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Abstract 

The separation  of  variance  technique  has  been  applied 
to  measurements  of  a  clock  against  received  signals 
from  Global  Positioning  System  (GPS)  satellites  to 
separate  out  various  noise  components  in  the  system. 
In this  paper  we  extend  the  previous  work  in  several 
ways.  First,  we  show  how  measurements  can  be  taken 
from  several  different  locations to obtain  estimates 
of  more  components of the  GPS  system,  and  to  obtain 
better  estimates  of  the  components  previously 
studied.  We  show  how  to  estimate  the  variances  of 
the  following  five  components:  the  GPS  system  clock, 
the  error  in  the  transmitted  correction  term  between 
the  satellite  clock  and  the  GPS  system  clock, 
propagation  noise  in  the  measurement  including 
ionospheric  and  tropospheric  modelling  errors,  error 
in  the  transmitted  ephemeris  for  the  satellite,  and 
the  local  reference  clock.  We  consider  the  effects 
of  correlations  between  elements  of  the  data,  and 
analyze  the  confidence one may  have  in  our  estimates 
in  light  of  these.  Finally,  this  multi-station 
separation  of  variance  technique  is  applied  to  recent 
GPS  data.  We  discuss  new  insights  into  the  GPS 
system  that  have  been  learned  using  this  technique. 

Introduction 

The  Separation  of  Variance  Technique  as  applied  to 
the  Global  Positioning  System  has  been  reported 
previously (1) using  data  taken  from one location. 
This  paper  reports  an  expansion  of  that  technique 
using  data  taken  from  multiple  reference  stations  and 
considering  the  effect  of  correlations.  Using 
multiple  references  allows  one  to  separate 
propagation  noise  from  ephemeris  error  variances,  as 
well  as  providing  greater  confidence  in  the  estimates 
of  the  other  noise  components:  the  GPS  master  clock, 
the  error  in  the  satellite  clock  correction  terms, 
and  the  satellite  vehicle  (SV)  clocks.  From  the  study 
of  correlation  effects  we  find  better  ways  to  use  the 
data f o r  our  estimates as well  as  understand  better 
some  of  the  limitations  in  the  separation  of  GPS 
noise  components  technique. 

We first  discuss  the  method  employed  for  taking  data. 
Next  we  consider  the  possible  variances  one  may 
compute  using  this  data  and  their  components.  There 
are  two  kinds  of  variances  we  discuss:  Allan 
variances  of  data  types,  and  Allan  variances  from 
applying  the  "N-corner  hat"  technique to Allan 
variances  of  differences  of  data.  Thirdly  we  discuss 
the  correlation  terms  contained  in  these  computed 
variances.  Finally  we  show  how  to  solve  these 
equations for individual  noise  components  in  a  way 
which  minimizes  the  effect of correlations  as  well  as 
indicating  the  magnitude  of  some  of  these 
correlations.  We  then  apply  this  technique  to  recent 
data,  January  and  February  of 1986, and  discuss  the 
results. 

Contribution of the  National  Bureau of Standards, 
not  subject  to  copyright. 

'US GOVERNMENT WORK IS NOT PROTECTED BY US COPYRIGHT' 

There  are  two  kinds  of  time  measurements  we  obtain 
from  a  GPS  receiver:  (GPS-Ref)',  a  measurement  of 
the  GPS  system  clock  against  the  local  reference 
clock  with  various  kinds  of  noise,  and  (SV-Ref)' , a 
measurement  of  the  particular  GPS  satellite  vehicle 
clock  against  the  local  reference  clock  with  noise. 
In practice  the  (SV-Ref)'  is  obtained  from  direct 
measurements  of  the  received  signal  against  the  local 
reference  clock,  then  corrected  by  the  GPS  receiver 
to  account  for  the  motion  of  the  satellite  vehicle 
(SV)  using  the  ephemeris  as  transmitted  from  the  SV 
in  the  real  time  bit  stream. The (GPS-Ref)'  value  is 
obtained  by  decoding  the  SV  clock  correction  term 
from  the  bit  stream,  and  adding  it  to  the  (SV-Ref)' 
value  along  with  a  relativistic  correction. We have 

(GPS-Ref)' = GPS + Clx' + Prop + Eph - Ref, 
where 

GPS = the  GPS  master  clock  time  variation, 
Clx' = error  in  the  transmitted  correction 

term  between  the  SV  clock  and  the  GPS 
system  clock, 

Prop = propagation  noise  in  the  measurement 
including  ionospheric  and  tropospheric 
modelling  errors,  receiver  noise,  and 
local  coordinate  errors, 
= error  in  the  ephemeris  for  the  SV  as 
transmitted, 

variation 

EPh 

Ref = the  local  reference  clock  time 

Also: 

where 
(SV-Ref)' = SV + Prop + Eph - Ref, 

sv = the  satellite  vehicle  clock  phase 
variation 

and  where  other  terms  are  defined as above. 

