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FREQUENCY DOMAIN STABILITY MEASUREMENTS: A TUTORIAL INfRODUCTlON 

David A. Howe 

. .  

This report introduces the concept o f  s t a b i l i t y  measurements o f  osc i l l a to rs  by 
spectral analysis. 
equipment and set-up f o r  s t a b i l i t y  measurements i n  the frequency domain a r e  outl ined. 
Examples and typical  resul ts a r e  presented. Physical Interpretat ions o f  c m n  noise 
processes are discussed. 
domain s t a b i l i t y  characteristics may be translated t o  t ime  domain s t a b i l i t y  character ist ics.  

Key Words: Fractional frequency f luctuat ions;  f requencv s t a b i l  i t ? ;  phase f l u c t u a -  
t i o n s ;  power law n o i s e  Drocesses; s p e c t r a l  d e n s j t v :  soec t rum a n a l v s i s .  

Development o f  topics does not re ly  heavtly on mathematics. The 

The l a s t  sect ion provides a table by which t yp i ca l  frequency 

I .  The Sine Function and Noise 

A sine wave signal generator produces a voltage that  changes i n  t i m e  i n  a sinusoidal 
way as shown i n  f ig .  1. 
i t s e l f .  A cycle o f  the osc i l l a t i on  i s  produced i n  one period "T'. The phase i s  the angle "0" 

wi th in  a cycle corresponding t o  a pa r t i cu la r  t i m e  "t". 

The signal i s  an o s c i l l a t i n g  signal because the sine wave repeats 

Therefore, we have = f . 

- i  
TIME- 

FIGURE 1 

It i s  convenient f o r  us t o  express angles i n  radians rather than i n  u n i t s  o f  degrees, and 

pos i t i ve  zero-crossings w i l l  occur a t  even a u l i t i p l e s  o f  r-radians. The frequency "v" i s  the 
number o f  cycles i n  one second, which i s  the rec iprocal  o f  period (stconds per cycle). The 
expression describing the voltage "V" out of a sine wave signal generator Cs given by V ( t )  = 
Vp s i n  (@(t)] uhere V I s  the peak voltage .amplitude. Equivalent expressions are P 

and V ( t )  = Vp s i n  (Zmt). (1 1 
Consider f igure 2. Let's assume tha t  the maximum value o f  "V" equals 1, hence "V " = 1. 
say that  the voltage " V ( t ) "  i s  normalized t o  un i ty .  
the signal i s  a sine wave, then we can determine the incremental change i n  the period "T' 
(denoted by A t )  a t  a par t icu lar  angle o f  phase. 

Ye 
P 

If we know the f requencl  o f  a signal and 

* 1  

V 

- 1  

FIGURE 2 



Note t h a t  no matter how b i g  o r  small A t  may be, we can determine AV. 

from another point of view. Suppose we can measure AV for  a partlcular A t .  
i s  a sfne wave a t  a unique m i n l m u m  frequency corresponding to the given AV and A t .  
C t ,  this frequency Is called the instantaneous frequency a t  t i r e  t. 
val A t ,  the better the apprOXiIrk3tiOn of instantaneous frequency a t  t. 

Let us look at  this 
From this there 

The smaller the Inter- 
For small 

When we speak of oscillators and the signals they produce, ne recognize t h a t  an oscil lator 
has some nominal frequency a t  which i t  operates. 
i s  a term used to  characterize the frequency fluctuations of the oscil lator signal. 
i s  no formal definition for "frequency stability". However. one usually refers to frequency 
stabil i ty when comparing one osci l la tor  with another. As we shall see la te r ,  we can define 
particular aspects of an oscil lator 's  output then draw conclusions about i t s  relative fre- 
stabil i ty stabil i ty.  In general t e m ,  

The "frequency s tabi l i ty"  of an oscil lator 
There 

"Frequency stabil i ty 1s the degree to which an oscll latlng signal produces the same 
value of frequency for any interval, A t ,  throughout a specified period of time". 

Let's examine the two waveforms shown i n  f i g u r e  3. Frequency s tab i l f ty  depends on the amount 
o f  time involved i n  a measurement. Of the two oscil lating slgnals. it is evident that "2" 
i s  more stable than '1" from time tl t o  t j  assuming the horizontal scales are linear i n  time. 
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From t l m e  t1 t o  t2, there may be some question as to  which o f  the t*Q signals i s  more Stable, 
but i t ' s  c lear that fm t l m e  t2 t o  tj, signal "1" I s  a t  a d i f f e r e n t  frequency from t h a t  I n  
in terva l  t1 t o  t2. 

I f  we want an osc i l l a to r  t o  produce a pa r t i cu la r  frequency v then we're co r rec t  I n  
0' 

s ta t ing that i f  the osc i l l a to r  signal frequency deviates from v Over any interval ,  t h i s  i s  a 
r e s u l t  o f  something which i s  undesirable. 
t o  consider the sources of mechanisms which degrade the o s c i l l a t o r ' s  frequency s tab i l i ty .  
undesirable mechanisms cause noise o r  a noise process t o  e x i s t  along wi th  the sine wave s ig -  
na l  of the osc i l la tor .  Simply stated, noise i s  anything which i s  undesirable. To account 

for  the noise components a t  the output o f  a sine wave signal  generator, we can modify 
equation (1) and express the output as 

0 
I n  the design o f  an osc i l l a to r ,  i t  IS important 

All 

where Vo f nominal peak voltage amplltude. 

