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Should the Classical Variance Be Used As a Basic 
Measure in Standards Metrology? 

DAVID W .  ALLAN 

Abstract-Since a measurement is no better than its uncertainty, 
specifying the uncertainty is a very important part of metrology. One 
is inclined to believe that the fundamental constants in physics are in- 
variant with time and that they a re  the foundation upon which to build 
internationl system (SI) standards and metrology. Therefore clearly 
specifying uncertainties for these physical invariants at state-of-the-art 
levels should be one of the principal goals of metrology. However, by 
the very act of observing some physical quantity we may perturb the 
standard, thus introducing uncertainties. The random deviations in a 
series of observations may be caused by the measurement system, by 
environmental coupling or  by intrinsic deviations in the standard. For 
these reasons and because correlated random noise is as commonly oc- 
curring in nature as uncorrelated random noise, the universal use of 
the classical variance, and the standard deviation of the mean may 
cloud rather than clarify questions regarding uncertainties; i.e., these 
measures are well behaved only for random uncorrelated deviatinns 
(white noise), and white noise is typically a subset of the spectrum of 
observed deviations. The assumption that each measurement in a series 
is independent because the measurements are  taken a t  different times 
should be called into question if, in fact, the series is not random and 
uncorrelated, Le., does not have a white spectrum. In this paper, stud- 
ies of frequency standards, standard-volt cells, and gauge blocks pro- 
vide examples of long-term random-correlated time series which indi- 
cate behavior that is not “white” (not random and uncorrelated). This 
paper outlines and illustrates a straightforward time-domain statistical 
approach, which for power-law spectra yields an alternative estimation 
method for most of the important random power-law processes en- 
countered. Knowing the spectrum provides for clearer uncertainty as- 
sessment in the presence of correlated random deviations, the statis- 
tical approach outlined also provides a simple test for a white spectrum, 
thus allowing a metrologist to know whether use of the classical vari- 
ance is suitable or whether to incorporate better uncertainty assess- 
ment procedures, e.&, as outlined in the paper. 

I .  INTRODUCTION 
IME AND FREQUENCY metrology provides some T of the most accurate measurements known to man. 

Over the last three decades a large number of papers deal- 
ing with the statistics of atomic time and frequency stan- 
dards have been published. The statistical procedures used 
in this discipline have been developed to a high level, 
driven by the need to deal with random correlated time 
series. The lessons derived from this work clearly require 
a negative answer to the question posed in the title of this 
paper. In essentially all atomic clocks the standard devia- 
tion of the long-term frequency fluctuations diverges 
without limit as the observation time increases. There are 
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appropriate places to use classical statistics within this 
discipline, however, they are limited. 

Since the statistical methods developed for time and 
frequency metrology are generally applicable for any 
equispaced time series, opportunity was taken to apply 
these methods in some other areas of metrology, namely, 
standard voltage cells. Gauge block data were also stud- 
ied but these data were not equispaced yielding some lim- 
itations to the procedure. These will be discussed in the 
text. 

It is worth noting that if one has a viable model for a 
time series, a spectral density model proportional to f w ,  

and if a = - I ,  then the classical variance and standard 
deviation are divergent. Because of the ubiquitous nature 
of I l fnoise for low-frequency components, perhaps it is 
reasonble to ask the question posed in the title. Aside from 
frequency standards 1 /f noise has been observed in im- 
portant systems: transistor junctions, semiconductor 
diodes, resistors, thermistors, carbon microphones, thin 
films, light sources, RF propagation fluctuations, and in 
a surprising number of other processes [ 11, [2]. If nosie 
with a I - 1 is found to be a reasonable model for mea- 
surement deviations in basic standards in general, then the 
classical variance and standard deviation may have lim- 
ited usefulness. The problem becomes significant when 
very long-term averaging is used. This is precisely what 
is required for maintenance of fixed standards which form 
the “invariant” building blocks of our measurement sys- 
tem. 

In maintaining a set of standards and deriving calibra- 
tions of other standards from the set, several questions 
arise. Two important ones are: 1)  to what degree does 
continued averaging of repeated measurements improve 
upon the quality of the result? and 2) what physical pro- 
cesses influence the long-term behavior of a standard? The 
first question is directly answerable within the context of 
the analysis presented here and, once answered, should 
show the conditions under which the classical variance 
can be used safely. One might note here that, for certain 
spectral models (e .g . ,  1 /f’), the sample variance gets 
larger with increased averaging or with increased number 
of readings. The second question cannot be addressed di- 
rectly, but experience in time and frequency metrology 
suggests that time-series analysis can provide a measure 
of the “health” of a standard. With high-quality oscilla- 
tors, we have found that certain types of behavior in  the 
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noise spectrum can be associated with certain physical 
processes, so that the noise analysis provides information 
on the performance limiting phenomena. This is espe- 
cially valuable for considerations of long-term perfor- 
mance. At this point one can only speculate that the tech- 
niques outlined herein will be as useful in understanding 
and in improving uncertainties in other areas of standards 
metrology. 

