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1. Introduction 

The classical path approximation which is used in 
most line broadening theories, as well as many other 
atomic and molecular problems, is not always clearly 
understood because it is based on rather heuristic 
arguments. Previous derivations have relied more on 
physical insight than mathematical analysis hence 
such features as  the neglect of “back reaction” and 
the assumption that the density matrix is “diagonal in  
wave packet states” are not given to concise mathe- 
matical statements. 

In this paper, statistical methods are used in de- 
riving a precise mathematical expression for the 

thermal average.” The approximations used will be 
given as  mathematical statements which are easily 
understood both physically and mathematically. I t  is 
hoped that this approach will be of some pedagogical 
value in understanding the foundations of the usual 
classical path methods. 

In the following paper [l] ’, henceforth referred to 
as 11, this approach will be extended to show how the 
usual binary collision theories are obtained, and a 
systematic method for improving these theories is 
outlined. 

“ 

2 Construction of a Mathematical Model 

The line broadening problem for gases (or plasmas) 
is basically a study of the distribution of spectral radia- 
tion emitted or absorbed by the gas. The emission (or 
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absorption) is usually produced by a small number of 
particles, and the spectral lines are shifted and broad- 
ened by the interaction between these radiators and 
the remainder of the particles in the gas. Since the 
number of radiators is usually a very small fraction of 
the total number of particles in the gas, the average 
distance between radiators will be large enough that 
any direct interactions between them are negligible. 
We will therefore regard the gas as being divided into 
a large number of cells in such a way that each cell 
contains one radiator and a large number of perturbing 
particles. We will assume that the particles at the 
border between adjacent cells are effectively at infinity 
with respect to the radiators; that is, the interaction 
between a radiator and a perturber at the edge of a 
cell is negligibly small. The distribution of particles 
at the border between cells will then be uniform (i.e., 
not altered by the presence of the radiators) and we 
may neglect all interactions between cells provided 
that we maintain this uniform distribution near the 
edges of the cells. 

We have now represented the gas by a collection of 
noninteracting cells. Each cell may be described by a 
Hamiltonian of the form 

where H a  is an.unperturbed Hamiltonian for the radia- 
tor, H ,  is an unperturbed Hamiltonian for the remain- 
ing particles in the cell (henceforth called the perturb- 
ers), and V represents the interaction between the 
radiator and these perturbers. 

The probability per unit time that a cell, initially in 
the  state Im >, will make a spontaneous dipole transi- 
tion to another state, In>, is 121 
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where Im > and In > are H eigenstates belonging to the 
eigenvalues E ,  and E,,, wInll is the frequency difference 
( E f , # - E I l ) / h ,  and d is the dipole moment of the cell. 
Since we are interested only in tine spectra, we may 
exclude the continuum radiation produced by the 
perturbers (bremsstrahlung, etc.) by excluding the 
dipole moment of the perturbers. That is, d will be 
the  dipole moment operator for the radiator, thus ig- 
noring all transitions which do not involve a change in 
the dipole moment of the radiator. The power radiated 
when a cell makes a dipole transition from Im > to 
(n > is just h o m , l P m a ,  and the contribution this makes 
to the total power spectrum emitted by the gas is 
h W m n P m n 6 ( o - o m n )  or 

if we use delta functions as natural lines. If one wishes 
to use very narrow Lorentzian natural lines [3], it is 
necessary only to use a complex frequency variable 
in place of o; this is of little practical importance 
although it is a mathematical convenience for some 
problems. In  P(o), negative values of w (or omn) 
represent absorptive transitions. 