We  obtain  these  two  numbers  by  tracking  and  averaging 
a  particular  satellite  for 13 minutes:  (GPS-Ref)'  and 
(SV-Ref)'.  Since  the  satellites  are  in 12 hour 
sidereal  orbits,  we  may  repeat  this  measurement  one 
sidereal  day  later  and  maintain  the  same  geometry. 
This  is  important  since  the  control  segment's 
estimates  and  uploads  of  system  parameters  are  all 
tied  to  the  sidereal  period  of  the  orbits. In this 
way  we  obtain  a  time  series  whose  noise  components 
are  well  defined.  The  Clx'  and  Eph  terms,  as  well  as 
the  Prop  term,  to  the  extent  it  reflects  ionospheric 
modelling  errors,  are  all  defined  as  errors  in  the 
control  segment's  estimates.  We  can  solve  for  the 

made  with  the  period  of  the  system  being  one  sidereal 
variance  of  these  only  because OUK measurements  are 

day,  the same for  the  control  segment  and  for  the 
users. 
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Computed  Variances 

Allan  Variances  of  Data  Types 

Since  we  have  two  time  series,  the  (GPS-Ref)'  and 
(SV-Ref)' data,  we  may  compute  three  independent 
Allan  variances:  the  variance  of  each  data  type  and 
the  variance  of  their  difference.  Let  us  denote  these 
fractional  frequency  variances as 

AG = the  variance of the  (GPS-Ref)'  data  type, 

AS = the  variance  of  the  (SV-Ref)'  data  type, 

AGS = the  variance  of  the  (GPS-Ref)' - 
(SV-Ref)'  data, 

which  is  simply  the  variance  of  the  transmitted  clock 
correction  term. 

Let  us  denote  the  variances  of  the  noise  components 
as 

G = the  fractional  frequency  variance  of  GPS, 

C = the  fractional  frequency  variance of Clx', 

S = the  fractional  frequency  variance  of SV, 

P = the  fractional  frequency  variance of Prop, 

E = the  fractional  frequency  variance  of  Eph. 

R = the  fractional  frequency  variance  of  Ref. 

With  this  notation  we  may  write  the  variance  of  each 
data  type  in  terms  of  the  variances  of  the 
components.  The  variance  of  a  sum OK difference of 
random  variables  is  the  sum  of  the  variances  plus 
cross-correlations. We will  consider  correlations 
later.  For  now  let us assume  independence  of  the 
components,  and  we  have 

A G = G + C +  P + E + R  

AS = S + P + E + R  

AGS=  G + C + S 

From  these  three  equations  we  may  solve  for G+C, S ,  
and  P+E+R.  If  the  characteristics of  the  reference 
clock  are  known,  we  may  estimate  R  independently 
yielding  an  estimate of P+E. 

The  other  variances  we  compute  are  those  comparing 
differences  from  at  least  three  SV's. To describe 
these  we  first  discuss  the  'IN-corner  hat"  technique. 

N-Corner  Hat  Theory 

The  separation  of  variance  technique  grew  out of the 
desire  to  know  the  stability  of  a  particular  clock 
given  the  fact  that  measurements  of  clocks  must  be 
made in pairs. The "three  corner  hat"  technique ( 2 )  
has  been  used,  where  pair-wise  measurements  are  made 
among  three  clocks  and  the  fractional  frequency 
variances  of  the  individual  clocks  can  be  found  under 
the  assumption of independence  of  the  noise  processes 
of  the  three  clocks.  This  works  as  follows: 

Let Xij be  the  time  difference  measurement  clock  i 
minus  clock j. Then if the  Sij2  is  the  variance  of 
the  time  series  Xij,  under  the 
assumption of independence,  we  have 

2 2 2 
S = S  + S ,  
ij i j 

2 

i 
where S is  the  variance  of  clock i alone. 