In time and frequency metrology it has been found that 
random variations are often well modeled by integer- 
power-law spectra proportional to f a ,  with -2 I a 5 
+2. Power-law-spectrum estimation procedures have 
been developed and these allow one to develop appropri- 
ate power-spectral-density models. The nonclassical sta- 
tistical methods outlined herein are simple to use and are 
convergent for the power-spectral-noise models encoun- 
tered in many physical systems. 

To show the divergent behavior of the classical vari- 
ance for some correlated time series note that it can be 
written [3] (Parseval's Theorem): 

m 

u2 = S ( w ) d w  
T O  

where S (  w )  is a symmetrical two-sided spectral density 
and o = 27r f .  If in metrology the variable being measured 
has random variations that have a power spectrum pro- 
portional to fa, then for a = - 1 the classical variance is 
infinite at both limits of the integral, i.e., unless there are 
both high- and low-frequency cutoffs to the process being 
analyzed, the classical variance is unbounded. A high- 
frequency cutoff fh always exists and is typically deter- 
mined by the measurement system. However, a low-fre- 
quency cutoff fr is needed for a I - 1, a n d 5  seems to be 
elusive, inaccessible, and, sometimes, impossible to de- 
termine. If fr is not reasonably measurable, the classical 
variance is not useful in characterizing f a  processes with 
a 5 - 1 .  

An assumption often employed in metrology is that the 
random uncertainties associated with the measurement of 
a given physical quantity are uncorrelated in time and, 
hence, they are often not treated as a time series. If the 
deviations in a series of measurements are random and 
uncorrelated (white spectrum), then the calculation of the 
mean, the standard deviation, and the standard deviation 
of the mean are meaningful and well understood. If the 
random deviations are correlated when taken as a time 
series, then a knowledge of their spectrum and/or auto- 
correlation function is necessary to properly interpret the 
results, define the uncertainties, and predict future values. 
It is often the case that, as one moves from short-term 
measurements to long-term measurements of the funda- 
mental constants of physics and of nature, one is forced 
to abandon the simple assumption of random uncorrelated 
(white) measurement noise. Short and long can take on 
very different values depending on the area of metrology. 
At state-of-the-art levels there are often processes which 
are correlated in time which influence the measurements, 

e.g., there may be a coupling to the environment, the 
physical device may suffer internal changes with time, or 
changes may be induced by the measurement process. 

One of the main goals of this paper is to outline a sim- 
ple statistical approach, for characterizing spectral models 
of the random deviations observed. Methods are devel- 
oped to replace the nonconvergent classical variance and 
standard deviation with variance measures that are as easy 
to compute but often reveal much more information about 
the random processes involved. Another goal is to provide 
a simple test for whiteness of the spectrum of the random 
deviations of a series of measurements. For the above rea- 
sons, if the spectrum is not known it should be measured. 
If it is white, then one may proceed in the traditional 
way-using the simple mean, the standard deviation, and 
the standard deviation of the mean, etc. If it is not white, 
then one can proceed as outlined herein for spectrum es- 
timation, or use some of the more traditional frequency- 
domain analysis procedures. Limitations of some of the 
methods outlined herein are associated with the fact that 
the development in these methods does not treat data un- 
equally spaced in time. In these cases, the methods out- 
lined in this paper have additional uncertainties and lim- 
itations. However, other methods shown allow some con- 
clusions to still be obtained even in these cases, however, 
more research is necessary before clear spectral modeling 
with good confidence intervals is available for unequally 
spaced data. In this regard frequency-domain methods are 
much further developed. 

11. SOME STATISTICAL TOOLS 
Because the usefulness of the classical variance, the 

standard deviation and the standard deviation of the mean 
depends upon the implicit assumption that a set of mea- 
surements are random uncorrelated (have a white spec- 
trum), the emphasis of this section will be on the devel- 
opment of some alternate statistical tools which have been 
found to be useful in time and frequency metrology. 

