+00
2.419€+00
2,617E+00
2.811E+00
3. 000E+00
3. 180E+00
3.337E+00
3. 444E+00
3. 463400
3. 368E+00
3. 1636400
2. 883E+00
2. 5746400
2. 270E+00
1. 989E+00
1. 737E+00
1. 514E+00
1. 3198400
1. 149E+00
1. 000E +00

B3(2,M,r mu)

4. 000E+00
S.842£+00
7.398E+00
8. 745E+00
9. 937€+00
1. 100E+01
1. 191E+01
1. 250E+01
1, 85%+01
1. 2526+01
1. 151€+01
9. 9926400
8. 251£+00
6.5TSE+00
S, 123E+00
3. 940E+00
3. 008E+00
2, 2896400
1. 738E+00
1.319€+00
1. 000E+00

1. 175+01
1.217E+0L
1. 213€+01
1. 157E+01
1.052+01
9. 146E+00
7. 640E+00
6. 185E+00
4.897E+00
3.818E+00
2. 946E+00
2. 259E+00
1.725€+00
1.314E+00
1. 000E+00

8. 000E+00
1. 629E+01
2, 630E+01
3,295€+01
3. 843€+01
4. 300€+01
4. 651E+01
4, B48E+01
4.812£+01
4, 490E+01
3. 864E+01
3.090E+01
2, 314E+01
1. 651E401
1. 141E+01
7. 728€+00
3. 177E+00
3. M4EH0
2. 285E+00
1.513€+00
1. 000E+00

1.865E+01
2, 705E+01
3.378E+01
3.910E+01
4. 300E+0!
4,523 +01
4, 543E+01
4, BLEH01
3.896E+01
3. 2986401
2,63%+01
2.002£+01
1. 461E+01
1.035e+01
7.1798+00
4.907E+00
3, 3226+00
2. 2346400
1. 497E+00
1. 000E+00

§.600E+01
4.502£+01
1,018€+02
1. 306E+02
1.534E402
1.710E+02
1.823€+02
1.851E+02
1. 7668402
1.557E+02
1. 2536402
9.213%+01
6. 266€+01
4.018E401
2.4T%+01
1. 486E+01
8.775€+00
S, 133€+00
2,985+00
1, 7298400
1, 000E+00

1. 600E+01
7. 1386401
1. 1196402
1.411E+02
1, 607E+02
1. 710€+02
1. 7196402
1.632£+02
1. 455€+02
1.214E+02
9. 4626+01
6,9122+01
4. 774401
3. 1536401
2.013€+0¢
1. 254E+01
7. 688E+00
4, 658E+00
2.801E+00
1.476E+00
1. 000E+00

3.200€+01
2.536E+02
4. 151€+02
S, 358E+02
6. 287E+02
6. 830E+02
7. 065402
6.877E+02
6.21%+02
S. 131E+02
3, 826402
2.579€+02
1.595€+02
9. 220€+01
5. 098€+01
2, T31E+01
1, 435€+01
7. 440E+00
3. 8286+00
1. 960E+00
1. 000E +00

6. 400E+01
1.173+03
1. 888€+03
2. 342403
2.59%+03
2.674E4+03
2.588E+03
2,3426+03
1.957e+03
1, 486E+03
1.015€+03
4.253€+02
3,521€E+02
1.851E+02
9.280€+01
4.505€+01
2. 142401
1.005€+01
4, 679E+00
2, 1668400
1. 000E+00

o4

1. 200€+02
3.308E+03
S.075E+03
5. 964403
6. 253403
6.094E+03
5. 5786+03
4. TTSE+03

3. T74E+03 .

2,7126+03
1.7536+03
1.021E+03
S. 442402
2, 709€+02
1. 285E+02
3. 908E+01
2. 6508401
1.182£+01
5.211E+00
2. 286E+00
1. 000E+00

3. 200E+01
2.8126+02
4,279€+02
5.073€+02
5. 384E+02
S5.328E+02
4,971E+02
4.376E+02
3. 6186402
2.797E+02
2.0196+02
1, 366E+02
8. 737E+01
S5.345E+01
3. 162£+01
1.826E+01
1,037E+0§
5.829%+00
3. 251E+00
§.805E+00
1. 000E+00
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6. 400E+01
4.880£+02
7. 1956402
8. 285E+02
8. 548E+02
8. 221E+02
7,455€+02
6.378E+02
S, 126E+02
3.851E+02
2.7026+02
1. TT6E402
1. 104E+02
4. 364€+01
3.7726+01
2, 116E+01
1. 1686401
6. 371E+00
3. 4506+00
1.840€+00
1. 000E+00

9. 170E+02
1.022€+03
1.027E+03
9.66TE+02
8. 604E+02
7. 2476402
S.T43E+02
4.2626402
2.957e+02
1,924E+02
1. 184E+02
6.97E+01
3.973%+01
2.210€+01
1.209€+01
6.539E+00
3.511E+00
1.876E+00
1.000€+00

2.360E+02
4.836E+03
7.2226403
8.263€+03
8. M49E+03
8.047E+03
7.208€+03
6. 045€+03
4. 884E+03
3. J4E+03
2.097E+03
1. 200E+03
6. 280E+02
3.071€+02
1.431E+02
6. 4648401
2.859%+01
1. 248E401
S. 405E+00
2.328E+00
1.000E+00

2. 5608402
8.075€+02
1. 0656403
1. 147E+03
1. 125%+02
1,039€+03
9. 122+02
7. 600E+02
S.974E+02
4. 4056402
3.040E+02
1,970E+02
1. 2096402
7.095€+01
4, 030E+01
2.236E+01
1.220E+01
6,983 +00
3.527e+00
1.881E+00
1.000E+00

9.671E+03
9.024E+03
7.950E+03
4,5TTe+03
S.041E+03
3.521E+03
2.216E+03
1.259%+03
6.549€+02
3.183€+02
1. 476E+02
6.629E+01
2.917e+04
1.267E+01
5. 45%+00
2. 340€+00
1, 000E+00

1.229€+03
1.180E+03
1.073E+03
9.350€+02
7.740E+02
6.057E+02
44528402
3. 0646402
1.9838+02
1.215+02
7.1286+01
4,045€+01
2,2426+04
1. 223%+01
6.59%+00
3.531E400
1.882£+00
1.000E+00
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1.024E403
7.145€+03
9.8826+03
1.063E+04
1.036E+04
9.5126+03
8. 280E+03
6. 791E+03
5. 171E+03
3.594E+03
2. 254403
1.277€+03
6. 62TE+02
3, 215+02
1, 488E+02
6.673%+01
2.93%+01
1.2726+01
5, 473E+00
2.3k +00
1. 000E+)0

1.024£+03
1. 143403
1.274E403
1. 283403
1.2126+03
1.093E+03
9.451E+02
7.794E+02
6.086E+02
4.4686+02
3.074e402
1.987E+02
1. 2178402
7. 134E+01
4. 049E+01
2,284E+01
1. 224E+01
6. 598€+00
3.532£+00
1.8826+00
1. 000E+00
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1. 000E+00
1.000€+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E +00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000€+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000€+00

2. 000E+00
2.2298+00
2. MZE+00
2. 6546400
2,8422+00
3.000E+00
3. 117E+00
3. 180E+00
3.17%e400
3. 111E+00
2. 980E+00
2.79%E+00
2.584E+00
2,352£+00
2. 116E+00
1.888E+00
1. 674E+00
1. 477€+00
1. 299E+00
1. 141E+00
1. 000E+00

B3(2,M,r mu)

1.96TE+00
1. 799%+00
1.639%+00
1. 48%€+00
1. 350E+00
1.22%+00
1. 106E+00
1. 000E+00

4. 000E+00
6. 1186400
7.864E+00
9.2706+00
1.032£+01
1. 100E+01
1. 127e+01
1. 114E+01
1. 061E+01
9. 7STE+00
8, 683€+00
7.502£+00
6.317E+00
S. 208€+00
4, 21E+00
3,377e+00
2,676E+00
2, 105€+00
1. ATE+00
1. 285€+00
1. 000E+00

3.362£+00
2.9196+00
2. 5228400
2. 171E+00
1. 844E+00
1.597e+00
1,367E+00
1. 169€+00
1. 000E+00

8. 000E+00
2.32TE+01
3.138€+01
3, 626E+01
3. 853401
3.863€+01
3.694E+01
3. 38%+01
2.9B1E401
2,528E+01
2.0698+01
1. 6428401
1.269€+01
9.591E+00
7. 125400
5. 223E+00
3. 791E+00
2,7326+00
1, 960E+00
1. 401E+00
1. 000E+00

2,009€+00

1. 000E+00

1. 600E+01
4.419€+01
6,097E+01
6.919E401
7.13%+01
6.906€+01
6. 365401
3. 817E+01
4. 7608401
3.884E+01
3. 059+01
2, 335E+01
1.735€+01
1.2626401
9.013E+00
6. 3546400
4, 435€+00
3.074E4+00
2, 1206400
1. ASTE+OO
1. 000E+00

1. 6006401
1.341E401
1.237e+01
1. 171E+01
1.1026+01
1.021E+01
9. 300E+00
8, 339E+00
7.374E400
&, M3E+00
5.573%+00
4. 781400
4,073+00
3. 450£+00
2.910E+00
2, MA4E+00
2.051E+00
1.716E+00
1, 434E+00
1. 1986+00
1. 000E+00

3.2006+01
S. 757e+01
7. 9348401
8.832£+01
8.911E+01
8. 453€+01
7. 44%E+01
6.632£401
3.532%+01
4. M47E+01
3, 4535E+01
2.50%+01
1.9106+01
1.3726+01
9. 683€+00
6.743+00
4. 653400
3.187E+00
2.1726+00
1.475E+00
1. 000E+00

1.980E+01
1.521E+01
1.317e+01
1. 189€+01
1.077E+01
9. 686E+00
8.6106+00
7. 566E+00
4. 580E+00
S.671E+00
4.851E+00
4, 123€+00
3. 484E+00
2.935+00
2. 463+00
2.06%+00
1. 723&+00
1. 438E+00
1. 2006+00
1.000E+00
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6. 4006401
4.871E+01
9.267E+01
1.005+02
9. 9096401
9. 27E+01
8. 2228401
7.049€+01
5. 825401
4, 4TEX0L
3.387e+01
2. 68%E+01
1. 964E+01
1. 405E+01
9.878E+00
5. 857E+00
4. 7148400
3. 2186400
2, 186E+00
1. 480E+00
1. 000E+00

1.280E+02
7.831E401
1.026+02
1.084E+02
1. 048€+02
9.613%+01
8, 4786401
7. 21%+01
5. 931E+01
4. 714601
3., 6298401
2. 714401
1.979E+01
1. 414E+01
9.931€+00
6. M’w
4. 730E+00
3. 226E+00
2.189€+00
1. 481E+00
1. 000E+00

128

2.5606+02 5.1206402 1.024E+03
8.665E+01 9.393+01 1.003€+02
1.101€+402 1.1566+02 1.201E+02
1, 136E402 1.170E402 1.193+02
1,080E+02 1.099E402 1.109E+02
9.807E+01 9.903E+01 9.952£+01
8.591E+401 8.540E+01 8. 6626+01
7.200€+01 7.305E+01 7.314E+01
S.968E+01 5.981E+01 S,985E+0t
4. 73FH01 4. 7426401 4. TMEHL
3.641E401 3, 6A5E401 3, 6A4E+01
2. TAE+01 2.72%+01 2.724£+01
1.984E+01 1.985E+01 1.985E+01
1, 4166401 1.417€+01 1. 417E401
9.944E400 9.948E+00 9.949E+00
6.894E+00  6.896E+00 6. 896E+00
4. 7346400 4.73E+00 4.73SE+0
3.2266+00 3.228E+00 3.229E+00
2.190E+00 2.191E400 2.191E+00
1.481E+00 1,4826+00 1,4826+00
1.000E+00 1.000E+00 1.000E+0C

6. 400E+01
2.987E+01
1.854E401
1. M0E+0]
1. 2428401
1. 105E+01
9. 850E+00
8.713€+00
7.633+00
4. 624E+00
S. 701E+00
4.871E+00
4. 137E+00
3. 495+00
2.9426+00
2. 468E+00
2. 065400
1. 725400
1,439%E+00
1. 200E+00
1. 000E+00

1. 280E402
4. 6498401
2. 2856401
1.557E+01
1.278€+01
1.119€+01
9.9186+00
8. 750E+00
7.655€+00
6. 6309E+00
5.7096+00
4.876E+00
4. 1406400
3.498E+00
2.943€+00
2. 469E+00
2. 0648400
1. T26E+00
1, M0E+00
1. 200E+00
1.000E+00

2.560E402 5.120E402 1.024E403
T A64E+01  1,230E402  2.065€+02
2.8826+01 3.746E+01 5.023E+01
1.681E+01 1.8256+01 2.002E+0t
1.305E+01  1.328€+01 1,348E+01
1.126E+01 1,1308+01 1.1326+01
9.98ME+00 9.952E400 9.953E+00
8.763+00 B.764E+00 8.766E+00
T.6626+00 7.664E400 7. 644E+00
. 6426400 &6.6AEH00 6.443E+00
S.71€+00 S5.7126400 S5.713€+00
4.878E+00 4.878E+00 4.879€+00
4. 1ME+00 4, 141E+00 4. 142E+00
3.498E+00 3.499E+00 3.499E+00
2.984E+00 2.944E+00 2.944E+00
2. 8696400 2, 869E+00 2. 469E+00
2.056E+00 2.04LE+00 2, 064E+00
1.726E400 1.726E+00 1,T26E+00
1.440E+00 1.440E+00 1.4406+00
1,200E+00 1.200E+00 1.200E+00
1.000E+00 1.000E+00 1.000E+00
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B3(2,M,r mu)

