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Abstract-The unified theory has been generalized for the case of upper and lower state interaction by introducing 
a more compact tetradic notation. The general result is then applied to the Stark broadening of h>drogen. The 
thermal average of the time development operator for upper and lower state interaction is presented. Except for 
the time ordering it contains the effect of finite interaction time between the radiator and perturbers to all orders, 
thus avoiding a Lewis type cutoff. A simple technique for evaluating the Fourier transform of the thermal average 
has been developed. The final calculations based on the unified theory and on the one-electron theory are compared 
with measurements in the high and low electron density regime. The unified theory calculations cover the entire 
line profile from the line center to the static wing and the simpler one-electron theory calculations provide the line 
intensities only in the line wings. 

I .  I N T R O D U C T I O N  

FOR THE first few Balmer lines of hydrogen, recent papers (GERARDO and HILL, 1966; 
BACON and EDWARDS, 1968 ; KEPPLE and GRIEM, 1968 ; BIRKELAND, OSS and BRAUN, 1969) 
have demonstrated fairly good agreement between measurements in high electron density 
plasmas (n ,  > 10l6 cm-3) and improved calculations of the so called “modified impact 
theory”. The experimental and theoretical half-widths differ less than about 10 per cent. 
However, measurements of the Lyman-a wings (BOLDT and COOPER, 1964: ELTON and 
GRIEM, 1964) and low electron density measurements (ne z 1013cm-3) of the higher 
Balmer and Paschen lines ( F E R G U S O N ~ ~ ~  SCHL~~TER, 1963 ; VIDAL, 1964; VIDAL. 1965) have 
revealed parts of the hydrogen line profile, for which the modified impact theory appears 
to break down. For the higher series members better agreement has been obtained with 
quasi-static calculations (VIDAL, 1965). The reason the current impact theories break down 
is that these theories correct the completed collision assumption by means of the Lewis 
cutoff (LEWIS, 1961) which is only correct to second order. With this cutoff it was possible 
to extend the range of validity for the impact theory beyond the plasma frequency. However. 
in the distant wings, where the electron broadening becomes quasistatic, the second order 
perturbation treatment with the Lewis cutoff breaks down because the time development 
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operator must then be evaluated to all orders. Attempts to correct the second order theory 
have been made already (GRIEM, 1965; SHEN and COOPER, 1969), but these theories still 
make the completed collision assumption by replacing the time development operator by 
the corresponding S-matrix, and so it has to be emphasized that in conjunction with the 
Lewis cutoff these theories would only be correct to second order. The impact theory in its 
present form is intrinsicly not able to describe the static wing and the transition region to the 
line center where dynamic effects cannot be neglected. To overcome this problem, several 
semiempirical procedures (GRIEM, 1962 ; GRIEM, 1967a ; EDMONDS, SCHLUTER and WELLS, 
1967) have been suggested to generate a smooth transition from the modified impact theory 
to the static wing, which, however, all suffer from the fact that the final profile is not neces- 
sarily normalized. 

Recently the classical path methods in line broadening have been reinvestigated in two 
review papers (SMITH, VIDAL and COOPER, 1969a, 1969b), which are from now on referred 
to as papers I and 11. The purpose of I and I1 was to state clearly the different approxima- 
tions which are required to obtain the classical path theories of line broadening and to find 
out where these theories are susceptible to improvements. In a manner similar to the Mozer- 
Baranger treatment of electric microfield distribution functions (BARANGER and MOZER, 
1959, 1960), it was shown that the general thermal average can be expanded in two ways, 
one of which leads to the familiar impact theory describing the line center (BARANGER, 1958, 
1962; GRIEM, KOLB and SHEN, 1959, 1962). The other expansion represents a generalized 
version of the one electron theory (COOPER, 1966), which holds in the line wings. It is also 
shown that there is generally a considerable domain of overlap between the modified 
impact theory and the one electron theory. Based on these results, a “unified theory” was 
then developed (SMITH, COOPER and VIDAL, 1969), henceforth referred to as paper 111, 
which presents the first line shape expression which is valid from the line center out to the 
static line wing including the problematic transition region. The line shape obtained by the 
unified theory has the form 

I(w) = - 1 Z m  { d Ao--Y(Aw) d}, n: 

where d, Am, and ~ ’ ( A o )  are operators. In paper 111, it was shown that the familiar impact 
theories, which hold in the line center, may be obtained by making a Markoff approximation 
in the unified theory, while the one electron theory describing the line wings is just a wing 
expansion of the unified theory. Consequently the crucial problem for any line broadening 
calculation is to evaluate the matrix elements of ~ ’ ( A w ) ,  which is essentially the Fourier 
transform of the thermal average (see equations (46) and (47) of paper 111). This will be done 
in detail in this paper for the general case of upper and lower state interactions. 

Recently, another unified approach to Stark broadening has been presented by 
VOSLAMBER, 1969, which is formally equivalent to our results in paper 111. However, the 
approximations to the time development operator are different as explained in more 
detail at the end of Section VI. His final numerical calculations are restricted to the wings of 
Lyman-cc neglecting the influence of the ion fields on the electron broadening and thereby 
avoiding the ion microfield average of the electron contribution. 

In the following Section 11, we start with a brief summary of the basic relations which are 
required for the classical path approach pursued here. We then generalize the results of the 
unified theory to include lower state interaction (Section IV) after introducing a more 
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compact ietradic notation (Section I I I ) .  From this general result we turn to the specific 
problem of hydrogen by discussing briefly the no quenching assumption (Section V)  and 
deriving the thermal average F 1 ' ( t )  (see equation (47) of paper I I I )  for the general case of 
upper and lower state interaction (Section VI). We next investigate the multipole expansion 
of the classical interaction potential in the time development operator (Seciion VII). The 
thermal average F('](L) is then evaluated in two steps by first performing a spherical average 
(Section VI I I )  and then an average over the collision parameters : some reference time r o ,  
impact parameter p and velocity u (Section IX). The large time limit of the thermal average, 
which leads to the familiar impact theories in the line center, is investigated in detail in ihe 
Appendix for different cutoff procedures and compared with the results in the literature. In 
Section X, a method is developed for performing the Fourier transformation of the thermal 
average and it leads us to the crucial function for any classical path theory of Stark broaden- 
ing. This function is finally applied in Section XI to the one electron theory, which forms the 
basis for the asymptotic wing expansion, and in Section XI1 to the unified theory, which 
describes the whole line profile from the line center to the static wing. Numerical resul:s are 
given for the hydrogen line profiles as measured by BOLDT and COOPER, 1963 ; ELTON and 
GRIEM, 1964, and VIDAL, 1964, 1965. The numerical calculations of the thermal average 
have been performed for the general case including lower state interactions, while the 
unified theory calculations have so far been restricted to the Lyman lines. The extension of 
the unified theory calculations to the general case is in process. The computer programs 
which have been used are presented in an NBS Monograph (VIDAL, COOPER and SMITH, 
1970). 

1 1 .  BASIC R E L A T I O N S  

In this section we will briefly outline the basic relations which are used in our classical 
path treatment of line broadening. 

As discussed in Section 2 of paper I, we are considering a system containing a single 
radiator and a gas of electrons and ions. We will make the usual quasi-static approximation 
for the ions by regarding their electric field zi as being constant during the times of interest 
'c l/Aco. This approximation is usually very good because the region where ion dynamics 
are important is normally well inside the half width of the line except for a few cases such as 
the n-OL lines of hydrogen (GRIEM, 1967b). The complete line profile I(w) is then given by the 
microfield average (see equation ( 3 )  of paper 11). 

0 

(11.1) 

where the normalized distribution function P(cij is the ioiv irequcacy co1npc;nent of the 
fluctuating electric microfields. Due to shielding effects F ( E i j  depi-nds o n  the shieldilig 
parameter r , iD where yo and D are the mean particle distance and the Dcbye lengt!i (for 
electrons onlyi respectively. 

With the static ion approximation we have reduced the problem t o  ;i calculation of riie 
electron broadening of a radiator in a static electric field ci. The resulting lint: profile I ( (* ) .  c;) 
is then simply averagcd over all possible ion ticlds to give the complete line profile !it,,). 
The static ion fieid wil! be used to define the z-axis for the radiator and the ion-radiator 
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interaction will be taken to be the dipole interaction eZs,  where - eZ denotes the Z-com- 
ponent of the radiators dipole moment. 

If the unperturbed radiator is described by a Hamiltonian Ha, we may then define a 
Hamiltonian for a radiator in the static field si by 

Ho = Ha+eZEi .  (11.2) 

The complete Hamiltonian for the system is then given by 

H = H, + V,(R, X, V, t )  (11.3) 

where V, denotes the electron radiator interaction. In this equation, x and v are 3 N  vectors 
x = (x,, x2,. . ., xN), v = (v l ,  v 2 , .  . ., vN), which denote the positions and velocities of the 
N electrons and R denotes some internal radiator coordinates. For one-electron atoms, R 
is the position of the “orbital” electron relative to the nucleus. The interaction V,  will be 
regarded as a sum of binary interactions, 

J‘XR X, V, t) = 1 V I R  X j ,  V j ,  t)  (11.4) 
j 

where V, denotes the interaction between the radiator and a single electron. As is well 
known the line shape Z(w, ci) may be given by the Fourier transform of an autocorrelation 
function C(t)  (BARANGER, 1962) 

(11.5) 

In the classical path approximation, the correlation function for electric dipole radiation is 
given by 

0 

c(t) = Tra(d( Ti(t)dT,(t))avpa), (11.6) 

where d and pa denote the dipole moment and the density matrix for the radiator. The 
thermal average denokd by the subscript av represents the average over electron states (see 
equation (47) of paper I) : 

( Ti(t)dT,(t)),V = dx dvP(x)W(v)Ti(R, X, v, t)dT,(R, x, v, t )  (11.7) 

where P(x) and W(v) are the position and velocity distribution functions for the electron 
perturbers (defined by equations (37) to (40) in paper 11). The time development operator 
for the system T,(R, x. v, t) is the solution of the differential equation 

s 
c 

ilz- U t )  = [ H ,  + V,(t)]r,(t) (11.8) 
?t 

and it may be written in an interaction representation defined by 

X(R, x, Y ,  t )  = exp( - itH,/h)U,(R, x, v, t) (11.9) 

where 

( I  I. 10) a 
ih-UCT,(t) = Q t ) ~ , , ( i )  

iit 
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and 

Q t )  = exp(itH,/h)I/,(t) exp( - itH,/h). (11.1 1 )  

I t  should be noted that <(t) is identical with E(t) in paper 11 except that we have not yet 
made the no quenching assumption which removes the unperturbed part H ,  in the Hamil- 
tonian H ,  in equation (11.11). Using the time ordering operator 8, U,(t) may be written in the 
form 

f 1 U,(R, x, v, t )  = 0 exp { -- I E(R, x, V, t’) dt’ . 
0 

(11.12) 

To evaluate the trace over atomic states in equation (11.6), i t  is convenient to use the H ,  
eigenstates la), ( b ) ,  . . . with the eigenvalues E,,  E , ,  . . . . Hence, using U,(t) we have 

C(t) = 1 (aldlb)(cldld) eCiUdc‘ (11.13) 
ohcd 

[(bI Ul(t)Ic>(dI Ua(t)Ia>lav(al~,la> 

where 

w d c  = ( E d - E c ) / R .  (11.14) 

In paper I1 and 111, the correlation function C(t) was evaluated for the case of no lower 
state interactions in order to keep the mathematics as simple as possible because one of the 
U,(t) operators in equation (11.13) may then be replaced by a unit operator. In this paper we 
will give a more general evaluation of C(t) which includes lower state interactions. For this 
purpose we introduce in the next section a more compact tetradic notation. Furthermore, it 
should be noted already at  this stage that we will interchange the sequence of approxima- 
tions with respect to paper I1 by deriving the generalized unified theory before making the 
no quenching approximation. This makes the results of the unified theory also useful for 
situations where the no quenching approximation cannot be made like, for example, micro- 
wave lines. 