Over the years, the time and frequency community has 
published numerous papers and several books and has held 
conferences, seminars, and workshops which in whole or 
in part have addressed the problems of spectrum estima- 
tion, modeling, and systematic errors [7]-[ 121. Though 
difficult to summarize in a few words, one of the conclu- 
sions of all of this work is that most of the random pro- 
cesses occurring in time and frequency metrology can be 
well modeled by a power-law spectrum, &( f ) - f" [ 131. 
As will be shown later this model may als-o be appropriate 
for standard volt cells. If power-law spectra are good 
models in other areas of metrology, then those areas may 
benefit from the statistical analysis procedures for mod- 
eling of the random deviations of a set of measurements 
taken as a time series, Characteristics desired in a mea- 
sure of random deviations are that the measure: 

1) is convergent; 
2) has a solid theoretical basis; 
3) is convenient to use; 
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4) is easy to interpret; 
5 )  has a natural relationship to frequently occurring ex- 

periments and measurement methods; 
6) has tractable transformations between the frequency 

domain and the time domain and vice-versa; and 
7) is an efficient estimator. 

After some years of dealing with the problems of non- 
white spectra in time and frequency metrology, the IEEE 
formed a subcommittee that published recommended 
measures of frequency stability [8]. The focus in this pa- 
per is only on their recommended measure for the time 
domain developed for analysis of random correlated time 
series that cannot be adequately handled with a classical 
statistical approach. The measure they recommended sat- 
isfies most of the above requirements. 

The measure is simple to estimate for finite data sets 
and is defined as 

4.) = 1 W Y ? )  (1)  

where the brackets ( ) denote an infinite time average 
and the delta A denotes a first finite difference of adjacent 
fractional frequency measurements y, each sampled over 
a sample time 7. The squared first differences are aver- 
aged over a theoretical infinite series. The y can be con- 
sidered as any metrological measure taken as a time se- 
ries. This measure is sometimes called the “two-sample 
variance,” the “pair variance,” the “Allan variance” or 
one-half the “mean square successive difference,” and 
the confidence of the estimate of this measure has been 
reported in several papers [4], [8], [14]-[19]. 

In practice, for a discrete series of measurements, Y k  ( k  
= 1 to N ) ,  each taken over a sample time T ~ ,  one can 
compute an estimate of ut ( T ~ )  as 

N -  I 

For time and frequency measurements, y is taken as the 
normalized rate or frequency of a clock y = ( v  - v o ) / v o  
where v is the actual average clock frequency and vo is 
the nominal frequency. It is important to distinguish be- 
tween the carrier frequency v and the Fourier frequencyf 
of the random processes. This normalized frequency will 
have systematic deviations as well as random deviations. 
The spectral density of the random deviations is well 
modeled by S,(f) = h,f“ with a = -2, -1, 0, +1, 
+2. The coefficient ha is the intensity of the particular 
type (Y of power-law process. Which value of a is appro- 
priate is a function of the kind of clock being modeled 
and of the region of Fourier frequency f o r  of averaging 
time 7 of interest. Generally, one expects the spectral type 
to change as one goes from short-term to long-term aver- 
ages; and (Y tends to decrease as one goes to longer aver- 
ages. Once the random deviations in a measurement are 
characterized, optimum procedures can be developed for 
measuring other biases and systematics such as the time 
offset, the frequency offset, and the frequency drift of a 

clock [4]. Such a characterization also allows one to com- 
bine the measurements from an ensemble of clocks. These 
measurements can be statistically and optimally weighted 
such that, for example, the performance of the ensemble 
average is better than that of the best clock in the system. 
Such procedures are routinely used in the National Bureau 
of Standards (NBS) time scale. This scale which is quite 
smooth is calibrated periodically with the primary fre- 
quency standard, NBS-6, and the analysis of deviations 
in the scale provides guidance for the optimum interval 
between these calibrations [5]. Analogous approaches to 
the above could be utilized in others areas of metrology. 

Some of the limitations in the use of u ; ( ~ )  are now 
addressed in an effort to broaden its application in other 
areas of metrology. First, in contrast to adjacent fre- 
quency measurements, it is often the case in metrology 
that a significant amount of time will elapse between suc- 
cessive measurements of a quantity. This has been called 
“dead time,” and its effects on correlated time series 
analysis have been studied, establishing relationships be- 
tween the Allan variance and variances computed with 
dead time present. What has not been published is the 
effect of averaging such measurements so that dead time 
is distributed across the averages [20]. This will be dis- 
cussed later in this paper. Second, the Allan variance has 
an ambiguity in that it cannot easily distinguish between 
white phase noise (a = +2)  and flicker phase noise (a 
= + 1 ). This limitation was resolved by developing a 
“modified Allan variance,” Mod * o ; ( T ) ,  which is 
slightly more difficult to compute, but does give addi- 
tional insights into the spectral characteristics [2  11, [22]. 
This latter measure will also be useful as we proceed. And 
third, if the spectrum is known, the Allan variance can be 
computed, but the reverse is not generally true. Fortu- 
nately, if the spectral model is a power law, the reverse 
is true and the transformation is fairly straightforward. If 
the spectral model is an integer power law, then the trans- 
formation is easy (see Table 11). 