My = 1

2

for P x

4

1

16

k73

o4

128

S12

1024

1. 000E+00
1, 000E +00
1, 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1, 000€+00
1, 000E+00
1. 000€ +00
1.000E+00
1. 000E+00
4t 1,000E+00
1, 000E+00
1, 000E+00
t 1, 000E +00
1.2 1. 000E+00
1.4 1. 000E+00
1.6 ¢ 1,000£+00
1.8

2

.l
[+

.
»N
-

1. 000E+00
1, 000E+00

B3(2,M,r mu)

1. 000€+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1, 000€+00
1. 000E+00
1. 000E+00
1. 000E+00

1. 000E+00
1. 000E+00
1. 000E+00
1.000£+00
1. 000E+00
1. 000E+00
1.000E+00
1.000€+00
1. 000E +00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00

1. 000E+00
1. 000E+00
1. 000€+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000£+00
l.mm
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000€+00
1. 000E+00
1, 000E+06
1,000€+00
1, 000E +00
1.000E+00
1.000E+00

1. 000E+00
1,000€+00
1. 000E+00
1.000E+00
1.000E+00
1. 000E+00
1. 0006 +00
1. 000E+00
1. 000€+00
1. 000E+00
1.000E+00
1.000E+00
1. 000E+00
1,000E+00
1.000E+00
1. 000E+00
1.000E+00
1,000E+00
1. 000E+00
1. 000E+00
1.000€+00

1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1, 000€+00
1. 000E+00
1.000E+00
1, 000E+00
1. 000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1.000E+00
1.000E+00
1. 000E+00
{.000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00

1. 000E+00
1.000€+00
1.000E+00
1. 000E+00
1.000E+00
1. 000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000€+00
1, 000E+00
1.000E+00
1. 000E+00
1, 000E+00
1. 000E+00
1, 000E+00
1.000E+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00

1. 000E+00
1. 000€+00
1. 000E+00
1. 000E+00
1.000€+00
1. 000E+00
1.000€+00
1. 000E+00
1,000 +00
1,000€+00
1.000€E+00
1. 000E+00
1.000E+00
1. 000E+00
1.000€+00
1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00

1.000E+00

1.000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E+00
1.000E+00
1.000€+00
1lmm
1.000€+00
1.000E+00
1.000E+00
1. 000E+00
1. 000E+00
1, 000E+00
§.000€+00
1.000E+00
1.000E+00
1.000E+00
1. 000€+00
1. 000E+00

1.000€+00
1.000E+00
1. 000E+00
1. 000E+00
1.000E+00
1. 000E +00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1. 000E+00
1, 000400
1.000E+00
1.000E+00
1. 000E+00
1. 000E +00
1. 000E+00
1.000€+00
1. 000E+00
1. 000E+00
1. 000E+00

:
;
=

(v oI < LN O S ]

O
0 O e
-

1. 000E+00
9. 956E-01
9.938E-01
9.932£-01
9,931E-01
9.934E-01
9.9388-01
9. 944E-01
9.950€-01
9.956E-01
9.963€-01
9.970E-01
9.978€-01
9. 985 -01
9.992£-01
1. 000E+00

9.910E-01
9.905e-01
9.907E-01
9.913%-01
9.920€-01
9.928¢6-01
9.936E-01
9.945€-01
9.954€-01
9.963€-01
9.972€-01
9.981£-01
9.991E-01
1. 000E+00

2. S4SE+00
1, 407E+00
1.110E+00
1.026E+00
1. 000E+00
9.921E-01
9.898E-01
9.895E-01
9,89%€-01
?.906£-01
9.914E-01
9.923%-01
9.932¢-01
9.942¢-01
9.9526-01
9.961E-01
9.9718-01
9.981£-01
9.990E-01
1. 000E+00

1.000€+00
9.91%-01
9.892£-01
9.891E-01
9. 894E-01
9.904E-01
9.913-01
9. 922¢-01
9.932¢-01
9. 941E-01
9.951E-01
9.941E-01
9.970€-01
9. 980E-01
9. 990€-01
1. 000E+00

9.912¢6-01
9.9226-01
9.931E-01
9. 941E-01
9.9S1E-01
9.961E-01
9.970€-01
9. 980E-01
9. 990E-01
1. 000E+00

33

9.887E-01
$.688E-01
9.895€-01
9.903€-01
9.9126-01
9.922¢-01
9.931€-01
9.941E-01
9. 951E-01
9.961E-01
9.970E-01
9. 980E-01
9. 990E-01
1. 000E+00

1. 000E+00
9.902£-01
9. 886E-01
9.888E-01
9.894E-01
9.903€-01
9.9126-01
9.922€-0t
9.931E-01
9.941E-01
9.951E-01
9.941E-01
9.970€-01
9.980€-01
9.990€-01
1. 000E+00

2.836E401
4.518E+00
1. 484E+00
1,063k +00
1. 000E+00
9.899%E-01
9.885€-01
9.8876-01
9.894E-01
9.903€-01
9.912£-01
9.522%-01
9.931E-01
9. 941E-01
9.951E-01
9.961E-01
9.970E-01
9.980€-01
9. 990E-01
1. 000E+00

1.07%+00
1.000E+00
9.897E-01
9.884E-01
9.887E-01
9.894E-04
9.903E-01
9.9126-01
9.922¢-01
9.931E-01
9.941E-01
9.951E-01
9.961E-01
9.970€-01
9.980E-01
9. 990E-01
1. 000E +00

TN-328

1.024£+02
8. 401E+01
9.057E+00
1,838E+00
1.084E+00
1. 000E+00
9.896E-01
9.884E-01
9.887E-01
9.894E-01
9.903€-01
9.9128-01
9.922€-01
9.931E-01
9.941€-01
9.951E-01
9.961E-01
9.970E-01
9. 980E-01
9.990€-01
1. 000E+00



B3(2,M,r mu) for r = {,1

L TR, | 2 4 8 16 k74 o 128 256 512 1024

=2t 1.0006+00 2.000E+00 4.000E+00 8.000E+00 1,600E+01 3.2006+01 6.400E+01 1.280€+02 2.5606+02 S5.1206+02 1.024E+403
<18 ¢ 1.000E400 1.494E¢00 2,284E+00 3,404E400 5.B45E+00 9.700E400 1.637E+0] 2,79%+01 4,808E+01 8.311E+01 1.841E+02
-1,6 ¢ 1.0006400 1.250€400 1.573E+00 2,017E+00 2,457E+00 3.601E400 S.011E+00 7.134E+00 1.034E+01 1.519E+01 2.254E+01
-1.4 ¢ 1.000E+00 1.1196+00 1.243E+00 1,385E+00 1.5B6E+00 1.7726400 2.050E+00 2.4126+00 2,887E+00 3.512E+00 4.336E+00
<1.2 t 1,0006400 1.044E+00 1.0826400 1.117E+00 1.1S3E+00 1.191£+00 1.234E+00 1.2826+00 1.33¢E+00 1.398E+00 1.470E+00
-1 ¢ 1,000E#00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00
-8 ¢ 1.000E400 9.740E-01 9.SB4E-O1 9.484E-01 9.414E-01 9.361E-01 9.318E-01 9.282€-01 9.251E-01 9.22%-01 9.20%-01
-6 ¢ 1.000E+00 9.590E-01 9.380E-01 9.2686-01 9.2026-01 9.1606-01 9.1326-01 9.111E-01 9.096E-01 9.085E-01 9.077E-01
-4 1 1.0006400 9.510E-01 9.2926-01 9.193%-01 9.145-01 9.119€-01 9.105E-01 9.096E-01 9.090E-01 9.087E-01 9.085€-01
-2 ¢ 1.000E+00 9.476E-01 9.270E-01 9.189E-01 9.1S4E-01 9,1426-01 9,.13%€-01 9.131E-01 9.129€-01 9.128€-01 9.128€-01
0t 1,0006+00 $.472-01 9,287E-01 9.223€-01 9.200E-01 9.1926-01 9.189E-01 9.187E-01 9.187E-01 9.1B5E-01 9.186E-01
.2 % 1.000E+00 9.490E-01 9,327E-01 9.277E-01 9.261E-01 9.254E-01 9.254E-01 9.254E-01 9.233€-01 9.253%-01 9.253%-01
At 1,0006400 9.52%-01 9.3826-01 9.342-01 9,331E-01 9.327E-01 9.326€-01 9.326E-01 9.326E-01 9.326E-01 9.326E-01
& 8 1,0006400 9.564E-01 9.447E-01 9.415E-01 G.406E-01 9.404E-01 9.403E-01 9.403E-01 9.403€-01 9.403-01 9.403%-01
.8 ¢ 1.000E400 9.617E-01 9.S17E-01 9.4926-01 9.485E-01 9.483E-01 9.483E-01 9.483€-01 9.483€-01 9.48%-01 9.483€-01
1t 1,000E400 9.474E-01 9.592€-01 9.572€-01 9.S6TE-01 9.566E-01 9.5656-01 9.343E-01 9.365E-01 9.56%-01 9.56%-01
1.2 ¢ 1.,000E400 9.735E-01 9.670E-01 9.655E-01 9.451E-01 9.450E-01 9.6496-01 O9.449E-0f 9.649E-01 9.64%E-C. <, 4A%E-01
1.8 ¢ 1,000E¢00 9.798E-01 9.751E-01 9.739%E-01 9.736E-01 9,7356-01 9.735€-01 9.735€-01 9.735€-01 9. 35E-01 9,73%-01
1.6 5 1.000E+00 9.844E-01 ,832€-01 9.8256-01 9.823E-01 9.8226-01 ¢,:226-01 9,822-01 9.82%-01 9.82%-01 9.822£-01
1,8 ¢ 1.000E+00 9,931E-01 9.916E-01 9.9126-01 ¢, :1E-01 9,911E-01 9.911E-01 9.911E-01 9.911E-0f 9.911E-01 9.911E-01
25 1.000E400  1.000E400 1.000E« O 1,0006400 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

B3(2,M,rmu) for r =z 2

o M= 1 2 4 8 16 R o4 128 234 512 1024

-2t 1.000E+400 2,000E+00 4,000E+00 €,000E+00 1.600E+01 3.200E+01 &.400E+01 1.280E+02 2.560E+02 S5.120E+02 1.024E+03
-1.8 ¢ 1.000E+00 1.690E+00 2.B62E+00 4.877E+00 B8.3626+00 1. 441E+01 2,491E+01 4.319€+01 7.500E+01 1.304E402 2.267E+02
-1.6 1 1.000E+00 1.445€400 2,089E+00 3.037E400 4.453E+00 4,583€+00 9.799E+00 1.466E+01 2.203+01 3.319E+01 5.010E+01
-1.4 ¢ 1.000E+00 1.255E400 1.548E+00 1.964E+00 2,473E+00 3,137E+00 4,006E+00 5.150E+00 6.657E+00 8.684E+00 1.126E+01
“1.2 ¢ 1.000E+00 1.109€400 1,224E+00 1.347E+00 1,484E+00 1.4638E+00 1.813€+00 2.014E+00 2,244E+00 2.507E+00 2.810E+00
-1 : 1.000E+00 1.000E+00 1.000E+00 1.000E+00 §.000E+00 1,000E+00 1,000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00
-8 ¢t 1,000E400 9.198E-01 B8.591E-0t1 &.113€-01 7.723%-01 7.395E-01 7,115E-01 &.873E-01 6.644E-01 &.48%-01 6.32%-01
-6 1 1.000E+00 8.632-01 7.746E-01 7.151E-01 &.735E-01 4.435E-01 4,213-01 6.047€-01 5.9226-01 S5.8268€-01 5.757E-01
-4 : 1,0006400 B8,255-01 7.283€-01 6.7276-01 6,394E-01 6.1886-01 6.057E-01 5.97%-01 S5.917€-01 5.881E-01 5.857E-01
-2 % 1.000E¢00 8.028€-01 7.080E-01 &.414E-01 6,377E-01 6,251E-01 &,183E-01 6.144E-01 6.123%-01 6.110E-01 6.103%-01
0 ¢ 1,0006400 7,922€6-01 7.0526-01 &.6B4E-01 6,52%-01 6.451E-01 6.417E-01 6.401E-01 6.393%-01 6.369E-01 4.387e-01
W2 % 1.000E+00 7,912€-01 7.143-01 6.860E-01 &.7TS4E-01 6.713E-01 6.697E-01 6,690E-01 &,687E-01 &.484E-01 &,686E-01
.4 1 1,0006400 7.979E-01 7.316E-01 7.101E-01 7.031E-01 7.008E-01 7.000E-0f &.997E-01 6,996E-01 6.996E-01 6.996E-01
4t 1,0006400 8.106E-01 7.547E-01 7.334E-01 7.337E-01 7.323-01 7.319€-01 7.318€-01 7.318€-01 7.318€-01 7.318€-01
. ! 1,000E400 B8.283E-01 7.B20E-01 7.496E-01 7.664E-01 7.655E-01 7.453E-01 7,652%-01 7.652%-01 7.65%-01 7.652%-01
1t 1,000E400 8.500E-01 8.125-01 6,031E-01 6,008€-01 8.0026-01 8.000E-01 8.000E-01 8.000E-01 8.000E-01 8.000E-01
1.2%  1.,0006+00 8,7506-01 B.456E-01 B.386E-01 8.36%E-01 6.365E-01 8.344E-01 6,3646-01 8.363%-01 8.36%-01 8.36%-01
1.4 ¢ 1000400 9.0296-01 8.811E-01 8.760E-01 8.747E-01 6.745€-01 B.744E-01 8,744E-01 8.744E-01 8.744E-01 8.744E-01
1.6 ¢ 1,0006+00 9.331E-01 9.186E-01 9.153E-01 9.145E-01 9.143E-01 9,142-01 9.1426-01 9.142£-01 9.142%-01 9.14%-01
1.8 ¢ 1,0006400 9.8566-01 9.5826-01 9.S64E-01 9.5626-01 9.561E-01 9.560E-01 9.S60E-01 9.560E-01 9.3560E-01 9.560E-01
2 % 1.000E400 1,0006+00 1.000E+00 1,000E+00 1.000E#00 1,000E+00 1.000E+00 1,0006+00 1.000E+00 1.000E+00 1.000E+00
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2,000€+00
1.728€+00
1. 494E+00
1.296E+00
1.1326+00
1.000E+00
8. 967€-01
8. 198E-01
7.663-01
7. 330€-01
7.167€-01
7. 184E-01
7.23%-01
7.409€-01
7.654€-01
7.955-01
8.298E-01
8,679€-01
9. 090E-01
9.531E-01
1. 000E+00

