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Abstract

In part one different digital noise generators are described.
They use

1) a recursive equation known for its properties of
successive bifurcations leading to a chaotic behavior.

2) a second method is presented based on the theory of
fractals. The noise is generated from a reccurent fractal
curve with a given fractal dimension, the slope of the noise
spectrum being linked to the fractal dimension.

3) a third method consists in applying the mean
theorem to the random number series given by RDN
function of a calculator. In this manner a sample series is
obtained representing a white noise with a gaussian
distribution. With three different numerical filters using
the Z transform all the noise types can be generated.

In part two these noise sources are used to generate sample
series which simulate frequency samples as given by a
counter.

Applying the Allan variance to the samples of six
generabors (white iphase, flicker phase, white frequency,

icker frequency, frequency random walk, filtered flicker
fl{)equency) yields the expected theoretical slopes have been
observed.

It is well known that both white phase and flicker phase
noises give in time domain when using Allan variance the
same characteristic in log-log plot slope, which corresponds
to v-2. It will be interesting to separate the two contri-
butions, this is one of the properties of the Modified Allan
variance.

In the present work a new method is used. It consists in
filtering the -1 and fo phase noise (simulated by the pre-
vious noise generators) by means of a digital filter in time
domain (using the Z transform), which yields f-3 and 2
noises, which thus can be identified by Allan variance.

The combination of the digital filter and the Allan variance
corresponds to a new variance, which is described and
compared to the well known "Modified Allan Variance".

Introduction

The "Allan Variance" which is used for the characte-
rizations of a signal, gives the possibility to identify in time
domain the different types of noises present in a frequency
source ; their respective levels in frequency domain can be
calculated by Fourier transform, but for white phase noise
and flicker phase noise, this transformation is not possible
because they exhibit an Allan variance with the same
power law t-2 and consequently they cannot be separated.
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The "Modified Allan" variance [1] proposed by Allan in
1981 gives the possibility to solve the ambiguity.

For the white phase noise this variance exhibits a 3 slope
which is sligthly different from the v2 slope obtained for the
flicker phase noise : however, on a log-log plot it is difficult
to find the respective asymptotes. Therefore, it can be inte-
resting to use a new variance which offers a better
separation of the white and flicker phase noises. This is the
purpose of the present paper.

The variances are tested on a computer by means of series
of well identified samples, which first of all must be
generated. If it is simple to achieve a noise generator
exhibiting a noise spectrum in 1/fa when a is an even
integer by using a white noise filtered by a first order filter,
it is more difficult to do for the odd values of a, (or when a is
not an integer).

In fact all the noise spectra showing an odd value of a can
be obtained from the flicker noise corresponding to a = 1.
Two methods can be used to obtain this flicker noise, either
by superposition of weighted Lorentzian spectra or by
filtering the white noise with a cascade of first order filters
in series with cut-off frequencies distributed as a geome-
trical series.

These noise generators will be used for comparing the

properties of different kinds of variances : Allan variance,
Modified Allan variance and Filtered Allan variance.

White noise generators

Recursive equation

The first method which was tested is based on the use of a
recursive equation known for its properties of successive
bifurcations leading to a chaotic behavior (Fig. 1)

X = 4}‘1"(1 —1")

-FordA < .8 there is only one solution obtained by

solving the equation x, +1 = x,

there are two solutions corresponding
to xp+2 = x5 Then the number of
possible solutions increases drasti-
cally with A,

~-For .8 <A< .88

and
-FordA=1 the number of solutions is so large
that the behavior is chaotic, and the
power spectral density of the corres-
ponding values appears as a white
spectrum,
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Fig. 1:Recursive equation x5 +1 = 4AXp (1-Xp)
leading to successive bifurcations and chaotic behavior (a)
white spectrum corresponding to the chaotic bahavior (b)

This is a very easy method to generate random numbers
with white spectrum. But it must be noticed that these
distribution functions is not gaussian.