Since the eye has excellent data evaluation capability 
and is also a fair spectrum analyzer, it is always good to 
look at a measurement sequence as a first step. Fig. 1 
shows plots of some power-law spectra. For time and fre- 
quency the time series illustrated in Fig. 1 are analogcus 
to the time deviations in various precision clocks and os- 
cillators and for different sampling or averaging times. 
Since time is the integral of frequency, one may write [8] 

S J f )  = (2.lrf)*S,(f) ( 3 )  
where y = d x / d t  and x represents the time deviations. 

It is useful to name the integer-power-law spectral val- 
ues. If S,(f) = h,f“, and a = -2, - 1, 0,  1, or 2, then 
using (3) one may write SI( f )  = h , f ’ / ( 2 ~ ) ~ ,  with cor- 
responding values of @ = -4, -3 ,  -2, - 1 ,  or 0. Table 
I gives the names for the different values of Q and @, and 
Table I1 gives the Fourier transform relationship. Note 
that for time and frequency, the time deviations and phase 
deviations are proportional, that is, x = 4/(  2avo) ,  where 
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f O  

f -1 

f-3w 
f -4 1 

Fig. 1 .  Simulated power-law spectra where f is the Fourier frequency. 
(These are commonly occumng random processes in nature. They are 
namedf', white noise;f-',  flicker noise;f-*, random walk;f-', flicker 
walk; a ~ ~ d f - ~ ,  random run.) 

2 0  SUPER WHITE WHITE 

1 -1 SUPER FLICKER FLICKER 

0 -2 WHITE RANDOM WALK 

-1 -3 FLICKER FLICKER WALK 

- 2  -4 RANDOM WALK RANDOM RUN 

4 denotes the phase deviation of an oscillator. The power- 
law processes depicted in Fig. 1 are computer simulations 
and could be analogous to a time series from any metrol- 
ogy set. One notes from the above relationships, for ex- 
ample, that white noise on y (a = 0 )  is random walk 
noise on x (0 = - 2 ) .  One can use either y or x as the 
deviations in a measurement series. Since we believe fre- 
quency is one of the invariants in physics, we may be 
inclined to use y as our generic measurement deviation 
variable for a general metrology time series, but the log- 
ical development here allows for the use of x or y .  A few 
of the advantages and disadvantages of specific choices of 
x or y will be presented. 

For discrete data the continuous derivative y = d x / d t  
becomes Y k  = where k is the counting index in 
the measurement time series and where Axk = X k +  - xk 
is the first finite difference on the time deviation series xk, 
with xk spaced T~ apart, i.e., 70 is the average or nominal 
spacing between the beginning of the Y k  and the beginning 
of the yk + Given the discrete measurement time series 
Y k ,  (2) provides an estimate of u;(70) .  To observe the 

dependence of of (70) on 7, 7 can be easily varied by av- 
eraging as many adjacent values on the yks as desired 

N - 2 n + l  c 
k = i  

I 
0 3 7 )  = 

2 ( N  - 2n + 1) 

where 7 = mO. A mathematically equivalent relationship 
can be used to estimate o;( 7 )  from the time deviation 
data 

, N - 2 n +  I 

Varying n ( 7  = n70) in either (4) or (5) gives a time- 
domain power-law s ectrum-estimation procedure. For 

gives the relationship between p and CY. Notice, for the 
above types of power-law spectra, the Fourier transform 
relationship is simply CY = - p  - 1 ( - 3  < CY I + 1) and 
p = -2 (a 1 + 1).  There is a one-to-one correspon- 
dence between ha and the proportionality constant for 
uy( 7) (see Table I1 and [8]). 

Since log u; ( 7 )  - p log 7, it is convenient to plot uy ( 7 ) 
on a log-log plot with n = 2', i = 0 ,  1, 2 ,  * . The 
slope p / 2  and the intensity u y ( 7 )  from this log-log plot 
focus on two parameters (spectral intensity and spectral 
type) which may characterize a random process over sev- 
eral decades of Fourier frequency. Notice, that with a 
measurement time-series data stream Y k  the sample time 7 

= m0 can be varied in the software as in (4) or ( 5 ) .  Of 
course, in principle, it can be changed in the hardware or 
as part of the measurement process, but that is usually 
much more cumbersome. 