BR(2.M,r,mu)

4. 000E+00
2. 986E+00
2. 232+00
1.4678E+00
1. 279€+00
1. 000E+00
8,12%-01
6.934E-01
6, 256E-01
5. 946E-01
S.898E-01
6.030€-01
6. 28%-01
6.821E-01
7.013€-01
7. 44301
7.903%-01
8. 389¢-01
8.899E-01
9. 435E-01
1.000E+00

8. 000£+00
S. 170E+00
3.341E+00
2.174E+00
1. M4E+00
1.000E+00
7. 420€-01
6.031E-01
5. 392€-01
S.217e-01
50 32!'01
3. 595€-01
S.962£-01
6.384E-01
6.83%-01
7.31%-01
7.8106-01
8.323€-01
8.856E-01
9. 414E-01
1.000E+00

8

8

1. 600E+01
8. PH4EX00
S, 014€+00
2,823+00
1.631E+00
1. 000E+00
6. 824E~01
5. 370€-01
4.84%€-01
4.824E-01
. 057E-01
5. 422601
9. 891E-01
6.312-01
6. 79%-01
7.283%-0t
7.788€-01
8.307e-01
8.846E-01
9. 408E-01
1. 000E+00

3.2006+01
1. 336E+01
7. SME+00
3.676E+00
1.844E+00
1, 000E+00
6.31%-01
4.8806-01
4,502£-01
4.607E-01
4,93%-01
3. 351E-01
5.8126-01
6.291E-01
8. 77%E-01
7.2T%-01
7.782%-01
8. 303€-01
8.843€-01
9.407E-01
1. 000E+00

k73

4. 400E+01
2.705€+01
1. 137€+01
4.799E+00
2, 085E+00
1. 000E+00
5. 87Z-01
4.513%-01
4.276E-01
4. 486E-01
4.871E-01
S, 32%-01
3. 798€-01
4. 284E-01
6. TT%-01
7.27%-01
7.781E-01
8. 203%-01
8.643€-01
9. 807E-01
1. 000E+00

o4

1. 280402
4,704E+01
1.718€+01
6. 279400
2,36TE+00
1. 000E+00
5. 489E-01
4.237e-01
4. 1286-01
4.417€-01
4.841E-01
S5.3106-01
9. 794E-01
6.282¢-01
4. TTE-01
7.27%-01
7.781E-01
8,302£-01
8.843-01
9. 407E-01
1. 000E+00

1,311E+00
1. 142E+00
1. 000E +00
8.851E-0!
7.965€-0!
7.331E-01
6.931E-0!
6.738€-0!
6.719-01
6. 838€-0!
7.061E-01
7.361E-01
7.717e-0!
8. 115€-01
8. 546E-01
9. 005-01
9.48%-0!
1. 000E+00

3.019e400
2.276E400
1. 717E+00
1. 302£+00
1. 000E+00
7. 883€-01
6. 489€-01
5. 666E-01
S.284E-01
5. 230e-01
S. 405E-01
5.73%-01
6. 15501
b, 634E-01
7. 147€-01
7.680E-01
8. 230E-01
8.797E-01
9, 386E-01
1. 000E+00

8. 000E+00
5. 47E+00
3. 436E+00
2. 251E+00
1. 484E+00
1. 000E+00
7. 059%-01
S. 405€-01
4, 614E-01
4. 390E-01
4, 526E-01
4.8746E-01
S. 47E-01
S.878€-01
6, 436E-01
7.004£-01
7.576€-01
8. 159€-01
8. 7S1E-01
9.3638-01
1.000E+00

9. 126E+00
3. 191E+00
2, 9526400
1. 693+00
1. 000E+00
6.351E-01
4, 600£-01
3- 9395'01
3.896E-01
4, 191E-01
4. 661E-01
5.212%-01
3.79%-01
b. M'Ol
6. 968€-01
7. 554E-01
8. 142¢-01
8.741€-01
9. 357E-01
1. 000E+00

3. 200€+01
1.588€+01
7.850E+00
3.877e+00
1.9326+00
1.000E+00
5. 73%-01
3.996E-01
3.502£-01
3.620€-01
4.030€-01
4.57%-01
S. 164€-01
S5.767e-01
6. 367€-01
6.959%-01
7.5486-01
8.138€-01
8.738€-01
9. 356E-01
1.000E+00

35

6. 400E+01
2.76%+01
1. 188e+01
5. 096E+00
2. 206£+00
1.000€+00
S. 208E-01
3.541€-01
3.216E-01
3. 463-01
3.952€-01
4.534€-01
S. 146E-01
9. 75%-01
6. 363%-01
6, 957E-01
7. 544E-01
8.137€-01
8.738¢-01
9. 356€-01
1.000E+00

2.360E402
8,185¢+01
2.597E+01
8.232€+00
2. bOBE+00
1, 000€+00
5- 1575'01
4.028€-01
4.032-01
4.3768E-01
4.826€-01
S. 30%-01
5. 792%-01
6. 281E-01
6. T74E-01
7.273%-01
7.781E-01
8. 302-01
8.843€-01
9.407E-01
1. 000E+00

S, 1208402
1,425 +02
3.929E+01
1.081E+01
3. 057E+00
1.000E+00
4.868€-01
3.870€-01
3.968€-01
4,35%-01
4.819%€-01
3. 303-01
5. 791E-01
6. 281E-01
4. TT4E-01
7.273%-01
7.7181E-01
8.202£-01
8.843%-01
9.407E-01
1. 000E+00

1.024€+03
2,490E+02
5. 948E+01
1. 420E+01
3. 480€+00
1. 000€+00
4.616€-01
3. 750E-01
3.926E-01
4.3426-01
4.81%-01
5. %0201
3. 791E-01
4. 281E-01
6. TT4E-01
7.27%-01
7.781E-01
8,302-01
8.843-01
9.407E-0!
1. 000E+00

1. 000E+00
4. 747E-04
3.198€-01
3.028€-01
3.374E-01
3.913%-01
4.518€-01
5. 140E-01
5. T56E-01
4.362%-01
6.957e-01
7.546€-01
8.137e-0t
8.737e-01
9, 356E-01
1. 000E+00

2.560E+02
8.371E+01
2.72%+01
8,8256+00
2.8826+00
1. 000E+00
4. 346E-01
2.938€-01
2.904E-01
3.323-01
3.893-01
4.514E-01
S5.137€-01
3. T56E-01
6,361E-01
6. 957E-01
7.546€-01
8.137e-01
8.737E-01
9. 396€-01
1. 000E+00

1,457E+02
4,126E+01
1, 1626401
3.296E+00
1. 000E+00
3.997E-01
2.78E-01
2.82%-01
3.294E-01
3.884E-01
4.508€-01
S.136E-01
5. 755¢-01
6. 361E-01
4.957e-01
7.546E-01
8.137E-01
8.737e-01
9.356E-01
1.000E+00
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1.024E403
2.537E+02
6. 251E+01
1.532£+01
3.773€+00
1.000E+00
3.693€-01
2.592%-01
2.76%-01
3.2T7E-01
3.879%-01
4.507E-01
5. 136€-01
5.75%-01
4. 361E-01
6. 957E~01
7.546E-01
8.137E-01
8.737e-01
9. 356E-01
1. 000E+00