111. T H E  T E T R A D I C  N O T A T I O N  

The purpose of the tetradic notation which we shall use is to write the product of the 
U,(t) operators in equation (11.13) in terms of a single operator, To do this we first consider 
the product of the matrix elements (alAla’) and (PIEIF) where A and B may be any arbi- 
trary operator. This product may be written in terms of the direct product A 0 B according 
to 

(111.1) 

where the product states lag) = Ia)[/3) are essentially the same as the states of Baranger’s 
“doubled atom“ (BARANGER, 1962). This direct product, A O B ,  is a simple form of tetradic 
operator. If one of the operators A or B happens to be a unit operator I ,  we may conveniently 
denote this fact by means of superscripts 1 and r according to 

* 

(at AI a’)(BI BIB’> = (aPM @Bla’lr’), 

( x / j ~ ~ Z l a ’ P ’ )  = (c$IA1lcx’~‘) = (r/A/a‘)Gap, (111.2) 

(111.3) (@WrOm’B’) = (.BIB’I.’B’> = (PIBIB’>S,,, 
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That is, a superscript 1 denotes a “left” operator which operates only on the “left” subspace 
(in this case the la), [ a ’ )  subspace) and a superscript r denotes a “right” operator which 
operates on the “right” subspace. It thus is clear that any “left” operator will commute with 
any “right” operator : 

[A‘, B‘] = 0. ( I  11.4) 

With this notation, the thermal average in equation (11.13) can now be written in the more 
compact form 

[<bI uat(t)I~>(dI UAt)Ia>Iav = [(cI u,*(t)Ib)<dI u o ( t ) I a ) I a v  

= [(cdl u:*(t)u;lb.)].” (111.5) 

= <&I Ilu3t) UXt)Iaviba>- 

We have chosen to write (hl U;(t)lc) as (cl Uz(t)lb) simply for convenience in the derivation 
given in later sections. Noting the definition of U,(t) given in equation (11.12), we define 
operators BL(R, x, v, t )  and P:(R, x, v, t) so that 

(I 11.6) 

Since any “left” operator commutes with any “right” operator, we have 

= ull (R, x, v, t )  (111.7) 

where 

$7e(R, X, V, t )  = <(R, X, V, t)-  P:(R, X, V, t ) .  (111.8) 

We have now succeeded in replacing the two U,(t) operators by a more general tetradic 
operator B(t) which operates in both “left” and “right” subspaces. Equation (111.5) thus 
becomes 

[(bl U,t(t)ic)(dt U,(t)ln>l,, = < 4 [ ” W ) l a v l ~ ~ ~ ) .  (111.9) 

It is important to realize that the tetradic operator ”&(t) is formall!, the same as the operator 
U,(t); that is, it satisfies the same type of differential equation 

- 
(111.10) ih-q/(R. x, v, t )  = ’l’i(R, x, v, t)”i%(R, x, v. t ) .  

This means that all of the line broadening formalism which has been developed for C:,(t), 
will be directly applicable to j / /( t) .  

a 
?t 
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To make the formal correspondence more complete we use the operators HL,  H ; ,  
V:,(R, x, v, t) and VL(R, x, v, t) to define the tetradics Xo and Vi(R, x, v, t )  according to 

.f i  = H', - H: 

VJR, X, v, t )  = V:(R, X, V, t ) -  V>(R, X, v, t ) .  

R(t) = exp(itHb/h) ~ z ( t )  exp{ - i t ~ b / h }  

(111.1 1 )  

(111.12) 

Since any left operator commutes with any right operator we have 

= exp(itlfo/h) V:(t) exp( - it.Yo/ti). (111.13) 

Hence 

Yt(R, x, v, t) = exp(it.H,/h}K(R, x, v, t )  exp( - it%,/h} (111.14) 

will be which is formally the same as equation (11.1 1). i t  is also obvious that both %and 
given by a sum over binary interactions $< or < just as in equation (11.4). 

.I.k'(R, X, V, t )  = %(R xj? V j ,  t )  (I  11.1 5)  
j 

K(R, xj,vj, t )  = V',(R, xj, vj, t ) -  VF(R, xj, vj, t )  (I 11.1 6 )  

The formal similarity between the operators H,, V,(t), Pe(t), U,(t), etc. and the tetradic 
operators %,, ..yb(t), -((t), %(t), etc. will greatly simplify the treatment of the thermal average 
for the general case of upper and lower state interactions. 

I V  T H E  G E N E R A L I Z E D  U N I F I E D  T H E O R Y  

Using the tetradic operators as defined in the previous section we have for the correla- 
tion function 

C(t)  = 2 (aldlb)( cldld)e-'"dc'(alp,la) 
nbcd 

(cdl B(r)l h a )  (IV.1) 

where @(t) denotes the thermal average of @(R, x. v, t ) :  

F ( t )  = [J%i(r)ldV 

= I dx dvP(x)W(v)J?/(R, x, v, t). (TV.2) 

This tetradic operator g(t) is formally identical to the operator F ( t )  defined in Section (2A) 
of paper 111. I t  would also be formally identical to the F ( t )  defined by equation (19) oT 
paper I1 if we wouid make the no quenching approximation at this point. To preserve 
generality, however. the no quenching approximation will be deferred until a later section 
when we specify the la),  Ib), . . . eigenstates to be N o  eigenstates for hy4rogen. 

Fo!!owing the formalism developed in Section 2 of paper 111, we define an operator 
9( R. 1. v, t )  by 

(lV.3) 9( R, X, V. t )  = P( x)W(vW/(R. x, V, f )  
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so that 

g ( t )  = dx dv$(R, X, V, t) s (IV.4) 

(cf. equations (11) and (12) of paper 111). From equation (111.10) we see that 

(IV.5) 
a 

ih-F(R, X, V, t) = Y:(R, X, V, t)F(R, X,V, t )  
at 

which is formally the same as equation (13) in paper 111. We next introduce a projection 
operator 9 which is identically the same as the operator 9 defined by equation (14) of 
paper 111 (the fact that 9 now operates on tetradics does not change its definition). That is, 
for any function of electron variables f (x, v) we have 

P ~ ( X ,  V) = P(x)W(V) dx' dv'f(x', v'). (IV.6) 

This relation holds whether f is a matrix, tetradic or any other type of operator. With this 
operator we can follow the derivation in Section (2.B) of paper I11 replacing H o ,  V,, ve etc. 
by &, K ,  e, etc. As a result (cf. equation (27) in paper 111) we have 

s 
I 

exp( - it'&/h)$(t') dt' (IV.7) 

where 

Returning to equations (11.5) and (IV.l) we see that the quantity of interest is not g ( t )  but 
rather its Fourier transform. 

(cdlY(o)lba) = eiwt e-i"dc'(cdl$(r)lba) dt i 0 
m 

e'"'(cd)exp( - it&$/h)$(t)lba) dt = J  0 
= 7 eiwt(cdl@(t)lba) dt 

0 

where 

(IV.9) 

(IV.10) 
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From equation (IV.7) we see that 

1 2 -9(f) = - (iXG/h)F(t) - f i -  
S t  

exp( - i(t - t’)s;i0/h) 

[ Yt(t - t’)%(t - t ‘ )  f,(0)lav$(t’) dt’. 

Solving this equation by Fourier transforms gives 

Y ( w )  = i[Aw,, - 9(Awop)] - ’ 
where 

9 ( A o O p )  = -ih-’ exp(itAo,,)[P~(t)9(r)(,(O)],, dt  j.- 0 

and AQ,, is an operator defined by 

Aw,, = w - 2 0  fh = w - (HL - Hb)/h. 

I010 

(IV. 11)  

(IV.12) 

(IV.13) 

(IV.14) 

With these results, the line shape given in equation (11.5) becomes (cf. equation (1.1)) 

(IV. 15) 

We next simplify Y(Awop) by means of the impact approximation (see Section (3.2) of 
paper 11). Basically this approximation assumes that the average collision is weak, that 
strong collisions do not overlap in time and that a weak collision overlapping a strong one 
is negligible in comparison (weak collisions are those interactions for which a low order 
perturbation expansion in provides a good approximation to % or 9 ; for strong collisions 
the full exponential must be retained). It should be emphasized again that we make a distinc- 
tion between the impact approximatioil and the impact theory. The latter contains the 
impact approximation as weli as other approximations like the completed collision assump- 
tion which will not be made here. We also assume that the electron perturbers may be 
replaced by statistically independent quasi particles (e.g. shielded electrons). I n  Section (3) 
and Appendix B of paper 111. it is shown that these approximations reduce 9 ( A o o p )  to 

where 

,.iT‘L’(r) = , i c l d x l  d v , l ~ ~ ( v l ) j i / / l ( R . x , , v , ,  1 ) -  I ]  (IV.17) 
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and 

(I  v. 18) 

and 1 1 ,  denotes the electron density. 
Equations (IV.15) through (IV.18) give the line profile of the generalized unified theory. 

To obtain the impact theory we simply replace 2’(Aoop) by P(0)  and as discussed in 
Section 4 of paper 111, we have the familiar result (cf. equation (44) of BARANGER, 1962). 

9 ( 0 )  = i (SYS; - 1)  dv s (IV.19) 

where SI  denotes an S-matrix for a binary (completed) collision and Jdv denotes the 
integral over collision variables, as defined in the Appendix of paper 11. 

0 

(IV.20) 

In comparing equation (IV.19) with Baranger’s result it is important to note that Baranger’s 
operators S ,  and S, operate only on “initial” and “final” states respectively, whereas our 
operators S: and S‘i operate on all possible H0 eigenstates. This diirerence occurs because 
we have not mzde the no quenching assumption yet. 

The other limit of the one electron theory is obtained by making a wing expansion of 
the unified theory; that is, the operator [ A C J ~ ~ - - ~ ’ ( A C O ~ ~ ) ] -  is expanded in powers of 
[ Y ( A c o ~ ~ ) / A ~ ~ ~ ~ ] .  To lowest order this gives 

(IV.21) 

The first term. 1 ACO,~ ,  gives a delta function when one takes the imaginary part required 
by equation (1\’,15). To get this delta function we approximate radiation damping effects 
by using (Awop t is) in place of hop (see Section (3.A) of SMITH and HOOPER, 1967); the 
imaginary part of 1/(Awop + i ~ )  is just - nJ(Awop) when E ---f 0. When this delta function 
term is averaged over ion fields according to equation (11.1) it will produce the line broaden- 
ing due to the static ions alone (see Section 5 of paper 11). The influence of the electrons 
as well as electron-ion coupling is contained in the second term of equation (IV.21). 
Hence one is interested in the matrix elements of the Fourier transform of z@*)(L), which 
is a!so the quantity of interest in the unified theory (see equation (IV.16)), The primary 
difference betwem calculations made by the unified and one-electron theories is therefore 
the matrix inversion of [Awop-S?(Awop)] which is required by the unified theory but not 
‘tly the one electron theory. Since the matrix elements of the Fourier transform of g(’)(r) 
play such a central role in any classical path theory (including the impact theory), the 
evaluation of these matrix elements for hydrogen wiil be discussed in detail in the following 
s e d  on s . 
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V. T H E  N O - Q U E N C H I N G  A P P R O X I M A T I O N  FOR H Y D R O G E N  

In the preceding section we have derived the thermal average c F ( ~ )  and its Fourier 
transform .P(o) for the general case of upper and lower state interaction. In order to 
evaluate Z(w, E J  in  equation (IV.15) we have to consider the complete trace over all H ,  
eigenstates la), Ib), . . . . However, in looking at the equations (IV.9), (IV.18) and (111.14) 
one realizes that due to the exponential factors only a few of all the possible matrix elements 
will contribute significantly to the final line profile at  a particular frequency o. That is, 
we can neglect those matrix elements for which the argument of the exponential factor is 
so large that it gives rise to rapid oscillations within the range of the time integral. Hence, 
if one treats well isolated lines, only those matrix elements of U,( t )  between either “initial” 
or “final” states have to be considered. We may therefore state the no-quenching approx- 
imation as 

at(t) = vqt)ul(t) W . 1 )  

where U ,  now no longer operates on the complete “left” or “right” subspace, but only on 
“initial” or “final” states (see also Section 2.2 and 7.2 of paper 11). 