In this  way  we  find 

2  2 2  2 

i ij ik jk 
S = ( S  + S - S )/Z. 

Note  that,  due  to  finite  data  sets  and  correlations 
in  the  data,  estimates  of  variances  here  can  be 
negative.  This  can  usually  be  taken  to  imply  that  the 
true  level  of  that  clock  is  significantly  below  the 
levels  of  the  worst  clock. 

This  technique  can  be  expanded  to  allow  for  N-clocks 
( 3 ) .  This is  an  improvement  since  the  above  is  an 
exact  solution  only  if  there  is  perfect  independence. 
In practice,  because  of  a  finite  data  length  there is 
some  apparent  correlation  between  clocks  even  if  they 
are  physically  independent. Also, there  are  often 
mechanisms  for  real  correlations. We will  discuss 
later  how  these  appear  in  GPS  data. 
The  "N-corner  hat"  is  defined as  a least  squares 
estimate.  We  minimize: 

in  order  to  obtain  the  solution 

where 

Note  that  here,  again,  estimates  of  variances  can  be 
negative. 

N-Corner  Hat  Computed  Variances 

We apply  the  N-corner  hat  technique  to  the  problem  of 
separating  GPS  noise  components  first  by  differencing 
our  time  series  between  pairs  of  SV's,  and  later  by 
differencing  our  data  between  pairs  of  locations.  Let 
us denote  our  (GPS-Ref)'  data  via  SV "i" minus  SV  "j" 
as  (GPS-Ref)'i.,  and  similarly  (SV-Ref)'. . and  their 
difference  (GPi-SV)'ij,  this  last  being  slmply  the 
difference  of  the  transmitted  clock  corrections  from 
the  two W's. In terms  of  our  previous  notation,  and 
continuing  our  use  of  "ij"  for  data  via SV "i"  minus 
SV  "j"  we  have 

1J  
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(GPS-Ref ) '  ij = Clx'ij + Propij + Ephij , 
(SV-Ref)Iij = SVij + Propij t Ephij , 

We  see  that  the  clocks  in  common  across  different 
SV's,  i.e.  the  GPS  and  the  reference  clock,  cancel 
when  we  difference  the  data.  This  is  true  exactly 
only  if  the  measurements  are  taken  simultaneously.  If 
they  are  not,  as  is  true  in  the  NBS  case,  then  there 
is  a  constant  time  offset  in  the  above  phase  data 
from  both  clocks  plus  a  random  fluctuation  due  to  any 
stochastic  nature  of  the  two  clocks.  These  terms  can 
be  neglected  when  we  take  variances  of  the  data  if 
the  noise  of  the  clocks  is  small  enough  over  the  time 
intervals  between  tracks.  Since  the  reference  clocks 
we  use  are  those  in  primary  time  standards  labs 
around  the  world  this  is  true  at  the  nanosecond  level 
in  our  case.  Also  we  find  the  GPS  clock  is  good 
enough  to  allow  time  intervals  between  tracks  up  to 
113 to 112 day. 

If we  take  the  Allan  variance  of  each  of  these  time 
series  we  obtain  variances  of  the sum of  the 
components  plus  any  cross-correlation  terms.  Since  we 
will  consider  correlations  later  let  us  assume 
independence  for  now.  Then  we  simply  have  a sum of 
variances,  each  being  the  variance  of  the  difference 
of  a  single  noise  component  between  two  SV's.  These 
we  may  separate  using  N-corner  hat,  again  under  the 
assumption  of  independence,  if we have  differences 
among  at  least  three  SV's.  For  example  if  we  start 
with 

AGS.. = the  Allan  variance  of  (GPS-SV)Iij  data, 
= cij + sij 

we  may  use  the  N-corner  hat  technique  to  solve  for 

Similarly,  we  may  solve  for  NGi  and  NSi  by  using  the 
N-corner  hat  technique on Allan  variances  of 
(GPS-Ref)'ij  and  (SV-Ref)'id  data  respectively.  We 
may now suppress  the  index i"  to  see  what  computed 
variances  are  available  for  a  specific  track  of  an 
SV.  Thus  in  addition  to  the  AG,  AS,  and  AGS  terms 
listed  above  we  have 