Using fractal

The second method uses the theory of fractals. A
deterministic fractal signal, looking like a noisy signal can
be easily fabricated by means of a broken curve drawn in a
rectangle lattice with m times n elementary rectangles as
illustrated by figure 2.

Then by successive iterations of each elementary segment
a fractal curve is obtained with a resolution depending on
the number of iterations, and with a fractal dimension D
which is simply given by

log n

_logm

A curve with a given fractal dimension can be easily
obtained by simply choosing the number of the elementary
rectangles.

The fractal dimension of various curves was plotted as a
function of the coefficient a of the measured 1/fa power
spectral densities (Fig. 3).

Therefore, it is possible to generate a noise with a given
power spectral density by choosing the appropriate fractal
dimension, following Fig. 3. But this curve depends on the
frequency cut-off of the signal. On the same figure is
indicated the limit corresponding to frequency cut-offs and
zero and infinity.
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Fig. 2 : Construction of a fractal curve with a given fractal
dimension by successive iterations
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Fig. 3 : Relation between fractal dimension D
and power spectral density coefficient a

From a computer random number generator

This other method uses a generator of random number xj,
corresponding to the "RND" functions of a computer, whose
values are between 0 and 1 with a white distribution
function. This white distribution function can be trans-
formed to a gaussian distribution with a zero mean value



by applying on the x; samples the mean theorem in order to
obtain the x; samples defined by
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Fig.4
Distribution function of a RND generator and application
of the mean theorem to obtain a gaussian distribution

For N = 1 we obtain the original shifted white distribu-
tions (Fig. 5) calculated on 8192 successive generated
numbers.
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Fig. 5: Distribution function of the RND number generator
after application of the mean theorem for N = 1

Figs. 6 and 7 show the gaussian distribution for N = 3 and
N =8.
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Fig. 6 : Distribution function of the RND number generator
after application of the mean theorem for N = 3
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Fig. 7 : Distribution function of the RND number generator
after application of the mean theorem for N = 8

This series of samples is considered as a series of time
samples integrated over a time interval t similar to
frequency samples furnished by a counter. The corres-
ponding Allan variance ¢%(t) exhibits a slope of -1 on a log-
log plot as expected for white noise (Fig. 8).
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Fig. 8 : Allan variance obtained for a white noiseand N = 8



Generation of 1/fa noises

The different noises are obtained by filtering. Only three
different types of filters (derivative filter, integrator filter
and 1/f filter) are necessary to obtain from white noise all
the kinds of noises found in the frequency noise spectrum of
oscillators.

fo x f2

- white phase noise
fox f1 X f2 - flicker phase noise
fo - white frequency noise
fo x f1 - flicker frequency noise
fo X f2 - random walk frequency noise.

Two processes can be used, digital filtering or a fast Fourier
transform.

Digital filtering

A general transfer function for a filter can be written as

w B 1+pk2
E(p) 1+pk

By applying the complex homographic transform corres-
ponding to the well known Z transform, which links Z to p

Z-1
Z+1

= — p=

The output samples S(x;j) are expressed in terms of the

output samples E(x;) by the relation
1+k 1—k, 1k,
Six) = E + E - > .
x) Ty (x) Ty @) Ty S&,_)

Four types of filters can be obtained :

a) for k1 = 0 and kg = 0, the corresponding transfer
function [H(f)}{?is proportional to f2. This is a derivative
filter.

b) for kg = 0 and k1 = 1, the corresponding transfer
function |H(f)|? is proportional to f2. This is an
integrator filter.

¢) for kg9 = ak; with k; < kg, the transfer function
corresponds to a pseudo-derivative filter.

d) for kg9 = bk, with k; > kg the transfer function
corresponds to a pseudo-integrator filter.

The association of n pseudo-integrator filters with cut-off
frequencies distributed by a geometrical series gives an
equivalent 1/f transfer function.