The total power spectrum emitted by the gas is 
obtained by adding the contributions, P(o), from each 
of the cells. Since all cells have the same spectrum of 
accessible states (H eigenstates), this will turn out to 
be a weighted sum of eq ( 3 )  over all possible initial and 
final states. If the total number of cells (total number of 
radiators in the gas) is N R  and if t he  probability of 
finding a cell (one radiator plus its perturbers) in the 
initial state Im> is p m ,  then the number of cells initially 
in the state Im> is N R p m .  Since P n i n ,  given by eq (2). 
is the probability that a cell initially in the state Im> 
will make a dipole transition to the state In>, any 
given transition Im>+ In> will occur in N ~ p l l t ~ f l l f l  of 
the cells in the gas. The power radiated by this group of 
cells is fiwmnNHpmPinii and their contribution to the 
total power spectrum is hwini,NHpi,t.‘ifi,,6(w - ~ l l l l l ) .  We 
obtain the total power spectrum for the gas by summing 
this expression over all possible Im>+ In> transi- 
tions. The total power radiated per unit frequency 
interval is thus given by 

This expression is equivalent to summing eq (3 )  
over all Im > + In > transitions, weighting each term 
by N H p m ,  the number of cells initially in the state 
I m > .  

In most line broadening problems one is interested 
only in a small range of frequencies which pertains 
to a single broadened line. In  such a case the factor 
w4 in eq ( 4 )  does not change appreciably, and most 
of the frequency dependence of P ( w )  is contained 
in the sum over 6 ( o - o m n ) .  We thus define a line 
shape.function, I ( w ) ,  by 

(5) P (  0) = ( 4 N ~ W ‘ / 3 8 ) 1 (  0) 

The evaluation of I ( w )  is the central problem of 
line broadening theories. Since eq (6) is not multi- 
plied by N R ,  we see that it is necessary to consider 
only a single cell (with appropriate weighting of the 
initial states) when evaluating Z(w).  For this reason, 
most line broadening theories start out with a mathe- 
matical model which contains a single radiator im- 
mersed in a gas of perturbing particles. We have 
included this section merely to justify the use of such 
a model, and in all following sections we will refer 
to this model rather than the gas as a whole. 

3. The Weak Coupling Approximation 

Using the results of the previous section, it can 
easily be shown [ 4 ,  5, 61 that the line shape for 
spectral radiation is given by 

I ( 0 )  = (27r-1 L@-‘C(t)dt  

= r-’ Re j: eiwtC(t)dt ( 7 )  

where C ( t )  is a correlation function which has the 
property C * ( t )  = C ( - t ) .  For dipole radiation, C ( t )  
is an autocorrelation function of the dipole operator d 
for the radiator. This function may be given by 

C ( t )  = Tr { d - T ’ ( t ) d T ( t ) p }  (8) 

where T ( t )  and p are the time development opera- 
tor [ 7 ]  and density matrix for the system (a radiator 
and its perturbers) and the trace is over all states 
of the system. 

The autocorrelation function C ( t )  may be given 
various physical interpretations. Some of these inter- 
pretations are discussed in detail in section 7. 

Following Fano [8, 91, we regard the system as 
being composed of two weakly coupling subsystems; 
subsystem “a” is the radiator (e.g., an atom, molecule, 
etc.) while subsystem “p” is the gas of perturbers. 
The Hamiltonian, H ,  for the system has been given 
in eq (1) by (H,+ H,+ V) where Ha and Hp are Hamil- 
tonians describing the radiator and perturber sub- 
systems and V represents a coupling interaction 
between these subsystems [lo]. 

We assume that the radiator and the gas of per- 
turbers are statistically independent; that is, the state 
of the perturbers does not depend explicitly on the 
state of the radiator, and vice versa. This is the neglect 
of “back reaction’’ in the density matrix. A mathemat- 
ical statement of this approximation has been given 
by Fano [9] in terms of the density matrix: 

p = p‘@p(P’, (9) 

where p(“)  and p Q  depend only on radiator and per- 
turber variables respectively. As a first approximation 
we assume that each subsystem is in equilibrium: 
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Ft,t LL 1 LLlll,Iil('dl rnit~inli l t~.  p a e x p  {- H/kT}: this 
rrquirrs that exp { - C'/XT} he replaced by unity 
leaving p a ~ X ~ { - ( H , ~ + H , , ) / X T }  which has the 
form reqnired by eqs (9) and (10). The interpretation 
of  this approximation is a matter of some importance 
dnd i t  will be discussed in detail in section 8. 