N G = C +   P + E ,  

N S =   S + P + E ,  

NGS=  C + S . 
Here  we  see  we  could  separately  solve  for  C, S, and 
P+E. Since  we  saw  before  when  we  considered AG, AS, 
and  AGS  that  we  could  solve  for M, S and  P+E+R,  by 
using  data  from  several  satellites  and  the  N-corner 
hat  we  can  separate  G  from  C  and  P+E  from R, and  we 
have  redundancy  in  estimating S .  Unfortunately,  we 
shall  see  later  that  there  are  correlation  terms  to 
consider  which  effectively  remove  the  redundancy. 
Also ,  we  find  the  confidence o f  the  estimate  in N- 
corner  hat  depends on the  relative  size  of  the  noise 
components.  This  makes  it  difficult  to  estimate R, 
the  reference  clocks,  if  they  are  significantly 
quieter  than  the  SV  clocks.  Before  we look in detail 
at these  ideas,  we  show  how  we  may  use  common  view 
data  from  several  locations  to  separate  P  from  E. 

We go  back  to  consider  (SV-Ref)'  data,  but  now  we 
look  at  how  we  can  use  this  data  when  we  have  the 
same  SV  measured  against  several  locations  tracking 
simultaneously.  If  we  now  subtract  (SV-Ref)'  data 
taken  at  location  "A"  from  data  taken  in  common  view 
at  location  "B"  we  find 

We  see  that  the  SV  clock  cancels.  Further,  the  EphAB 
term  is  the  differential  ephemeris  error  which  tends 
to  cancel  dependent on the  baseline  between  locations 
(4). If  we  compute  the  variance  of  this  common  view 
data  and  apply  our  N-corner  hat  technique  we  find 
that  the  original  ephemeris  variance  is  reduced  by 
products  of  common  view  cancellations  (see  appendix). 
The  result  is  that, if  we  solve  for  a  particular 
location  from  N-corner  hat,  the  variance  of  the 
ephemeris  error  is  reduced  by  at  least  an  order  of 
magnitude,  which  effectively  makes  it  negligible 
compared  to  the  other  terms.  If  we  denote  this 
variance  for  a  given  location  as NL, we  have: 

NL = P + R. 
Since  we  have  estimated  P+E+R  previously,  we  may  use 
this  to  separate  E  from  P+R. 

Where  Correlations  Occur  in  the  Computed  Variances 

Let  us  now  consider  the  effect  of  correlations 
between  various  noise  components  in  the  system.  The 
physical  clocks  we  believe  to  be  statistically 
independent. The elements  which  are  estimated  by  the 
GPS  control  segment,  however,  can  have  correlations 
dependent  on  the  ways  in  which  they  are  estimated. 
The  estimates  of  SV  clock  and  ephemeris  are  made 
based on measurements  of  signals  of  the  satellites 
against  ground  station  clocks  which  are  referenced  to 
the  GPS  master  clock.  Thus  there  should  be 
correlations  among  noise  components  we  have  denoted 
Eph,  Clx',  and  GPS. In practice,  the  ephemeris  is 
estimated  in  advance  for  about 10 days.  The  GPS  real 
time  Kalman  Filter  then  estimates  the  clock 
correction  value  and  corrects  the long term  estimate 
of  ephemeris.  For  this  reason  we  expect  the  Clx'  and 
Eph  terms  to  be  more  highly  correlated  than  other 
terms,  and  the  Clx'  and  GPS  to  be  more  correlated 
than  Eph  and  GPS.  Let  us  denote  these  various  cross 
variance  terms as G,C;  G,E;  and C,E corresponding  to 
the  correlations  between  GPS  and  Clx',  GPS  and  Eph, 
and  Clx'  and  Eph,  respectively.  Then  we  have 

A G = G + C +   P + E + R + G , C + G , E + C , E ,  

AS = S + P + E + R ,  

AGS=  G + C + S + G,C , 

N G =  C +  P + E S  

NS = S + P + E ,  

NGS=  C t S , 

NL = P +  R .  

We  have 7 equations  in 9 unknowns.  If  we  estimate R 
separately  this  does  not  improve,  since  the  equation 
for  NS  separates  nothing  more  from  AS  than  precisely 
R.  Thus,  if  we  remove R from  the  equations  above  NS 
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provides no new  information  and  we  have 6 equations 
in 8 unknowns. 