Further approximations cannot easily be generalized and depend on the particular 
problem investigated. We now apply our general results to the problem of hydrogen. 
In this case the no-quenching assumption states that we need to consider only those 
matrix elements of U,(t) and Pl(R, x,, v l ,  t )  which are diagonal in the principal quantum 
number n. As shown already in paper I1 this is a good approximation as long as the lines 
investigated are well separated. For calculating the line wings it is furthermore required 
that there is no appreciable overlap with wings of adjacent lines in the region of interest. 
The same is true also in any reliable measurement of line wings. 

To show this we can proceed as in Sections 2.2 and 7.2 of paper I1 with the difference 
that now we are dealing with the operator H, = Ha+eZci  rather than just H a .  Since Ha 
does not commute with Z we introduce a projection operator P, (see Section 2.2 of paper 11) 
which picks out the part of an operator which is diagonal in n .  Using this operator we split 
H, into a part which is diagonal in n 

H,, = Ha + ePnZci 

H,,, = e( 1 - P,,)Zc,. 

V.2) 

(V.3) 

and a part which is not diagonal in n 

Ha now commutes with P,Z because both operators are diagonal in parabolic coordinates. 
We therefore specify their eigenstates completely by the principal quantum number n, 
the magnetic quantum number m and the quantum number q which is defined to be 

q = n,-n,;  W.4) 

n I  and nz are the usual parabolic quantum numbers which obey the relation 

n = n , + n , + I m J + l .  (V.5) 

Knowing the solution of the eigenvalue problem 
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with 

Enqm = E n + e Z n q ~ ,  (V.7) 
we see from a second order perturbation approach (cf. Chapter 16 of MERZBACHER, 1961) 
that the energy correction 

can always be neglected as long as the ion fields do not become too large. This is again 
equivalent to stating that the lines have to be well separated. 

As a result one is left with the eigenvalues Ea, E, ,  . . . of the Hamiltonian H,,, whose 
eigenstates la), Ib), . . . Id) are the parabolic states Jnqm). This allows us to rewrite the 
autocorrelation function C(t) in equation (IV.l) for hydrogen in the form: 

c(t, & i )  = 1 (nqamaldln’qhA) (n’qbmLldlnqbmb) 

x (n’qLmL ; nqbmb(@(t)ln’qLm; ; nqam,) W.9) 

where quantum numbers which refer to the lower state are distinguished from the upper 
state quantum numbers by a prime. 

The matrix elements of PnZ are given by (see BETHE and SALPETER, 1957) 

(nqmlzlnqm) = Znq = +po (V. 10) 

will be with a. = h2/(me2) being the Bohr radius. As a further definition the ion field 
normalized to the Holtsmark field strength 

Ei = p . Eo 

where 

This yields 

with 

(V.11) 

(V.12) 

(V.13) 

(V.14) 

Awi is now the frequency shift of a particular Stark component characterized by the 
quantum numbers 1 1 .  qb ,  n‘ and q; due to the Holtsmark field strength E,,: Introducing the 
frequency shift A w  = w - w,,. where the frequency of the unperturbed line w,,. is given by 

o,,. = (En-  En.),& (V.15) 
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the line profile I(Aw, p)  can he written in the form 

0 

Performing the ion field average according to equation (11.1) will then give us the desired 
line profile once we know the thermal average p(t). 

V I .  THE THERMAL AVERAGE P’’(t) FOR HYDROGEN 

In Section IV we saw that the crucial problem in any classical path theory of line 
broadening is the evaluation of the matrix elements of p(l)(l). With the no-quenching 
approximation for hydrogen a typical matrix element in parabolic states is given by 

(!?‘qimb ; nqbmbl @‘)(t)ln’qAm; ; nq,m,) 
(VI.1) 

= ne 1 dxl  d v l ~ ( v I ) ( n ’ q ~ m ~ ;  nqhmbl%l(l)- Iln‘qhb; nqdn,) 

To simplify the evaluation we transform to the natural collision variables p, L’ snd to 

which denote the impact parameter, electron velocity and some reference time of the 
collision (see the appendix of paper 11). The orientation of the collision axes with respect 
to the radius vector R of the orbital electron is specified by the three Euler angles repre- 
sented by R. Furthermore we assume a spherically symmetric distribution of perturbing 
electrons ; this is a good approximation as long as the impact parameters are not too small. 
The velocity distribution function W(u) is related to the Maxwell distribution function 
f ( 0 )  by 

f ( u )  = 4nu2W(o). (VI.2) 

With the preceding definitions equation (VI.1) can be rewritten as 

(n’q@; ; ~?qhmbl~;-‘”(t)lnfqb~7?b ; nq,ma) 

Next we have to know the matrix elements of the time development operator Ql(t) defined 
by equation (IV.18). This requires the matrix elements of the interaction potential $;(c). 
In order to save some writing we consider for the moment only U , ( t )  and vl(t) which after 
making the no-quenching assumption may be the “initial” or “final” part of the corre- 
sponding tetradic operators (see equation (V.1)). A typical matrix element of P , ( t )  is 
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given by 

(VI.4j 

With the no-quenching assumption the unperturbed energy eigenvalues E ,  have cancelled. 
At this stage we now make another simplification by dropping the exponential in the 
latter equation; this has been done in all previous Stark broadening calculations but it 
is rarely stated explicitly. This will be a good approximation in the line wings where the 
time of interest l/Am are small and Am is much larger than the average ion field splitting. 
In the line center, however, the argument of the exponential can easily be on the order of 
unity or larger in which case vl(t) effectively vanishes due to rapid oscillations of the 
exponentials. This effect was first noted by VAN REGEMORTER, 1964, who shows that this 
effectively introduces another cutoff which may easily be smaller than the usual Debye 
or Lewis cutoffs. This additional cutoff has been included in recent calculations (KEPPLE 
and GRIEM, 1968). However, as discussed in Section XI1 it turns out that its influence on 
the final line profile is in most cases negligible. 

Neglecting the ion field exponentials in equation (VI.4), the time development operator 
I/ is now given by 

(VI.5) 

where the time ordering is still required because PnVt(t)  need not commute with PnVl(t’). 
In paper I1 it was shown that this time ordering is negligible for weak collisions (to second 
order) as well as quasistatic collisions @e. in the distant line wings). Time ordering is not 
negligible for strong collisions ; however, when the thermal average is performed, the 
errors due to neglecting time ordering are expected to be small. The reason for this is that 
the time development operator 

(VI.6) 

still retains its unitarity (cf. Section 8 of paper 11). It should be pointed out at this stage 
that the time development operator used by VOSLAMBER, 1969, is also unitary, but is 
significantly more complicated because it includes the effects of time ordering to one more 
order (third order) in the Dyson series. This does not necessarily entail better theoretical 
results since after the spherical average all the odd terms of the Dyson series do not con- 
tribute to the final results. Work which takes into account time ordering to all orders is 
in process and preliminary results for Lyman-a, which should reveal the strongest effects 
due to time ordering, show changes in the final line profile of only a few percent at the most. 

V I [ .  T H E  M U L T I P O L E  E X P A N S I O N  O F  T H E  CLASSICAL I N T E R A C T I O N  
P O T E N T I A L  

Before evaluating the thermal average F(’)(t) we briefly consider the classical inter- 
action potential V,(t) due to a single electron. If the perturber does not “penetrate” the 
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radiator. V,( t )  is given by the well known multipole expansion 

(VII. I ) 

where 1R( is the distance of the orbital electron from the nucleus, r ( t )  is the instantaneous 
distance of the perturbing electron, the Pk are Legendre polynomials and 8(t)  is the instan- 
taneous angle between R and r(t). 

In most cases it is sufficient to consider only the dipole ( k  = 1) term. However, to 
account for some asymmetries of a line, it may be necessary to keep some of the higher 
multipole terms as well. In any case, one can show that this multipole expansion is ter- 
minated after some finite number of terms due to symmetries of the radiator. 

To show this we specify the angular positions of R and r(t) by e l ,  q1 and e,, 9, res- 
pectively and we apply the spherical harmonic addition theorem (equation (4.6.7) of 
EDMONDS. 1960) 

+ k  

fk(cOs e)  = 1 (-l)pci(el? q1).ck_p(82> q 2 )  (VII.2) 
p =  - k  

where 

cos 8 = cos 8, cos 8, + sin 8, sin 8, cos(cp, - q2). (VI I. 3) 

We may simplify the mathematics without loosing generality by choosing a coordinate 
system in which q2 = 0. Using the relation 

C"(Q,,q, = 0) = (-1)P.c;(e2,q2 = 0) (VII.4) 

one then obtains 

Pdcos 4 = C@l> ( ? 1 G ( ~ 2 )  

k 

+ (-- 1 ) p c p 2 ,  (P2 = o)[ck_p(61, (P1)+(- 1)PC#h, q1)l (VII.5) 
p =  1 

which gives for the interaction potential 

The dipole case ( k  = 1 )  gives the well known result 

P2 

r (1) 
= l [Z.  cos H2(t )+  X sin O,(t)] (VII.7) 



The y-component vanished because ‘ p 2  = 0. Similarly one can write down the higher order 
multipole terms. The necessary matrix elements of C i  are given by 

From the last 3j-symbol we see that these matrix elements exist only if I ,  k,  1’ satisfy the 
triangle condition and their sum is an even integer. Therefore it turns out that, within the 
no-quenching assumption where one needs the matrix elements of P,V,(t), only a finite 
number of multiple terms exist. The summation index k in equation (VII.6) has to obey 
the condition 

1 2 k I 201-  I). (VII.9) 

As an example we see that a calculation of the upper state interaction of Lyman-cr requires 
only the dipole and quadrupole terms. This condition also illustrates the well known fact 
that there is no ground state interaction for the Lyman series. 

VIII.  T H E  SPHERICAL A V E R A G E  O F  T H E  TIME D E V E L O P M E N T  O P E R A T O R  

In our evaluation of the thermal average F(l)(t), defined in equation (VI.3), we first 
perform the spherical average represented by the integral over the Euler angles R, because 
it greatly simplifies the remaining integrals over t o ,  p and u. This is due to the spherical 
symmetry of the time development operator U , ( t )  defined in equation (VI.6). It should be 
noted that this symmetry was achieved by dropping the ion field exponentials in equation 
(VI.4), thus replacing rl(t) by Vl(t). We will perform this average by means of a rotation 
technique used by COOPER, 1967, and BARANGER, 1958, for S-matrices. Although we are 
working with the more general time development operators U,(t)  or %,(t), the rotation 
technique is the same. 