B3(2,M,r,u) for r= 16
LTINS | 2 4 8 16 k74 o 128 356 512 1024
*2 1 1,000E400 2.000E+00 4,000E+00 8.000E+00 1.600E+01 3.200E+01 &.400E+01 1.200E+02 2,560E+02 5.1206402 1.024E+03
-1.8 & 1,000E400 [.760E+00 3.028E400 S.269E400 9,171E400 1.396E+01 2.779€401 4.830E+01 8,424E+01 1.867E+02 2,S553E+02
=16 ¢ 1.0006+00 1.5136+00 2,2906+00 3.447E+00 S5.249E+00 7.950E+00 1.204E+01 1.B2TE+01 2.765E+01 4,191E+01 6.351E+01
<1.4 ¢ 1.000E+00 1.316E+00 1.732E400 2,280E+00 3.001E+00 3,953E+00 5,209E+00 4.865E+00 9.051E+00 1.194E+01 1.574E+01
=1.2 ¢ 1.000E+00 1.146E+00 1.3126400 1,50+00 1,7206+00 1,970E+00 2.257E+00 2,5B7E+00 2.964E+00 3,401E+00 3,901E+00
-1+ 1.0006+00 1.000E+00 1.000E+00 1,000E+00 1,0006+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
=8 ©  1,0006400 8,788E-01 7.7526-01 6.840E-01 A.0B9E~01 S5.420E-01 4.839E-01 4.3G4E-01 3.894E-01 3.511E-0! 3.178E-01
=6 © 10006400 7.826E-01 6.220E-01 S.026€-01 4.1326-01 3.458E-01 2.949E-01 2.564€-01 2.273%-01 2.052€-0t1 1.885-01
-4 :  1,0006400 7.119E-01 S5.287e-01 4,.1126-01 3,3306-01 2.853E-01 2.527€-01 2.313%-01 2.172-01 2.078E-01 2.017E-01
=2 ¢ 1.000E+00 6.668E-01 4.845E-01 3.838€-01 3.27%-01 2.950€-01 2.777E-01 2.474E-01 2.41%-01 2.SB1E-01 2.562%-01
0 :  1.000E400 &.455€-01 4.785E-01 3,9926-01 3.6126-01 3.426E-01 3.33SE-01 3.290E-01 3.267E-01 3.256E-01 3.250E-01
+2 1 1.000E+00 6.446E-01 S.001E-01 4,410E-01 4.167E-0f 4.045E-01 4.021E-01 4.003€-01 3.99%E-01 3.991E-01 3.9906-01
.4 1 1,0006400 6.597E-01 S.39F-01 4,970E-01 4.819E-01 4.765-01 4. 74%E-0f 4.736E-01 4.7356-01 4.734E-01 4.734E-01
6 1 1,0006400 6,865E-01 35.891E-01 S.591E-01 S.498E-01 S.469E-01 S5.4606-01 S.450E-01 S5.457E-01 S.456E-01 S5.456E-01
«8 1 1.000E+00 7.2106-01 6.439E-01 &,227E-01 b6.169E-01 6.154E-01 &.149€-01 &,140E-01 6.1486-01 &.1486-01 6. 1486-01
1 ¢ 1.000E+00 7.606E-01 7.000E-01 6.838E-01 6.821E-01 6.8126-01 6.809€-01 4,809E-01 6.809E-01 6.809€-01 &.809€-01
1.2+ 1.000E+00 8.038E-01 7.584E-01 7.480E-01 7,.455E-01 7,M9E-01 7.847E-01 7.447E-01 7.8M47E-01 7.447E-01 7.847E-01
1.4:  1.,000E400 8.495E-01 B8.14%E-01 B.096E-01 8,079E-01 ©,075E-01 6.074E-01 8.074E-01 ©.074E-01 8.074€-01 8.074E-01
1.6 3 1.,000E+00 8.974E-01 8.762€-01 8,715€-01 B.704€-01 8,701E-01 8.701E-01 8.701E-01 8.701E-01 8.701E-01 8.701E-01
1.8 1 1.000E«00 9.475E-01 9.370E-01 9,344E-01 9.341E-01 9,3406-01 9,339€-0] 9.339E-01 9.339%E-01 9,339E-01 9.339E-01
2 ¢ 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00
B3(2,M,r,mu) for r= 32
L THANR | 2 4 8 16 K74 o4 128 3% 512 1024
-2 1.000E+00 2.000E+00 4.000E+00 8.000E+00 1.400E+01 3,200E+01 6.400E+01 1.280E+02 2.560E+02 S5.120€+02 1.024E+03
-1.8 ¢ 1,000E+00 1.741E400 3.030E+00 S5.276E+00 9.1B4E+00 1.599E+01 2.784E+01 4&,B47E+01 8,439E+01 1.469E+02 2.558€+02
=16t 1.000E+00 1.515E+00 2.295E+00 3.4T7€+00 S5.26%+00 7.984E+00 1.2106+01 1.834E401 2.779€401 4.2126+01 &.384E+01
-1.4 ¢ 1.000E«00 1.318E+400 1.738E+00 2.291E+00 3.020E+00 3.9826+00 5.2526+00 4.927E+00 9.137E+00 1.205E+01 1.590E+01
=LZ t 1L000E+00 1.147E+Q0 1,316E+00 1.510E400 1,73£+00 1,987E+00 2.280E+00 2.614E+00 3.003E+00 3.MTE+00 3,957E+00
-1 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1,000E+00 1,000E+00
-.8 1.000E+00 B8.753E-01 7.477€-01 6.74TE-01 S5.941E-01 S.240E-01 4.6306-01 4,1006-01 3.439€-01 3.237€-01 2.887E-01
-6 ¢ 1,000E+00 7.738E-01 6.052€-01 4.789E-01 3.838E-01 3.120E-01 2.5T7E-01 2.164E-01 1.855E-01 1.419E-01 1,441E-01
=4t 1,000E400 6.97€-01 S5.030E-01 3,770E-01 2,950€-01 2.412€-01 2.059%€-01 1.826E-01 1.473-01 1.5726-01 1.5056-01
=2 i 1.000E+00 6.480E-01 4,532£-01 3.445E-01 2,833€-01 2,486E-01 2.288€-01 2.175E-01 2.110E-01 2.0736-01 2.051E-01
0 ¢ 1.0006+00 6,251E-01 4,465E-01 3,609E-01 3,194E-01 2,991E-01 2.891E-01 2.841E~01 2.814E-01 2.804E-01 2,798E-01
2 1.000E+00 6.256E-01 4.718E-01 4.085E-01 3.821£-01 3.710E-01 3.6463E-01 3.6426-01 3.634E-01 3.630E-01 3,628€-01
<4 1 1,0006+00 &6.440E-01 S.173E-01 4.723€-01 4.5H1E-01 4.503E-01 4.481E-01 4.4736-01 4.471E-01 4,469E-01 4,469E-01
6 ¢ 1,000E+00 &6.74TE-01 S.733E-01 S5.418E-01 S5.321E-01 5.290E-01 S5.280€-0f 5.277€-01 5.276E-01 S.276E-01 S.276E-01
.8 ¢ 1,0006400 7.128E-01 6.333-01 6.114E-01 6.054E-01 6.038E-01 &.033%-01 &.03%-01 6.032%-01 6.031E-01 &.031E-01
1 ¢ 1,000E+00 7.533E-01 6.941E-01 &.788E-01 6.7S0E-01 &6.740E-01 6.736€E-01 6.737E~01 6,737E-01 4.737E-01 6.737E-01
1.2 1,000E+00 8.004E-01 7.SASE-01 7.438E-01 7.4126-01 7.406E-01 7.405E-01 7.404E-01 7,404E-01 7,404E-01 7,404E-01
1.4 : 1,000E+00 8.47SE-01 B,144E-01 8.0726-01 8.055E-01 8.051E-01 8.0S0E-01 8.050E-01 8.049E-01 8.049E-01 8.049€-01
1.6 ¢ 1.000E400 8,964E-01 8.730E-01 B.702£-01 B.691E-01 8.489E-01 B8,688€-01 B.688E-01 8.488E-01 6.6886-01 8,688€-01
1.8%  1,0006+00 9.471E-01 9.345E-01 9.341E-01 9,336E-01 9.334E-01 9.334E-01 9.334E-01 9,334E-01 9.3346-01 9.3B4E-01
2 ¢ 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+0C 1,000E+00 1,000E+00 1.000E+00
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B(2,0,r,m) for r= 64
= | 2 4 8 16 k74 oA 128 -~ 512 1024
<2 % 1,000E+00 2,000E+00 4,0006+00 8,000E+00 1,4006+01 3,200E+01 6.400E+01 1.2B0E+02 2,360E+02 5.120€+02 1.024E+03
-1.8 ! 1.000E400 1,741E+00 3.031E+00 5.277E+00 9.186E+00 1.600E+0] 2,78%E+01 4.849E+01 8.443E+01 1.470E402 2.T59€E+02
“1.6 ¢ 1.000E¢00 1,S1SE+00 2.297E+00 3,481E+00 S.27SE+00 7.995E+00 1,2126+401 1.834E+01 2.784E+01 4.219E+01 6.395E+01
“1.4 3 1.000E+00 1.319E+00 1,740E+00 2,295E+00 3.027E+00 3.993E+00 5.268E+00 4.950E+00 9.170E+00 1.210E+01 1.596E+01
=1,2 ¢ 1.0006+00 1,148E+00 1,318E+00 1,513E+00 1.737E+00 1.994E+00 2,290E+00 2,629E+00 3.019E+00 3.46TE+00 3.9B1E+00
1 ¢ 1,000E400 1,000E+00 1,000E+00 1,000E+00 1,000E+00 1,000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
-8 ! 1,000E400 8,733E-01 7.635-01 4.683E-01 5.856E-01 S5.137E-01 4.5126-01 3.967e-01 3.493-01 3.081E-01 2.722£-01
=6 ¢ 1.000E400 7.683E-01 S.94SE-01 4.437E-01 3.650E-01 2,904E-01 2.3406-01 1.912€-01 1.506E-01 1.34%-01 1.157E-01
-4t 1,000E400 6.87E-01 4.849€-01 3,531E-01 2,4668E-01 2,1026-01 1,730E-01 1,485E-01 1.323-01 1.214E-01 1.144E-01
=2 ¢ 1.0006400 6.341E-01 4.299E-01 3.1526-01 2.S04E-01 2.135E-01 1.924E-01 1.804E-01 1.734E-01 1.49%€-01 1.472-01
0 & 1.0006+00 6.098€-01 4,22%E-01 3,.320E-01 2.880E-01 2.463E-01 2.554E-01 2,503E-01 2.476E-01 2,8463-01 2.456E-01
.2 3 1.000E+00 6.116E-01 4,5126-01 3.844E-01 3,568€-01 3.450E-01 3.400E-01 3.378E-01 3,349E-01 3.363-01 3.363€-01
A4 3 1,0006400 6.332€-01 S5,021E-01 4,553k-01 4,384E-01 4,323€-01 4,3006-01 4.292£-01 4.289E-01 4.288€-01 4.287E-0%
6 ¢ 10006400 6.673-01 S5.634E-01 S.310E-01 S5.210E-01 S5.178€-01 5.168E-01 S.165E-01 3.164E-01 5.164E-01 S.164E-01
.8t 1,000E¢00 7,082£-01 6.2746~01 &,051E-01 S.990E-01 S5.973-01 S.99E-01 S5.%7E-01 S.967e-01 S5.967E-01 S.967E-01
1 ¢ 1,0006#00 7.526E-01 6.908€-01 6.75%-01 6.714E-01 &.705€-01 6.7026-01 6.7026-01 6.702€-01 6.702£-01 6.7026-01
1,24 1,000E+00 7,990E-01 7.527€-01 7.419E-01 7,394E-01 7,388E-01 7,3B4E-01 7.384E-01 7.384E-01 7.384E-01 7.384E-01
1.4 ¢ 1.000E+00 8,4468E-01 B,137E-01 B8.063E-01 8,045€-01 8,04]1E-01 B8.040E-01 8.040E-01 8.0406-01 8.040E-01 8.040E-01
1.6 ¢ 1.000E+00 8.960E-01 B.74%-01 8,498E-01 8,687E-01 8.684E-01 B.684E-01 8,484E-01 8,.684E-01 8.684E-01 8.484E-01
1.8 ¢ 1.000E+00 9,.470E-01 9.343E-01 9.340E-01 9.3346-01 9.33%-01 9.332%-01 9.332€-01 9.332%€-01 9.33%-01 9.332%-01
2t 1.,0006400 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
B3(2,M,r,u) for r= 128
L TN ] 2 4 8 16 32 44 128 25 S12 1024
-2 ¢+ 1,0006+00 2,000E+00 4.000E+00 8,000E+00 1.600E+01 3.200E+01 4.400E401 1,280E402 2.560E402 S5.120E+02 1.024E+03
-1.8 ¢ 1.000E+00 1.741E+00 3,031E+00 S5.278E+00 9.189E+00 1.600E+01 2.786E+01 4.850E+01 8.4M4E+01 1.470E+02 2.560E+02
=1.6 ¢ 1.000E+00 1.516E+00 2,297E+00 3.4826+00 S5.277E+00 7.998E+00 1.2126+01 1.837E+01 2.78SE+01 4. 221E+01 &.398€E+0!
-1.4 ¢ 1.000E+00 1,3196+00 1,741E+00 2,294E+00 3.030E400 3.997E+00 5,274+00 6,959E+00 9.1826+00 1,2126+01 1.599E+0!
=1.2 ¢ 1.000E+00 1,148€+00 1,319E+00 1.51SE+00 1.739E+400 1,998E400 2.294E+00 2.63SE+00 3.026E+00 3.475E+00 23.992£+00
=it 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1,000E+00 1,000E+00 1.000E+00 1.000E+00
-8 ¢ 1,000E400 8.721E-01 7.611E-01 6.647E-01 5.808E-01 5.079E-01 4, 444E-01 3,.891E-0f 3,410E-01 2,992-01 2,627E-01
=b 10006400 7,447E-01 5,875E-01 4,539E-01 3.529€-01 2.764E-01 2.186E-01 1,747E-01 |,415E-01 1,164E-01 9,72%E-02
-4 1.000E+00 6,903€-01 4,720E-01 3,359€-01 2.467E-01 1,8B1E-01 1.494E-01 1.2406-01 1,072£-01 9.614E-02 8.884E-02
=2 ¢ 1.000E+00 4,235E-01 4,121E-01 2,926E-01 2,.2526-01 1.8464E-01 1,646E-01 1,S19E-01 1.M47E-01 1.405E-01 1.381E-01
0 ¢ 1.000E+00 S5.578E-01 4.034E-01 3.004E-01 2.634E-01 2.407E-01 2,294E-01 2.238E-01 2.210E-01 2.196E-01 2.189%€-01
W2 0 1,000E+00 6,011E-01 4.355E-01 3,665E-01 3.374E-01 3.253E-01 3,200E-01 3.177E-01 3.1486-01 3.163E-01 3.162%-01
A4 1 10006400 6,256E-01 4.914E-01 4.433E-01 4.259€-01 4.196E-01 4.173E-01 4,164E-01 4.161E-01 &.160E-01 4,159E-01
6 2 1,0006400 &,626E-01 S,S71E-01 S.2426-01 S5.13%-01 S5.107E-01 35.097E-01 5.094E-01 S.093€-01 S5.092£-01 5.052%-01
.8 ¢ 1,000E+00 7,056E-01 &.240E-01 &.016E-01 35.954E-01 5.937E-01 5.9326-01 5.931E-01 $.930E-01 S.930E-01 5.930€-01
1 ¢ 1.,000E+00 7.513€-01 6.891E-01 6.736E-01 6.497E-01 6.687E-01 6.685E-01 &.684E-01 6.684E-01 6.684E-01 6.684E-01
1.2 1,000E+00 7.983€-01 7.520E-01 7.411E-01 7.384E-01 7.300€-01 7.376E-01 7.376E-01 7.376E-01 7.378€E-01 7.37€E-01
1.4 ¢ 1,0006+00 8.48%-01 8.13%-01 8.059€-01 8,0422-01 8,038€-0f 8,0376-01 8.037E-01 8.037e-01 8.037E-01 8.037€-01
1.6 ¢ 1,000E+00 6.959E-01 8,744E-01 B.696E-01 B,484E-01 8.683%E-01 8,682€-01 8,4026-01 6.682£-01 8.68Z-01 8.482¢-0t
1.8 1,000E¢00 9.469E-01 9.363E-01 9.339E-01 9.334E-01 9.332€-01 9.332%-01 9.332€-01 9.332£-01 9.332%-01 9.33%-01
2 ¢ 1.0006+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00
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B3(2,M,r,mu) for rs=

LTI 2 4

256

16

k73

“

128

Y~ 512 1024

1.000E+00 2.000E+00 4. 000E+00
1.000E+00 1.741E+00 3.031E+00
1.0006+00 1.516E+00 2.297E+00
1.000E+00 1.319E+00 1.741E+00
1.000E+00 1.149E+00 1.319E+00
1.000E+00 1.000E+00 1,000E+00
1.000E400 8.714E-01 7.597€-01
1.000E+00 7.623-01 5.830E-01
1.0006+00 6.TS0E-01 4, 626E-01
1.000E¢00 &.152%-01 3.981E-01
1.000E+00 5.882£-01 3.883E-01
1.000E+00 S.929€-01 4, 233€-01
1.000E+00 6.20%-01 4.837E-01
1.000E+00 &6.396E-01 S.330E-01
1.000E+00 7.0426-01 &.221E-01
1.000E+00 7.507e-01 6.883E~01
1.000E+00 7.981E-01 7.516E-01
1.000E+00 8.464E-01 8.132£-01
1,000E+00 8.958E-01 8.743E-01
! 1,000E+00 9.469E-0f 9.362€-01
! 1,000E+00 1.0006+00 1.000E+00