Solutions 

In practice  what  we  need to do  in  order  to  obtain  the 
variances  computed  above  is  to  select  tracks  from 
each  location so that  each  track  is  made  in  common 
view  with  at  least  three  locations,  and  each  location 
tracks  every  satellite  at  least  once. We also 
estimate  the  Allan  variance  of  each  reference  station 
clock.  Then  we  need to select  special  tracks so that 
for  each  location  we  have  a  set  composed  of  exactly 
one  track  for  each SV. For each  location  we  may  then 
compute  NG  and  NGS  using  the  set  of  special  tracks 
(and  NS  if  we  want  to  estimate  the  reference  clocks), 
as  well  as  AG,  AS  and  AGS  for  each  of  these  tracks. 
And,  finally,  for  each  of  these  tracks  we  compute  NL 
using  common  view  data  from  all  the  locations 
involved  for  the  track. We solve  for  the  following 
Allan  variances  of  components  for  each  of  these 
special  tracks,  for  each  location 

G + G,C = AGS - NGS , 
C + G,E/2 + C,E/2 = ( AG - AS - AGS)/2 + NGS , 

S + G.E/2 - C.E/2 = (-AG + AS + AGS)/2 , 

E + G.E/2 + C,E/2 = ( AG + AS - AGS)/2 - NL , 
P = N L  - R ,  

G,E = AG - AGS - NG + NGS . 
We see  that  we  solve  for  the  five  unknown  noise 
components  and  one  correlation  term  leaving  two 
correlation  terms  still  affecting our solutions.  We 
note  that  we  could  remove  the  G,E  term  from  our 
estimates  of C, S and E. We  choose  not  to  for  the 
following  reason.  Since  the  Eph  term  is  a  vector 
error  and  each  track  is  made  from  at  least  three 
locations,  and  often  these  are  over  large  baselines, 
the  Eph  term  will  enter  with  opposite  sign  for 
distant  locations.  To  the  extent  we  have  an 
orthogonal  look  at  the  satellite,  the  G,E  and  the  C,E 
terms  should  cancel  when  we  average  them  over  all 
locations.  If  we  could  subtract  the  G,E  term  from  all 
of  these,  we  would  and  attempt  to  average  out  only 
the  C,E  values.  But  remember,  the  above  equations  can 
only  be  used  for  the  special  set  of  one  track  for 
each SV for  a  given  location so that  we  could  compute 
NG  and  NGS.  Thus  it  is  only  for  these  special  tracks 
that  we  can  estimate G.E. However  we  estimate  G + G,C 
for each  of  these  tracks  for  each  location  and 
average  to  improve  the  estimate.  As  we  average  tracks 
with  different SV's  the  G,C  correlation  is  different. 
It  affects our final  estimate  of  G  only  as  an  average 
correlation  between  the  GPS  master  clock  and  all 
clock  correction  errors. 

For the  rest  of  the  tracks  we  compute  AG,  AS,  AGS, 
and  NL.  We  use  our  estimated  G + G,C  also,  but  only 
averaged  over  the  special  track  at  each  location  for 
a  given SV. We  solve  for  the  following  Allan 
variances  of  noise  components  with  possible 
correlations 

S + G,E/2 - C,E/2 = (-AG + AS + AGS)/2 , 

C + G,E/2 + C,E/2 = ( AG - AS + AGS)/2 - (G + G,C), 

E + G,E/2 + C,E12 = ( AG + AS - AGS)/2 - NL , 

P = N L - R .  

The correlation  terms  enter  here  exactly  in  the  form 
as for  the  special  tracks  above  where  we  can  use  the 
NG  and  NGS  terms.  Thus  we  may  average  them,  using  the 
orthogonality  of  our  measurement  base  to  cancel  some 
of  their  effect.  We  may  check  this  by  looking  at  the 
G,E/2 + C,E/2 residuals  after  averaging,  and  then 
subtract  the G,E estimates  for  those  that  are  among 
the  special  tracks. 

Thus, we believe  we  have  good  estimates  of  the  Allan 
variances of the  GPS  system  clock,  each  individual SV 
clock,  the  clock  correction  error for each SV clock, 
and  the  ephemeris  error  for  each SV. In addition  the 
Allan  variance  for  these  components  can  be  seen as a 
function of time  of  the  sidereal  day,  thus  allowing 
one to look  for  variations  in  noise  components  as  a 
function  of  orbital  position. We also  have  an 
estimate  of  propagation  noise  for  each  track  of  each 
SV from  each  location.  These  may  be  combined  in 
various  ways  to  look  for  different  aspects of the 
propagation  noise.  It  is  a  combination  of  both 
ionospheric  and  tropospheric  modelling  errors  and 
turbulence, as well  as  multipath  effects,  coordinate 
errors  at  the  antenna  and  receiver  noise. 