E ( t )  f devlation o f  amplitude from nominal. 

vo 1 nominal fundamental frequency, 

O ( t )  f deviation o f  phase from nominal. 

I dea l l y  "E" and "4" should equal zero f o r  a l l  time. However. i n  the r e a l  world there a re  no 

per fect  osc i l la tors .  To detemine the extent o f  the noise components -E" and mY, we s h a l l  

t u rn  our a t tent ion t o  measurement techniques. 

11. Phase Spectral Density 

One method o f  characterizing noise i s  by mans o f  spectrum analysis. Let's examine the 
waveform shown. i n  f igure 4. 

FIGURE 4 

Here we have a sine wave which i s  perturbed for short instances by noise. Some l oose ly  
r e f e r  t o  these types o f  noises as 'glitches". The waveform has a nominal frequency over one 
cycle which w e ' l l  c a l l  " %"( \  = 7). A t  t imes, noise causes the instantaneous frequency t o  
d i f f e r  markedly from the nominal frWUenCy. I f  a pure s ine wave signal o f  frequency v i s  
subtracted from t h i s  waveform, the r m i n d e r  i s  the sum o f  the noise components. 
components a r e  of a var iety of frequencies and the sum o f  t h e i r  amplitudes i s  near ly zero 

except fo r  the intervals during each g l i t c h  when t h e i r  amplitudes m n t a r i l y  re inforce each 
other. This i s  shown graphically i n  f igure 5. 

1 

0 
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One can p l o t  a graph showing rms power v ~ f r e q u e n c y  f o r  a given signal. This kind o f  
p l o t  i s  ca l led the =spectrum. 
a high value a t  vo and w i l l  have lower values fo r  the signals produced by the glltches. 
Closer analysis reveals that there i s  a recognizable, somewhat constant repet i t ion rate 

associated wi th  the glitches. I n  fact. we can deduce t ha t  there i s  a s ign i f i can t  amount o f  
power i n  another signal whose period i s  the period o f  the g l i tches as shown i n  f igure 5 
l e t ' s  c a l l  the frequency of the g l i t ches  vs. Since t h i s  i s  the cast, we w i l l  observe a 
noticeable amount of power i n  the spectrum a t  us with an ar@li tudc which i s  related to  the 

character ist ics of the glitches. The power spectrum shown i n  figure 6 has t h i s  feature. A 
predominant fundamental component has been depicted, and other hararonlcs also exist. 

For the wavefonn o f  f igure 5, the power spectrum w i l l  have 

SPECTRAL D f l S l f V  

"0 

FREQufNCY- 

FIGURE 6 

Some noise w i l l  cause the instantaneous frequency t o  " j i t t e r "  around uo. with 
probabi l i ty  o f  being higher o r  lower than y,. 
with w,, as shown i n  f igure 7. 

We thus usual ly f ind a 'pedestal" associated 
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The process o f  breaking down a s ignal  i n t o  a l l  o f  i t s  various components o f  frequency 
i s  cal led Fourier expansion. I n  o t h e r  words, the addi t ion o f  a l l  the frequency cMpOnents, 
ca l led Fourier frequency components, produces the o r i g i n a l  signal. The value o f  a Four ier  

frequency i s  the d i f ference between the frequency component and the fundamental frequency. 
The power spectrum can be normalized t o  u n i t y  such that  the t o t a l  area under the curve equals 
one. The power spectrum normalized i n  t h i s  way i s  the power spectral  density. 

tions. Unfortunately, i f  one i s  g iven the RF spectrum, i t  i s  impossible t o  determine whether 
the power a t  d i f ferent Fourier frequencies i s  a r e s u l t  o f  amplitude f luctuat ions 'E(t)' o r  

phase f l uc tw t lons  'o(t). The RF s p e c t r a  can be separated i n t o  two independent spectra. one 
being the spectral  density o f  'c(t)' often c a l l e d  the AM power spectral  denslty and the  other 

being the s p c t r a l  density "dt)' .  
For our purposes, the phase-f luctuat ion components are the ones o f  interest .  The spectral 

density o f  phase f luctuat ions i s  denoted by S+(f) where 'f" i s  Four ier  frequency. For the 
frequently encountered case where t h e  AM power spectral  density i s  neg l i g ib l y  small and the 
t o t a l  modulation of the phase f l u c t u a t i o n s  i s  small (mean-square value i s  much less than one 
rad ), the RF spectrum has approximately the same shape as the phase spectral density. tbu- 
ever, a # i n d i f f e r e n c e  i n  the representat ion i s  t h a t  the RF spectrum includes the fundarnental 

signal (carrier), and the phase spect ra l  densi ty  does not. Another major di f ference i s  that  
the RF spectrum i s  a power spect ra l  densi ty  and i s  measured i n  u n i t s  o f  watts/hertz. The 
phase spectral densi ty  involves no 'power" measurement o f  the e l e c t r i c a l  signal. The units 
are radians /hertz. It i s  tempting t o  t h i n k  o f  S+( f )  as a "power' spectral density because 
i n  practice i t  i s  measured by passing V ( t )  through a phase detector and measuring the detec- 
t o r ' s  output power spectrum. 
small deviations ( 6 4  << 1 radian). 

The power spectrum, of ten c a l l e d  the RF spectrum, o f  V ( t )  i s  very useful i n  m n y  applica- 

2 

2 

The measurement technique makes use of the re la t i on  tha t  f o r  
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where Vms ( f )  i s  the root-mean-square noise voltage per 

which I s  comparing the two OSClllatOrS. 

d i rec t l y  measuring S d f ) .  