.I
D
a8 su as mu ee e e es e = 8 ma s ee

ee ss se ve em

8. 000E+00
S. 278E+00
3.482£+00
2. 97400
1.515€+00
llmm
6. 626E-01
4.475E-01
3.23%-01
2.753-01
2.91%-01
3,525€-01
4, 4TE-01
S. 199€-01
S.995e-01
8.727e-01
7. 808€-01
8.038€-01
8.696E-01
9. 339€-01
1. 000E+00

S12

1. 600E+01
9. 189€+00
3. 278E+00
3.031E+00
1. 740E+00
1. 000E+00
5. 781€-0t
3. 450E-01
2.321€-01
2.054-01
2.436E-01
3. 26E-01
4.170E-01
$5.094¢-01
5.933-01
. 688€-01
7.382%-01
8.044E-01
8. 685€-01
9. 333%€-01
1. 000E+00

16

3.200€401
1. 600E+0}
7.999€+00
3, 999E+00
1.999€+00
1.000E+00
5. 045E-01
2.674-01
1.7206-01
1.455€E-01
2,201€-01
3.099€-01
4.103€-01
5. 061E-01
S.914E-01
6.679€-01
7.376€-01
8.036€-01
8.6826-01
9.332%-01
1. 000E+00

R

6. 400E+01
2.T86E+01
1.21+01
5. 277400
2.296E+00
1.000E+00
4.405%-01
2.086E-01
1.323%-01
1.427€-01
2,084£-01
3.045-01
4.081E-01
S.051E-01
S.911E-01
6.676E-01
7.37%-01
8.036E-01
8.682£-01
9.332¢-01
1. 000E+00

o4

1.2006+02
4.850€+01
1.838€+01
6. 962400
2.637e+00
1. 000€+00
3.048E-01
1. 640E-01
1.062¢-01
1.296E-01
2.026E-01
3.022¢-01
4.07%-01
5. 047E-01
5.9106-01
6.676E-01
7.374-01
8.035€-01
8.682%-01
9.332%-01
1. 000€+00

128

2.5606+402 S.1206+02 1.024E+03
8.4M5E+01 1.4706+02 2.360E+02
2.786E+01 4.222+0]1 &, 399E+01
9.187E+00 1,2126+01 1.599E+01
3.029€400 3.479E+00 3. 996E+00
1.000E+00 1.000E+00 1.000E+00
3.363%-01 2.941E-01 2.573%-01
1.303€-01 1.047E-0§ 8.333%-02
8.899€-02 7.763-02 7.014-02
1.221E-01 1.178E-01 1.133€-01
1.997e-01 1.982-01 1.97%-01
3.011E-01 3.007E-01 3.005€-01
4,069E-01 4,068E-01 4.067E-01
S.044E-01 S.046E-01 5.044E-01
S.910E-01 S.910€-01 5.910€-01
8.675E-01 6.6TE-01 6.67%-01
7.374E-01 7,374E-01 7.374-01
8,035E-01 8.03%€-01 8.03%-01
8.682-01 8,68%-01 8.482-01
9.332£-01 9.3326-01 9.332%£-01
1.000E+00 1.000E+00 1.000E+00

¢ 1.000E+00 2.000E+00 4.000E+00
8 ¢ 1.000E+00 1.741E+00 3.031E+00
.6 ¢ 1,0006+00 1.516E+00 2.297E+00
4 1,000E+00 1.3196+00 1.741E+00
.2 ¢ 1.000E400 1.149E+00 1.319E+00
t 0 1,000E+00 1.000E+00 1.000E+00

¢ 1.0006+00 8.711E-01 7.389%-01
=6 ¢ 1,000E400 7.608E-01 S.800E-01
-4 ¢ 1,000E400 &.7126-01 4,557E-01
-.2 ! 1.000E+00 6.085E-0! 3.870E-01
0t 1.000E+00 S5,803-01 3.761E-01
.2 ¢ 1,000E+00 S.863-01 4.136E-01
4 1 1,000E+00 &.1626-01 4.781E-01
1.000E+00 6.576E-01 5. 304E-01
1,000E+00 7,033-01 &.211E-01
1.000E+00 7.503€-01 6.879E-01
1.000E+00 7.980E-01 7.515€-01
1.000E+00 8.4436-01 8.132%-01
1.000e+00 8.958E-01 8.743&-01
1.000E+00 9.449E-01 9,362£-01
1.000E+00 1.000E+00 1.000E+00

8. 000E+00
35.278E4+00
3‘ Mm
2.297E+00
1.516E+00
1. 000E+00
6.614E-01
4,433€-01
3. 143€-01
2.61%-01
2.764E-01
3.413€-01
4,.284E-01
3. 169E-01
5. 984E-01
6.72%-01
7.406E-01
8.057e-01
8. 696E-01
9.33%-01
1.000E+00

1. 600E+01
9. 190E+00
5. 278E+00
3. 031E+00
1. 741E+00
1. 000E+00
5. 76501
3.398E-01
2.213%-01
1.897e-01
2.274E-01
3. 108€-01
4. 104E-01
5. 064E-01
S.9216-01
6, 684€-01
7.381E-01
8. 040E-01
8. 685E-01
9.33%-01
1.000E+00

3. 200E+01
1. 600E+01
8. 000E+00
4. 000E+00
2. 000E+00
1. 000E+00
5. 026€-01
2.614E-01
1.601E-01
1.487E-01
2.031E-01
2.978¢-01
4,03%-01
S.031E-01
5. 904£-01
6.674€-01
1.3T%-01
8.034E-01
8.682¢-01
9.332&-01
1. 000E+00

38

6. 400E+01
2. 786E+01
1.213%+01
5. 277e+00
2. 29TE+00
1. 000€+00
4,383-01
2.020€-01
1. 198€-01
1.253%-01
1.911E-01
2,922 -0t
4.014E-01
S.021E-01
S.899%-01
6.472-01
7.37%-01
8.03%-01
8.682£-01
9.33%-01
1.000E+00

1. 280E+02
4. 850E+0!
1. 8386401
6. 964£+00
2.638E+00
1. 000E+00
3.823-01
1.570E-0¢
9.316E-02
1.118€~01
1.851E-01
2.898€-01
4,005€-01
S.018€-01
S5.898E-01
6.671E-01
7.37%-01
8.035-01
8.681E-01
9.332€-01
1. 000E+00

2.560E+02 S.120E+02 1.024£+03
B.445E+0]1 1.470E+02 2.560E+02
2.786E+01 4. 2226401 6.400E+01
9.189E+00 1,2126+01 1.4006+01
3.030E+00 3.4BIE+00 3.998E+00
1.000E+00 1.000E+00 1.000E+00
3.334€-01 2.911E-01 2.542£-01
1,2298-01 9.709e-02 7.751€-02
7.561E-02 6.403€-~02 5.5439E-02
1.041E-01 9.970E-02 9.716E-02
1.821E-01 1.806E-01 1.799%-01
2,887E-01 2.883€-01 2.881E-01
4,0026-01 4.001E-01 4.000E-01
9.016E-01 5.014E-01 5.016E-01
S.899€-0! S.8986-01 5.898E-01
4.671E-01 6.671E-01 6.671E-01
7.37%-01 7.37%-01 7.37%-01
8.035€-0! 8.035€-01 8.03%-01
8.6B1E-0! 8.681E-01 8.481E-01
9.3326-01 9.3326-01 9.332%-01
1.0006+00 1.000E+00 1.000E+00

TN-333



B3(2,M,r, ) for r=

L AN | 2 4

1024

16

n

4

128

25

S12

1024

-1.4

- .
W o N

e = e ba re e e
X O aro

®8 =e s s w2 ee % s we s ®e se Be =e e ma

1.000E+00  2,0006+00 4.000E+00
1.000E+00 1.741E+00 3.031E+00
1.000E+00 1.516E+00 2,297E+00
1.000E+00 1.319E+00 1.741E+00
1.0006+00 1.149€+00 1.319€+00
1.000E+00 1.000E+00 §.000E+00
1.000£+00 8.708€-01 7.38%-01
1.000E+00 7.598E-01 S.78B1E-01
1.000E+00 6.683E-01 4. 306E-01
1.000E+00 6.031E-01 3.780E-01
1.000E400 5.737e-01 3.658E-01
1.000E+00 S5.811E-01 4.059€-01
1.000E+00 6.133E-01 4,740€-01
1,0006+00 6.564E-01 35.484E-01
1.000£+00 7.028€-01 &.204E-01
1.000E+00 7.502€-01 6.877E-01
1.000E+00 7.979E-01 7.514E-01
1,000E+00 8,463E-01 8.131E-01
1.000E+00 8,958€-01 8.743-01
1.000E+00 9.469E-01 9.362E-01
1.000E+00 1.000E+00 1.000E+00

B2, M r ) for r=

=1 2 ]

8. 000E+00
S, 2796+00
3.482£+00
2. 29TE+00
§.516E+00
1. 000E+00
4. 607E-01
4. 406E-01
3.076E-01
2,499€-01
2.63%-01
3. 323€-01
4.238€-01
3. 150€-01
S.977E-01
6. T21E-01
7.404E~01
8,057€-01
8. 696E-01
9.339€-01
1. 000E+00

1. 600E+01
9. 190E+00
5. 278E+00
3.031E+00
1. 741E+00
1.mm
5. T56E-01
3,364E-01
2, 134E-01
1. 7658-01
2.13%-01
3.012€-01
4, 056E-01
3, 045€-01
5. 915€-01
6.682%-01
7.3806-01
8. 040E-01
8. 68%E-01
9. 333%-01
1. 000E+00

3. 2006401
1.600E+01
8. 000E+00
4. 000E+00
2, 0006+00
1. 000E+00
3.015%-01
2,57%-01
1.514E-01
1.351E-0t
1.890E-01
2.880E-01
3. 990E-01
S.012Z-01
5.897E-01
6.67%-01
7.37%-01
8.034E-01
8.682£-01
9.332€-01
1. 000E+00
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4. 400E+01
2.T86E+01
1.213€4+01
$.278E+00
2. 97400
1.000E+00
4,370E-01
1.977e-01
1.105€-01
1.112€-01
1.767e-01
2.62%-01
3,96%-01
5. 001E-01
5.893%-01
6,670E-01
7.37%-01
8.035€-01
8.682£-01
9.332€-01
1. 000E+00

o4

ll Mm
4.850E+01
1.838E+0}
6. 964E+00
2.639%E400
1, 000E+00
3. 809€-01
1.524E-01
8. M8E-02
9. 7ME-02
1.705€-01
2. 796E-01
3. 956E-01
4. 998€E-01
5. 891E-01
6. 66%E-01
7.37%-0!
8.03€-01
8.681E-01
9.332-01
1. 00BE+00

s v se es e

1.000E+00 2,000E+00 4. 000E+00
1.000E+00 1.741E+00 3.031E+00
1.000E+00 1.516E+00 2, 297E+0C
1.000E+00 1,320E+00 1.741E+00
1.000E+00 1,149E+00 1.319€+00
1.000E+00 1,000E+00 1.000E+00
1.000E+00 8.707e-01 7.582£-01
1.000E+00 7.591E-01 S.768E-01
1,0006+00 6.6626-01 4,468E-0!
1.000E+00 S.987E-01 3.706E-01
1.000E+00 S.6B1E-01 3.570E-01
1.000E+00 5.768E-01 3.99%€-01
1.000E+00 6.111E-01 4.709E-01
1,0006+00 6.555E-01 5.475€-01
1,000E+00 7,026€-01 6.201E-01
1.000E+00 7.S01E-01 6.874E-01
1.000E400 7,979E-01 7.514E-01
1.000E+00 8.463E-01 8.131E-01
1.000E400 8, 958E-01 8.743&-01
1,000E+00 9.469E-01 9.362E-01
1,000€+00 1.000E+00 1.000E+00

3, 4828 +00
2. 297E+00
1.516E+00
1. 000E+00
6.603€-01
4, 3886-01
3.025-01
2,407E-01
2,534E-01
3. 250E-01
4. 204E-01
5. 130€-01
5. 973€-01
6.720E-01
7. 405-01
8.057e-01
8.696E-01
9. 339E-01
1. 000E+00

3.031E+00
1.741E+00
1. 000E+00
S.751E-01
3.342£-01
2,07%-01
1. 6b4E-01
2,023%-01
2.934E-01
4.021€-01
5.032¢-01
S.911E-01
6.681€-01
7.380€-01
8. 0M0E-01
8. 68%-01
9. 33%-01
1. 000E+00

3.,200€+01
1. 600E+01
8, 000E+00
4. 000E+00
2. 000E+00
1. 000E+00
5.009¢-01
2,54%-01
1.448E-01
1. 240E-01
1. 770€-01
2.800E-01
3.953%-01
4,999%-01
S.894E-01
6.671E-01
7.374-01
8.034E-01
8,682-01
9.332-01
1.000E+00
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6. 400E+01
2.786E+01
1.213€401
5. 2786+00
2, 29TE+00
1. 000E+00
4,.36%-01
1.949£-01
1,03%-01
9.962£-02
1.644E-01
2.742¢-01
3.929%-01
4,9886-01
S.889%¢-01
6. 669%€-01
7.372-01
8.035€-01
8.682¢-01
9.33%-01
1. 000E +00