For n filters in series

n

o =] (

i=1 1+a,+l

1+a‘f/ ){2 ~

~1=

FFT method

In this method the sequence of random numbers, given by
the white generator, is first Fast Fourier Transformed, to
obtain the components in the frequency domain, then these
components are weighted by the corresponding coefficient
of the H(f) transfer function of the desired filter and finally

Xy (t)

an Inverse Fourier Transform is applied to the filtered
components in order to obtain a sequence of random
number with the desired 1/fa spectrum.
FFT H(f) IFT
xj(t) - En(®) - Enn® - xjmt).

Then these noise generators are used to test the Allan
variance, Modified Allan variance, and the new Filtered
Allan variances.

Comparison of variances

For each type of variance a double check is made (Fig. 9). In
the first one the variances are obtained in the frequency
domain by means of a FFT of the random signal, then by
filtering with the transfer function H;(f) of the corres-
ponding variance and by integrating where :
H(f) corresponds to the Allan variance
Ha(f) corresponds to Modified Allan variance
Hs(H) corresgonds to the Filtered Allan variance with

(rref?) filter
H4(D corresponds to the Filtered Allan variance with

2 filter
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Fig. 9 : Definition of the Filtered Allan variance and
schematic diagram of the double check of the four
variances in the frequency domain and in the time domain

s FIItANan (7 o2ee)=cyymx,

Simultaneously the second one is the simulation in the
time domain performed by calculating the variance with
the corresponding algorithm. For the Filtered Allan
variance two types of digital filters are applied. The first
has a transfer function proportional to (mtf)? and the
second has a transfer function proportional to f2. These
filters are the digital filters defined in the last paragraph.

An example of this double check for white phase noise is
shown on Fig. 10 for a Filtered Allan variance obtained
with a (f2) type filter calculated with 8192 samples.

These curves exhibit a -1 slope as expected. For large
values of v the number of averages decreases and the
accuracy of the curve corresponding to the time domain is
worse.

To increase the number of averages we can use the Allan
variance with overlaping averages. The result of this
calculation gives a curve (Fig. 10) which is closer to the
curve calculated by transformation from the frequency
domain. This means that information on the signal is lost
with the Allan variance when the number of averages is
too small.
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Fig. 10 : Results of the double check for a Filtered Allan
Variance obtained with a (f2) type filter
calculated with 8192 samples

These double checks have been made for the four variances
in the case of white phase noise, flicker phase noise and
white frequency noise. Table I gives the characteristic
slopes of the four variances.

S0 Allan MX?]iﬁed Filtered variance
y variance .lan
variance | (p)? f2
2 -2 -3 -3 -1
1 -2 -2 -2 0
0 -1 -1 -1 1
Table I

Characteristic slopes of the different variances

This shows that for white phase noise and flicker phase
noise, Allan variance gives the same -2 slope as it well
known.

The Modified Allan variance distinguishes these two noises
with -3 and -2 slopes. The Filtered Allan variance gives -3
and -2 slopes for filtered transfer function in (ntf)Z and -1
and O for filtered transfer function in £2.

However if we compare the variances in a log-log plot
(Fig. 11) it is clear that the distinction between the two
noises (flicker phase noise and white phase noise) is even
easier with the Filtered variance since it exhibits an angle
of 45° between the asymptot rather than 8° as the Modified
variance does.

In Fig. 12 is given the stability curve in the time domain of
a 5 MHz quartz oscillator measured with the Filtered (£2)
variance. The value of the transfer function of the digital
filter being equal to 1 at 1 Hz, this filter transforms the
frequency fluctuations into phase fluctuations and the well
known relations between frequency domain and time
domain must be shifted by a factor of f}; .
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Fig. 12 : Filtered Allan variance of a 5 MHz oscillator
showing white phasenoise and flicker phase noise

In other words a white phase noise spectrum will be treated
as a white frequency spectrum, a flicker phase spectrum as
a flicker frequency spectrum and so on.

For a white phase noise spectrum Sy(f) the Filtered Allan
Variance becomes

2 —
Oﬁlt(t) = h2/21

and for flicker phase noise spectrum Sy(t)

2

szlt ) = h1 .2In2

The hy and hg values of the signal spectrum can be deduced
from the last relations

~1n-26
h1 =10
_ 1n-28
h2 =10
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