Results 

This  technique  was  applied to data  taken  over  the 
period  January  2 - February  27,  1986.  Our  computer 
program  limited  our  study  to 6 SV's measured  from 9 
locations.  We  studied SV's 6 ,  8. 9, 11, 12,  and  13 
(Navstars 3,  4 ,  6, 8, 10, and 9, respectively). The 
reference  stations  were  the  National  Bureau  of 
Standards  (NBS)  in  Boulder,  Co.  the  Jet  Propulsion 
Laboratory's  Deep  Space  Tracking  Station  at 
Goldstone,  Ca (JPL), the  National  Research  Council 
(NRC)  in  Ottawa,  Canada,  the  U.S.  Naval  Observatory 
(USNO)  in  Washington  D.C..  the  Paris  Observatory  (OP) 
in  Paris,  France,  the  Physikalisch-Technische 
Bundesanstalt  (PTB)  in  Braunschweig,  West  Germany, 
the  Tokyo  Astronomical  Observatory  (TAO)  and  the 
Radio  Research  Laboratory (RRL), both in Tokyo, 
Japan,  and  the NBS radio  station WWVH in  Kauai, 
Hawaii. Thus, we  have  two  stations  in  each  of  the 
following  areas  of  the  globe:  West  North  America, 
East  North  America,  Europe,  and  East  Asia,  and  one 
station  in  Hawaii.  This  provided  coverage  of  all 
satellites  throughout  the  day  with  redundancy.  The 
SV's were  tracked  simultaneously  at  NBS,  JPL,  NRC, 
and  USNO,  then  later  at  NRC,  USNO,  OP  and  PTB, 
continuing  around  to  OP, PTB, TAO.  and  RRL  then  to 
being  tracked  by  TAD.  RRL,  and WWVH or TAO,  RRL,  NBS, 
and  JPL.  There  were  also  combinations  involving  NBS, 
and  JPL  with  OP  and  PTB  or  combining  TAO, RRL, WWVH, 
NRC  and  USNO. In all  there  were  122  tracks  per 
sidereal  day  taken  from  the  9  sites, all taken  in 
common  view  among  at  least 3 sites  with  a  total  of 28 
different  common  view  track  times  per  sidereal  day. 
There  was  much  information  in  the  output  concerning 
the SV's, the  ground  stations,  and  the  GPS in 
general.  We  discuss  some  of  it  here. 

397 



First,  in  figure 1, we  see  the  square  root  of  the 
Allan  variance,  the  Allan  deviation,  of  the  CPS 
master  clock.  This  is  the  root  mean  square  (rms)  of 
all  estimates  taken  over  the 6 special  tracks (1 for 
each  SV)  at  each  of  the 9 locations.  This  behavior  at 
a  level  of  a  part  in  is  higher  than  one  would 
expect  from  that  clock  in  a  good  environment. 

Figure 2 compares  the  levels  of  the  three  Block I 
satellites  with  rubidium  clocks. The frequency  drift 
was  removed  from  each  of  these  using  a  mean  second 
difference  estimator.  The  values  reflect  rms  of 
estimates  over  all  tracks  of  each  SV  at  each 
location. The level  we  see  for SVll 8 is  typical  of 
all  three  when  studied  over  a  year.  and  reflects  the 
lack  of  constant  linear  drift  over  the  period  in 
question.  This  can  be  seen  in  figure 3 where  we  show 
the  phase  plot  of  SV# 8 against  NBS  with  a  drift 
removed. We see  that  this  was  a  quiet  period  for  SV's 
6 and 9. Figures 4 ,  5 ,  and 6 give  more  detailed 
information  concerning  these  three  spacecraft.  We  put 
the  performance  of  the  SV  clock  along  with  our 
estimates  of  clock  correction  error  and  ephemeris 
error  variances on the  same  plot.  Ideally,  the  clock 
correction  error  and  ephemeris  error  levels  should  be 
somewhat  below  the  noise  level  of  the  clock.  This  is 
because  it  is  measurements  against  the  clock  that  are 
used  to  make  these  estimates,  and  the  redundancy  of 
the  measurements  should  bring  the  estimates  below  the 
clock  noise.  We  see  in  all  three  cases  that  the  clock 
correction  error  is  somewhat  above  this  ideal  at  one 
day  of  integration  time.  For  the  ephemeris,  however, 
we  see  excellent  behavior. 