The assumption of statistical independence, eq (9), 
permits one to write the correlation function, eq (8), 
in the form 

where the subscripts on the trace operations denote 
a trace over states of the indicated subsystem [9]. 
The brackrt (. . .) represents an ensemble aver- 
age over the perturber subsystem. This average 
takes the place of the usual "thermal average." 

4. The Perturber Ensemble 

We have assumed that the radiator and the per- 
t u r ber subsystems are statistic a 11 y i n d e pendent. 
The density operator, pot), for the perturber subsys- 
tem will therefore be the same as the density operator 
for an isolated gas of N particles in a volume T -  (the 
volume of a cell) maintained at a constant temperature 
T. Given the restrictions ( N ,  Y', T ) ,  there are many 
possible configurations of positions, x =  ( X I ,  XL . . .. 
x,), and velocities, v =  ( V I ,  vi,  . . .. v i ) ,  for the par- 
ticles which are consistent with these niacmiscoliic- 
constraints. Speaking quantum niechanically. w e  say 
that there are many different state functions. p(x, t ) ,  
which could describe such an isolated pas. We may 
index each of these possibilities with a superwript 
(i), and we imagine a collection of perturber gases, 
called an ensemble [ l l ] .  Each p(')(x.  t )  must he 
a solution of the Schriidinger equation. 

which is normalized to unity: 

Due to its mathematical nature, the concept of 
an ensemble is not readily given to simple physical 
interpretations. However, in the following section it 
will be shown that, by neglecting the influence of 
the radiator on the state of the perturbers which 
surround it (i.e., "back reaction" effects in the wave 
functions), a physical interpretation of the ensemble 
is possible. In that case we may regard each of the 
cells discussed in section 2 as being a member of 
the ensemble (provided that there are enough cells); 

that is. each p") will then represent one of thr  pos- 
sible states for the perturbers in a cell and. for a givf,n 
state of the radiator. the superscript i may then be 
used t o  index the cells. I t  mus t  be t~mphasizcd that 
in this section we are not representing the wave fun(.- 
tion for the perturbers in the cells by p(;). At this point 
w e  are simply constructing an approxiniatr density 
operator for these perturbers which is based on an 
isolated gas. In the following section w e  will use 
the p(;) as basis fiinctions in constructing wave funr- 
tions for the perturbers in the cells. however. the 
treatment of the wave functions in the following 
section is distinct from the discussion of the statistics 
in this section. 

For an isolated gas, energy would be a constant 
of the motion hence each p(') will be an eigenfunc- 
tion of HI, [13]. If we define a complete orthonormal 
set of H,, eigenfunctions c f k ( x ) }  by 

H,J;; (x ) = E(") /I d ( x )  (14.1 

then, from eqs (12) and (13), it is obvious that 

p(')(x, t )  =fi(x) exp (-i tE($/h).  (16) 

Using the notation 

h . ( x )  = (xlx-) 

p(i)(x. t )  = (xlp(i): t )  

Equation (16) may also be written in the form 

(17) 

The probability of finding the gas of perturbers in 
a particwlar state 9'') will be denoted by q"), and the 

M. i l l  be normalized so.  that 

The tirnsity operator. p"" is then defined [ Y ]  by a 
sum over all possible states p('), weighting each by 
its probability of occurrence q"): 

i 

For the macroscopic constraints N ,  7 ~, and T ,  the sta- 
tistical weights are given by 

where E!;) are the H, eigenvalues. Since the states 
p(') are HI,  eigenfunctions, they are also eigenfunc- 
tions of the operator exp(-H,,/kT)/Tr,{ exp(-H,/kT) } 
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having the eigenvalues 9") as given by eq (21). Using 
this property and a closure relation for the @') we 
may combine eqs (20) and (21) to obtain a more 
familiar form for p(1').  

pod= exp (- Hll/kT)/TrIl{exp (- H,/kT)}. (22) 

I t  is obvious, from this equation, that the perturber 
density matrix is diagonal between eigenstates of 
HI, .  Since the  states cp(')(x, t )  are eigenfunctions of 
HJI, the density matrix will be diagonal between 
these states. In the following section it will be assumed 
that cp(')(x, t )  may, under certain conditions, be 
viewed as  a product of wave packets for each of the 
perturbers. We will then be able to state that the 
density matrix is "diagonal in  wave packet states." 