In terms of the collision variables p ,  u, to  and R, the dipole interaction between the 
radiator and a perturber is given by 

&(t) = e2R[p+v(t+to)]/[p2 + ~ ~ ( t + t , ) ~ ] ~ / ~  (VIII.1) 

(see the appendix of paper 11). The three Euler angles denoted by R describe the orientation 
of the collision frame relative to the atomic frame. It is therefore convenient to perform 
a rotation of the atomic axis through the angles R in such a way that R points in the same 
direction as p and the x axis of the rotated atomic frame points in the same direction as v. 
In this rotated frame, the interaction potential takes the form 

y(t) = e 2 [ Z p  + x v ( t  + t o ) ] / [ p 2  + u 2 ( t +  t 0 ) 2 ] 3 / 2 .  (VIII.2) 

This rotation transforms the time development operator U ,  into a new operator Ulc ,  where 
U ,  and U, ,  are related to one another by 

U ,  = 9- l (R)u lc9 (R)  (VIII.3) 

where 9 (R)  is a rotation operator (see Chapter 4 of EDMONDS, 1960). The time development 
operator in the rotated frame, Ulc ,  is given by 

(VI I I .4) 
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To make the form of U , ,  more explicit, we perform the integral over t' and we obtain 

to ,  p ,  v)-?,,XB(t, to ,  p ,  u )  (VI I I. 5 )  

where 

and 

(VI 11.6) 

(VIII.7) 

Substituting equation (VIII.3) into equation (VI.3) we see that the integral over R in equa- 
tion (VI.3) involves only the matrix elements of four rotation operators. Since it is convenient 
to use spherical states Inlm) when taking matrix elements of 9(R), we make use ofthe unitary 
transformation from parabolic to spherical states discussed by HUGHES, 1967. 

(nqm) = 1 (nlm')(nlm'(nqm) 
Im' 

12-1 n-1 
2 

( d m ' l i q m )  = am,,,,(- 1)l/'(l + m - 4 - n )  

m - q  m+q 
- m  _ _ _ _  

using 3j-symbols and the definitions in the equations (V.4) and (V.5). (An error in the phase 
factor has been pointed out by Pfennig, private communication.) Noting that 962) is 
diagonal in the angular momentum 1, the R integral in equation (VI.3) may now be written 

= 2 dR[(n 'q lm~ln ' l~m~)~~ ' , , ; ' (n ' lbmn Ul,ln'lbmb) (VIII.9) 

g$;,,j,( r?'(,mbln'qbmb)] [(nq,mbln/h!?lb) 

9%;; (nlb??l,l u 1 !?/,!??,I llqa!?l,)] 

where the summation C denotes sums over I,, l i ,  I,, 1; ,  m,. m;, md and mi. The Q depend" 
ofthe integrand in equation (VIII.9) is contained entirely in the four rotation operators ?(Q). 
Using equations (4.3.2) and (4.6.1) of EDMONDS, 1960, we obtain the identity 
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Hence equation (VIII.9) becomes 

This result is spherically symmetric; that is, any further rotations of the atomic coordinate 
system leave this expression unchanged. One may verify this rotational invariance by 
rotating U , ,  through some arbitrary angle Q’ so that U , ,  = 9-’(Q’)UiC9(!2’). Taking 
matrix elements of the new rotation operators and making use of the orthogonality pro- 
perties of the 3j-symbols one sees that the right hand side of equation (VIII.ll) did not 
change. Since we are free to perform further rotations on U, ,  without altering equation 
(VIII.1 l), it is convenient to rotate the X-Y plane through an angle E = arctg @/A) where A 
and B are given by equations (VIII.6) and (VIII.7). This rotation transforms UIc  into an 
operator Dl given by 

(VI1 I .  12) 

where 
1 I +(t~/p)2to(to + ---I t )  1 ,‘2 . (VI11.13) 

g(t,t,,p,L.) = -&2+BZ) = 
P C  

The operator Ul has the important property that i t  is diagonal in parabolic states (because 
it contains only P,Z). Hence a typical matrix element of U is given by 

We also realize that one and the same rotation through the angle E = arctg (BIA)  diagonali- 
zes simultaneously both time development operators acting on initial and final states 
respectively. As a result a typical matrix element of the corresponding tetradic operator .Til(t) 
is given by 

h 
( u ‘ q ’ i n ‘ ;  ~ ? q ~ i 7 1 ~ ~ ~ ( t ) l n ‘ q ‘ i ? ? ’ ;  r1qn7) = exp t o ,  p, r j  (vIlI.Is) 
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x -exp 8rr2 {- i7tq-g(r, 3 h to ,  p, u )  } . (V111.17) 
21,+ 1 i 1 7 7  

This simplified relation may also be used for the higher series members of the Balmer, 
Paschen etc. series where lower state interactions contribute only a negligible amount of 
broadening to the final line profile. 

(IX.1) 

(1x3) i7 
@(t, t o ,  p .  I > )  = exp - I ; (nq ,  - 1 1  q, I- gt; -,,. 11. ' r  111 
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Thus, the problem is now reduced to evaluating F(t) ,  which will be done in this section. It is 
interesting to note the similarity between equations (VIII.13) and (IX.2) and the Y-function 
of ANDERSON and TALMAN, 1955, which is the crucial function in their classical adiabatic 
theory. 

We first realize that due to the symmetry of the line profile we only have to evaluate the 
real part of @(t. t o ,  p, u ) ;  that is, for every positive value of (nq,-n’q:) there will be the 
corresponding negative value. Hence we are left with 

(IX.4) 
h {: nz 

In performing the integrals over p and to  in equation (IX.2) we account for shielding by 
setting the interaction potential Vand hence also @ equal to zero whenever the distance of 
the perturbing electron is larger than the Debye length D. We also introduce a strong 
collision cutoff pmin. In principle we can let the impact parameter go to zero because the 
functions CD and F(t )  do not diverge for small impact parameters as they do in some second 
order theories. However, for numerical purposes this would result in very large computer 
times due to the growing fluctuations in the integral. For this reason we will choose pmin to be 
small enough so that when we are interested in large frequency perturbations Aco where 
perturbers at small impact parameters are quasistatic, the rest of the integral from 0 to 
pmin may then be replaced by the static limit. In the dipole approximation this gives rise to 
the well known Holtsmark A?,-s/2-wing (see also Section X). According to the validity 
conditions of the classical path theories (see paper I) the minimum impact parameter pmin 
will be of the order of 

po = 2 + n 2 a ,  (IX.5) 

I CD(t, t o ,  p, u )  = cos -(nq, - n’qf)-g(t, t o ,  p, 0 )  - 1. 

where ji is the De Broglie wavelength. 
We now concentrate our attention on the integral 

G(t, P,  1.1 = 1 dto a([, t o ,  P,  c). (IX.6) 

For convenience we consider the collision sphere as shown in Fig. 1. The perturbing 
electron moves along the classical straight line trajectory L and we are interested in the 
interaction from some time to to some time to + t. Due to the Debye cutoff the to-integral 
extends from - T to I T where 

(IX.7) 

and the interaction potential vanishes if the electron is outside the sphere of radius D. The 
corresponding time integration limit 5 due to the strong collision cutofY pmin is given by 

Based on this model of the collision sphere we split the integral G into two parts 

(1x2) 

(IX.9) 
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FIG. 1. Schematic picture of the collision sphere showing the Debye sphere, a strong collision sphere 
and a straight line classical path trajectory. 

where the step function U is defined to be 

1 i f a 2  b i 0 i f a <  b' 
(lX.10) U(U > b)  = 

In order to evaluate G,(t, p ,  v) we have to distinguish the following four cases depending 

Case 1 : - T < t o ;  to +t  < T 
on whether the initial and final times of interaction are inside or outside the sphere. 

112 

(IX. 1 la)  

This is the same general expression as given in equation (V111.13). 
Case 2 :  - T < t o ;  T < to+t 

(1X.llb) 

(IX. 1 IC)  
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Case 4 :  t ,  < - T ;  T < f ,+t  

(IX.1 Id) 

After defining 

(IX.12)  I h 
(D,(t, r o ,  p, u )  = cos -(ilq,-n'q:.)--g,(t. t o ,  p, I.) - 1 i: 1 H 

the integral G, is given by 

T T - r  - T  

+ U(t  > 2T)  { I (D2 dt, + -1 a3 dt, + j Q4 dto] (IX.13) 
- T  - T - r  T - r  

where we have separated the cases where the time of interaction is longer or shorter than the 
time 2 T  required to cross the collision sphere. 

In a similar manner we evaluate G,, distinguishing between the following cases : 

Collisions which enter the strong collision sphere are neglected because of the strong oscilla- 
tions. This yields 

G,,(t,p,rt = U(T-7 > r ) {  (Dl dto+ (Dl d f o +  ( D 2  d to+  7 Q 3  diol 

- r - r  T - r  T 

- T  7 7-r - T - r  

(IX. 15) 

where again interaction times longer or shorter than (T -  r )  have been separated. In the 
expressions for G, and G,  we realize after a change of variables that the corresponding 
integrals over and ( D 3  are identical. From the equations (1X.i la) and (IX.12) it  is also 
clear that m i  is a symmetric function in z = r ,  + tj2. Performing ths @,-integral one finally 
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obtains 
'7-- I  7' 

+T 

+ U(t  > 2T){ - T  Q2 dt, + (i- 7) . ah} (IX. 16a) 

and 

1 2 .  Gh(t, p, 1') = U(  7'- 7 > t )  
r T-r 

We now introduce the following dimensionless variables 

P P o  
D D x = -  and x o = -  with D =  d ( x ]  4ni1,e2 ' 

s = &,t with &,, = 42. op = ,,/( F), 
o 

u = - with o,, = 
om' 

(IX.17) 

and the following abbreviations 

(IX.18) 

With these definitions the preceding relations can be rewritten as 

1 1'2 

x2 + (1 - x2)y(y + R )  
x U 

x2+y(l-x2) 1 ' 2  

XU J[x' +y2(1 - x')] 1 
2 ,  

g,(s, y, x, u )  = - x 1 1  . J (  1 - 2) 
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c = c, .c ,  
and 

(IX.2 la) 

(IX.2 1 b) 

ti ti6 Ncm3 104K 
= 2 = 0.03043/( -) 10" . 

~ T . e, = m.D.v,, 2kT 

Similarly we have for the integrals over c, 

1 - R  + 1  

G,(s, X, u) = U(2 > R )  { I @ i d y +  1 B 2 d y } + U ( R > 2 ) { S c D 2 d g + ( ~ - I ) Q 4 }  
, )  - R / 2  1 - R  .- 1 

and (IX.22a) 

1 - R  

Gb(S,X,U) = U(1 > R + P ) {  1 @,dy+ j Q2dy} + U ( R + P  > 1){j@2dy) (IX.22b) 
1 - R  P 

which leads to the thermal average 

F(s, ne ,  T) = 271n,D3 du-u2 . e-"' dx xJ(l -x2)2. G(s, x, u) (IX.23) j: 0 . O  i 
with 

G(S, X, u )  U(X > Xo). Go(& X, u )  + U(x0 > X) . Gb(S, X, u) .  (IX.24) 

These integrals have been evaluated numerically. 
Before we discuss the methods for obtaining the Fourier transform of F( t )  and the 

actual intensity profile, it is useful to derive the small and large time limit of F(t) .  The 
small time limit is determined by the integrals over B1 and gives the asymptote of the 
thermal average for the static wing. The large time limit depends only on the Q4 integrals 
and yields the thermal average as required by the impact theory. 

In the small time limit Ql reduces to the form 

m r2 
(IX.25) 

where 

r = J(p2 + 0 2 t i ) .  (IX.26) 

This expression depends only on the instantaneous distance r as expected in the static 
limit and the thermal average is therefore obtained immediately by the integral over r 

F(t)t+o = 4nn, r2@.,(t, r ) t+o dr i 0 
(IX.27) 
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In the small time limit where 

3 h t  
-(nq,- n'qL)--. ~ + 0 
2 nz rf 

we can then perform the integral with the result 

For the limit of large times of interaction we have to solve the integral 

i i  - 
F(t) , , ,  = 2zne dt. v f ( u )  dp p t  . Q4. 

