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Errors in Determining  the Center of a Resonance Line 
Using Sinusoidal  Frequency  (Phase)  Modulation 

Invited Paper 

FRED  L.  WALLS 

Abstract-The errors in determining  the  center  of  a  resonance  line, 
which  are  due  to  residual  imperfections  in  practical  high-precision 
electronic  systems  using  sinusoidal Frequency or  phase  modulation, 
are  reviewed. In particular,  the  effects  of  residual  amplitude  modula- 
tion,  baseline  distortion,  and  harmonic  distortion in the  modulation 
process  and  the  demodulator  are  qualitatively  analyzed for a  Loren- 
tzian  line  in  the  limit  of  small  modulation  index.  This  permits  one  to 
calculate  analytically  the  frequency  offsets  as  a  function of modulation 
index,  the  transfer  function  of  the  fundamental,  and  various  harmon- 
ics of  the  modulation  frequency.  Using  this  model  one  can  easily  for- 
mulate  accurate  tests  for  experimentally  measuring  the Frequency er- 
rors in  practical  servosystems,  even if the  original  assumptions  about 
small  modulation  index  and  a  pure  Lorentzian  line  are  not  exactly ful- 
filled. 

M 
INTRODUCTION 

ANY systems  use  sinusoidal  frequency or phase 
modulation of a  probe  frequency  to find the  center 

of  a  resonance  line.  The  purpose of this  paper is to review 
the  residual  imperfections  that occur in practical  systems 
and  the  subsequent  errors in determining  line  center.  In 
particular,  the  effects  of  residual  amplitude  modulation, 
baseline  distortion,  and  harmonic  distortion  in  the  mod- 
ulation  and  demodulation  processes are qualitatively  ana- 
lyzed  for a  Lorentzian  line in the  limit  of  small  modula- 
tion  index;  this  permits  one  to  calculate  analytically  the 
frequency  offsets as a  function of the  modulation  index, 
the  transfer  function of the  fundamental,  and  various  har- 
monics  of  the modulation  frequency.  Based on  this  model 
one  can  then  compare  the  relative  susceptibility of  various 
servo  configurations to residual  electronic  imperfections. 
Additionally,  one  can  easily  formulate  accurate  tests  for 
experimentally  measuring  the  frequency  errors  in  practi- 
cal  servo  systems,  even if the  original  assumptions  about 
small  modulation  index  and  a  pure  Lorentzian  line  are  not 
exactly  fulfilled. 

MODEL OF A RESONANCE LINE AND ERROR SIGNAL 
One of  the  most  common  methods  for  determining  the 

center  of  a  resonance  line  with  high  precision  is  to  sinu- 
soidally  modulate the frequency (or phase) of the  probe 
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and  detect  the  phase of the  resulting  amplitude-modulated 
signal at  the  fundamental  of  the  modulating  signal.  The 
general  scheme is shown in Fig. 1. The  various subsys- 
tems  and  their effect on  errors in determining  the  center 
of  the  resonance  will  be  analyzed in later  sections. 

Curve  a  of  Fig. 2 shows  a  typical  resonance  line  that 
would  be  observed at point C of  Fig. 1 as a  function of 
slowly  sweeping  the  frequency  of  the  probe  (without 
modulation)  across  the  resonance.  Curve  b  of  Fig. 2 is the 
derivative of curve a [l], [2]. 

For  the  moment,  let us assume that  the  probe  output is 
a  sine  wave  with  a  very  narrow  spectral  width  compared 
to the  width of the  resonance  shown in Fig. 2, curve  a. If 
the  center  of  the  probe is at  the  point A, then  the  output 
signal  increases as  the  frequency of the  voltage-controlled 
oscillator i s  increased; at point B the  signal  decreases  as 
the  probe  frequency  increases. If the  frequency  of  the 
probe is swept  back  and  forth  (FM), then  the  signal  has 
both  a dc  and  an  ac  component. If the  deviation  of  the FM 
is small  compared  to  the  half-linewidth W, then the  de- 
modulated  and  filtered  output  of  the  synchronous  detector 
(measured  at  point D of  Fig. 1) fairly  accurately  repro- 
duces  the  derivative  of  curve a.  In curve b the point of 
zero  signal,  which  also  has  the  steepest  slope, nominally 
occurs at the  center  of  the  resonance  line.  This  curve is 
referred to  as a  frequency  discriminator  curve.  The  signal 
at point D can  be  used to steer  the  probe  frequency  be- 
cause  near  line  center  we now  have  a  dc  signal  propor- 
tional to  the difference  between  the  probe  frequency  and 
the  center  of  the  resonance. 