5. Approximate Wave Functions 

In this section, approximations will be made con- 
cerning the form of the wave functions for the system 
(radiator and perturbers). We will derive the wave 
functions used by Baranger [4], retaining the super- 
script (i) notation of the previous section in order 
to clarify the influence of the perturbers in these 
wave functions. 

The wave functions for the system must be solu- 
tions of the Schriidinger equation 

ih 

where x is a 3N-vector (XI, x2, . . ., x y ) ,  which de- 
notes the positions of the N perturbers, and R denotes 
the internal coordinates of the radiator (e.g. ,  for an 
atom, R denotes the positions of the orbital elec- 
trons). 

We wish to expand the wave functions ?V(R, 
x, t )  in terms of some complete set of basis func- 
tions for the system. Since the functions J;;(x), in- 
troduced in the previous section, form a complete 
set for the perturber subsystem and the H,,  eigen- 
functions, which we shall call gj(R), form a complete 
set for the radiator subsystem, we may expand 
q ( R ,  x, t)  in the following manner: 

(23) 
a 

"(R, x, t )  = (HB+ H,+ V)'P(R, x, t ) ,  

*(R,  X ,  t )  =Cajk(t)gj(RXfk(x), (24) 
jk 

where the a j k ( t )  are to be determined by using eq (23) 
and some boundary condition on \v. 

Using eq (16) we may rewrite eq (24) in the form 

q ( R ,  x, t )  =z x ( ~ ) ( R ,  t)cp(")(x, t )  (25) 
k 

where the coefficients 

must 'be  determined by requiring that ?V satisfy the 
Schrodinger equation, eq (23), as well as some bound- 
ary condition. 

3s 

At some initial time, t = O ,  we may require that the 
perturber gas be represented by one of the wave 
functions cp? 

q ( R ,  x, O)=$')(R, O)cp(')(x, 0) .  (27) 

That is, at some instant in time, the coupling inter- 
action V will be small and the perturbers will behave 
like an isolated gas at that instant. Equation (27) 
constitutes the boundary condition for q. Substi- 
tuting eq (25) into the Schrodinger equation, eq (23), 
and using the orthogonality of the cp(", we obtain a 
set of coupled equations for the coefficients x("': 

where 

V k ) ( t )  = (cpk"; tlVIcp@'; t )  

lAJ9 "(t )= (cp"; tlVIcp(k); t ) .  

(29) 

(30) 

We will now assume that the state of the perturbers 

(31) 

With this approximation the states qJi) may be regarded 
as  approximate V eigenfunctions, 

(32) 

as well as  HI, eigenfunctions. This relation provides 
a mathematical statement of the neglect of "back 
reaction'' in  the wave functions. Since the state of 
the perturbers is now unaffected by the presence of 
the atom, the coupling term in eq (28) vanishes and, 
using the boundary condition given in eq (27), we 
readily obtain the approximate wave function 

(33) 

is not affected by the interaction V ;  that is, 

(cp('); C~V~cpq t )  e (cp"'; tlVlcp'"; t ) .  

Vlcp(i); t > = yCi)lcp(i); t > 

W ( R ,  x, t)=x(')(R, t)cp(')(x, t ) ,  

where x") satisfies the equation 

(34) 

Comparing eqs (12), (29), (33), and (34) with eqs (16), 
(17), (21), and (22) of reference [4],  w e  see that the 
approximate wave function Wi) is identical with the 
approximate wave function introduced by Baranger. 
The superscript (i) now indicates the dependence of 
the total wave function, W), on the various possible 
perturber configurations in a cell (as mentioned in 
the 'previous section). Although this dependence is 
implied by Baranger, it is not illustrated by such a 
parameter. 