0 Po 

(IX.28) 

(IX.29) 

For simplicity we set p o  equal to zero (for p o  # 0 see the Appendix). After a change of 
variables and a partial integration the integral can be rewritten as 

(IX.30) 

The :-integral is known as Raabe's integral (see p. 144 of BATEMAN, 1953) and can be 
expressed in terms of exponential integrals. Furthermore, from equation (IX.21) we 
realize that for most practical situations C << 1. Keeping only the leading term in C we 
have 

F(t) , ,  Ij = -4J(n)C2n,D2u,,t[B-ln(4C2)] 

= - (-(nq, 3 - 

I 7 m 

where 

(1x31) 

(IX.32) 

The large time limit of the thermal average in equation (IX.31) is required for the calculation 
of ths  line center and all modern impact theories give the same result except for the additive 
constant B whose value depends on the particular cutoff procedure applied. The Appendix 
gives a summary of the different constants obtained in the literature which vary consider- 
ably. To what extent this uncertainty shows up in the final line profile depends on the 
value of the constant C. The influence will be small if ln(4C2) is considerably larger than 
the uncertainty in the additive constant B. Furthermore, the large time limit of the thermal 
average affects primarily the center of the line profile and its contribution vanishes when 
mo\;ing into the line wings. 

Finally we show numerical results for F ( t )  as obtained by means of a,prograni described 
by VIDAL, 1970. Most of the calculations shown in this paper have been performed for 
the foilowing electron density and temperature parameters. These parameters correspond 
to experiments which, as stated already i n  the introduction. have revealed the largesl 
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case l i e  [cni--3] q [ K ]  Experiment 

A 8.4. 10"' 12 200 BOLD" and COOPER, I964 (cascade arc) 
B 3.6. 10'' 20400 ELTON and GRIEM, 1964 (T-shock tube) 
C 1 . 3 . 1 0 1 3  1850 ViriAL, 1964 (RF-discharge) 

discrepancies between experiment and the modified impact theory. We will concentrate 
our attention on the high density case A and the low density case C, since case B is regarded 
as being less accurate because of lacking absolute intensity calibrations. 

Figures 2 and 3 show the normalized thermal average FIFO as a function of the dimen- 
sionless variable s = GI,, . t for the cases A and C. Figure 3 shows the results for three 
different Stark components specified by the quantum numbers nk = nq,-n'qi. Fo is the 
small time limit according to equation (IX.28) whose Fourier transform leads to the 
static wing. The dashed lines are obtained with a lower cutoff pmin = po = A+n20,. 
It can be seen that for case C the dashed curves get closer to the static limit Fo than for 
case A. In order to obtain the thermal average F for the limit pmin -+ 0 the numerical 

t 

FIG. 2. The thermal average F of the time development operator normalized with respect to  the 
static, small interaction time asymptote To as a function of the normalized t imes = 5; t. The two 
curves are obtained with two different lower cutoff parameters in the p-integral. p,,,, = 0 and 

[I3,,,, = ?. + 1 7 2 0 g .  
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Loglo s - 
FIG. 3 .  The thermal average F of the time development operator normalized with respect to the 
static, small interaction time asymptote Fo as a function of the normalized time s = B,t. The t\vo 
sets of curves are obtained with two different lower cutoff parameters in the p-integral, pmin = 0 
and omin = i + i i zao ,  The three different curves in every set correspond to different Stark com- 

ponents characterized b! the quantum number n, = nq-n’q’. 

calculations were finally performed with typically pmir, 2: O.O1po so that FCalc and F, 
differed less than about 0.1 per cent over at least one order of magnitude in s. For smaller 
values of s, where Fcalc and Fo start to differ again, FCcalc is then replaced by Fo.  In this 
manner we obtain the solid curves in Figs. 2 and 3 which are used in the following. 

I t  should be noted that these curves are calculated on the basis of the dipole approsima- 
tion. I t  is clear that for impact parameters p 2 n2uo higher multipole terms have to be 
considered. Since the values s of interest are approximately given by s 2 cZJAP). one 
expects higher multipole terms to beless important the closer Fcalcgets to Fo for pmin = ~ ‘ c l ~ .  

This is consistent with the experimental fact that in case A an asymmetry of the line has 
been observed which cannot be explained within the dipole approximation, while in 
case C no asymmetry has been observed. 

For large s Figs. 2 and 3 show the transition to P,, as given in equation (IX.31). which 
forms the basis for the familiar impact theories. 
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X. T H E  F O U R I E R  T R A N S F O R M  O F  T H E  T H E R M A L  A V E R A G E  

Havingcalculated the thermal average F ( t )  we now focus our attention on theevaluation 
of its Fourier transform 

exp(iAw,s)F(s) ds (X.1) 
TI 
0 

as required by equation (V.17) (see also equation (IV.16)) where the dimensionless variable 

is the frequency separation from a particular Stark component (cf. equation (V.14)) for 
an ion field strength /? in units of the plasma frequency 63,. 

The thermal average F(s) does not immediately allow a straightforward Fourier 
transformation because for large s F(s)  is proportional to s according to equation (IX.31), 
hence i(AoR) diverges. This divergence is due to the fact that we neglected the finite life- 
times of the unperturbed states involved which naturally terminate the maximum time 
of interaction s. This may be taken care of by introducing a convergence factor exp( - E S )  

which can be obtained by replacing the delta function in the power spectrum of equation (3) 
in paper I by a narrow Lorentzian line with a natural width E (SMITH and HOOPER, 1967). 
In the final line profile, however, natural line broadening is always negligible with respect 
to Stark broadening which allows us to set E to zero without affecting the shape of the profile. 
For this reason we will evaluate 

F(s) is known numerically and there are many ways to perform the Fourier transform. 
In order to  find the most convenient method we notice that according to equations (IX.28) 
and (IX.31), F(s) has the following asymptotes 

for s -+ 0 :  Fo(s) = p,s3” 

and for s + m: Fa(s) = p z s .  (X.4) 

= -5n ,~3(2n~)3 /2  (X.5) 

where 

and 

p z  = - ~ J ( T ~ ) ~ , D ~ c ~ [ B -  I n ( 4 ~ ~ ) ] .  

The transition from Po to F ,  is very smooth because the power in s changes only by 3 
over the entire range. It has been found that F(s)  may be approximated by a function G(s) 
whose Fourier transform can be given analytically and whose parameters may be deter- 
mined by a least square fit. The function G(s) can be given in terms of the series 
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where the number of terms in the series depends on the required accuracy. As a first 
approximation equation (X.4) suggests 

U , S 2  
G,(s) = - 

J(s2 +2b,s) 
( X . 7 )  

with 

0 1  = P 2  (X.8) 

bl = % P 2 / P A 2 .  

and 

Gl(s) has the small and large s behavior of F(s). I t  then turns out that 

for s + 0 F ( s ) -  G,(s) = p , . ~ ” ~  

and for s --* m F(s) -G, (s )  = p 4 ,  
(X.9) 

where p 3  and p4 now have to be determined numerically. Consequently we take G2(s) 
to be 

It then becomes apparent that Gk(s) is given by 

(X.10) 

(X.11) 

(X. 12) 

(X. 13) 
m 

andfor s + c o :  G(s)= 1 p 2 k ’ s 2 - k  
k =  1 

In this manner the Fourier transform of any Gk(s) can be expressed in terms of modified 
Bessel functions K O  and K , .  For all situations calculated it was found that G l ( s )  and G,(s) 
were sufficient to keep the deviation F(skG(s)  smaller than 1 per cent for all values of s. 
In some situations a fit better than 2 per cent was obtained with Gl(s) alone. As a further 
advantage i t  should be noted that this method tends to suppress “noise” introduced by 
the numei lcal evaluation of F(s). 

In  the following we evaluate the Fourier transform i (k .  AmR) of any Gk(s)  as defined by 
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Their sum will then give us the desired Fourier transform i(Aw,). I n  particular we are 
interested in i(k = 1. AoJ,) and i (k  = 2, Aw,). We have 

(X. 15) 

(X.16) 

i l (AoR)  = a,  . b: . e-"' iEi~'(Z,)+H',''(Z,) 

= a, . b:(cos Z ,  - i sin Z,) 

x [ (J,(Z,)- Y 0 ( Z , ) + - ) )  +i(  J,(Z,)+ Y,(Z,)-- "("))] (X.17) 
22 ,  22 ,  

Here Hb" and Hi1' are Hankel functions and J o ,  J ,  , Yo and Y, Bessel functions. These 
functions like all the other functions used in this paper are consistent with the definitions 
as given, for example, by the N B S  Handbook of' Mathematical Functions (ARRAMOWITZ, 
1969). For large arguments Z ,  it is also useful to have the asymptotic expansion 

9 . 2 5 . 7  9 .25 .49 . 11 
-~ ( 1  -i)+-- ( l+ i )+  - -... 

2 .  83Z:  85Zf 

Using equation (X.5) for p 1  the latter relation gives us exactly the Holtsmark AL-5'2 
wing for all Stark components 

i,(Ao>,) = nn,D3C3i2 . A w i  5 / 2 .  (X 19) 

In a similar way one derives 

j2(AejR) = j(k = 2, &oK) = lim 
& + O  71 

0 

(X.20) 
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With 

z2 = b2AwR 

one finally obtains 

(X.21) 

UZD2 i2(AuR) = __. e-iZZ{H~1)(Z2)(i16Z~-36Z2-i15)+H\1~(22)(16Z~ +i28Z2- 3)) 
6 

= -(cos n2b2 Z ,  - i sin Z,) (X.22) 
6 

x {[-36Z250(2,)+51(22)(162:- 3)- YO(Z,)(162:- 15)-2822 Y,(Z,)] 

+i[Jo(Z,)(l6Z: - 15)+28Z2J1(Z2)- 362, Y0(Z2)+ Yl(Z2j(16Z:-3)]j. 

The asymptotic expansion for large Z ,  is given by 

If one requires an even better fit of G(s) to F(s)  the general transform i(k,  AoR) as defined 
in equation (X.14) is given by 

Finally we want to show that this technique always gives the static wing according to 
equation (X.19) for large A o .  For this purpose one has to perform the Fourier transform 
of the small time limit of G(s) as given in equation (X.13). 

s ds i , (AoR) = lim i(AcoR) = pZk-l lim- e-eseiAoRs k + l  ' 
A w n  -+ 4; k =  1 E-0 n 7 4; 

0 

(X.25) 

One recognizes that the first two terms are identical with the first terms in the equations 
(X.18) and (X.23). Hence, we always obtain the static wing for large AwR. 

Another important property of ~(Au,) is that for small AmR its leading terms in the 
expansion are 

(X.26) 

In this manner it smoothly goes over to the Lorentz profile of the unmodified impact theory. 
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! I 

Before discussing the numerical results of i(AwR) we first list the constants a, and b, for 
the cases A, B and C as specified at  the end of Section IX. a ,  and b ,  are determined from 
equation (X.8), where p 1  is given by equation (X.5) and p 2  is taken from the large time limit of 
the computed F(s).  p 2  camp, as calculated numerically may differ slightly from p 2  as defined 
in equation (X.5), if C is not very much smaller than unity because equation (X.5) is only 
correct for small C. a2 and b2 are determined numerically by a least squares fit. The maxi- 
mum deviations from F(s)  obtained with G,(s) alone and with G,(s)+G,(s) are listed too. 
In presenting the numerical results of i(AmR) we concentrate on the real part which turns out 
to be the most important part. We have chosen two different normalizations. In Figs. 4 and 
5, i(AwR) is normalized with respect to the large frequency limit io3(AwR) to show the useful 
range of the static theory. The short vertical lines mark the position of the Weisskopf 
frequency 

I I I 

(X.27) 

for a particular component (nq, - n'q:) which according to classical arguments determines 
roughly the range of validity for the static theory (seep. 321 of UNSOLD, 1955 and paper 11). 
It should be pointed out that AwC is usually defined in terms of an average Stark splitting. 
In both cases A and C Am, describes the range of the static theory very well. If one allows 

Log,o A u R  -+ 

FIG. 4. The Fourier transform of the thermal average i, normalized with respect to the static, 
large frequency limit i, as a function of the normalized frequency AwR = (Aw- A y  -/I)/&,,. 