Now let us examine  this  process in greater  detail.  More 
generally,  assume that we  have a  symmetric  Lorentzian 
line  superimposed on a  sloping  and  curved  background. 
Then  the  normalized  signal  amplitude is 

signal  amplitude = Y 2  2]1’2 

[,2 + ( W  - W O )  

+ K &  - W O )  + & ( W  - (1) 

where K, and KZ are  the first two coefficients of a Taylor 
expansion of the  background  about  line  center, y = 2~ W 
is  the  half-angular  linewidth, W is  the  instantaneous  an- 
gular  frequency of the  probe,  and coo is  the  true  center of 
the  resonance.  A  Lorentzian  lineshape  is  chosen  to  sim- 
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Fig. 1 .  Block  diagram of sinusoidally  modulated probe oscillator which  can be locked  to  center of reference line. 

1.0 r - + 0 . 5  therefore  another  term, A, cos Q t ,  needs  to  be  added to 
QI 
W 

c, 
3 ( 1 ) .  Substituting  for W in (1) and  adding  the A, term  yields 
7 (3). It  has  been  assumed  that  the  amplitude  modulation  is 

E 
0 

c 
m the  phase  with  the  frequency  modulation,  which  yields  the 
t maximum  offset  from this term: 

- > 

7 

m 
C 

.l- 
m . signal  amplitude = 
v) 

e - a .  1 [ l  + 7 [ W 1  - WO + B cos Q r  - M2s sin 2Qt 
0 I I 

A wo B 
- 0 . 5  

vco Frequency +M2c  COS 2Qt + M 3 s  sin 3Qt + M3c COS 3Qt]’)-’/’ 
Fig. 2. Reference  line a and its first  derivative b 

plify the  calculations.  Other  kinds  of  symmetric  reso- 
nance  lineshapes  yield  the  same  leading  terms;  however, 
the  coefficients  differ  somewhat.  Likewise,  the first two 
terms  of  the  Taylor  expansion of the nonflat  background 
yield  the  leading  odd  and  even  terms  due  to  the  back- 
ground. 

Real  frequency or phase  modulators  have  small  nonlin- 
earities  and  therefore  generate  small  components  of  mod- 
ulation  at  multiples  of  the  modulation  frequency.  Also  the 
modulation  reference  signal  generally  has  some  higher 
harmonic  components  as  well.  Therefore,  let us assume 
that the  modulated  probe  signal  is of the  form 

J 

+K,[(w,  - W,,) + B cos Q r  - M2s sin 2Qt . * . ]  
+~~[(o, - WO> + B cos O r  - sin 2 ~ t  - e ]’ 
+A,  cos Q t .  ( 3 )  

If the  coefficients M2s, M2c, M3 and M3 c are very  small 
compared  to y, A ,  < 1 ,  and if the  modulation  amplitude 
B is smaller  than y, then  near  line  center  the  denominator 
of  the  first  term  can  be  expanded  using  the  approximation 

W = wl + B cos Q t  - M2s sin 2 9 t  + M2c cos 2Qt We  then  have 

+M3s  sin 3Q rt + cos 3Qt ( 2 )  signal  amplitude = dc terms 

where Q is  the  modulation  frequency  and W’ is the  average 
frequency of the  probe  signal. 