A simple white-noise-test procedure can be readily de- 
veloped. Given the data stream Y k  one may also compute 
the standard deviation for N samples in the conventional 
way 

power-law spectra uy r ( 7 )  is proportional to T ~ .  Fig. 2 

where 7 denotes the mean value of the sample. Taking the 
ratio of the standard deviation squared to the Allan vari- 
ance illustrates the convergence or the lack of the con- 
vergence of standard deviation, for the various power-law 
spectra of interest (see Fig. 3). This ratio is also a mea- 
sure of the amount of correlation in the data. As the data 
length increases without limit, the standard deviation di- 
verges without limit for all a 5 -1, e.g., flicker and 
random walk. In fact, one can use this ratio, i.e., the di- 
vergent nature of the standard deviation, to estimate the 
value of p from the following relationship: 
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White PM 

Flicker PM 

White FM 

Flicker FM 

Random FM 
Walk 

White PM +2 

1.038 + 3 Pn(2nfhr) 
Flicker PM +1 hlf -2f hl - 1 hi‘.’ 

( 2 n )  ( 2 f f ) *  

ihor-’ -2f-2 hO 
White FM or 0 h0 
Random Walk PM (2n)  

h 
Random Walk FM - 2  h . ~ f - ~  h.29 

These power-law processes have been very useful in modeling the random processes 
in precision clocks and oscillators. 

P 
- 3  - 2  -1 

-1 
a = - p - 1  

Mod. 0 , 2 ( T )  - lp 

- 2  

Flicker FM -31 \ 
Walk 

Fig. 2. Fourier transfrom mapping from time domain to frequency domain 
and vice versa. (With u:(r) - 7 ” (  -2  5 p < + 2 )  and with Mod . 
u:(7) - T ’ (  -4  < p I -2 ,  01 = - p - 1) .  Analyzing the data in the 
time domain and using the above mapping is like a super-fast Fourier 
transform in the case of power-law spectra.) See [22], [23] for definition 
of Mod . CY: ( 7 ) .  

If the spectrum is white ( (Y = 0, p = - 1 ), then the ratio 
is I ;  i.e., the classical variance equals the Allan variance; 
hence, if the ratio is not 1, then the spectrum is not white. 
If (Y < 0 (correlated random deviations) then this ratio 
will be greater than 1. If the spectrum is not known, this 
simple ratio test should be conducted. See von Neumann 
and Hart for information on the distribution of this ratio 
[19], [20]. As an approximate rule, if the ratio is unity 
within 1OO/dN percent, then one can probably safely 
proceed with the classical variance and the traditional ap- 
proach. If not, one has reason to doubt the validity of the 
classical variance and a procedure such as that outlined 
here may be useful as a time-domain analysis tool and for 
estimating the spectrum of the measurement deviations. 
Tabular values for (7) are listed in [26] and [27] for var- 
ious values of N and for data with or without dead time. 
The “ratio = 1 ”  test is valid with or without dead time. 
Equation (7) is for the no dead-time case, and is the basis 
for the curves plotted in Fig. 3 .  Other interesting values 
of the ratio in (7) are: NZnN/( 2 ( N  - 1 ) Zn2) for CY = - 1 
( p = 0, flicker noise); and N/2  for (Y = -2 ( p = + 1, 
random walk). 

10 

10 

f 
w- 

z 
a- 

P, 

1 

0.1 

- 

a =O White FM 

C=-L?-l - 3 < a <  + 1  

10 Id io3 

Number of Samples, N 

Fig. 3. u:( 7 )  is a convergent stable measure in the presence of the random 
processes named in Fig. 1. (Plotted on the ordinate is the ratio of the 
standard deviation squared to u:( 7 )  as a function of the number of sam- 
ples N, where 7o is the nominal averaging time for each measurement in 
a series. For l/f, l/f * and l/f’ power-law processes the standard de- 
viation increases with increasing N without bound.) 

In contrast to time and frequency metrology where ad- 
jacent frequency measurements are easy to make as cal- 
culated from the time measurements, in other areas of 
metrology a significant amount of time may elapse be- 
tween the measurements. The effects of this dead time 
have been studied and one can still determine power-law 
spectral density models, if they are appropriate for the 
random variations [21]-[28]. In the case of white noise 
FM, the dead time has no effect since the deviations are 
random and uncorrelated regardless of their spacing. For 
the dead-time case, the following more general variance 
is defined 

( ( J : ( N  = 2, TO? 70, fh) ) = ; ( (W’)  ( 8 )  

where the N = 2 denotes a two-sample variance, To is the 
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time between the beginning of one data sample and the 
next, 7o is the nominal averaging time for each y (T,, - 
T~ is the dead-time), and fl, is the measurement system 
bandwidth. Notice that (8) is the same on the right as ( I )  
except for the A ’ ,  where the prime denotes the presence 
of dead time between each measure of y. Equation ( 3 )  can 
be used to compute an estimate of ( u : ( N  = 2,  T,, T(), 
fh) ) .  If the random deviations have a white spectrum, then 
( I )  and (8) give the same variance. If  they are not white 
then the variances will be different. Again the differences 
have been studied and published, and i t  has been shown 
that even with dead time present, the underlying power- 
law spectrum can be estimated [ 2 6 ] - [ 2 8 ) .  If the ratio 
T o / ~ o  is held constant, then the Fourier transform rela- 
tionship CY = - p  - 1 is still valid 1281. 