A f t e r  a l l  i t ' s  the frequency s t a b i l i t y  o f  an osc i l l a to r  that  i s  a major consideration i n  

many applications. 
This t e l l s  us that  f luctuations i n  an osc i l l a to r ' s  output frequency are related t o  phase 
fluctuations since we must change the ra te  o f  " d t ) "  t o  accomplish a s h i f t  i n  "dt)", the 
frequency a t  time t. A r a t e  Of Change of t o t a l  "Q ( t ) "  i s  denoted by'; (t)". He have then 

Hz a t  a Fourier frequency 'f", rnd 
V i s  the sens i t i v i t y  (vo l ts  per radian) a t  the phase qua 6- ra ture output of b phase detector 
f 

I n  the next section, we w i l l  look a t  a scheme for 

One questlon we might ask 4 5 ,  "How do frequency changes r e l a t e  to  phase fluctuatlons?" 

The frequency i s  equal t o  a r a t e  o f  change i n  the phase o f  a sine wave. 

T T 

( 4 )  

The dot denotes the mathematical operation of d i f f e ren t i a t i on  on the function OT m'th respect 
t o  i t s  fndependent varfable t.* From equation (4) and equation (2) we get 

Rearranging, we have 2 d t )  - 2 7 9  = At) 

v(t) - I ip 1 

The quantity v(t) - vo can be more conveniently denoted as av(t), a change i n  frequency a t  
t i m e  t. Equation (5) t e l l s  us that If we d i f ferent ia te the phase f luctuat ions +(t) and divide 
by 2r, we w i l l  have calculated the frequency f luctuat ion i3u(t). Rather than specifying a f re-  
quency f luctuat ion i n  term of a shift in frequency, i t  I s  useful  to denote 6 d t )  w i th  respect 

t o  the nominal frequency y,. The quant i ty  

f luctuation* a t  t i m e  t and i s  s ign i f i ed  by the variable y(t). Ue have 

i s  ca l led the f r r c t fona l  frequency 
vO 

As an analogyB the same operation re la tes the veloci ty o f  an object wi th  i t s  acceleration. 
The acceleration i s  equal t o  the ra te  o f  change o f  velocity. 

** Some internat ional  recomnendations replace " f ract ional"  by "normal fzed'. 
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The f rac t l ona l  frequency f luctust ton y ( t )  I s  a dimenstonless quantity. 

frequency s t a b l l l t y ,  I t s  appropriateness b e c m s  c learer  I f  we constder the following 
example. 
sampled thi.s value f o r  many t imes  t. 
produce t h e i r  desired output frequencies? Not I f  one o s c l l l a t o r  i s  operating a t  10 H t  and 

the other a t  10 M H z .  
i s  1/10. and i n  the second case i s  1 / 1 0 , ~ , 0 0 0  or  1 x 10- . 
precise. 
s t a b i l i t y  i s  not  changed. 

When t r l k tng  about 

Suppose I n  two o s c i l l a t o r s  ;v(t) I s  consis tent ly  equal t o  + 1 Hz and we have 

Are the two o s c i l l a t o r s  equal I n  t h e i r  a b i l i t y  t o  

In one case, the average value of the f ract ional  frequency f luctuat ion 
? The 10 MHz osc i l l a to r  i s  then more 

I f  frequencies a r e  m u l t i p l i e d  o r  divided using ideal electronics, the f ract ional  

I n  the frequency domain, we can measure the spectrum o f  frequency f luctuat ions y ( t ) .  
The spectral densi ty o f  frequency f luctuat ions i s  denoted by S y ( f )  and i s  obtained by 
passing the signal from an o s c i l l a t o r  through an ideal  FM detector and performing spectral 

2 analysis on the resul tant  output voltage. 

o r  Hz’l.  
spectral densities. 

5 (f) has dimensions of ( f ract ional  frequency) / H t  
f Y 

D i f f e ren t i a t i on  o f  @(t) corresponds t o  m u l t i p l i c a t i o n  by - i n  tenns o f  
LO With fur ther  calculat ion,  one can der ive tha t  

We w i l l  address ourselves p r imar i l y  t o  S (f), t h a t  is ,  the spectral densi ty o f  phase f luctua-  
tions. 
duplicated equipment set-up. Whether one Rleasures phase o r  frequency spectral densities i s  o f  
minor importance since they bear a d i r e c t  relationship. 
d i s t i n c t i o n  and t o  use equation (7) i f  necessary. 

4 
For noise-measurement purposes. Sg(f) can be measured w i th  a straightforward, eas i l y  

It i s  important, however, t o  make the 

111. fhe Phase-Locked LOOP 

Suppose we have a noisy o s c i l l a t o r .  We wish t o  measure the osc i l l a to r ’ s  phase f luctuat ions 

r e l a t i v e  t o  nominal phase. One can do t h i s  by phaselocking another o s c i l l a t o r  (cal led the  
reference o s c i l l a t o r )  t o  the t e s t  o s c i l l a t o r  and n i x i n g  the two o s c i l l a t o r  signals 90’ ou t  of phase 

same frequency i n  long tenn as guaranteed by the phase-lock loop (PLL). A low-pass f i l t e r  i s  

used af ter  the mixer since the d i f f e rence  signal i s  the one o f  Interest .  ‘By holding the 
two signals a t  a r e l a t i v e  phase d i f f e rence  o f  90’. short-term phase f luctuat ions between 
the t e s t  and reference osc i l l a to rs  w i l l  appear as vol tage f luctuat ions ou t  o f  the mixer. 