1.582€-01
2.717e-01
3.920€-01
4. 985-01
S.888E-01
6. 658€-01
7.37%-01
8.035e-01
8.681E-01
9.332¢-01
1.000E+00

2,360€+02
8. M45E+01
2,786E+01
9. 189€+00
3.031E+00
1. 000E+00
3.320€-01
1. 181E-01
6.569E-02
8. 956E-02
1.673-01
2, T88E-01
3.953%-01
4, 997E-01
S.891E-01
6, 66%-01
7.372-01
8.03%-01
8.481E-01
9.332€-01
1.000€ +00

8. M5E+01
2. 786E+01
9. 189E+00
3.031E+00
1. 000E+00
3.311e-01
1. 149¢-01
5. 831E-02
7.763€~02
1.551€-01
2.706E-01
3.916E-01
4§, 984E-01
S.887E-01
b, 668€-01
7.37%-01
8.034£-01
8.681E-01
9. 3%-01
1.000E+00

S. 120€+02
1.470E+02
4. 222+01
1.213€+01
3.482£+00
1.000E+00
2.894E-01
9.210€-02
S.396E-02
8.504€-02
1.659%-01
2, T8¥-01
3.951E-01
4,997E-01
S5.891E-01
6. 669€-01
1.37%-01
8.035e-01
8.681E-01
9.332£-01
1. 000E+00

S, 1208402
1, 470€+02
4,2226+01
1,213€+01
3.482£+00
1. 000E+00
2.88%-01
8.881E-02
4, 646E-02
7.303€-02
1,53%-01
2,701E-01
3.915%-01
4.984E-01
S.887e-0t
. 669E-01
7.37%-01
8.034E-01
8.681E-01
9. 332£-01
1. 000E+00
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1,024E+03
2.360E+02
6. 400E+01
1. 600E+01
3.999E+00
1. 000E+00
2.524e-01
7.23%€-02
4,622£-02
8.244£-02
1.652-01
2.781E-01
3.951€-01
4.996E-01
S.891E-01
6. 669€-01
7.37%-01
8.03%-01
8.681E-01
9.33%-04
1. 000£+00

1.024E+03
2.560E+02
6. 400E+0!
1. 600E+01
4, 000E+00
1. 000E+00
2.514E-01
6.901E-02
3.864E-02
7.038€-02
1.527e-01
2.69%-01
3.914g-01
4. 984601
S5.887E-01
6. 668E-01
7.372%-01
8.034E-01
8.681E-01
9. BX-01
1.000E+00



B(2,M,rm) for r= 409

L TRV I | 2 4 8 16 k73 o 128 56 S12 1024
<2t 1.0006400 2,0006+00 4,000E+00 8.000E+00 1.600E401 3.2006+01 6.400E+01 1.2806+02 2.560E+02 5.120E402 1.024E+03
-1.8 ¢ 1.000E+00 1.741E+00 3.031E+00 S5,278E400 9.190E400 1.600E+01 2.786E+01 4,890E+01 8.MSE+01 1.470E+02 2,560E402

<1,6 : 1.000E+00 1.S16E+00 2.297E+00 3,4826400 5.278E+00 B8.000E+00 1.213E+01 1.838E+01 2.786E+01 4.2226+01 6,400E+01
-1.4 & 1,0006400 1.320E400 1.741E400 2,297E+00 3.031E+00 4.000E+00 5.278E+00 6.944E+00 9.190E+00 1.213€+01 1.600€+01

-1,2 ¢ 1.0006+00 1.149E+00 1.3196+00 1.514E+00 1.741E400 2.000E4+00 2.297E+00 2.639E+00 3.0G1E+00 3.4826+00 4.000E+00
-1 ¢ 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
-8 ¢ 1.000E+00 8.7066-01 7.5B1E-01 &.601E-01 S.748E-01 S.005E-01 4.358E-01 3.796E-01 3.306E-01 2.879%-01 2.508€-01
=6 3 1.000E+00 7.567E-01 S.7606-01 4.376E~01 3.327E-01 2.533E-01 1.931E-01 1.474E-01 1,129-01 8,645E-02 6.679E-02
-4 1 1.000E400 6.646E-01 4.440E-01 2.987E-01 2.030E-01 1.399E-01 9.833E-02 7.089€-02 5.279%€-02 4.085€-02 3.297E-02
-2 ¢ 1.000E400 S.950E-01 3.645E-01 2.330E-01 1.578E-01 1.148E-01 9.007E-02 7.590E-02 6.777E-02 6.310E-02 6.042E-02
0 ¢ 1.000E400 5.633E-01 3.494E-01 2,M3E-01 1.92%-01 1.667E-01 1.539E-01 1.476E-01 1.M44E-01 1.4286-01 1.420€-01
.2 ! 1.0006+00 S5.73%-01 3.943-01 3.189E-01 2.8706-01 2.734E-01 2.673E-01 2.650E-01 2.639E-0! 2.434€-01 2.63%-01
.4 1 1,0006400 6.095E-01 4.686E-01 4.178E-01 3.994E-01 3.926E-01 3.902%-01 3.89%-01 3.889%-01 3.887¢-01 3.887E-01
o6 ¢ 1.000E400 6.550E-01 S5.448E-01 S.130E-01 35.024E-01 4.991E-01 4.980E-01 4.977E-01 4,.976E-01 4.975E-01 4.97T%-01
8 ¢ 1.000E+00 7.024E-01 6.199€-01 S,.971E-01 S.909€-01 S5.891€-01 5.887E-01 S5.883E-0f 5.86%E-01 5.865E-01 $.88%-01

1 ¢ 1.,000E+00 7,500E-01 &.876E-01 &.719E-01 6.680E-01 &6.670E-01 6.648E-01 6.687E-01 6.667E-01 6.66TE-01 4.667E-01
1.2 1.0006400 7.979E-01 7.514E-01 7.405€-01 7.390E-01 7.374E-01 7.37%-01 7.37%-01 7.37%X-01 7.37%-01 7.372%-01
1.4t 1,000E400 8.463E-01 8.131E-01 8.057e-01 8.040E-01 8.034E-01 8.03%-01 8.034E-01 8.034E-0] 8.034E-01 8.034E-01
1,6 ¢ 1.000E¢00 B8.958E-01 8,743-01 B8.494E-01 8.685-01 8.482€-01 8.6482€-01 8,481E-01 B.681E-01 8.681E-01 8.681E-01
1.8 1.000E400 9.469E-01 9.362%-01 9.339E-01 9.333%E-01 9.332£-01 9.33%-01 9.332€-01 9.332€-01 9.332£-01 9.332%-01
2 1.000E+00 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 {.000E+00 1.000E+00

B3(2,M,r, )} for r= 8192

M\ = z 4 8 16 32 o 128 56 512 1024
=2 :  1,000E+00 2,000E+00 4,0006+00 8.000E+00 1.600E+01 3.200E+01 6.400E+01 1.280E+02 2.560E+02 5.120E402 1.024E+03
-1.8 ¢ 1.000E+00 1.741E+00 3.031E+00 5.278E+00 9.190E+00 1.4600E+01 2.786E+01 4.8S0E+0! 8.MSE+0! 1.470E+02 2.360E+02
-1.6 1 1.000E+00 1.516E+00 Z.297E+00 3.482€+00 S5.278E+00 8.000E+00 1.213€+01 1.838E+01 2.78B4E+01 4.222+01 6.400E+01
-1.4 ¢ 1,000E400 1.320E¢#00 1.741E+00 2.297€+00 3.031E+00 4.000E+00 S5.278E+00 6.944E+00 9.190E+00 1.213E+01 1.6008401
<12 1 L.000E+00 1,149E400 1.320E400 1,516E+00 1,741E+00 2,000€+00 2,297E400 2.639E+00 3.031E+00 3.482£+00 4,000€+00
-1t 1.,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
=8 ¢ 1,000E400 8.704E-01 7.580E-01 6.599E-01 S.746E-01 S5,003E-01 4,356E-01 3.793%-01 3.303%-01 2.876E-01 2,505€-01
-6t 1,000E400 7,SB4E-01 S5.754E-01 4.368€-01 3,317E-01 2,5226-01 1,918€-01 1.461E-01 1.11SE-0! 8.523€-02 6.53%-02
-4t 1.000E400 6.634E-01 4, 418E-01 2.959E-01 1.997E-01 1.363€-01 9.M4E-02 4,685E-02 4.864E-02 3.663-02 2.871E-02
=2 3 1.000E+00 S5.920E-01 3.594E-01 2.264E-01 1.506E-0! 1.071E-0! 8.211E-02 &.778€-02 S5.95%-02 5.483%-02 S5.212-02
0 ¢ 1.000E+00 S5.591E-01 3.429E-01 2,345E-01 1,839E-01 1.576E-01 1.448E-01 1.383€-01 1.351E-01 1,33%-01 1.327E-01
2 ¢ 1.000E#00 S5.704E-01 3.899E-01 3.139E-01 2,B17E-01 2.479E-01 2.420E-01 2.594E-01 2.563t-01 2.578€-01 2.574E-01
4 1 1,000E400 4,083E-01 4,669E-01 4.159E-01 3.974E-01 3.904E-01 3.881E-01 3.872€-01 3.848E-01 3.847¢-01 3.867E-01
bt 10006400 6.546E-01 S.463E-01 S5.124E-01 S5.018E-01 4,985E-01 &.97%-01 4.971E-01 4.970E-01 4.970E-01 4,970E-01
8 ¢ 1,000E400 7.023-01 &.198€-01 S.970E-01 S5.907€-01 S5.890E-01 5.885E-01 5.884E-01 5.884E-01 5.884E-01 5.884E-01
1 ¢ 1.,000E+00 7.500E-01 6,875E-01 6.719E-01 6.680E-01 6.670E-01 6.668E-01 6.667E-01 6.667TE-01 6.667E-01 6.667E-01
1.2 1.000E+00 7.979E-01 7.514E-01 7.405€-01 7.3B0E-01 7.374E-01 7.37%-01 7.372%-01 7.37%-01 7.37%-01 7.37%-01
1.4 ¢ 1,0006400 B.463-01 8.131E-01 8.057E-01 8.040E-01 8.034E-01 8.035€-01 8.034E-01 8,034E-01 8.034E-01 8.034E-01
1.6 ¢ 1.0006+00 6.959€-01 8,743E-01 B.494E-01 8.48%-01 6.482€-01 8.482€-01 8.481E-01 B.681E-01 8.681E-01 8.681E-01
1.8
2

1.000E+00 9, M9E-01 9.3626-01 9.339%E-01 9.33%-01 9.332£-01 9.33%-01 9.332%-01 9.33%-01 9.332%-01 9.33%-01
1,0006+00 1,000E+00 1,000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
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November 15, 1990
ERRATA

CHARACTERIZATION OF CLOCKS AND OSCILLATORS
NIST Technical Note 1337

The additional errata noted on this page represent a continuation of the Notes and Errata in the

Appendix (page TN-336).
38.  Page TN-30

39.

There are two errors in eq 6.6. The equation for Flicker PM is missing a square root in

the exponential. It should read

%
Flicker PM  df. = exp(lnNz;l m(z"*lz(" - 1)] .

In the equation for Flicker FM, the numerator of the upper term should read 2(N - 2)?
instead of 2(N - 2). The equation should read

222
23N-49° Ot
Flicker FM df, = .
5
—2= . forn22
| 4n(N +3n) or nz

Page TN-85

There are two errors in the Flicker phase term of Table 12-4. The small n in the the
denominator of the first logarithmic term should be an m, and the whole quantity in the
square bracket should have an exponent of %. The equation should read

Flicker phase exp{ln(N- 1 )]n((Zm +DV-1) )]%
2m 4
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DATE: 12/10/91

TO: J. Barnes

FROM: W. Riley
SUBJECT: Items we discussed at the PTTI Meeting last week

Typo in J.A. Barnes, "The Measurement of Linear Drift in Oscil-

lators", Proc. 15th PTTI Meeting, 1983, p. 566 (p. TN-279 of NIST
Technical Note 1337):

(1)

The expression for A is missing the term N after the 2nd 3. See

p. 568 (TN-281) for the correct expression.

(A reprint of a € & H classic)

NON SEQUITUR by Wiley
M=V

SO0FD FAZVAM IS NalSHINSW bi/o
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E. APPENDIX - Notes and Errata

The notes listed below are included to bring attention to notation and other problems. The page
number provides reference to the location of the problem or comment.

1.

page TN-4
AM noise is especially important in the measurement of the (residual) phase noise added
by amplifiers and other signal handling components. Often the driving source for the
measurements is a frequency synthesizer that has phase and/or amplitude noise that is
comparable or larger than the added noise of the component under test. Most measure-
ment systems are configured so that the phase noise of the source cancels out to a large
degree (at high Fourier frequencies decorrelation effects limit the cancellation). In such
measurement systems, the AM to PM conversion factor and the AM noise of the source
may then set the noise floor. Discussion of the effect of AM noise and AM to PM
conversion factors on the accuracy and precision of phase noise measurements is found in
"Residual Phase Noise Measurements of vhf, uhf, and Microwave Components" by G. K.
Montress, T. E. Parker, and M. J. Loboda Proc. 43rd Annual Symposium on Frequency
Control, pp. 349-359 (1989) and in "Accuracy Model for Phase Noise Measurements by F.
L. Walls, C. M. Felton, and A. J. D. Clements, 21st Annual Precision Time and Time
Interval Meeting (1989). The notation in these papers as well as that in other parts of the
literature differs from that given below. Our notation below is drawn from a modest level
of consensus among individuals responsible for setting standards. We expect that it will
gradually be adopted within standards committees. The following comments are directed
specifically at the specification of noise performance.