Because it is convenient to do averaging in the soft- 
ware, we may think of averaging adjacent values even 
when there is significant dead time between them. In  other 
words, use (4) to ascertain the T o r  7 dependence, where 
T = nTo and 7 = n7(,. This has been studied and also 
shown to be useful in  estimating the appropriate under- 
lying power-law spectral density model. A uv( 7) versub 
7 plot may more meaningfully beccome a ut,,( T )  versus 
T plot with the definition 

where the y is primed to denote i t  is an average of n se- 
quential yk values across dead time, and T i s  the nominal 
total time window over which each y’ is averaged. This 
distributed dead-time approach is useful for - 3  < a I 
0, which is an important range of power-law spectral-ex- 
ponent values. The dependence of &( T )  on T asymp- 
totically approaches the same behavior as in the no dead- 
time case for useful values of a ,  making it a convenient 
measure, that is, a Y d ( T )  - T p  for T >> To and CY = 

A slight limitation for the distributed dead-time ap- 
proach for determining p is that if p = - 1 (white noise), 
then a can have a range of values CY L 0. This is typically 
not a problem, because in this case classical statistics can 
be used. 

As an alternative, if dead time exists in a data stream, 
its effect can be bypassed by using the xk s in (5) as analog 
to the measurement deviations. In this case the modified 
Allan variance, Mod . u ; ( ~ )  - T ~ ’ ,  often yields more 
information from the 7 dependence. The range of useful- 
ness is for - 3  I p’ I + 3 .  If p‘  = - 3 ,  the x’s have a 
white spectrum; if p’ = -2, the spectrum of the x’s is 
flicker or 1 /f. For p’ > - 2  the asymptotic behavior for 
large Tor  7 is the same as for the Allan variance, but there 
are some significant variations for small n ( 7 = n7”) [ 2 2 ] ,  
[ 2 3 ] .  In the case of p > - 2 ,  it is usually easier to use the 
Allan variance directly-with or without the dead time. 

Another limitation of the above measures is that equi- 
spaced data are assumed. Unequally spaced data are a 

2 

- p  - 1. 

common occurrence in metrology; hence, dealing with 
this limitation is a significant concern. Limited informa- 
tion is available for spectrum estimation for unequally 
spaced time series (291, 1301. Much more theoretical work 
is needed in this area. Responding to the question in the 
title of this paper, there are some things that can be done 
using the current analysis to recognize nonwhite noise 
conditions in an unequally spaced time series. Consider 
an unequally spaced sampled set extracted from a process 
with a white spectrum. First, the classical variance is 
equal to the Allan variance independent of the data spac- 
ing for such a set 1311. Hence, the test using (7) can be 
employed as a test for correlation in an unequally spaced 
time series. If the process is random and uncorrelated 
(white), then the ratio is 1 .  Hence, if the ratio is not 1 ,  
then the spectrum is not white even if the data are un- 
equally spaced. Again, for power-law spectra, if the ratio 
is greater than 1, then correlations exist in the time series; 
however, the interpretation of the ratio is not the same for 
unequally spaced data. On the other hand, even for un- 
equaily spaced data, the ratio will be a flag as to whether 
the classical variance is safe to use. And second, a uy( 7) 
or Mod * u,.( 7) analysis of such a set will yield the con- 
clusion that the spectrum is white under the assumption 
that the values taken from the set are equispaced even 
though they may not be as a further test of the spectrum 
being white. 

We have not discussed the distribution of the random 
deviations. An erroneous assumption that is sometimes 
made is that if a noise process has a normal distribution, 
it is white. What is, in fact, the case is that the distribution 
is independent of the spectral type of noise; for example, 
flicker noise can and does have a normal distribution for 
those cases investigated in precision oscillators. On the 
other hand, a square distribution can, of course, have a 
white spectrum. It is the experience of the author that nor- 
mal distributions are encountered in most of nature’s ran- 
dom processes. The distribution becomes important when 
dealing with the confidence of an estimate and normality 
is assumed throughout this paper. 