A@< indicates the Weisskopf frequency. 
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FIG. 5. The Fourier transform of the thermal average i, normalized with respect to the static, 
large frequency limit i, as a function of the normalized frequency AmR = ( A u - A o i . B ) / G i , .  
The three different curves correspond to different Stark components characterized by the quantum 
number n, = nq - n’q‘. The short vertical lines give the position of the Weisskopf frequency Am, 

for every individual component. 

for a deviation of about 10 per cent at  the most from the static asymptote, Aioc may be 
lowered effectively by more than an order of magnitude. A more detailed discussion is given 
later with the final line profile calculations. 

The other normalization with respect to the small frequency limit i,(AioR) is shown in 
Figs. 6 and 7 for cases A and C again. These plots demonstrate the useful range of the 
unmodified impact theory, which is based on io(AmR) and is expected to break down around 
the plasma frequency, as can be seen in Figs. 6 and 7. In order to extend the range of validity, 
the modified impact theory makes an impact parameter cutoff at  u/Aw (the Lewis cutoff) 
whenever this is smaller than the Debye length D ;  this cutoff accounts for the finite time of 
interaction to second order. More details are given in the Appendix. The corresponding 
function iLewis(AwR) has been included in Figs. 6 and 7. Since the usual derivation of 
iLewis(AmR) is based on the limit of very small C, one expects the best agreement between 
the Lewis result and our result, which considers the finite time of interaction to all orders, 
for the situation with the smallest C. That this is in fact true can be seen from the low 
density case with nqc-n’q: = 3. This component is plotted again in Fig. 8, in order to 
demonstrate the importance of G,(s) for those cases where the deviation.of G,(s) from F(s)  
is large (Table 1 gives a maximum deviation of 13 per cent). 

Figures 6 and 7 also contain the static limit iz,(AmR) (dashed lines) and the Weisskopf 
frequency Amc. It gives an idea how close the Lewis results get to the static limit. One 
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Psymptote 

.h ‘ Lewis 

\\ (Modified Impact Theory) 

ne = 8 . 4 . 1 0 ’ ~  cm-3 
T = 12200 K 

I 

FIG. 6. The Fourier transform of the thermal average i ,  normalized with respect to the small 
frequency. impact limit io as a function of the normalized frequency Am, = ( A w - A w J ) ~ , , .  The 
static asymptote (dashed line), the Weisskopf frequency Amc and the Fourier transform as used by 

the modified impact theory are shown. 

notices that with increasing values of C the deviation of iLewis(AmR) from the static limit 
becomes larger. In his line wing calculations (GRIEM, 1962,1967a) GRIEM adjusts his “strong 
collision term” E p D s  in such a manner that the Lewis result is identical with the static limit 
a t  the Weisskopf frequency. In the Figs. 6 and 7 this means that the straight line representing 
iLewis(AmR) is shifted to the right until it cuts Am,. We use here Amc as defined in equation 
(X.27) for every individual component instead of the average value Amc = kTj(hn2) used 
by Griem. Since the Lewis line would then lie appreciably above the curve i(AmR) one 
realizes that this procedure definitely overestimates the electron broadening as already 
observed experimentally (VIDAL, 1965; see also PFENNIG, TREFFTZ and VIDAL, 1966). A 
better method would have been to adjust EDD8 such that iLewis(AuR) forms a tangent of the 
static limit. However, it is clear that any adjustment of EDp,  effectively changes the range of 
the unmodified impact theory and also defeats the purpose of the Lewis cutoff, namely to 
correct the completed collision assumption to second order. 

Finally it ought to be emphasized again that except for the time ordering the Fourier 
transform of the thermal average i(AwR) as presented here takes into account the.finite time 
of interaction to c r l l  orders. Hence, for small AmR it goes over to the impact theory limit and 
for large AcoR it  gives the static limit without requiring a Lewis cutoff. 

W I N G  E X P A N S I O N  

Having obtained the Fourier transform of the thermal average i(AwR) we are now 
prepared to calculate the actual line intensity by evaluating [ (m, gi) according to equation 
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I I ! l l l l l l \  \ I I I \ i i i l l l  I 1 1 I I I H I  I 1 I I I l l 1  

\ 
5 t o t i c  Asymptote 
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\ \ 
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FIG. 7. The Fourier transform of the thermal average i, normalized with respect to the small 
frequency, impact limit io  as a function of the normalized frequency Am, = (Ao-Amifi)/Op. 
The three sets of curves correspond to different Stark components characterized by the quantum 
number n, = nq-n’q’. The static asymptote (dashed lines), the Weisskopf frequency Am, and the 
Fourier transform as used by the modified impact theory are shown for every individual component. 

(IV.15) and averaging it over all ion fields according to equation (11.1). As explained in 
Section IV this problem is greatly simplified in the one electron limit where no matrix 
inversion is required and the intensity I(Ao) is given by 

Z(A0) = Zi(A0) + P(fl)Z(Ao, f l )  dfl. 1 
TABLE I .  NUMERICAL CONSTANTS FOR THE EXPERIMENTAL CASES, A, B AND C 

(XI.1) 

Case A B C 

r, = 12200K T, = 20 400K T, = 1850K 
I l k  = 2 n, = 2 n, = 3 i l k  = 16 tih = 90 

n,=8.4.10’6cm-3 n , = 3 . 6 . l O ” ~ m - ~  ne = 1.3. 1013cm-3 

C 0.02169 
P1 - 0.05124 
P2 -0.03335 
01 = P Z c o m p  -0.03340 
b,  0.2125 
KF-GLVFl < 0.026 

b2 0.539 
I(P-G,-G,)/F/ ~0 .004  

a 2  - 3.95. 10- 

0.02685 
-0.07373 
- 0.04990 
-0.05003 

0.2303 
<0.034 
- 6.57.10-3 

0.449 
< 0.003 

0.002669 
-0.01050 
-3.932.10-3 
-3.932. 

0.0701 1 
<0.13 

2.38. 
0.0664 

< 0.009 

0.01473 
-- 0.1293 
- 0.07696 
- 0.07701 

(0.012 
-9.92- 

1.54 
<0.013 

0.1773 

0.05006 
- 1.725 
- 1.296 
- 1.323 

0.294 1 
< 0.068 

0.477 
~ 0 . 0 1 3  

-0.355 
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I I I  i I I / / ~  I i I I : ~  I ~ 1 I 1 1 1 l ~  I I / I  1 I l l  

0. I ~ I 1 / 1 1 1 1  I I I I I i l l l  I I I I I1111 
io-’ 1 10’ I O 2  io3 

Aw, + 
FIG. 8. The Fourier transform of the thermal average i, normalized with respect to the small 
frequency, impact limit io is shown as a function of the normalized frequency AmR = (AUJ - A C O , ~ ~ ) / & ~  
for a situation where i2(Aco,J (defined in equation (X.22)) represents an important correction. 

The Fourier transform as used by the modified impact theory is included. 

[;(Am) is the static ion contribution originating from the first term, l/Ao,, in equation 
(IV.21) and [(Am, p)  is given by 

Re 
I(A0, f l )  = - 1 (nq,m,ldln’qbmA)(n’qbm~ldlnqbmb) 

7l 

where the dipole matrix elements have been transformed from parabolic to spherical states 
and the summation over intermediate states Inq,m,) and In’qAmA) has been performed. We 
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next apply the Wigner Eckart theorem (see equation (5.4.1) of EDMONLX, 1960) to the dipole 
matrix elements and replace the reduced matrix elements by the corresponding radial 
matrix elements (see BETHE and SALPETER, 1957). 

Inserting this relation into equation (XI.3) and using the orthogonality properties of the 3j- 
symbols we have 

(XIS)  

If we finally replace the unitary transformation by the corresponding 3j-symbols according 
to equation (VIII.8) the result is 
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The preceding relations hold for the general case of upper and lower state interactions. 
They simplify considerably if there is no lower state interaction (e.g. Lyman lines). Then one 
obtains 

(XI.7) 

Equation (XI.7) may be further simplified by evaluating the 3j-symbols and summing over 
mb and m, with the result. 

n- 1 

x En'+(- 1)"+"(n2 -2qf ) l iu (Aa~ ,  B, ?& qb, 4,). (XI.9) 
qc= - (n-  1) 

These simplified relations may also be used for the higher series members of the other 
series, whose transitions do not end on the ground state if lower state interactions contribute 
only a negligible amount of broadening to the final line profile. 

The foregoing relations for the one electron limit essentially represent the asymptotic 
expression for the intensity in the line wings. If one is interested in frequency perturbations 
Aw which are significantly larger than the average ion field splitting equation (XI. 1) can be 
simplified by replacing the ion field average of the electron contribution by the electron 
contribution for the average ion field Pa, 

Z(Aw) = Zi(Aw) + Z(Aw, pa") (X1.10) 

with 

(XI.11) 

If Aw is very much larger than the average ion field splitting, then according to equation 
(X.2) AmR N Aw/C;,, and I(Aw, Pa,) may be replaced by I(Aw, ,!3 = 0). 

Z(A0) = Ii(Aa) +I(Ao,  P = 0). (XI. 12) 

In the limit P --.) 0 the equations (XIS) to (XI.9) simplify drastically because i(AwR) depends 
no longer on the quantum numbers qb and q6 which specify the Stark components shifted 
by the quasistatic ion fields. This allows us to sum in equation (XI.7) over qb and mb which 
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gives us for the case of no lower state interaction 

For the general case of upper and lower state interaction we can sum in equation (XI.6) 
over qh, qb, mb, mb and M and after applying equation (XI.4) we finally sum over the inter- 
mediate spherical states to obtain 

I(Aw, /? = 0) = I(nqmldln’q’m’)12i(Ao, fi = 0, n, n’, q, 4’). (XI.14) 
4.4‘. m.m 

How far into the line center the simplified relations (XI.10) and (XI.12) may be used, depends 
on the required accuracy. Numerical results, which compare the asymptotic wing expan- 
sions with the more rigorous unified theory calculations describing the entire line profile, 
are given at the end of the next section. 

XII .  T H E  U N I F I E D  T H E O R Y  F O R  H Y D R O G E N  

In those cases, where the entire line profile including the line center is required, the line 
intensities have to be calculated on the basis of the unified theory. It has to be pointed out 
that in principal even in calculating the distant line wings the unified theory has to be used 
whenever AcoR in equations (X.1) or cV.17) is no longer large compared to unity. This will 
happen in the final integration over ion fields whenever f i  is close to 

BE = AU/Awi(n, q b ,  n‘, 46). (XII.1) 

However, it was shown in the last section, that for large Acu one may use one of the 

In the unified theory we have to evaluate the following expression 
asymptotic expansions in equations (Xl.10) and (X1.12). 
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where A u i  is defined in equation (V.14). The matrix elements of 2 ( A u o p )  are given by 

(XII.4) 

using equations (IV.16), (IX.l) and (X.1). This relation simplifies significantly in case of no 
lower state interaction in which case we need the matrix elements 

Due to the delta function the matrix of the operator 9 is then block diagonal in m, which 
reduces the size of the matrices to be inverted to n x n or ( n  - 1) x (n  - 1) depending on the 
quantum numbers n and m. Furthermore, equation (XII.2) simplifies in case of no lower 
state interaction. After transforming the dipole matrix elements from parabolic to spherical 
states,applying the Wigner-Eckart theorem (see equation (XI.4))and using equation (VIII.8) 
one obtains 

n - 1  n - 1  _ _ ~  
2 

Z(Ao,p) = I(nllrl10)12 2 (-l)n+m-1-(qQ+qb)/2 
qn sqbsm 

i n - 1  n - 1  \ 

In order to keep the mathematics simpler we concentrate in the following on the case of 
no lower state interaction, because it covers the experimental situations of case A and Band 
is also a good approximation to the higher Balmer lines of case C (see the list of references at 
the end of Section IX). Including lower state interactions means at this stage only a more 
extensive summation over 3j-symbols because the crucial function i(Au,, p), the Fourier 
transform of the thermal average, has already been evaluated for the general case of upper 
and lower state interactions. 
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U s i n g  the unitary transformation of equation (VIIIX), equation (XII.5) may be rewritten 
as 

n-1 n-1  
IT- - 2 

(XII.7) 

where we have used the fact that iu(AaR, p, iz, q b ,  4,) = iu(AmR, p, n, q b ,  -qc)  and that 
iu(AcoR, /I, n, qb, qc = 0) = 0. We also realize that 

(nq,-ml~(Aaop)lnqa--m) = (nq,mlz(Aaop)lnqam). (XI I .8) 

Z(Aw, B) as defined by equations (XII.6) and (XII.7) has been evaluated numerically and the 
computer program, which also performs the final ion field average, is presented in the 
report of VIDAL, 1970. The ion microfield distribution function employed is the one given 
by HOOPER, 1968a, 1968b, which differs less than about 1 per cent from the values determined 
independently by PFENNIG and TREFFTZ, 1966. 