The total power spectral density in a signal can be approximated by expanding eq 12-5 of
paper B.2 (by Stein) and extending it to include the spectral density of relative amplitude
fluctuations, S (f). The double-sideband density written in single-sideband form is given by

$,00 = 2[R0 + e sy o S(p] 0<f<m,

where

I6) = [S,()df.
b

I(f) is the integrated phase modulation due to the pedestal and §(f) represents the carrier
with frequency width +£f. The effect of large S,(f) on power in the carrier has not, to our
knowledge, been explored. The power spectral density of relative phase fluctuations, S(f),
is normalized to one rad’/Hz and S (f) is normalized to the carrier voltage, but the total
power spectral density, S,(f) is not normalized and has the units of V?/Hz. All of these
are single-sided spectral densities. For most measurement purposes, we can disregard the
carrier and find that, away from the carrier, the above expression simplifies to

SAf) = —229[S¢(f) + Sa(f)] for  0<fsoo,

TN-336



The more general expression is important only very near the carrier and in certain types
of frequency multiplication. The single-sideband, amplitude noise, normalized to the total
signal power is given simply by S,(f) for 0 < f< . The measurement of added phase and
amplitude noise for amplifiers and other signal handling components should specify the
signal level since the AM noise level and the contribution due to AM-to-PM conversion
depend on the signal level.

page TN-6

For a direct measurement, time accuracy only has meaning when the phase of the time-
base oscillator of the frequency counter is known with respect to some time standard.
Either it is phase locked or is calibrated with respect to that standard at the time of
measurement. The phase of the time-base oscillator can then be measured with respect
to the phase of the frequency standard being calibrated (accounting for cable delays, etc.).
Except for the cycle ambiguity of the carrier, the phase of the frequency standard being
measured can carry time information and have time accuracy. This technique is not
common, but is very useful and eliminates divider noise that typically occurs in going from
5 or 10 Mhz to 1 pulse per second. Caution must be exercised to assure that the phase
point measured in a sine wave is at a reproducible voltage and impedance so that the cycle
ambiguity is an exact integer.

page TN-35
A second-order servo loop provides substantially enhanced performance. See, for example,

F.L. Walls and S.R. Stein, "Servo techniques in oscillators and measurement systems,” NBS
Tech. Note 692 (1976).

page TN-35
This error can be identified and corrected using the phase modulation scheme described

in paper B.4 on page TN-136.

page TN-36
Low-noise DC amplifiers have been substantially improved since publication of this paper.

pages TN-37, TN-91, TN-130, TN-174, TN-206 and TN-218
The reader is reminded that the discussions of frequency-domain measurements assume

incoherent noise processes. Often the phase noise spectrum of a signal will contain bright
spectral features (spurious lines) other than the carrier. Frequency-domain measurements
are often useful in identifying such features. But if these spurious lines are narrow
compared to the measurement bandwidth, statistical measures such as S,(f) and £(f) are
not appropriate. It is better to specify the phase deviation in terms of the rms value of
the phase deviations, ¢, (rms radians), without reference to bandwidth. This specifica-
tion in rms radians can be related to the Allan variance (see note # 8 below).

page TN-51
Humidity is often an important environmental factor. See, for example, J.E. Gray, H.E.

Machlan and D.W. Allan, "The Effect of humidity on commercial cesium beam atomic
clocks," 42nd Annual Symp. on Frequency Control, pp. 514-518 (1988) and F.L. Walls, "The
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10.

11.

12.

13.

14.

Influence of Pressure and Humidity on the Medium and Long-Term Frequency Stability
of Quartz Oscillators," 42nd Annual Symp. on Frequency Control, pp. 279-283 (1988).

page TN-74
For a bright line (one which is narrow compared with the measurement bandwidth), the
solution of eq 12-27 simplifies to

2
o (c) - P om otianfe)

‘EVOT

where ¢rmsis the rms value of the phase deviations. The above relationship may be useful
where one is trying to determine the effect of a bright line in the time domam If the
bright line is the dominant factor, the plot of o,(7) versus 7 has strong sin (1rf'r) oscilla-
tions and it can be ambiguous. In that case, it is better to provide a specification in terms
of ¢, Without reference to bandwidth. Statistical measures such as o,(7) and Sy(f) are
not meant to be used to describe coherent signals. For further discussion see paper B.1,
section 12.2 (page TN-51).

page TN-75
A set of brackets, [ ], are missing in eq 12-29. The equation should read
) 1 N-3n+1[n+j-1 2
modo' (t) =~ (% 0, =2, +X,)
7 2eN(N-3n+1) ,2; § b e
page TN-119

The reference (Walls and DeMarchi, 1975) is listed as being on pages 310-317. The page
numbers should be 210-217.

page TN-121
Most of the literature uses the expression [V + €(t)] instead of Vi as in eq (2). Vjis the

peak voltage amplitude and e(t) is the voltage deviation of the amplitude from nominal.

e TN-122
In eq (5), most of the literature uses x;(t) mstead of €(t). €(t) is usually the voltage

deviation as described in note 11 above.

page TN-123
There is an error in the caption for figure 7. The last portxon of that caption should read:

"where f is Fourier frequency ((v = 27f) and S(f) = Sx(f)) "

page TN-123
In the right-hand column, last paragraph, Sth line, there is an extraneous minus sign. The

quantity 77° should read y}°. Also, note that the use of supercript 7 and 7, with y is
not consistent with the new IEEE standard definitions (see paper C.1, page TN-139).
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16.

17.

18.

19.

20.

21.

page TN-124
In eq 9 the subscript, k - n, should read k + n. That is, the equation should read
k+n-1
= 1 <t Fpan "X
Vo= XV e
nooi-k

page TN-125
The quantity '53(1) is now commonly known as modoi(r). This latter form has been

recently adopted by IEEE as the standard terminology.

page TN-139
IEEE Std 1139-1988, IEEE Standard Definitions of Physical Quantities for Fundamental

Frequency and Time Metrology, is an almost exact replica of this paper (D.1). The paper
was published during the latter period of the development of the standard. The only
substantial difference is that, wherever it occurs, the word "departure" in the paper is
replaced in the IEEE standard by "deviation."

page TN-146
This widely cited paper provided the de facto standards for terminology and oscillator

characterization until the recent adoption of the IEEE standard presented in paper C.1
(page TN-139). For terminology, the latest IEEE standard should always take precedence.
This paper (C.2) is fairly consistent with the IEEE standard. One exception is that, in this
paper, N denotes the number of frequency measurements. The symbol M in the IEEE
standard is the same as N in this paper. In the standard, the equation relating M and N
isM=N-1

page TN-151
Equation (23) can be substantially simplified as shown, for example, by Stein (page TN-74,

eq (12-27)), which is

2__[s,(Hsin‘(nferdr.

2
0’y(7) i

page TN-154
In eq 36 the T outside the brackets should be a 7. The equation should read

x(t,) - x(t, - T)]

2ty +1) = x(ty) + 1:[

T
page TN-160
The 2 expressions listed as eq (95) are in error. They should read
~h_,*[3 + 2lor - 1/(6r2)] r>1
"h_ITZB - 2lnr] r<l.
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23.

24.

25.

26.

27.

28.

page TN-160
In egs (101), (102), (103), (104), and (105), a Greek v was mistakenly replaced by the

number 2. In each of these equations the quantity [2 + In(27f,7)] should be replaced by
the quantity [y + In(2nf,7)]. ~, Euler’s constant, has the value 0.5772156649........

page TN-162
This paper is included in this collection because it presents the internationally accepted

terminology and definitions. There are no substantial inconsistencies with the new IEEE
standard (paper C.1, page TN-139), but the latest IEEE standard should is considered to
be the most up-to-date authority. A new version of this international report should be
issued by the CCIR in 1990.

page TN-171

The definitions for symbols used in this paper are fairly consistent with those adopted in
the recent IEEE standard (C.1). One exception is that, in this paper, N denotes the
number of frequency measurements. The symbol M in the IEEE standard is the same as
N in this paper. Another is that, while this paper uses u as the exponent of 7 in describ-
ing the power-law noise processes, the paper adopts the opposite sign convention for u.
v(t) is used where many other papers use V(t) for instantaneous voltage. Some confusion
is generated when this small v is typeset in the equations to look almost identical to the
Greek v, a symbol which is used exclusively to represent frequency. For example, In
equation (1) the left-hand quantity is voltage, whereas the »(t) and v, in equation (4) are
clearly frequencies. Finally, the authors of this paper, in equation (2), define €(t) as the
normalized amplitude fluctuations, a very sound choice, but the reader should note that
most other papers have not normalized it.

page TN-175
For consistency with figure 12 and the text, v(t), the left-hand member of eq (11) should

probably be u(t).

page TN-177
Walls, Percival and Irelan (D.4) have recently addressed the more accurate specification

of the quantity p in eq (12).

page TN-179
It is important to note that the expressions in Table 2 in this paper are derived assuming

use of a single-pole filter. The calculations can also be done using an ideal (infinitely
sharp) filter. The solutions in these two limits are useful because they define the range of
practical values (using n-pole filters) for the expressions. Table I in this section is an
expansion of Table 2 of Lesage and Audoin providing both the single-pole results as well
as the results for an infinitely sharp filter. There are discrepencies in several of the coeffi-
cients between terms in Table 2 in the paper and those in Table I on the next page.

page TN-180
Barnes and Allan (paper D.8) have recently completed further analysis of the effect of

dead time on measurements.
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Table I. Asymptotic forms of oi('r) for various power-law types and two filter types. Note: w,/2m = f, is the measurement
system bandwidth, often called the high-frequency cutoff. In = loge.

Name of Noise a S, () oyz('r)
w,T>>1 w,T>>1 w, T<<1 w,T<<1
Infinite Sharp Single Pole Infinite Sharp Single Pole
Filter Filter Filter Filter
3t h, 3t h, 21t 1h, f2h,
White Phase 2 h,f
(2m)*r? (2m)’r? 5 27
(1.038 + 3In(w,7))h,  (3In(w,7))h, r*fir?h,
Flicker Phase 1 h,f 2f(In(2))h
1 h 1
(2m)’r? (2n)’r? 2
h, h, 2’ 1h, 21’2 1h,
White Frequency 0 h, — — E— _—
27 27 3 3
Flicker Frequency -1 h,f* 2(In(2))h,, 2(In(2))h,, m’f2r’h, 8m’fir’h,
2m?th, 2m*th,
Random-Walk 2 h,f? 27, 7°h,, 2n’f, 7°h,,
Frequency 3 3




29.

30.

31

32.

33.

34.

35.

36.

37.

page TN-180
If the ratio of T/ 7 is constant and greater than 1 (the usual case), the problem described

is eliminated. However, in taking data for a plot of o (1) versus 7, it is difficult to
achieve this in the hardware and not possible to do it with software processing alone. For
further discussion see paper D.8 (page TN-296).

page TN-197
The most recent definitions and concepts for spectral density are given in a new IEEE

standard (paper C.1 on page TN-138). This new standard should be consulted as the latest
authority on definitions and terminology.

page TN-198
The newly accepted definition of £(f) is given in paper C.1. This new definition, £(f) =

¥2S(f), was always valid for Fourier frequencies far from the carrier. It has now been
extended to cover all frequencies.

page TN-217
Equation (73) should read 20log(final frequency/original frequency).

page TN-239
On page TN-198 the authors refer to a paper by Glaze (1970). The reference, apparently

lost in printing, is: Glaze, D.J. (1970). "Improvements in Atomic Beam Frequency Stan-
dards at the National Bureau of Standards, "IEEE Trans. Instrum. Meas. IM-19(3), 156-160.

page TN-257
There are two errors in Table 2. Under R(n) the first entry should be 1/n rather than 1.

The second item in the same column is not single valued (1), but takes on different values
for different measurement bandwidths. The reader is referred to section A.6 (page TN-9)
for a discussion of this topic.

pages TN-261 and TN-262
Subsequent work on modoﬁ'r) and R(n) is reported in section A.6 (page TN-9) of this

report. There are some differences between the results in A.6 and the ones reported in
Tables I and II and Figure 4 in this paper.

page TN-264
To be consistent with other papers in the literature, ¢(t) in eq (1) should probably be

written as x;(t).

page TN-268
The term €(t) in eq (3) is normally used to represent the amplitude fluctuations in the

output voltage of an oscillator. This term might be better designated Y,(t).