Next  we  look  in  figure 7 at OUT estimates  of  the 
clocks  aboard SV's 11, 12, and  13  (Navstars 8 ,  10, 
and 9). SV# 11 was  at  that  time  using  its 0.1 degree 
temperature  controlled  Rubidium  clock,  while  SV's 12 
and 13 were  Cesium  clocks. The performance  level  we 
see  is  consistent  with  other  estimates.  We  note, 
however,  that  SV# 13 has  an  increase  in  variance  at 
the  two  day  integration  time.  This  suggests  a 
periodic  behavior  in  the  SV  phase  with  a  period  of 
about  four  days. A study of phase  plots  suggests  this 
is  the  case,  though  a  cause  is  unknown.  Figures 8 ,  9, 
and 10 give  the  SV  clock  noise  levels on the  same 
plots  as  the  clock  correction  error  and  ephemeris 
error  for  these W's, 11, 12, and 13, respectively, 
as  before  for  the  other  SV's.  Again  we  see  that  the 
clock  correction  error  is  somewhat  less  than  ideal, 
while  the  ephemeris  error  level  is  excellent. 

In this  run  of  multi-station  separation  of  variance 
we  also  examined CKOSS correlation  effects. In 
solving  for  the G,E and  residual  C,E  terms  we 
expected  to  see  a  reversal  of  sign  for  locations 
widely  separated on opposite  sides of a  satellite. 
This  occurred  to some extent  only  for  integration 
times  of 1 day.  Data  taken  at  NBS  and JPL in  West 
North  America  and  OP  and  PTB  in  Europe  worked  well 
for  analyzing  this  effect.  We  conclude  that  the  level 
of these  correlation  terms  are  below  the  confidence 
of our  estimates  for  integration  times  longer  than 
one  day.  Since we expect  the C.E  term to be  among  the 
highest  correlations,  this  suggests  that  correlations 
in  the  system  are  not  corrupting OUT estimates.  Our 
limitations  for  now  are  the  finite  data  length,  and 
the  use  of  N-corner  hat  which  employs  differences  of 
variances. 

Other  results  of  note  include  comments on the 
estimates  of  reference  clocks,  the  propagation  noise, 
and on the  behavior  of  the  GPS  over  Asia.  We  found  we 
were  unable  to  estimate  the  behavior  of  the  reference 
clocks,  except  for  the  clock  at WWVH whose  stability 
was  in  the  1013  level. In general  we  find  that 
reference  clocks  can  be  estimated  only  to  the  level 
of  the  SV  clocks.  Our  estimates  of  the  propagation 
noise  showed us that  some of the  locations  in our  
ensemble  are  slightly  noisier  than  the  others.  This 
could  be  due  to  multipath or antenna  coordinate 
problems,  or, as in WWVH, being  closer  to  the  equator 
where  the  ionosphere  has  more  effect.  Finally,  by 
looking  at  the  clock  correction  error  variance  as  it 
behaved  throughout  the  day  we  saw  some  tendency  for 
it  to  be  worse  as  satellites  were  over  Asia  or  the 
Pacific. 

Conclusion 

In conclusion  we  see  that  this  separation  of  variance 
technique  has  grown  from  being  powerful  in  its 
inception  to  a  technique  providing  a  wealth  of 
information  about  many  important  aspects  of  the GPS. 
We  have  found  that  the  use  of  multiple  references 
gives  us  greater  confidence  in  the  estimates  of  the 
physical  clocks  in  the  system,  the  GPS  master  clock 
and  the SV clocks, as well  as  providing  better 
estimates  of  the  GPS  Kalman  estimation  error:  the 
error  in  the  satellite  clock  correction  terms  and  the 
ephemeris  error  variances  which  we  can  now  in  large 
part  separate  from  the  propagation  noise.  From  the 
study  of  correlation  effects  we  have  found  better 
ways  to  use  the  data  for OUK estimates as well as to 
better  understand  limitations  of  the  separation  of 
GPS  noise  components  technique. 
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Appendix:  Common  View  Cancellation  of  Ephemeris  Error 

Let us consider  cancellation  of  ephemeris  error  among 
3 sites  in  common  view,  the  general  case  among  N > 3 
sites  only  having  better  cancellation.  Let  us  label 
the  sites A,  B, and  C. We already  understand  that 
(SV-Ref)'  data  contains  an  ephemeris  error  term  which 
we  denoted  Eph.  But  to  understand  cancellation  we 
must  view  the  Eph  term  for  location A as a  vector 
ephemeris  error, W, projected  in  the  direction  eA 
from  the  SV  to  the  ground  station A. Then 

(SV-Ref)'A = sv + PKO~A + W * e A  - RefA 
(SV-Ref)'B = sv + P K o ~ A  + w * e g  - Refg, 

and 

so 
(SV-Ref)'AB = Prop& + EJ&'.(eA-eB> - RefAB. 