(phase quadrature) This i s  shown schematically i n  f i gu re  9. The two osc l l l a to rs  are a t  the 

7 



FIGURE 8 

%““h OSCILLATOR 

FIGURE 9 

OUTPUT O f  
PLL f l L T L R  

With a PLL, i f  we can m k e  the servo t i m e  constant very long, then the PLL bandwidth as 
a f i l t e r  w i l l  be small. This m y  be done by lowering the gain AV o f  the loop ampl i f ier .  Ye 
want t o  translate the phase a d u l a t i o n  spectrum t o  baseband spectrum so that  i t  i s  eas i l y  
measured on a l o w  frequency SpeCtNm analyzer. With a PLL f i l t e r ,  we must keep I n  mind tha t  
the reference osc i l l a to r  should be as good o r  bet ter  than the test  osc i l la tor .  This i s  be- 
cause the output of the PLL represents the noise from both osci l lators,  and i f  not properly 
chosen, the reference can have noise masking the noise from the t e s t  osc i l l a to r .  Often, the 
reference and t e s t  osc i l l a to rs  are of the same type and have, therefore, approximately the 
same noise. Ye can acquire a meaningful measurement by not ing that  the noise we measure 
i s  from two osci l lators.  
i s  twice that  which i s  associated w i th  one osc i l l a to r .  
spectral density on a per hertz basis. 

two osci l lators.  

representing phase fluctuations between reference and t e s t  osc i l la tor .  
make the time-constant of the loop long compared with the inverse o f  the lowest Fourier f re -  

quency we wish to  measure. 

times a good amroximation i s  t o  assume that the noise power 
5 I f)  i s  general notat ion depicting @ 

A PLL f i l t e r  output necessarily y ie lds  noise from 

The output o f  the PLL f i l t e r  a t  Fourier frequencies above the loop bandwidth i s  a voltage 
I t  i s  necessary t o  

This means that i f  we want t o  1 
That i s *  Tc > 2n f ( lowest)*  

8 
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1 measure 5 ( f )  dorm to  1 Hz. the loop time-constant must be greater than 
measure the time-constant by perturbing the loop ( " e n t a r l l y  dtsconnecttng the bat tery  I s  
convenient) and not ing the t ime I t  takes for the control  voltage t o  reach 70% of i t s  f i na l  
value. The s ignal  from the mixer can then be inserted i n t o  a spectrum analyzer. A preamp 

may be necessary before the spectrum analyzer. 
that  pass through the analyzer's bandwidth centered around a pre-chosen Fourier frequency f. 
I t  i s  desirable t o  normalize resul ts  t o  a 1 Hz bandwidth.Assuming white phase noise (white 6M). 
t h i s  can be done by div id ing the mean square voltage by the analyzer bandwidth i n  Hr. One may 
have t o  approximate fo r  other noise processes. 
be indicated i n  rms volts-per-root-Hertz on most analyzers. ) 

seconds. One can 
C 

The analyzer determines the mean square vo l ts  

(The phase noise sideband l e v e l s  w i l l  usual ly 

I!. Equipment f o r  Frequency Domain S t a b i l i t y  Measurements 

(1) Low-noise mixer 
This should be a high qual i ty,  double-balanced type. but single-ended types may 
be used. The osc i l l a to rs  should have well-buffered outputs t o  be able t o  i so la te  
the coupling between the two input RF ports o f  the mixer. Results that  are too 
good may be obtained if the tkr usc i l l a to rs  couple t i g h t l y  v ia  s ignal  i n j e c t i o n  
through the input ports. We want the PLL t o  control  locking. One should 
read the  specifications i n  order t o  prevent exceeding the maximum allowable input 
power t o  the mixer. 
to-noise out of the IF p o r t  o f  the mixer and, i n  some cases, i t  i s  possible t o  
d r i v e  the mixer i n t o  saturation without burning out the device. 

It i s  best t o  operate near the m a x i m  fo r  best signal- 

1 

FIGURE 10 

(23 Low-noise DC ampl i f ier  
The amount o f  gain AV needed i n  the loop ampl i f ier  w i l l  depend on the amplitude o f  

the mixer output and the degree o f  varactor control  i n  t h e  reference osc i l l a to r .  Ye 
my need only a small amount of gain t o  acquire lock. On the other hand, i t  may be 
necessary t o  add as much as  80 dB o f  gain. Good low-noise DC ampl i f iers  are avai l -  
able from a number o f  sources, and wi th  cascading stages o f  ampl i f icat ion,  each con- 
t r i b u t i n g  noise, i t  w i l l  be the noise o f  the f i r s t  stage which w i l l  add most s i g n i f i -  
can t l y  t o  the noise being measured. 

i s  not readi ly  available, a schematic o f  an a m p l i f i e r  w i t h  40 dB o f  gain i s  shown 
I f  a suitable low-noise f i r s t - s tage  ampl i f ier  
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i n  figure 11 which w i l l  se rve  n ice ly  for  the f i r s t  stage. 
ampl i f ier  should be f l a t  from DC t o  the hlghest Fourier f rquency one wishes t o  
measure. The loop time-constant i s  inversely related t o  the gain AV and the 
determination of AV i s  best made by experimentation knowing that 