111. EXPERIMENTAL FINDINGS 

A.  Atomic Clocks 
Fig. 4 is a ~ ~ ( 7 )  plot of the atomic clocks in the NBS 

ensemble. The T - ~ / ~  behavior ( p = -1, a = 0)  is clas- 
sical white noise FM and typically persists for sample 
times out to several days. For the longer sample times the 
behavior changes to u Y ( 7 )  - 7’12( p = +1, a = - 2 ,  
random walk FM ) for the appropriate model [3 13. Using 
the measured levels of the white noise FM and of the ran- 
dom-walk FM for each clock, an algorithm is employed 
that assigns optimum weighting factors to each clock to 
generate an optimum software standard, which should be 
better than the best clock in the ensemble. Some simu- 
lated estimates are also plotted in Fig. 4. These frequency 
stability estimates have been verified through intema- 
tional comparisons. The frequency uncertainty of the NBS 
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Fig. 4. A fractional frequency stability plot of the various members of the 
NBS clock ensemble as a function of the sample or averaging time T. 

(The clocks are modeled by white noise FM for sample times out to a 
few days, and then by random walk FM for sample times longer. The 
circles are the estimated stability from simulated data of the computed 
NBS weighted clock ensemble. The estimated stability has been verified 
through intemational comparisons.) 

weighted clock ensemble slowly degrades to the inaccu- 
racy of the NBS primary frequency standard (NBS-6 ac- 
curacy = 8 parts in after about a year; the optimum 
calibration interval is, therefore, about one year. 

B. Standard Voltage Cells 
The preliminary investigations reported in this paper 

were performed on data provided by Marshall [33]. The 
simple test of calculating the ratio of the standard devia- 
tion squared to u:(70) ,  as outlined above, was performed 
on the first cell and gave u2(N = 2 2 ) / 4 ( 7 , )  = 2 f 0.2, 
which is consistent with p = 0 ( c y  = - 1 or 1 /f noise). 
The statistical methods for frequency standards were em- 
ployed to characterize the voltage fluctuations for four 
transfer cells relative to the average of the four reference 
cells. In the first case, the voltage deviations were treated 
as analogous to frequency deviations y. Each voltage dif- 
ference was measured for a few minutes once a week. 
Fig. 5 is a plot of one of the comparisons as a function of 
time. Fig. 6 is the square root of the Allan variance a ( T),  
with the distributed dead time for the data plotted in Fig. 
5 .  A modified-Allan-variance analysis taking the voltage 
to be analogous to the time deviation x (assuming again a 
once-per-week measurement) yields good agreement with 
the 1 lfspectral density model for the voltage deviations. 
It is apparent from Fig. 6 that, within the confidence of 
the estimate, the white noise model is excluded. Barnes 
has shown that the Allan variance estimate from a finite 
data set is an unbiased estimate, and that it has a chi- 
square distribution. The confidence of the estimates are 
as given in [15]. All of the other cell pair comparison 
combinations were consistent with a 1 /f noise model. 
Since the data for the standard volt cells were equispaced, 
the theoretical tools developed in the previous section have 
been employed with the only assumption that the data are 
well modeled by power-law spectra. Within the confi- 
dence of the estimates this appears to be a valid assump- 
tion. 
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Fig. 5 .  A plot of the voltage stability of one of four standard volt cells 
with respect to a four-cell average reference. (Measurements were made 
on each of the four standard cells with respect to the reference for a few 
minutes once per week.) 
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Fig. 6. A voltage stability plot uyd( T), as a function of sample interval T. 
The confidence intervals shown are 90 percent (An 1 /f model is clearly 
a better fit than the white noise model. The standard deviation increases 
as the data length without bound for 1 lfvoltage deviations. The modi- 
fied Julian day (MJD) is a day count equal to the Julian day; 2 400 000.5 
days. MJD 4643 1, for example, begins 0000 h universal time on January 
1, 1986.) 

Fig.7 for the standard voltage cells is somewhat anal- 
ogous to Fig. 4 for the atomic clocks. Fig. 7 is a plot of 
uyd(  T) for each of the five versus a weighted ensemble. 
The power-law-spectral model for each is clearly not white 
noise, and, in general, a 1 lfbehavior seems to be a better 
model, i.e., u,d(T) - T O .  

C. Gauge Blocks 
The data analyzed in this section were provided by Dr. 

R. Hocken’s staff of NBS. The data fell into two catego- 
ries: “mechanical” measurements, which are the com- 
parisons of two gauge blocks of nearly identical size and 
material; and “interferometric” measurements, which are 
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Fig. 7. A plot of the voltage stability a y d (  T ) ,  of the four-cell reference, 
and of each of the four standard cells with respect to a statistically 
weighted voltage ensemble. (The abscissa is the stability at sample times 
of one, two, four, and eight weeks. The voltage deviations appear to be 
reasonably well modeled by a power-law spectra in the range from 1 /f 
to l/f ’, with 1 /f being a somewhat better model on the whole. The 
weighted ensemble stability can be described by 7‘) = 15 nV in the 
range of sample intervals shown.) 

the measurements of gauge blocks with a wavelength 
standard. The problem of unequally spaced data was a 
significant one in the case of the gauge-block data. For 
the mechanical measurements there were some sets that 
were nearly equally spaced and some not. For the inter- 
ferometric measurements, most of the data sets were far 
from equispaced. Hence, the conclusions drawn from the 
gauge-block data are not as definitive as those for the 
standard voltage cells and for atomic clocks. 