For the experimental parameters of case C,  Figs. 9 and 10 show numerical results of 
Z(Ao, j? = 10) for n = 6 and n = 10. The fat vertical lines indicate the relative intensities 
and the positions of the Stark components for the static field (ion field) j? = 10 and it 
demonstrates the electron broadening. 

0.0 t I I 

n = 6. n’= 1 

ne= 1.3. cm-j 

A W / i P  - 
FIG. 9. The intensity profile of the Ly,-line is shown before the final ion field average for a normalized 

ion field /Ii = 10 demonstrating the electron broadening. 
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I I I 
' n = i O . I n ' = i  ' I ;:b @L .L .06 

Y $ 0 4  
Y 

.02 

0 
0 1  

i r ~ .  13. 

/3i = 10 
T.1850 K 

4 5 6 7 8  - 
FIG. 10. The intensity profile of the Ly,,-line is shown before the final ion field average for a 

normalized ion field pi = 10 demonstrating the electron broadening. 

Figures 11-13 show the final line profiles Z(Ao) after performing the ion field average 
for the experimental cases A, B and C (see end of Section IX). As a first result it turns out 
that for numerical accuracies of about 2 per cent it is in all 3 cases sufficient to consider only 
G,( t )  meaning that ~(Aw,,  8, n, qb, qc) may be replaced by i l (AoR,  8, n, qb,  qc) as given in 
equation (X.17). Although according to Table 1, G,(t) may differ from F(t )  for some com- 
ponents of case C by up to 13 per cent, it turns out that after summing over all Stark com- 
ponents and averaging over ion fields this difference F(t) - G,( t )  is apparently smeared out 
over the entire line profile and affects the final line profile by not more than about 2 per cent. 
This is very convenient for practical calculations, because it no longer requires an extensive 
evaluation of the thermal average anymore, but for most practical situations it is sufficient 
to calculate the line intensities directly on the basis of G,( t )  whose specifying constants a, 
and b ,  are given immediately by the equations (X.8) and (X.5). 

2.5 I I I l 1 1 1 l 1  I I I I I I l l (  I I  

20 

1 1 . 5  

R 
1.0 

T =12200 K 

0.5 

0 
0.1 0.4 1 4 IO 40 

Ax61 - 
FIG. 11. The final Lyman-a profile normalized with respect to the asymptotic Holtsmark AjL-5'z -  
wing (ions only) for three different values of the constant B :  1.27 (KEPPLE and GRIEM, 1968), -0.34 
(as derived in this paper for pmi, = I+&?a, and pmal = D) and - 1.34 (for pmin = R ++&'a, and 
pmax = 0.6D as proposed by CHAPPELL, COOPER and SMITH, 1969). The data are from the experiment 

of BOLDT and COOPER, 1964. 
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n = 2  
ne= 3.6. 1 ~ t 7 C m - 3  

T =20400 K 
0 ELTON GRlEM DATA 

FIG. 12. The final Lyman-a profile normalized with respect to the asymptotic Holtsmark 
wing (ions only) for three different values of the constant B as explained in the caption of Fig. 11. 

The data points of ELTON and GRIEM, 1964, are given. 

This is even more true in view of the fact that the final line profile is partially affected by 
an uncertainty in the constant Bas defined in equation (IX.31). As summarized in Table 2 of 
the Appendix its actual value depends on the cutoff procedure applied, a problem which 
has not yet been solved satisfactorily. The upper cutoff parameter a = p,,,/D (see the 

-A u/Lip 

FIG. 13. The final line profiles for the density and temperature parameters of VIDAL, 1965. The 
asymptotic Holtsmark A I -  5’2-wings for electrons and ions (dashed lines) are included. 
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Appendix) and therefore also the limits on the integral 5 PVJt’) dt‘ can in principal be 
decided within the frame work of the classical path theory (see also CHAPPELL, COOPER and 
SMITH, 1969). The lower cutoff parameter, however, which essentially replaces the dynamic 
strong collisions not amenable in a classical path theory, can only be determined conclu- 
sively from a quantum mechanical theory which is also able to handle strong collisions and 
which does not yet exist. The constant B adopted here is based on a lower cutoff parameter 
P,,,~, = i .+eza,, which specifies approximately the region of validity for the classical 
path theories (see paper I). This is also the constant used in the Lyman-cc calculations of 
paper 111. Numerical results based on other values for the constant Bas used in the literature 
(see summary of the Appendix) are also included in Figs. 1 1 and 12 for the cases A and B. 
The largest value B = 1.27 is the one adopted in the recent calculations of KEPPLE and 
GRIEM, 1968, while the smallest value of B is obtained for pmin = iZ + $n2ao and choosing an 
upper cutoff of pmax = 0.6060 as proposed by CHAPPELL, COOPER and SMITH, 1969. For 
case C this variation of the constant B does not show up in Fig. 13 and amounts to an 
intensity change of at the most about 4 per cent. These variations indicate the reliability of 
the classical path theories and demonstrate that for some cases the error estimates given in 
the literature are too optimistic. The effect on the final line profile due to the uncertainty of 
the constant B will be small if either according to equation (IX.31) 

- 2 ln(2C) >> 1 (XII.9) 

or if (like for the higher series members) the number of Stark components is large which 
tends to smear out the influence of the constant B. It should be pointed out again that the 
unified theory is intrinsicly normalized independent of the value of the specifying constants 
of a particular line. Hence, any variation of the constant B does not affect the normalization 
of the line profile. 

In his unified approach to Stark broadening VOSLAMBER also presents calculations for 
the case A, which show better agreement with the experiment than the calculations pre- 
sented in Fig. 11. We have unsuccessfully tried to reproduce his calculations making the 
same set of approximations which essentially amounts to calculating the line intensity on 
the basis of equation (XI.12) where the total intensity is given as a sum of the static ion part 
l i ( A o )  and the electron contribution I (Ao ,  fi = 0) neglecting the ion field splitting (see the 
dashed curve for f i  = 0 in Fig. 17). While the calculations of the thermal average presented 
here have been obtained by straightforward integration of equation (IX.2), his calculations 
are based on the Monte Carlo method. Numerical round off errors, which can easily be 
overlooked, have been avoided in the calculations presented here by the use of seven differ- 
ent expansions for the various limits of the function @ in equation (IX.3) (see Appendix A of 
the NBS Monograph, VIDAL, COOPER and SMITH, 1970). 

In comparing the numerical results for case C, with the experiment it has to be kept in 
mind that we are comparing the higher Balmer lines with calculations for the higher Lyman 
lines, because our final line profile calculations have not yet taken into account lower state 
interactions. This means that in a plot of the intensity versus the wavenumbers AV, which is 
essentially an energy scale, the line profiles cannot be expected to coincide because of the 
difference in the Stark effect. This gives rise to different static wings as explained in detail by 
VIDAL, 1965. Hence, we have to rescale the Lyman profiles preserving normalization in 
order to be able to compare the measured profiles of the Balmer lines with the calculated 
profiles of the Lyman lines. This means that in a plot of log I versus log AV we can compare 
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the line shape of the corresponding lines directly. The agreement is remarkable. For the 
higher lines. n 2 8. where Doppler broadening was shown to be negligible and where lower 
state interactions no longer affect the line shape noticeably, the agreement is better than 2 
per cent over the entire measured line profile, which for n = 8 extends over 3 orders of 
magnitude in intensity. In particular, the calculations show also the surprisingly large range 
of the Ao-5’2-wing, which extends to 1/10 of the maximum intensity. This fact is not 
explainable by a purely static theory considering also shielding effects. (See PFENNIG, 1966.) 
For the lower lines the calculated profiles have to be folded into a Doppler profile in order 
to achieve similarly good agreement. For the lower line we also expect in the line center some 
influence due to lower state interactions on the line shape which is partially removed again 
by Doppler broadening. 

A more detailed study of the Am- 5/2-wings reveals some other interesting facts. In Fig. 13, 
the dashed lines indicate the asymptotic Am-5/2-~ings; except for n = 5 and n = 6, what 
appears to be a Ao-’’’-wing in the measurements and calculations is not the asymptotic 
Holtsmark A~i-~/’-wing in the region of interest. If one extends the calculations to even 
larger frequencies Am, all the wings will eventually coincide with their asymptotic limit. In 
the paper of VIDAL, 1965, Table I1 gives a list of the electron densities, which were evaluated 
under the erroneous assumption that the measured A ~ - ~ / ~ - w i n g  was the asymptotic 
Holtsmark wing; it was stated that for H4 to HI4 the electron densities coincide with k 4 per 
cent. A more careful analysis of the values, which have been plotted again in Fig. 14, reveals 
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FIG. 11. Plot of the electron density values as a function of the principal quantum number n. 
which have been evaluated by VIDAL, 1965, under the assumption that the AX5’’-wing revealed 
by the experiment is identical with the asymptotic Holtsmark AX5”-wing for electrons and ions. 

a systematic trend. For large and very small principal quantum numbers the electron density 
values rise above the average value, while the minimum value was obtained for n = 7. 
From Fig. 13, it now becomes apparent that the electron densities based on the asymptotic 
Holtsmark wing will go up for increasing n. For smaller n the quantum number dependence 
of the electron density is masked by Doppler broadening which raises the wings again and 
explains the increasing values of electron density for small n. Another important result can 
be seen from Fig. 13. For small principal quantum numbers the line intensities are much 
smaller than predicted by a quasistatic theory. This was observed first by SCHLUTER 
and AVILA. 1966 and the effective electron densities for a quasistatic theory as a function 
of A). show the qualitative behavior measured by them after unfolding the Doppler broad- 
ening. This observation together with the measurements of BOLDT and COOPER, 1964, 
suggested the semiempirical procedure proposed by EDMONDS, SCHLUTER and WELL?, 
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1967. A detailed quantitative comparison requires for the first series members a considera- 
tion of lower state interactions, which is in process. 

For the parameters of case C, KEPPLE and GRIEM, 1968, have already calculated the 
lines Hs and H7. These calculations have been extended to HI, by BENGTSON, KEPPLE 
and TANNICH, 1969, using identically the same computer program. The results are plotted 
in Fig. 15 and comparing the line shape for the higher series members, for which lower state 
interaction becomes negligible, with our results in Fig. 13 one realizes a significant 
difference. In particular, their calculations do not reveal the AA-’” decay in the near line 
wing for intensities smaller than about of the maximum intensity at Am = 0 which is 
discussed above. It should be pointed out that the ion field dependent cutoff, which has 
been introduced by KEPPLE and GRIEM, 1968, to account for the usually neglected exponen- 
tial in equation (VI.4) cannot be responsible for it. This has been tested in our calculations. 
One can understand this by realizing that for the higher series members the effect of 
dynamic broadening due to the electrons as described roughly by the constants pz in 
equation (X.5) turns out to be much smaller than the halfwidth of the total line, which is 
essentially determined by quasistatic broadening. 