B 2  
4Y 

- 7 (cos 2Qr)(l + S’) 

The  effects of distortion in the  reference  and  the  mod- 
ulation  process  are  contained in coefficients M2s, M2c, B 
M 3 c ,  and M 3 s .  This  model  assumes  that  residual  modu- Y 
lation  at  harmonics  or  subharmonics of Q and  especially B 
at Q / 2 ,  Q ,  2Q, and 3Q due  to  spurious  signals  on  the  probe + MZs(sin Q r  + sin 3Qr)(l  + 6 ” )  (5c) 
control  line or other  sources is small  compared  to  that 27 
imposed by the  modulator.  This  places  a  heavy  burden  on B 
the  postfilter  (see  Fig. 1 )  and  on  the  decoupling  between - 7 M~,(cos Q t  + COS 3Qt) (  1 + 6 ” )  (5d) 2-Y circuits,  especially in servos  using  a  square-wave  refer- 
ence  for  the  demodulation.  The  modulation  process  can B 
and  usually  does  cause  some  amplitude  modulation; 

+ 7 M 3 s ( ~ i n  2Qt + sin 4 Q t ) (  1 + 6 ” )  (5e) 

- -  ~ \ ~ ( C O S  Q t ) ( l  + S ” )  ( W  

2 Y  



B - M,,(cos 2Qr + COS 4Qt)( l + 6 ” )  (5f)  
2Y 

+KIB COS Q t  (5g) 

2AuB COS Q t  + - COS 2Qt 
2 

+ A,  cos Q t  ( 5 9  

(5h) 

where 

3 B2 B4 
6’ = -- 7 cos2 Q2t + 5 / 8  7 cos4 Q t  

4Y Y 
3 B’ B4 

6’‘ = -- cos2 Qt + 5 / 8  cos4 O r  
2 Y  Y 

and 

A@ = O J ~  - W O .  

DC  terms,  and  terms  involving  the  product of two or more 
small  coefficients, e.g. ,  M 2 s M 2 c ,  have  been  dropped in 
(3) and (5 ) .  

6’ and 6“ are  even-power  series  of ( B / Y ) ~  cos’ Q t  and 
could  have  been  given in terms  of  Bessel  functions.  They 
contain  mixtures of cos 2Q t, cos 4Q t, cos 6Q t ,  etc., and 
have  a  nonzero  value  averaged  over  multiple  periods of 
the  modulation  frequency Q [2]. 

Term  (5a)  contains  only  even  harmonics of Q (mostly 
second)  due to sweeping  over  the  line  profile.  Expanding 
this  term  yields 

(5a) = 

B 2  
1 - 3 / 1 6 7  + 0.39 7 * * * 

Y Y 

Y Y Y 
B2 

-1/4 3 1 - 3/4 7 + 0.58 7 * * cos 2Qt 

Term  (5b)  contains  the  desired  error  signal  proportional 
to  the  frequency  error Am. It  contains  odd  harmonics  at 
Qt, 3Q t ,  5 Q t ,  etc., coming  from  the  expansion of ( 1 + 
6 ” )  cos Qt. The  functional  dependence of this  term  on 
( B / Y ) ~  is the  same  as  for  the  unwanted  error  terms  (5c)- 
(5f): 

1 + 0 . 7 8 3  
Y 

FUNDAMENTAL  SINE-WAVE  DEMODULATION 
The most common  types of demodulators  used  to  re- 

cover  the  error  signal  displayed in ( 5 )  are  the  sine-wave 
demodulator  and  the  square-wave  demodulator.  The  pri- 
mary distinction  between  the  two is in the  type of refer- 

ence  signal.  The  reference  can  be at the  frequency of 
modulation or at a  higher  harmonic-typically,  the  third. 

The first type  to  be  considered is the  sine-wave  demo- 
dulator  operating  at  the  fundamental of the  modulation. 
The  detector of Fig. 1 is  assumed  to  be  linear.  This is 
very  important  as  nonlinearities  can  cause  intermodula- 
tion  between  the  various  terms of (5),  yielding  large  er- 
rors.  This  type of error  will  not  be  explicitly  analyzed 
here  as  the  important  intermodulation  terms  would  have  a 
harmonic  content  similar  to  terms  (9d)-(9h)  discussed 
later.  The  function of the  prefilter  is  to  filter  noise  and 
spurious  signals  from  the  detected  signal by narrowing  the 
bandwidth. Of particular  importance is the  reduction of 
the  signals  at 232, 33t, 4Qt, etc. In  addition  to  reducing 
the  potential  errors  originating  from  terms  (5c),  (5d),  (5e), 
and (5f), this  permits  the  demodulator  to  be  operated  at 
the  highest  possible  level  to  minimize  the  relative  effects 
of dc  offsets  in  the  demodulator  output.  The  prefilter  also 
reduces  the  effect of intermodulation  in  the  following 
stages. 