It is obvious that a function Wi)(R,  x, t )  having 
the form given in eq (33) cannot rigorously satisfy the 
Schriidinger, equation, eq (23), because the latter 
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is. i n  general, not separable equation. I t  would be 
possible t o  find solutions of the form x('j( R ,  x, t)cp(')(x, 
t ). but the "radiator wave  function,'' x('), would then 
depend explicitly on the perturber coordinates, x, 
as wel l  as R and t. By neglecting "back reaction," 
according t o  eq (32) ,  w e  have obtained an approxi- 
mate wave  function of the form X ( ; ) ( P ( ~ )  where x(;) 
does not depend explicitly on perturber coordinates. 
'The superscript ( 2 )  which appears on this "radiator 
wave  function" indicates that xtiJ does depend im- 
plicitly on the state of the perturbers through the 
effective potential V c $ ( t ) ;  that is, we get different 
functions V ( i )  for each of the possible states v(~). 

A general procedure for approximating the solution 
of the Schriidinger equation (23) by a function W) 
having the form stated in eq (33) would be an iterative 
one. The first approximation uses @) and 2i) as given 
by eqs (12) and (34). If we chose to, we could obtain 
the next approximation to q(') by substituting W= 
cp(')X(')into the Schriidinger equation (23), using eq 
(34) to remove some of the x(;) terms. Multiplying by 
x(;J* and integrating over dR then gives a differential 
equation for cp(') which is similar in form to eq (34). 
That is, in addition to the H, which appears in eq (12) 
we would have a potential energy function which is 
averaged over R. The q(') solution of this new equation 
is presumably an improvement over the solution of eq 
(12) since the former contains some back reaction 
effects; however, the improved cp(;) would no longer be 
an H, eigenfunction. Since it is desirable that di )  be 
an H ,  eigenfunction and thus diagonalize p('I),  we will 
use the first approximation to cp( i )  (i.e., the solution of 
e q  (12)). If back reaction effects are important, it is 
not sufficient to use this first approximation. If a higher 
order approximation is used, the density matrix, p ( ' ) ) ,  
will not be diagonal, as noted by G e m  [14]. [In sec. 8 
it will be shown that when these back reaction effects 
become important, the classical path approximation is 
breaking down anyway.] In this case, it would be more 
convenient to use the H, eigenfunctions as a basis set 
in evaluating the trace over perturber coordinates 
(i.e., the thermal average as defined by eq (11)). The 
perturber density matrix would then be diagonal, but 
it would be necessary to make a fully quantum me- 
chanical calculation of the time development operator 
(similar to that discussed by Baranger [4, 51). Such a 
procedure would not be a classical path calculation 
and we will not consider this case any further. 

In keeping with the usual classical path treatment, 
we next assume that each wave function cp(')(x, t )  
may be expressed as a product of wave packet states 
cp,")(xj. t) for each of the perturbers: 

having eigenvalues E!;) and V')( f )  which arc classical 
functions of perturber coordinates. The validity of this 
approximation is discussed i n  section (8). 

We now note that the influence of the perturbers 
which is implicit in V ( ' ) ( t )  may be specified by giving 
the locations, xj'), of the peaks of the packets Cps'), as 
well as their group velocities, $I). We thus complete 
the classical path picture by regarding the wave 
packets CpS') as classical particles described b j  their 
positions 

x( ' )=  ( x p ) ,  xk), . . ., x($) and velocities 

d' )=  ( V p .  vp, . . . , d $ ) .  

Since the wave packets cp$" are assumed t o  be sharply 
localized, we may replace W ( t )  by a classical poten- 
tial function. That is, 

cp(')*(x, t ) V @ ( x ,  t )  d x =  V(')(R, x(I), v(I), t )  

(36) 

where W ( R ,  x(I), dl ) ,  t )  is a classical potential func- 
tion of the 3N-vectors x(') and v('), the operator R, and 
the time t. 