The average time between mechanical measurements 
was about 18 days, and for the interferometric about 385 
days. Twenty mechanical and thirty interfeiometric time 
series were analyzed. One 25.4lcm (10-in) Cervit “stack” 
was also analyzed. Figs. 8, 9, and 10 are respective time 
series plots from each of these three types of measure- 
ments. 

Most of the mechanical time series passed the ratio test 
for white noise; however, the uYd( T)  and Mod - uy( 7 )  

analyses both indicated some nonwhite (excess low-fre- 
quency deviations) noise behavior for T and 7 values of 
the order of three months and longer. Most of the inter- 
ferometric time series did not pass the white noise ratio 
test, and the value of the ratio averaged over the thirty 
sets of data was consistent with a 1 lfpower-law spectral 
density model. The white noise ratio test given in (7) fails 
for the Cervit “stack” data shown in Fig. 10. Since the 
data are unequally spaced and there are only 37 measure- 
ments, it is difficult to estimate the spectrum. The ratio is 
consistent with 1 lfnoise but certainly not conclusive. 

An indication that the long-term deviations are in the 
gauge blocks rather than in the measurement system is 
that the square root of the Allan variance at uyd( T = 10’s) 
was porportional to the lengths of the gauge blocks to 
within a few percent. 

Because much of the gauge block data was unequally 
spaced, more work is necessary before any definitive con- 
clusions can be drawn. The indications, however, are that 
the random processes involved are not well modeled by 
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Fig. 8. A plot of the fractional length difference deviations between two 
2.54-mm (0.1 in.)  gauge blocks over the course of about 1,200 days. 
( A  - 10.XD-6 would correspond to - 1 p in, for example. See Fig. 6 
for explanation of MJD.) 
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Fig. 9. Similar to Fig. 8, this is a plot of the fractional length difference 
of another gauge block versus a wavelength standard taken over a little 
more than 8,000 days. (In contrast to Fig. 8, the data plotted in this 
figure have more energy in the low Fourier frequencies. See Fig. 6 for 
explanation of MJD.) 
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Fig. 10. A plot of the fractional length deviations of a 25.4-cm cervit gauge 
block stack measured over about 270 days. (The nonwhite character of 
the deviations is visually apparent.) 

white noise. Hence, the use of the classical variance, the 
mean value, and the standard deviation of the mean should 
still be called into question for sampling periods of the 
order of a year and longer. 
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IV. CONCL[JSIONS 
For the data analyzed, one concludes that the classical 

variance or the standard deviation can give misleading re- 
sults for the uncertainties in  measurements on standard 
voltage cells and for long-term variations in gauge blocks. 
This has also been shown to be the case for precision os- 
cillators used in time and frequency metrology. One 
should study short-term deviations in standard volt cells 
to determine whether the spectrum is properly modeled 
by white noise. If the short-term behavior can be shown 
to be white, then the traditional classical statistical ap- 
proach is appropriate for averages over that data region. 
For the long-term deviations in frequency standards, stan- 
dard voltage cells, and gauge blocks, a white noise model 
appears not to be viable. The models for the power-law 
spectral behavior of the long-term deviations can be es- 
timated by the time-domain analysis techniques outlined 
in the text, except in the cases where the data are signif- 
icantly unequally spaced. In general, frequency-domain 
techniques can be employed for spectrum estimation. 
Knowing the spectral-density models allows estimation 
procedures to be employed for improved uncertainty as- 
sessment. The resulting uncertainties will typically be 
smaller than those obtained from the classical variance, 
will better characterize the current “health” of a stan- 
dard, and will generally be time dependent. There is a 
simple test to determine if the spectrum of the measurement 
deviations is white, allowing one to know when and when 
not to use the classical variance and the standard devia- 
tion. Perhaps the real answer to the question posed in the 
title is a limited yes; safely limited to those cases where 
the spectrum is white (random uncorrelated measurement 
deviations). Otherwise, a sample variance approach, as 
outlined in this paper, should probably be employed. 
Since the occurrence of nonwhite spectra, giving rise to a 
divergent classical variance, appears in long-term mea- 
surements, the spectrum should be tested for whiteness. 
If it is nonwhite, then it should be characterized and mod- 
eled for proper uncertainty assessment. 
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