Before  filtering,  the  signals  at 20  t ,  43 t ,  etc.  generally 
far  exceed  the  noise  near  line  center ( AOJ - 0)  and  there- 
fore  would  limit  the  useful  dynamic  range of the  de- 
modulator if not attenuated in the  prefilter.  Assume  that 
the  prefilter  transmission  at 2Qr is T2, at 3Qr is T,, etc. 
The  reference  signal  is  further  assumed  to  be  the  same  as 
that  used  in  the  modulator,  phaseshifted by 4, where 4 is 
due  to  various  delays in the  electronics  and  can  be  a  func- 
tion  of  the  environment-especially  temperature.  For 4 
<< 1 ,  cos ( Q  t + C#I ) can  be  approximated  as  cos ( Q  t) - 
4 sin ( Q t ) ,  yielding 

ref = cos Q t  ( sa)  

-4 sin 3t 

- D2 sin 2Q t (8c) 

+ D2 c COS 2Q t (8d) 

+D,, sin 3Qt @e) 

+D3,  cos 3Qr. ( 8 f )  

Mathematically,  the  effect of the  demodulator  is  to  mul- 
tiply  the  signal of ( 5 )  by the  reference  signal  given  in  (8) 

The  servo  acts  to  force  the  output of the  demodulator 
towards  zero.  The  actual  error  depends  on  the  servo  gain. 
If the  dc  servo  gain G ,  G2 is sufficiently  large,  one  can 
assume  that  the  average  demodulator  output  is  zero [2]. 
If the  modulator  output  has  been  averaged  over at least 
six  full  periods  of  the  modulation  frequency Q ,  the  var- 
ious  trigometric  functions  can  be  replaced by their  aver- 
age  values,  yielding 

V I .  

A O J ( T T T )  ( 9 4  

= K l y 2  (9b) 

+2K2Auy2 ( 9 4  
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+1/2M,,( - 4 + T 3 D 3 s ) ( F F F )  (9d) 

+- Amy, 
B 

Kdc Y 
B 

+- 

where ( 1 + 6“ ) refers  to  the  value of ( 1 + ljf’ ) averaged 
over  six  or  more  periods of Q .  

Term  (9a)  is  the  desired  frequency  discriminant  and  the 
other  terms of (9) are  spurious  error  terms  which  ideally 
should  be  zero.  Term  (9b) is due  to  the  linear  component 
of the  background  slope  and  is  selected  out  of  the  error 
signal by (8a).  This  error is just  the  ratio  of  the  back- 
ground  slope  to  the  slope of the  derivative  multiplied by 
the  angular  half-linewidth.  In  cases  where  this  effect  is 
exceptionally  large  and/or  unmanageable,  a  third  deriva- 
tive  lock  can  be  used  at  the  expense of signal  to  noise 
(discussed  later). 

Term  (9c) is also  selected  out of the  error  signal by (8a) 
and  causes  no  frequency  error  by  itself;  however,  in  the 
presence of other  error  terms  it  effectively  modifies  the 
angular  halfwidth y. This  effect  is  usually  small  and  can 
be  ignored. 

Term  (9d),  selected  out of the  error  signal by (8b)  and 
@e), is  due  to  the  out-of-phase  component  of  the  second 
harmonic  distortion in the  phase  modulator  (sin 2Q t); the 
effect of this  term  can  be  reduced  considerably by making 
4 and T3 small.  Values  of 4 between 0.01 and 0.1 are 
generally  easy  to  achieve  and  maintain. T3 can  easily  be 
made I lop3. 

Term  (9e),  selected  out of the  error  signal by @a), is 
due  to  the  mixing of the  in-phase  component  of  the  mod- 
ulator’s  second-harmonic  distortion (cos 2Qt) with  the 
fundamental of modulation by the  resonance.  This  can  be 
seen  from  the  expansion  of  the  cross  products in the  de- 
nominator  of (3). Because  of  this,  no  method  exists  to 
surpress it other  than by making  small.  The  offset is 
just 1 /2 the  amplitude  of  the  in-phase  second-harmonic 
distortion.  The  added  effect  due  to  the  third-harmonic  dis- 
tortion in the  demodulator  can  be  made  small by making 
T3 small. 