6. The Thermal Average 

To obtain an expression for the "thermal average" 
in eq ( l l ) ,  w e  must first obtain an expression for the 
time development operator, T ( t )  , for the total system. 
Since we are approximating the wave function 
"(R,  x. I )  by "(')(R, x ,  t ) ,  we will need the cor- 
responding time development operator P ( t )  which is 
defined by 

I 

W ( R ,  x, t )  = F I ) ( t ) W ( R ,  x ,  0). (3 7) 

From eqs (33) and (34), we see that this operator may 
be written in the form 

with the boundary conditions cj)(O) = 1. 
Since d (see e q  (11)) is the dipole operator for the 

radiator, it will commute with the perturber Hamil- 
tonian H p  and we may write 

Substituting this identity into the "thermal average" 
in eq (11), we obtain The wave packets, cps'), are assumed to be sharply 

localized during the times of interest in line broaden- 
ing. Although ;ne does not usually think of energy 
eigenstates as being wave packets, it is nonetheless 
possible for a wave packet state to be an approximate = (klFi)td7'$(t)Ik')  (k ' lp(P) lk) ,  (41) 
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where /I, > denotes an arbitrary basis vector for the 
perturher subsystem. Since T!;)( t )  has no explicit 
dependencr im perturher coordinates (i.e., i t  depends 
on perturbers implicitly through the coordinates 
x"), v(l) of  t h r  wave packets @ ) I ,  we have 

< X IT,')' ( t )  dTj;') ( t )  I X '  > = a!,, r ~ T j : ) +  ( t)dFf:)( t )  * (42) 

Substituting this identity into e q  (41), w e  see that 
we need only the diagonal matrix elements of 
in the states Ih >. Using the matrix elements of 
as given by eq (20) and noting the normalization con- 
dition of eq (16), we obtain 

To complete our evaluation of the "thermal aver- 
age," we must express this weighted average in a form 
which is amenable to practical calculations. 

Since q") is a function of E(;:, defined by e q  (21), we 
may express q(') as a function of x ( ~ )  and di )  by using 

where V,  denotes the interaction between perturbers. 
If the radiator is an ion in a plasma, we may add a 
Coulomb interaction, VO(x(')), to H ,  [lo]. This ex- 
pression is consistent with the wave packet interpre- 
tation of cp(J(x, t ) .  

In the classical limit, the sum over (i) is replaced by 
an integral over x(i) and di) .  We may thus write 
q( ' )  in the form 

q(i)(x(i), ,(a) exp {-E(,?(x('), v ( ' ) ) / k T } / Q ,  (45) 

where Q is the classical partition function 

Q = J J  exp { -E l f (# ) ,  v('))/kT}tlx(')cfv('). (46) 

We may now write the "thermal average" in the form 

< . . . > = Q-* J bx( ' )dv(  oexp {- ~ c ; : , (  x(i), /x.T} 

T$)+(x(~),  v ( ~ ) ,  t)d7$)(x(i), d'), t )  (47) 

where the time development operator T!(X(~), v('), t )  
is obtained by solving e q  (39) with the classical poten- 
tial Vi)(  R, x('), di), t ) .  This expression will be reduced 
to the more familiar averages over collision variables 
(velocity, impact parameter, etc.) in 11. 

7. The Autocorrelation Function 

7.1. The Influence of the Density Matrix and the 
Wave Functions 

Before discussing the validity of the approximations 
concerning the density matrix and the wave functions 

(sec. 8). it is useful to first consider the roles they 
play in determining the line shape. Since the line 
shape has been given as a Fourier transform of the 
autocorrelation function. eq (7). it is convenient t o  
study this function as well. 