If  we  take  the  Allan  variance  of  this  expression  we 
have 
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where B is  the  covariance  matrix  of  the  ephemeris 
error.  A  simple  computation  using  the  linearity of 
the  covariance  matrix E shows  that we have,  in  the 
three-corner  hat  solution 

The  expression 

where E is  the  maximum  ephemeris  error  in  an 
orthogozz'f  coordinate  system.  This  follows  since, 
with E symmetric,  we  can  choose  a  coordinate  system 
which  diagonalizes  it.  Thus  the  ephemeris  error  is 
reduced  in  the  variance  not  simply  by  the  common mode 
cancellation  term  (eA-eg),  but  by  the  dot  product  of 
a  pair  of  cancellation  terms! In the  general  case  for 
N locations  this  expression  becomes  an  average  of 
pairs  of  cancellation  terms.  The  worst  possible  case 
for  this  term OCCUKS when  3  ground  stations  are 
located  120  degrees  apart  around  a  great  circle  with 
the  SV on the  orthogonal  axis.  In  that  case we find 

Of  course,  this  case  cannot  occur  in  practice  since 
the  SV  would  be  below  the  horizon  at  all  sites.  Thus 
we  see  that  the  variance  of  the  ephemeris  error 
cancels  to  at  least  an  order of magnitude  in  the N- 
corner  hat  computed  variance  across  locations, NL. 
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Figure 1: We see  the  square  root  of  the Allan variance,  the  Allan 
deviation,  of  the GPS master  clock.  This  is  the  root  mean  square (rms) of 
all  estimates  taken  over  the 6 special  tracks (1 for  each SV) at  each of 
the 9 locations.  This  behavior  at  a  level  of  a  part  in 1013 is  higher  than 
one  would  expect  from  that  clock in a  good  environment. 
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Figure 2 :  The levels of the  three  Block I satellites  with  rubidium  clocks. 
The  frequency  drift  was  removed from each  of  these  using  a  mean  second 
difference  estimator. The values  reflect  rms  of  estimates over all tracks 
of  each SV at  each  location. The level  we  see  for SW/ 8 is  typical of  811 
three  when  studied  over a year.  and  reflects  the  lack  of  constant  linear 
drift over the  period  in  question. 
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Figure 3: The phase plot  of SVll 8 against NBS with a drift  removed  showing 
the lack  of a constant  drift  over the period  of this analysis. 
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Figure 4: The noise or error  levels  of SVI 6 (Navstar 3) components. The 

Rubidium clock  at one day. 
clock correction error  level is worse than the noise level of the SV 
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Separation of U a r i r n o e s :  JM a - Ieb 1 7 ,  1986 
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Figure 5: The noise or  error  levels of SVII 8 (Navstar 4) components. The 

Rubidium clock at one day. 
clock correction error level is vorse than the noise level of the SV 
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Figure 6: The noise or error  levels of SVIl 9 (Navstar 6 )  components. The 

Rubidium clock at one day. 
clock correction error  level  is vorse than the noise level of the SV 
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Figure 7: Our estimates of the clocks  aboard W ' s  11, 12, and 13 (Navstars 

Rubidium clock, while SV's 12  and 13 were Cesium  clocks. The performance 
8, 10. and 9).  SVll 11 was at that time using its temperature controlled 

level we see is consistent with other  eotimntes. 
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Figure 8: The noise or error levels  of SVI 11 (Navstar 8) components. The 
clock correction error level is worse than the noise level  of the SV 
teperature controlled Rubidium clock  at one day. 
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Separation o f  V a r i m o e s :  JM 8 - Ieb 87,  1906 
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Figure 10: The noise or error  levels of SVll 13 (Navstar 9) components. The 
clock correction error  level is vorse than the noise level of the SV Cesium 
clock at  one  day. 
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