Terms  (9f)  and  (9g)  arising  from  the  third-harmonic 
distortion in the  modulation  process  both  can  be  made 
small by making  the  transmission  at  cos 2Qt ( T,)  small 
as  well  as by using  a  demodulator  with  very  little  second- 
harmonic  distortion.  Term  (9h) is selected  out  of  the  error 
signal by D,,  and is due  to  the  second-harmonic  genera- 
tion  from  sweeping  back  and  forth  across  the  resonance. 
Near  line  center  the  cos 2Qt error  signals  usually  domi- 

nate  all  other  error  signals. By making T2 small,  one  can 
greatly  reduce  the  susceptibility  to  this  effect and also  sec- 
ond-harmonic  distortion in the  demodulator  and  permit  the 
ac  gain  to  be  increased  to  the  largest  value  consistent  with 
the  noise in the  bandwidth of the  demodulator. 

Term  (9i) is selected  out of the  error  signal by (8a)  and 
is  due  to  the  fractional  amplitude  modulation A,  at  cos 
Q t. Since  for  most  systems y / B = 1 ,  the  error is approx- 
imately Am multiplied by the  half-angular  bandwidth y ,  
Some  modification  of  this  result  will  occur in systems  ex- 
hibiting  saturation  effects.  This  can  be  a  major  limitation 
in some  systems. 

Term  (9j)  is  due  to  the dc offset in the  demodulator. 
Usually, Kdc is  independent of level  for  small  signal  lev- 
els,  but  at  some  point &, grows  exponentially  with  signal 
level.  These  offsets  can  take  the form of rectification or 
leakage. By making T2 very  small,  one  can  increase  the 
signal  gain  to  the  point  that  the  noise  around  frequency Q 
in  a  bandwidth  determined by the  prefilter  is  just  below 
the  maximum  operating  level  for  the  demodulator;  this 
along  with  making B/y - 1 minimize  the  effect  of Kdc. 
Thus  for  systems  where T2 and T3 are  small,  the most 
important  error  terms  for  sine-wave  demodulation  at  the 
fundamental  are 

FUNDAMENTAL SQUARE-WAVE DEMODULATION 
For many  systems it is easier  to  implement  a  square- 

wave  demodulator  than  it is to use a  sine-wave  demodu- 
lator, and &c is  often  much  smaller  for  square-wave  de- 
modulation.  In  this  instance  the  reference  signal of (8) is 
replaced by 

1 
3 

ref = cos Q t  + - cos 3Qt 

+D,,  sin 2Qr + D,, cos 2Qt ( 1 1 )  

where  higher  order  harmonics  such  as  cos 4Qt  have  been 
omitted. 

It  is  easily  shown  that the  frequency  offset  errors of the 
closed-loop  system  are  functionally  very  similar  as  those 
derived in (9)  with 4 -+ 4/34 and D 3 ,  = 1/3, for T2 and 
T3 small.  The  dominate  terms  are 

Au( 1 + 6”) = y2KI- - 1 + 6 ” )  
z 
3 
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THIRD-HARMONIC  DEMODULATION 
In some  cases  the  background  slope  is so large  and/or 

unstable  that it is  advantageous  to  use  a  third-harmonic 
reference to  the  demodulator.  Assume it  is  of  the  form 

ref = cos 3Q2t - + sin 3Q2t + Db cos 6Dt  * e .  

In  this case, with T3 = 1 the  significant  frequency er- 
rors are  given by 

4 
3 

Aw(I + 6 ” )  = - - M2,+( 1 + 6 ” )  

4  16 y 2  - - 1 + 6 ” )  + - K& - 
3 3 B 

where  the  sixth-order  terms  have  been  neglected.  Al- 
though  the  sensitivity to sloping  background  and  ampli- 
tude  modulation  is  virtually gone,  the  signal is generally 
also reduced by a  factor  of 2 or 3 ,  which  increases  the 
relative  importance  of  second-harmonic  distortion in the 
modulator  and  dc offset in the  demodulator. T2 should be 
kept  small to  maximize G,, and  thereby  reduce  the effect 
of Kdc. 