The response o f  the 

1 
C 

< 

C I I 1 S  I I  
?LIIILtL 

u11 PIP AlPllFlER 

FIGURE 11 
(3)  Voltage-controlled reference Quartz o s c i l l a t o r  

This osc i l l a to r  should be a good one w i th  speci f icat ions available on i t s  frequency 

domain s tab i l i t y .  The reference should be no worse than the test  osc i l la tor .  The 
varactor control should be suf f ic ient  t o  maintain phase-lock o f  the reference. 
al ,  low qual i ty  t e s t  osc i l l a to rs  may have varactor control  o f  as mch  as 1 x 10- 6 

fractional frequency change per vol t .  High q u a l i t y  t e s t  osc i l la tors  may have only 
1 x 10-l' f ract ional  frequency change per vo l t .  Some provision should be avai lable on 
the reference o s c i l l a t o r  for tuning the mean frequency over a frequency range t h a t  w i l l  
enable phase-lock. Many factors enter i n t o  the choice o f  the reference osc i l l a to r ,  and 
often i t  i s  convenient t o  S i s p l Y  use two t e s t  osc i l l a to rs  phase-locked together. 
way, one can assume that the noise out of the PLL f i l t e r  i s  no worse than 3 dB greater 
then the noise from each osc i l l a to r .  
buting approximately equal noise. then one should perform measurements on three o s c i l -  

l a t o r s  taking two a t  a time. The noisier-than-average o s c i l l a t o r  w i l l  reveal i t s e l f .  

The signal analyzer t y p i c a l l y  should be capable of measuring the noise i n  ms v o l t s  
i n  a narrow bandwidth from near 1 Hz t o  the highest Fourier frequency of interest .  This 

may be 50 kHz f o r  c a r r i e r  frequencies of 10 MHz or lower. 
i t  i s  tvoical  t o  use un i t s  o f  " vo l t s  per Hz". The spectrun analyzer and any associated 
input a l r p l i f i e r  w i l l  exh ib i t  high-frequency r o l l o f f .  

the voltage has dropped by 3 dB i s  the measurement system bandwidth fhl o r  u,, = 2nfh. 
This can be measured d i r e c t l y  w i t h  a var iable signal generator. 

i t  i s  possible t o  measure the phase fluctuations introduced by a device such as an act ive 
f i l t e r  o r  ampl i f ier .  
s e t  up i s  needed. 

I n  gener- 

I n  t h i s  

If i t  i s  uncertain that  both osc i l l a to rs  are contr i -  

(4 )  Spectrum analyzer 

For voltage measuring analyzers. 

The Fourier frequency a t  which 

Rather than measure the spectral  density of phase fluctuations between two osc i l la tors .  

Only a s l i g h t  modification o f  the ex is t ing PLL f i l t e r  equipment 
The scheme i s  shown i n  Figure12. 
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FIGURE 12 
Figure 12 i s  a differential pmse noise measurement set-up. The output of t h e  

reference oscillator i s  s p l i t  so tha t  part of the signal passes through the device under test. 
We want the two signals going to  t h e  mixer t o  be 90" out of phase, thus, phase fluctuations 
between the two i n p u t  ports cause voltage fluctuations a t  the output. 
then can be measured a t  various Fourier frequencies on a spectrum analyzer. 

under tes t  and compensate for  any change i n  amplitude and phase a t  the mixer. 
technique must be converted t o  a differential  phase noise technique i n  order to measure in- 
herent t e s t  equipment noise. 
proceeding t o  measurement o f  device noise. 

The voltage fluctuations 

To estimate the noise inherent i n  the t e s t  set-up, one can i n  principle bypass the device 
The PLL f i l t e r  

I t  is a qood practice to  measure t h e  system noise before 

A frequency domain measurement set-up is shown schematically i n  figure 13. The component 
values for the low-pass f i l t e r  out of the mtxer are suitable for  osc i l la tors  operating a t  
around 5 HHz. 

SOP 
ANALYZER 

- - - 

FIGURE 13 

1 1  



The a c t i v e  ga in element (AV) of the loop i s  a DC ampl i f ier  w i th  f l a t  frequency response. 

One may replace th is  element by an in tegra tor  t o  rchieve high gain near DC and hence, m i n t a i n  
be t te r  lock o f  the reference o s c i l l a t o r  i n  long tenn. Otherwise long-term d r i f t  between the 

-reference and test  osc i l la to rs  might require manual re-adjustment of the frequency o f  one o r  

the other osci l lator.  
V. Procedure and Example 

A t  the input t o  the spectrum analyzer, the voltage varies as the phase fluctuations i n  

short-term 1 

V, i s  the phase sens i t i v i t y  of the mixer i n  v o l t s  per radian. Using the previously described 
equipment set-up, V, can be measured by disconnecting the feedback loop t o  the varactor o f  the 
reference osci l lator.  The peak voltage swing i s  equal t o  V, i n  un i ts  o f  vo l tshad i f  the 
resul tant  beat note i s  a sine wave.* 

The value fo r  the measured S 4 ( f )  i n  decibels i s  given by: 

VJoltage at f 

V full-scale $-detector voltage* 
S$(f )  = 20 log 

8 

Example:  G i v e n  d PLL w i t h  t w o  o s c i l l a t o r s  s u c h  t h a t ,  

a t  t h e  mixer o u t p u t :  

V - 1 v o l t / r a d  

~ ~ 4 5  t i z )  - 1 0 0  nV p e r  root h e r t z  

Solve f o r  S o ( 4 S  t i s ) .  