As another interesting result, Fig. 16 shows a plot of a calculated Lyman-/? profile 
for two different values of the constant B(B = 1.27 and B for pmin = il+$nza,), which 
allows also some qualitative statements concerning H , .  We realize that changing B affects 
the very line center, where the profile shows the two humps and the nearline wing, but it 
does not change the intensity around the halfwidth significantly, which may be understood 

IO I 0.1 ’ 

- A d G p  
Frc. 15. The Balmer line profiles for the density and temperature parameters of VIDAL, 1965, as 

calculated by KEPPLE and GRIEM, 1968, and by BENGTSON, KEPPLE and TANNICH, 1969. 
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Awl&, - 
FIG. 16. The Lyman$ profile for two different strong collision cutoffs pmin. 

as an effect of the normalization. This is in agreement with experimental observations of 
WENDE, 1967, which show that the calculations of GRIEM, KOLB and SHEN, 1962, over- 
estimate the near line wing. It also explains the good agreement of experimental and 
theoretical halfwidths in high density plasmas (see GERARDO and HILL, 1966) because 
the line intensity around the halfwidth is rather insensitive to the exact value of B. 

Finally, in Figs. 17-19, we compare the unified theory calculations (solid curves) with 
calculations based on the one-electron theory in order to see how far into the line center 
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FIG. 17. Comparison of the unified theory calculations with the one-electron theory calculations 
for Lyman-a. The vertical line marks the position of the shifted Stark component for an ion field 

B = P A " .  
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FIG. 18. Comparison of the unified theory calculations with the one-electron theory calculations 
for = 5. The vertical line marks the position of the outermost, shifted Stark component for an 

ion field fi  = paw. 

the asymptotic wing expansions as given in equation (XI.10) or (XI.12) may be used. 
In all Figures the short vertical line indicates the position of the outermost, unperturbed 
Stark component for an average ion field pa,, which is given by Am = &,,Ami (n,  q = n -  1) 
where Ami is defined in equation (V.14). The dashed lines correspond to the one-electron 
theory calculations for p = 0 according to equation (X1.12), while the dash-dotted lines 
give the results for p = pav according to equation (X1.10). First of all we realize that, as 
expected, the one-electron result for p = pa, diverges when Am approaches B,,AoAn, q = 
n -  1). However, in all three cases we see that for frequencies 

(XII.10) Am 2 5/3,,Ami (n,  q = n -  1) 
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the one-electron theory calculations according to equation (XI.lO) coincide with the 
unified theory calculations to within 1 per cent and better. For slightly released accuracy 
requirements one may also apply the simpler one-electron theory calculations based on 
equation (XI.12) with f i  = 0. In particular we see that for small principal quantum numbers 
the useful range is very much larger than for the one-electron theory calculations with 
f i  = 0," because, for f i  = 0, the one-electron theory diverges only at Aco = 0. We also 
realize that for the line intensity range ofpractical interest both asymptotic wing expressions 
with f i  = 0 and fi = fiaV become less useful with increasing principal quantum number. 
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APPENDIX 

T H E  L A R G E  T I M E  L I M I T  OF T H E  T H E R M A L  A V E R A G E F ( t )  

In equation (IX.31) the large time limit of the thermal average has been given, which is of the form 

F(t ) , , ,  = At(B-ln(4C’)). (1) 
This form has been obtained by most modem impact theories. The additive constant B varies depending on 
what type of cutoff has been used. In the following we derive the different constants B for the different cutoff 
procedures which have been used and compare them with the numbers given in the literature. 

The various methods to evaluate Fm, the large time limit of F(t,  n,, ne, T), differ essentially in three respects, 
namely by the upper and lower limits of the p-integral and by the limits of the t‘htegral in equation (VI11.4). 
Based on the completed collision assumption (BARANGER, 1962), the limits of the latter integral are usually 
extended from - co to + co. This approach, however, is not quite consistent with the cutoff a t  the Debye length, 
which would rather require the integral to go from - T to + T as done in this paper (T is defined by equation 
(IX.7)). We therefore have to investigate the following integrals : 

1 +T 

for I PK(t’) dt’ --* I PK(t‘) dt‘ (Case A) 
0 -T 

and 

Pm = 2nn,(a. D)%,,t 
lmln  

I + m  

for 1 PK(t’) dt’ + 1 PK(t’) dt’ 
0 - m  

Fb, = 2nn,(a. D)’u,,t 1 d x x [ c o s ( s ) - l ]  
X r n h  

(Case B) 

(3) 

where 
(4) 

The factor a = pmaL,D is usually taken to be one and has in some papers (e.g. GRIEM et al., 1962) been varied to 1.1 
or to 0.606 as proposed by CHAPPELL, COOPER and SMITH, 1969. As a lower cutoff we consider in particular the 
three cases of pmin = 0, pmin = 2 and pmin = ynq-n‘q‘)A = 2CD/u by setting 

Xmin = Pmid(a. D ) .  

(5) 
b 2C 

Xmin = -. -. 
a u  

In the following we will set a = 1. In order to recover the dependence on the upper cutoff parameter a, we only 
have to replace in all the following relations C by C/a. First of all, one realizes that with xmin I 1 the lower limit 
on the u-integral is given by 

ug = b . 2 C .  (6) 

Hence, we have to evaluate the following two integrals 

and 

du u3 e-”’ j dx x[cos( E xu J(1 -xz))  - I] 
“0 YO,” 

(7) 

I* = du u 3  e-”’ j dx *[cos( E) - 11 
uoiu 

7 “0 
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I 

The second integral can be simplified after a change of variables and a partial integration to 

I h  = ~ ~ u e ~ " ' [ c o s ( ~ ) - l ]  du. 
" 0  

2 

After expanding the cosine and another change of variables we have 

k = l  

(9) 

which can be expressed in terms of exponential integrals 

(1 1) 

With the lower cutoff parameters stated above (b  5 1) and typical densities and temperatures of interest one 
usually has u,  < 0.1 (see equation (IX.21)). Since for k 2 2, Ek(ug) = l / ( k -  l)+O(u;) one obtains to lowest order 
in ui 

1 1 

2 

(12) 

3(y- l)+ln(4C2)+2K 
which yields 

where K is defined as 1 -cos2 sinz 
K ( z )  = ___ +--Ci(z) 

22 Z 

and Ci is the cosine integral. Equation (13) was obtained already by SHEN and COOPER, 1969. Their constant A 
is identical with our constant 2C. 

The other integral I" of equation (7) one can obtain by evaluating 

AI = duu3e-"' d x x [ c ~ s ( ~ , / ( l - x ~ ) ) - c o s ( ~ ) ]  ux j: "0 ""I" 

so that 
I" = I" +AI  

If we again expand the cosine functions, AI can be given by 

which giiss us to lowest order in 11; 

C2 
2 

AI = - [ I  +O(u,?j)] 
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This means that for the same lower cutoff Case A and B as defined in the equations (2) and (3) differ only by a 
constant 1 in their additive constant E .  As a result we have 

where the constant B for the different cutoff parameters is compiled in the following Table 2 

TABLE 2. THE CONSTANT B FOR DIFFERENT CUTOFF PARAMETERS 

+ T  + m  I PV,(t‘) dt’ I PV,(t’)dt’ 
-T - m  

Pmi, = 0 0.27 1.27 
Pmi.  = 2 0.23 -+ 0.27 1.23 -+ 1.27 
Pmi. = 3 4 1  - 1.66 - 0.66 

In order to compare our results with the numbers given in the literature we rewrite equation (19) as 

where ymi, as introduced by GRIEM, KOLB and SHEN (GRIEM et al., 1959) is given by 

4nn, ( ehn2 ) - 2( n2 )24c’ 
3m kT 3 3(nq-n‘q’) y . = - - -  m,n 

Consequently, B and Bo are  related by the following relation 

Comparing equations (19) and (20) one notices that for a particular line the value of the square bracket a s  derived 
here depends on the quantum number n, for that particular state. This is also true for the paper of SHEN and 
COOPER, 1969, who consider our case (b) with infinite limits on the t‘-integral. Otherwise the constants given 
in the literature are independent of n, because the lower cutoff parameter is usually based on an average Stark 
splitting. If we set nq-n‘q‘ = n2/2, which corresponds approximately to the average Stark splitting and also 
gives the results for the Stark shifted component of Lyman-a, we have 

Bo = E-0.64, (23) 
This yields directly for n, = n2/2 the Eo values corresponding to the B values in Table 2. 

The following constants Bo have been given in the literature: 

GRIEM, KOLB and SHEN, 1959; (equation 29): 
GRIEM, KOLB and SHEN, 1962; (equation 2): 

Bo = 0 
Bo = 1.0 

GRIEM, 1965 
KEPPLE and GRIEM, 1968i(”eglecting quadrupole term): Bo = 0.58 

Recently the time development operator (S-matrix) has been evaluated for Lyman-a including time ordering by 
solving the .differential equations for the S-matrix elements (BACON, 1969). Again the square bracket depends 
on (nq - n’q’) and the average value Bo = 1.1 considering only the dipole term. It should, however, be stressed that 
one should not overinterpret these numbers because within the classical path approximation there is always 
some uncertainty about the “correct” constant B because of the ambiguous lower cutoff. This is due to the fact 
that the classical path approximation breaks down roughly for p 7 I (for details see paper I). For most cases 
this has no significant effect for the Stark broadening of hydrogen because the dynamic broadening is primarily 
due to weak collisions. More details are given with the discussion at the end of Chapter XII. The situation is quite 
different for the broadening of ionized lines where strong collisions are very important and where the uncertainty 
of the classical path approximation accounts for part of the still existing discrepancies between theory and 
experiment. which are large compared with the Stark broadening of hydrogen. 

SO far we have considered Fr, which is the basis of the unmodified impact theory. In order to extend the 
range of validity beyond the plasma frequency the modified impact theory introduces the Lewis cutoff by con- 
sidering only those collisions for which the duration o f a  collision, which is typically p/u, is smaller than the time 

SHEN and COOPER, 1969; Bo = 0.58 
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of interest beiiis typically l /Aoi  For this reason the modified impact theory inti-oduces an upper cutoff 

p,,, = MI N( D, t>,JA:Jj) (24) 
01 

p,,,,;D = MIN(1, 1/AmR) 

I t  should bi. noted at this stage that in the following relations we not only have to replace C by C/o  but a lw h i R  by 
a Aco, i n  order to obtain the dependence on the upper cutoff parameter (1.  Considering the usually applied case (b) 
(equation (311 we have to evaluate the following integral for Am, > 1 

where the Iouer limit on the id-integral is determined by the condition u,/u I I/Acu,. After a change of variables 
and a partial integration one obtains similar to equation (9) 

I: = ~ 1 / ue~"'[cos( 2CAm, T) - I ]  du .  
2Awi UOA'OR 

Expanding the cosine again and performing another change of variables the result is 

This gives us then 

Evaluating the exponential integrals E, for small arguments only we finally have 

CZ 
2 

IC = - [ - E , ( u ~ A t o ~ ) + E I ( u ~ ) ] + I h  

= Cz In AwR + I h  (291 
which giies us for AwR > 1 the log-dependence of the @,,-matrix elements in the modified impact theor!. A more 
appropriate nay for applying the Lewis cutoff, which avoids the discontinuity at Aw, = I ,  is to take as an upper 
cutoff p.,,, = hlIN(D, v/A(o). This case is worked out in the Appendix B of the report of VIDAL. 1970. 

Similar results can be obtained for Case A, which are not included because they are no longer required. The 
derivation for Case B has been included, in order to obtain consistent relations which allow a comparison with 
the calculations done in this paper. The results for Case B as given here differ slightly from the results in the 
literature nhich also vary from paper to paper depending on the average matrix elements used and on what 
lower cutoff and average velocity has been applied. 