TESTS FOR SERVO ERRORS 
Errors  generated  from  the K ,  coefficient  have  the  same 

functional  dependence  on  modulation  width  as  the  desired 
signal  and are  therefore difficult to  separate in a  funda- 
mental  demodulation  system  for B / y  << l .  Therefore 
one  generally  has to  measure  the  background  slope  sepa- 
rately and  calculate  the  offset.  One  could  also  compare 
the  frequency  of  line  center  for  a  fundamental  and  a  third- 
harmonic  demodulation  system.  In  cases  where a  Ramsey 
structure is present,  one  can  compare  the  frequency of 
line  center when  locked  to  pairs of successive  lobes [ 3 ] .  
In  the  optical  region  a  number of  techniques  have  been 
developed  to  supress  nonflat  background  effects.  (For  ex- 
ample,  see  [4]-[6].  See  also  [7],  where  the effects  of  high- 
modulation  indices are  calculated  for several  servo  con- 
figurations  using  Ramsey cavities.) 

Errors  generated  from M,,, M 3 c ,  D2, ,  and D2c are  gen- 
erally  small  and  can be  neglected,  especially if T2 and T3 
are  small.  Errors  generated  from M Z s  can  be  separated  out 
from  the  other  terms by varying  the  phaseshift 4. For most 
implementations, M,, varies  as B’. Modeling  of  the  mod- 
ulator  can  also  be  helpful. 

The  errors  associated  with A ,  can  best  be  obtained  by 
measuring  the  fractional  amplitude  modulation  at Q on  the 
probe signal.  The  phase  chosen in this  paper  for  the A,, 
term is the  most  likely  and gives  the  largest  error. A,, also 
depends  on  the  modulation width B .  

The  errors  associated with are  best  illuminated by 
varying  the  modulation  width B .  A plot of frequency 
change  versus B 2  for + - 0 yields M 2 c  while  the  differ- 
ence between  that curve  and  the  one  obtained with + - 
0.2 can  be  used to  determine M2,r. M 2 c  can  also  be  deter- 
mined from  a  careful  characterization of the  phase  mod- 
ulator. 

The  errors  associated with are  unique  to  the  fun- 
damental  demodulator  systems  and  can  be  illuminated by 
varying T,. For T2 small  this error can  be  totally  ne- 
glected. 

The  errors  originating  from Kdc  are best  isolated by 
varying  the ac  gain.  Varying  the  dc  gain  only  changes the 
loop  attack  time  (bandwidth)  and  should  have  no  effect  on 
these  offsets [l]. Another  technique  for  illuminating Kdc 
generated  offsets is to vary  the ac gain with no modulation 
on  the  probe  and  measure  the  dc  error  signal. 

CONCLUSION 
A simple  model  of  a  Lorentzian  resonance  system  on  a 

nonflat background  probed by a  sinusoidally  modulated 
probe  signal  has  been  treated to  expose  the  first-order  er- 
rors in determining  line  center,  including  imperfections in 
the  electronics.  Although  this  approach  does not produce 
rigorous  values  for  the  frequency  errors in that  it does not 
take  into  account  saturation, etc.,  or large  background 
distortions, it does  yield  the  correct  functional  depen- 
dence of the  errors on modulation  index, ac  gain,  etc.  This 
model  permits  one to  compare  the offsets in determining 
line  center  using  various  servo  configurations. We have 
shown  that in any servo  system with  a  sine-wave  demod- 
ulator  reference  the  most  serious  frequency  errors  origi- 
nate  from  sloping  background,  second-harmonic  distor- 
tion in the  frequency  modulation,  amplitude  modulation 
on  the  probe  signal,  and dc offsets in the demodulator. 
Servo  systems  utilizing  the  third  harmonic  of  the  modu- 
lation as a  demodulator  reference  are  generally not sen- 
sitive to baseline  tilt or amplitude  modulation  on  the  probe 
but have  increased  sensitivity  to  second-harmonic  distor- 
tion in the  modulator  and  dc  offsets in the  demodulator. 
With  the  functional  dependence  outlined  here  it is rela- 
tively  easy to design  sensitive  tests  of  these  offsets,  even 
if the  original  assumptions  about  a  pure  Lorentzian  line 
and  small  modulation  index  are not exactly  fulfilled. 
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