L 

I n  d e c i b e l s ,  

100  nV s ( 4 5  H Z )  = 2 0  log - = 2 0  l o g  7 
1 v  10 0 

*This my not be the case fo r  s ta te -o f - the-ar t  S ( f )  measurements where one must dr ive the m i x -  @ 
e r  very hard t o  achieve low mixer noise leve ls .  Hence, the output w i l l  not  be a sine wave. 
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V I .  Power-Law Nolse Processes 

Power-law nolse processes are models of precision osct l la tor  nolse that  produce a parttcu- 
l a r  slope on the spectral density plot.  
five categories. 

We often classify these noise processes l n t o  one of 
For plots of S 6 ( f ) ,  they are: 

4 1. 
2. 
3. 
4.  

5. 

Random walk FM (random walk of frequency), S6 plot goes down as  l / f  . 
Flicker FM ( f l icker  of frequency), S6 plot goes down as l / f  . 

2 White FM (white of frequency), fg plot goes down as l / f  . 
Flicker OM ( f l icker  of phase), S+ plot goes down as l / f .  
White 6M (white of phase), Sg plot 1s f la t .  

3 

Power law noise processes a re  characterized by their functional dependence on Fourler frequency. 

The spectral density plot of a typical o6cil lator 's  output usually i s  a combination of 
different  power-law noise processes. I t  is very useful and wanlngful t o  categorize t h e  nolsc 
processes. The f i r s t  job i n  evaluating a spectral density plot i s  t o  determine which type of 
noise exists for a particular range of Fourier frequencies. I t  I s  possible t o  have a l l  f ive  
noise processes being generated from a single  osci l la tor ,  but, i n  general, only two o r  three 
noise processes are dominant. 
on a log-log scale. Figure 15 shows the spectral density of phase fluctuations for  a typical 
high-quality oscillator. 

F i g u r e  14 i s  a graph of S4(f) showing the f ive  noise processes 

SPECTRAL DENSITY OF 

- 3 c  I 
PHASE 

f J" 

FIGURE 14 
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FIGURE IS 
He can Rake the following general remarks about power-law noise processes: 

1. Random walk FH (l/f') noise I s  d i f f i c u l t  t o  measure since i t  i S  usually very close t o  the 

carr ier .  Random walk FM usual ly  re la tes  t o  the oscillator's physical envf ronment. 
If random walk FM i s  a predominant feature of the spectral density Plot then mechanical 

shock, vibratioa, tempera ture,  o r  other environmental effects MY be causing 'random" 

s h i f t s  i n  the ca r r i e r  frequency. 

F l icker  FH (l/f3) i s  a noise whose physical  cause i s  usually not f u l l y  understood but may 

t yp i ca l l y  be related t o  the physical resonance mechanism o f  an actfve oscillator 
O f  the design or choice of parts used for the electronicsI or even environoental 

properties. 
FM (1/$) or f l i c k e r  @ M  (l/f) i n  lower-qual i ty osc i l la tors .  

White FH (1/6) noise i s  a COmnOn type found i n  passive-resonator f r e q u e n c y  strndrrds. 

These contain a slave osc i l l a to r ,  often quartz, which i s  locked t o  a resonance feature o f  
another device which behaves nuch l i k e  a high-Q f i l t e r .  

white FH noise character ist ics.  

F l icker  #M (l/f) noise may r e l a t e  t o  a physical  resonance mechanism in an osc i l la tor ,  but i t  

usually i s  added by noisy electronics. 
qual i ty  osci l lators,  because in order t o  b r i ng  the signal amplitude up t o  a usable level .  
amplif iers are used a f te r  the signal source. F l i cke r  @M noise may be introduced i n  these 

stages. 
wi th g o d  low-noise ampl i f ier  design (e.g. , using rf negative feedback) and hand-selecting 
transistors and other e lect ron ic  components. 

White OM ( f  
ism. 

s e d g e s  of amplification a r e  usual ly  responsible fo r  white@M noise. This noise can 
be kept a t  a very low value wi th  good amp l i f i e r  design, hand-selected components. the 
addition o f  narrowband f i l t e r i n g  a t  the output, o r  increasing, i f  feasible,  the power o f  

the primary frequency source. 

2. 

Fl icker  FM i s  c o m n  I n  h igh-qual i ty  osc i l la tors ,  but may be masked by white 

3 .  

Cesium and rubidiun standards have 

4. 

This type of noise i s  cormon, even i n  the highest 

I t may also be introduced i n  a frequency mu l t i p l i e r .  f l i c k e r  :M can be reduced 

0 5. noise i s  broadband phase noise and has l i t t l e  t o  do with the resonance mechan- 
I t  i s  probably produced by s i m i l a r  phenomena as f l i c k e r  en ( l / f )  noise. 

14 



VII. Translation from Frequency Domain S t a b i l i t y  Measuremee 
---- t o  TIme b i n  Stabil j-tyeasurement 

This section assumes the reader has sow knowledge of the measurement o f  
t i m e  domain s t a b i l i t y .  Our at tent ion w i l l  be on how t o  t rans late a p l o t  
o f  S 6 ( f )  t o  o;(T). the p a i r  variance'. Elaboration on t i m e  domain s t a b i l i t y  
measurements i s  beyond the in tent  o f  th is  Technical Note. A suggested 

reference i s  NBS Technical Note r665.  "The Measurement o f  Frequency and 
Frequency S t a b i l i t y  o f  Precis ion Oscil lators," by D.W. Allan. 

references a r e  l i s t e d  i n  the Bibliography. 