TN-342



	Front.pdf
	PREFACE
	BIBLIOGRAPHIC DATA SHEET
	CONTENTS
	TOPICAL INDEX TO ALL PAPERS

	Tn001.pdf
	A. INTRODUCTION
	A.1 OVERVIEW
	A.2 COMMENTS ON INTRODUCTORY AND TUTORIAL PAPERS
	A3 COMMENTS ON PAPERS ON STANDARDS AND DEFINITIONS
	A.4 COMMENTS ON SUPPORTING PAPERS
	A.5 GUIDE TO SELECTION OF MEASUREMENT METHODS
	A.6 RELATIONSHIP OF THE MODIFIED ALLAN VARIANCE TO THE ALLAN VARIANCE
	A.7 SUPPLEMENTARY READING LIST

	Tn014.pdf
	Summary
	Introduction
	1. THE SINE WAVE AN0 STABILITY
	1.1 Common Methods of Measurinq Frequency Stability
	A. Beat frequency method
	B. Dual mixer time difference (DTMD) system
	C. Loose phase lock loop method
	D. Tight phase lock loop method
	E. Time difference method
	II. MEASUREMENT METHOOS COMPARISON
	III. CHARACTERIZATION
	3.1 Non-random Fluctuations
	3.2 Random Fluctuations
	IV. ANALYSIS OF TIME DOMAIN DATA
	V. CONFIDENCE OF THE ESTIMATE AND OVERLAPPING SAMPLES
	VI. MAXIMAL USE OF THE DATA AND DETERMINATION OF THE DEGREES OG FREEDOM
	6.1 Use of Data
	6.2 Determining the Degrees of freedom
	VII. EXAMPLE OF TIME-DOMAIN SIGNAL PROCESSING AND ANALYSIS
	VIII. SPECTRUM ANALYSIS
	8.1 The Loose Phase-Locked Loop
	8.2 Equipment for Frequency Domain Stability Measurements
	(1) Low-noise mixer
	(2) Low-noise DC amplifier
	(3) Voltaqe-controlled reference quartz oscillator
	(4) Spectrum analyzer
	8.3 Procedure and Example
	IX. POWER-LAW NOISE PROCESSES
	X. PITFALLS IN DIGITIZING THE DATA
	10.1 Discrete-Continuous Processes
	10.2 Diqitizing the Data
	10.3 Aliasinq
	10.4 Some History of Spectrum Analysis Leading to the Fast Fourier Transform
	10.5 Leakage
	10.6 Picket-Fence Effect
	10.7 Time Domain-Frequency Domain Transforms
	A. Integral transform
	B. Fourier series
	C. Discrete fourier transform
	XI. TRANSLATION FROM FREQUENCY DOMAIN STABILITY MEASUREMENT TO TIME DOMAIN STABILITY MEASUREMENT AND VICE-VERSA.
	11.1 Procedure
	EXAMPLE:
	XII. CAUSES OF NOISE PROPERTlES IN A SIGNAL SOURCE
	12.1 Power-law Noise Processes
	12.2 Other types of noise
	CONCLUSION
	References
	Bibliography
	General References
	Additional Specific References (selected)
	Appendix

	Tn061.pdf
	12.1 CONCEPTS, DEFINITIONS, AND MEASURES OF STABILITY
	12.1.1 Relationship between the Power Spectrum and the Phase Spectrum
	12.1.2 The IEEE Recommended Measures of Frequency Stability
	12.1.3 The Concepts of the Frequency Domain and the Time Domain
	12.1.4 Translation between the Spectral Density of Frequency and the Allan Variance
	12.1.5 The Modified Allan Variance
	12.1.6 Determination of the Mean Frequency and Frequency Drift of an Oscillator
	12.1.7 Confidence of the Estimate and Overlapping Samples
	12.1.8 Efficient Use of the Data and Determination of the Degrees of Freedom
	12.1.9 Separating the Variances of the Oscillator and the Reference
	12.2 DIRECT DIGITAL MEASUREMENT
	12.2.1 Time-Interval Measurements
	12.2.2 Frequency Measurements
	12.2.3 Period Measurements
	12.3 SENSITIVITY-ENHANCEMENT METHODS
	12.3.1 Heterodyne Techniques
	12.3.2 Homodyne Techniques
	12.3.2.1 DISCRIMINATOR AND DELAY LINE
	12.3.2.2 PHASE-LOCKED LOOP
	12.3.3 Multiple Conversion Methods
	13.3.3.1 FREQUENCY SYNTHESIS
	12.3.3.2 THE DUAL-MIXER TIIME-DIFFERENCE TECHNIQUE
	12.3.3.3 FREQUENCY MULTIPLICATION
	12.4 CONCLUSION

	Tn121.pdf
	INTRODUCTION
	SYSTEMATIC MODELS FOR CLOCKS AND OSCILLATORS
	RANDOM MODELS FOR CLOCKS AND OSCILLATORS
	TIME-DOMAIN SIGNAL CHARACTERIZATION
	TIME AND FREQUENCY ESTIMATION AND PREDICTION
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	Tn129.pdf
	Summary
	I. Introduction
	II. Model of a Noisy Signal
	III. A. Two Oscillator Method
	III. B. Enhanced Performance Using Correlation Techniques
	III. C. Reference Phase Modulation Method
	III. D. Frequency Discriminator Methods
	III. E. Delay Line Method
	III. F. Multiplication/Division
	IV. A. The New NBS Phase Noise Measurement Svstems
	Acknowledgements
	References

	Tn139.pdf
	1. Introduction
	2. Measures of Frequency and Phase Instabilty
	3. Characterization of Frequency and Phase Instabilities
	a. Frequency Domain
	b. Time Domain
	c. Clock-Time Prediction
	4. Confidence Limits of Measurements
	5. Recommendations for Characterizing or Reporting Measurements of Frequency and Phase Instabilities
	6. References
	APPENDIX I
	APPENDIX II
	APPENDIX III

	Tn146.pdf
	Abstract
	GLOSSARY OF SYMBOLS
	I. INTRODUCTION
	II. STATEMENT OF THE PROBLEM
	III. BACKGROUND AND DEFINITIONS
	IV. DEFINITION OF MEASURES OF FREQUENCY STABILITY
	A. General
	B. General:First Definition of the Measure of Frequency Stability - Frequency Domain
	C. General: Second Definition of the Measure of Frequency Stability-Time Domain
	D. Distibutions
	E. Treatment of Systematic Variations
	1) General
	2) Specific Case-Linear Drift
	V. TRANSLATIONS AMONG FREQUENCY STABILITY MEASURES
	A. Frequency Domain to Time Domain
	1) General
	2) Specific Model
	B. Time Domain to Frequency Domain
	1) General
	2) Specific Model
	C. Translations Among the Time-Domain Measures
	1) General
	2) Specific Model
	VI. APPLICATIONS OF STABILITY MEASURES
	A. Doppler Radar
	1) General
	2) Special Case
	B. Clock Errors
	1) General
	2) Special Case
	VII. MEASUREMENT TECHNIQUES FOR FREQUENCY STABILITY
	A. Heterodyne Techniques (General)
	Case I
	Case II
	B. Period Measurement
	C. Period Measurement With Heterodyning
	D. Frequency Counters
	E. Frequency Discriminators
	F. Common Hazards
	1) Errors Caused by Signal-Processing Equipment
	2) Analog Spectrum Analyzers (Frequency Domain)
	3) Spectral Density Estimation from Time Domain Data
	4) Variances of Frequecy Fluctuations
	5) Signal Source and Loading
	6) Confidence of the Estimate
	a) The Allan Variance
	b) Spectral Density
	VIII. CONCLUSIONS
	APPENDIX I
	APPENDIX II
	ACKNOWLEDGMENT
	REFERENCES

	Tn162.pdf
	1. Introduction
	2. Fourier frequency domain
	3. Time domain
	4. Conversion between frequeocy and time domains
	5. Measurement techniques
	6. Confidence limits of time domain measurements
	7. Conclusion
	REFERENCES
	BIBLIOGRAPHY

	Tn171.pdf
	I. INTRODUCTION
	2. DEFINITIONS: MODEL OF FREQUENCY FLUCTUATlONS
	3. NOISE PROCESSES IN FREQUENCY GENERATORS
	4. MEASUREMENTS IN THE FREQUENCY DOMAIN
	4.1. Use of a frequency discriminator
	4.2. Use of a phase detector
	4.3. Precision of measurement in the frequency domain
	5. MEASUREMENTS IN THE TIME DOMAIN
	5.1. The beat frequency method
	5.2. The time difference method
	6. CHARACTERIZATION OF FREQUENCY STABILITY IN THE TIME DOMAIN
	6.1. Significance of experimental data
	6.2. N-sample variance
	6.3. Variance of time-averaged frequency fluctuations
	6.4. Two-sample variance
	6.4.1. Two-sample variance without dead time
	6.4.2. Two-sample variance with dead time
	6.5. Precision in the estimation of the two-sample variance
	7. CHARACTERIZATION OF FREQUENCY STABILITY VIA FILTERING OF PHASE OR FREQUENCY NOISE
	8. SPECTRAL ANALYSIS INFERRED FROM TIME DOMAIN MEASUREMENTS
	8.1. Selective numerical fillering
	8.2. High-pass filtering
	8.3. Use of the sample spectral density
	9. STRUCTURE FUNCTIONS OF OSCILLATOR FRACTIONAL PHASE AND FREQUENCY FLUCTUATIONS
	10. POWER SPECTRAL DENSITY OF STABLE FREQUENCY SOURCES
	10.1. White noise of frequency
	10.2. White noise of phase
	10.3. Other noise processes
	I I. CONCLUSION
	REFERENCES

	Tn190.pdf
	I. Introduction
	II. Fundamental Concepts
	A. NOISE SIDEBANDS
	B. SPECTRAL DENSITY
	C. SPECTRAL DENSITIES OF PHASE FLUCTUATIONS IN THE FREQUENCY DOMAIN
	D. MODULATION THEORY AND SPECTIUL DENSITY RELATIONSHIPS
	E. NOISE PROCESSES
	F. INTEGRATED PHASE NOISE
	G. AM NOISE IN THE FREQUENCY DOMAIN
	III. Phase-Noise Measurements Using the Two-Oscillator Technique
	A. TWO NOISY OSCILLATORS
	B. AUTOMATED PHASE-NOISE MEASUREMENTS USING THE TWO-OSCILLATOR TECHNIQUE
	C. CALIBRATION AND MEASUREMENTS USING THE TWO-OSCILLATOR SYSTEM
	1. Noise-Power Bandwidth
	2. Setting the Carrier Power Reference Level
	3. Phase Quadrature of the Mixer Input Signals
	4. Measurements, Calculations. and Data Plots
	5. System Noise Floor Verification
	IV. Single-Oscillator Phase-Noise Measurement Systems and Techniques
	A. THE DELAY LINE AS AN FM DISCRIMINATOR
	1. The Single-Oscillator Measurement System
	2. System Sensitivity (Noise Floor) When Using the Dtflerenrial Delay Line Technique
	B. CALIBRATION AND MEASUREMENTS USING THE DELAY LINE AS AN FM DISCRIMINATOR
	1. System Power Levels
	2. Discriminator Calibration
	3. Measurement and Data Plotting
	4. Noise Floor Measurements
	C. DUAL DELAY-LINE DISCRIMINATOR
	1. Phase Noise Measurements
	2. Calibrating the Dual Delay-Line System
	D. MILLIMETER-WAVE PHASE-NOISE MEASUREMENTS
	1. Spectral Density of Phase Fluctuations
	2. Spectral Density of Amplitude Fluctuations
	V. Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

	Tn241.pdf
	Summary
	Review of the Dual Mixer Time Difference Technique
	Extended Dual Mixer Time Difference Measurement Technique
	Hardware Implementation
	Conclusions
	References

	Tn248.pdf
	Abstract
	I. Introduction
	II. Spectrum Analyzer Basics
	III. Expected Value and Bias of Spectral Estimates
	A. Theoretical Analysis
	B. Experimental Determination
	IV. Variances of Spectral Estimates
	A. Theoretical Analysis
	B. Experimental Determination
	Appendix. Precision Noise Source
	References

	Tn254.pdf
	Summary
	Introduction
	Definition of "Allan Variance" and Related Concepts
	Development of the Modified Allan Variance
	Comparisons, Tests. and Examples of Usage of the Modified Allan Variance
	Conclusion
	Acknowledgments
	References

	Tn259.pdf
	I. INTRODUCTION
	II. BACKGROUND AND DEFINITIONS
	III. THE MODIFIED ALLAN VARIANCE
	IV. UNCERTAINTY ON THE ESTIMATE OF THE MODIFIED ALLAN VARIANCE
	V. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	Tn264.pdf
	ABSTRACT
	I. INTRODUCTION
	II. LEAST SQUARES REGRESSION OF PHASE ON A QUADRATIC
	III. EXAMPLE
	IV. DRIFT AND RANDOM WALK FM
	V. SUMMARY OF TESTS
	VII. CONCLUSIONS
	APPENDIX A REGRESSION ANALYSIS
	APPENDIX B REGRESSIONS ON LINEAR AND CUBIC FUNCTIONS
	REFERENCES
	QUESTIONS AND ANSWERS

	Tn296.pdf
	1. Introduction
	2. The Allan Variance
	3. The Bias Function B,(N,r,u)
	4. The Bias Function B2(r,u)
	5. The Bias Function B,(N,M,r,u)
	6. The Bias F'unctions
	7. Examples of the Use of the Bias Functions
	8. Conclusion
	9. References
	Appendix

	Errata.pdf
	ERRATA
	Another Typo
	Further Corrections
	Typo

	Append.pdf
	APPENDIX - Notes and Errata