Other 

From the p l o t  o f  phase spectral  density. i t  i s  possible t o  make general comnents about the 
Recall t i m e  domain s t a b i l i t y  o f  an o s c i l l a t o r .  

that  inferences o f  t i m e  domain s t a b i l i t y  a r e  made based on speci f ic  kinds o f  power-law noise 
processes over a range o f  Four ier  frequencies. More speci f ica l ly .  when dealing w i t h  noise 
processes, a power-law i n  the frequency domain corresponds to  a pa r t i cu la r  power-law i n  the 

t i m e  domain. 
variance, a 2 ( ~ ) .  We have 

Y 

Remarks are presented i n  the previous section. 

A convenient measure o f  frequency s t a b i l i t y  i n  the t ime  domain i s  the p a i r  

where M i s  the number o f  data values and uk i s  the average over ti* T o f  the k th  data po int  
(s imi lar ly ,  yk+l corresponds t o  k t h  + 1 point.) 

Example: Find the pair v a r i a n c e ,  0 '(T), of the fo l lu . - ing  sequence of 

f r a c t i o n a l  f requency  f l u c t u a t i o n  va lues  Gk, each value  

averaged over one second. 

Y 

-5 

y6 = 3.96 x lG-' 
-5 y, = 4-20 x 10 
-5 

- 
y5  = 4.47 x 10 - -5 y1 = 4.36 x 10 - -5 y2 = 4.61 x 10 

y3 = 3.19 x lo-' - -5 

- 
- - 
- 

y4 - 4.21 x 10 yg - 3.08 x 10 

fAssume no dead-time i n  measurement of averages)  

Since each average o f  the  f r a c t i o n a l  frequency f l u c t u a t i o n  values is for one second, then the 

f i rs t  p a i r  variance c a l c u l a t i o n  w i l l  be a t  T = Is. W e  a r e  given I = 8 ( e i g h t  va lues ) ;  

*Often cal led the Allan variance. 
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4 .36  

4.61 

3.19 

4 .21  

4.47 

3.96 

4.10 

3.08 

Therefore, 

M d  

First differences First differences squared 
- 5  - - 

1 Y k , ,  - Y k l l *  10 1 --- 
-- 

0.25  

-1.42 

1 .02  

0.26 

-0.51 

0.14 

-1.02 

0.06 

2.02 

1 .04  

0.07 

0.26 

0.02 

1.04 

M - 1  

(Yk+l - y,)' = 4.51 x 
k = l  

Using the same d a e ,  one CM calculate the pair variance for T = 2s b y  averaging pairs of 
adjacent values and using these new averages dS data values for the same procedure as above. 

For three second averages (T = 3s) 

proceed i n  a similar miinner. 

tdke adjacent threesomes and f i n d  their averages and 

Xore data  must be acquired for  longer averaging t i e s .  

One sees that w i t h  large numbers Of da ta  Values, i t  i s  helpful t o  use a computer or programnable 

calculator. 
square root of the number of d a t a  values used. 

be expressed as being no better than 11x3 
in  our estimate for the T = 1s average. 

The confidence o f  the estimate o f  the pair variance improves noninally as the 

In th is  example, X-8 mni the confidence CM 

x 100t - 35%. This then i s  the allcuable error 
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Knowing how t o  measure SC(f) for  a pa i r  o f  osc i l l a to rs ,  l e t  us see how t o  t rans late the power-law 
noise process t o  a p l o t  o f  .: (1 ) .  F i r s t ,  consider f ( f ) .  the spectral  density of frequency 

f luctuat ions.  There a re  two quant l t ies which crsnpletely speclfy 5 ( f )  for  a p a r t l c u l r r  power-law 
noise process: 

The slope we sha l l  denote by "u"; 
re la tes 5 ( f )  t o  f. i t  i s  simply the coef f ic ient  of f 

Y 
f o r  a range o f  f. When we enamine a p l o t  o f  spectral  density o f  frequency fluctuations. we 

a r e  looking a t  a representation of the addi t ion o f  a l l  the power-law Processes. 

2 
Y Y 

Y 
(1) the s lope on a log- log p l o t  f o r  a given range of f and (2)  the aw l i t ude .  

therefore f" i s  the straight l i n e  (on log- log scale) which 
The amplitude w i l l  be denoted "hit"; 

Ye have 

I n  the preceeding section, f i v e  power-law noise processes were out l ined w i t h  respect t o  S (f). 
These f i v e  are the c m n  ones encountered w i th  prec is ion osc i l la tors .  
these noise processes t o  S ( f ) .  

4 
Equation (7) re la tes 

One obtains 
Y 

1. Random Walk FM (f-2) . . . a = -2 
2. Fl icker FH (f-1) . . . a = -1 

3. White FH (1) . . .  a =  0 
4. F l icker  OM (f) . . .  a =  1 
5. White #4 ($1 . . .  a =  2 

wfth r e s w c t  t o  S (f) J 
Y 

t slope 

Table 1 i s  a l i s t  o f  coeff ic ients f o r  t rans la t i on  from o '(1) t o  S (f) and froa S4( f )  
Y Y 

t o  ~ ~ ' ( 1 ) .  The l e f t  colum i s  the designator for  the power-law process. Using the middle 
column, we can solve fo r  the value of 5 (f)  by computing the coe f f i c i en t  "a" and using the 
measured t iw domafn data uy2(i). The rightmost c o l u i  yields a so lu t i on  f o r  c '(1) given 

Y 
frequency domain data S (f) and a ca lcu lat ion o f  the appropriate 'b' coef f ic ient .  

Y 

0 
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S y ( f )  hafa 
a *  

2 
(white phase) 

( t n ) '  1' f '  

f h  

f h  
(2n)' T 2  V t  

/, 036 
1 (2u)' la f [3dH + 3 1n(whr)]f  

+ 3 ln(whT) (21)' 11 v; ( f l i c k e r  phase) 
/.035 

0 
(white frequency) 2 1  

-1 1 
2 l n ( 2 )  f ( f  1 i cke r  frequency) 

- 2  6 
(2ll) '  T f '  (random walk frequency) 

w 0 

TABLE 1. Conversion t a b l e  from time-domain to frequency-domain and from 
frequency-domain to time-domain f o r  common k i n d s  o f  i n t e g e r  power 
law s p e c t r a l  densities; f h ( =  wh/2r) is t h e  measurement system band- 

D.C. t o  fh  (3dB down high-frequency cutoff i s  a t  f,,). 
' width.  Measurement r e sponse  should be within 3 dB from 

18 



SPfCTR4L DENSITY OF PHASE 
vo lUH2 

 IO-^ 

10'lO 

10"l 

10'lZ 

1 0 - l ~  

10-l' 

- 
- 
- 
- 

- 
- 
1 I I 1 J 
loo 10' . 102 1 o3 1o4nZ 

F O U R l f R  FSCQUtNCY ( f )  

FIGURE 16 

I n  the phase spectral denslty p l o t  o f  f i gu re  16 , there are two power-law notse processes. For 

t o  10'14). Thus, S4( f )  goes as l/f3 = f'3. For region 1, we 
region 1, we see than when f Increases by one decade ( tha t  is,  from 10 Hr t o  100Hz)n S (f) goes down 
by three decades ( tha t  is,  fm 
iden t l f y  t h t s  noise process as f l i c k e r  FM. The rightmost colurm o f  Table 1 r e l a t e s  a2(d to f (f). 
The row destgnating f l i c k e r  frequency nolse y ie lds:  

0 

Y 4 

One can now ptck (a tb t t ra r l l y )  a convenlent Fourier frequency f and detenntne the c o r r e s p d i n g  
values o f  S ( f )  given by the p l o t  o f  f igure18. Say, f = 10, thus ~ ~ ( 1 0 )  = 10'l1. Solvlng for 

0 
u;(T), gtven vo = 1 Wz, we obtatn: 

u p  = 1.39 x 

therefore (T) = 1.18 x 10-l'. For region 2, we have white on. The re la t ionship between 
"Y 

s ( f) 
3fh 

u~(T) and S4(f)  f o r  whi te +M is: 
Y 

";(TI = 12 n)' TZ uo' @ 

4 
Again, we choose a Fourier frequency, say f = 100, and see tha t  S6(100) = Assmfng fh 10 Hr9 

we thus obtaln: 1 = 7.59 . T2 

the ref ore,  
12 1 

T 
u (T) = 2.76 x 10- 

Y 
The resultant t i m e  domain characterization i s  showi i n  figure 17.  

19 



TIME W I N  STABILITY 

FIGURE 17. The t rans la t i on  o f  S,(f) o f  f i gu re  16 y ie lds 
t h i s  u (T) plot. 

. Y  

Figures 18 and 19 show a p l o t  o f  time-domain s t a b i l i t y  and a t rans lat ion t o  frequency donrain. 
The procedure i s  l e f t  as an exercise f o r  the reader. 

VIII. Conclusion 

Starting w i th  the basic concepts associated wi th  the sine-wave signal generator, t h i s  
wr i t ing attempts t o  present fundamental aspects o f  spectral analysis w i t h  only l i g h t  mathe- 
m t l c a l  treatment. The RF spectrum i s  n o t  a useful means o f  i n f e r r i n g  the frequency s t a b i l i t y  
o f  an osc i l la tor ,  so a discussion of S&f) and S (f) i s  put forth as well as the technique 
f o r  measurement. 

quency-domain measurements without elaborat ing on ex i s t i ng  time-domain techniques. A tab le 
fo r  translating data from one domain t o  the other has been included, and the use o f  t h i s  table 

requires knowledge o f  the Al lan Variance. The author has t r i e d  to be general i n  the treatment 
o f  topics ,  and a bibliography i s  attached f o r  readers who would l i k e  deta i ls  about speci f ic  
i tems.  

Y 
I t  was f e l t  that  there was a need f o r  a t u t o r i a l  w r i t i ng  that  explains fre- 

20 



FIGURE 18. A u (T) versus T plot of  some actual oscillator data. 
Notice t h a t  i f  a:(r) = ?',then a (T) = T''~ hence 
the T - " ~  slope for  IJ = -1, etc. 

Y 
Y 

10-231 1 1 I I I I 1 

1 0 - 6  10-5 10-4 10-3 IO-? 1 0 - 1  1 10 

f ( H Z )  

FIGURE 19. A p l o t  of S ( f )  as transformed fmr the  time-domain data 

p l o t t e d  i n  F i g u r e .  18. 
Y 
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