The autocorrelation function was defined in eq (8) 
by C ( t )  =Tr{d.d(t)p} where d(t)=T'(t)dT(t) 
and p is an equilibrium density matrix for a radiator 
and its perturbers. Since both p and T ( t )  are func- 
tions of H (see eq ( l ) ) ,  they will commute at all times 
(i.e., p is stationary) and we maywrite 

Tr { d * d(t)p} = Tr { d( t o )  * d( t + to)p} (48) 

for any time to. This relation is characteristic of a 
stationary random process and it indicates that when 
we speak of an initial time, we are referring to any 
arbitrarily chosen instant, not some time infinitely 
far in the past. In writing C ( t ) = T r  {d.d(t)p} we 
have arbitrarily chosen t = O  as our initial time. Auto- 
correlation functions [15] such as C ( t )  fall to zero 
as t increases; this represents the loss of correlation 
between the dipole moment at the time t = O  and 
its value at some later time. 

We may regard the trace, in the defining relation 
for C ( t ) ,  as a sum over all possible initial configura- 
tions of perturbers and initial states of the radiator; 
each term in this sum is weighted by the matrix 
element of p which gives the probability of finding 
the corresponding initial state. We may also interpret 
this trace as a sum over cells, with each initial state 
corresponding to a given radiator-perturber con- 
figuration as discussed in section 2. For each initial 
state there will be a dipole moment, d, and at some 
time t later this moment will have changed to d(t). 
Once the initial state has been specified, the temporal 
change in d is determined solely by the time develop- 
ment operator T ( t ) ,  and is not influenced by the 
statistics (density matrix) in any way. 

We  may now think of the line shape as being ob- 
tained by taking the Fourier transform of the d * d(t) 
contribution from each initial state, and then summing 
these Fourier transforms, weighting each term by 
the appropriate density matrix element (the proba- 
bility of occurrence of a given configuration in a cell). 
It is thus apparent that the density matrix can influence 
the line shape only by its weighting of each d . d(t) 
contribution; the wave functions influence I(w) 
only by their effect on the calculation of each d * d(t) 
term. The influence of the density matrix is quite 
distinct from the influence of the wave functions, 
and similarly, approximations relevant to the statistics 
(density matrix) are completely independent of the 
approximations relevant to the dynamics (time develop- 
ment operator or wave functions). 

7.2. Classical Correspondence 

a. Classical Theories 

In discussing any quantum mechanical theory it is 
frequently beneficial to have a classical correspond- 
ence available as an aid to understanding the physical 
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properties underlying the mathematical description. 
In a classical path description of line broadening, the 
perturbers are regarded as classical particles, and 
there is little difficulty in understanding the physical 
properties of this  subsystem. The radiator is treated 
quantum niechanically however, and it is useful to 
develop its classical analog to clarify the influence of 
rollisions on the spectral radiation. 

In classical line broadening theories one considers 
a classical oscillating dipole which emits a continuous 
wave train (referred to as the light train). The light 
train is described by the classical dipole moment 
d (  t )  , and the line shape is given by a Fourier trans- 
form of t h e  dipole autocorrelation function 
C (  t )  = < dd( t )  > just as in e q  (7); in this case < . . . > 
denotes a classical average over collisions. In the 
Lorentz interruption theory (see p. 571 of ref. [16]), 
it is assumed that a collision terminates the unper- 
turbed light train d ( t )  = d exp ( - h o t )  where 00 is 
the unperturbed frequency. The autocorrelation func- 
tion is therefore given by, C (  t )  = d 2  J P (  t o )  U (  t < to) 
exp (-iioot)dto, where P ( t o )  is the probability that a 
collision will occur after a time to, and U ( t  < to) is a 
step function which equals 1 before the collision occurs 
(ie., when t < t o )  and equals zero after the collision. 
Although the line shape is not always given in this 
form (cf. eq (1.2) of ref. [16] noting that P ( t o )  = v c  
exp (-v&))), the results are the same. In another 
classical theory Weisskopf, and later Lindholm, as- 
sumed that collisions can change the phase of the 
light train [16, 171. The line shape is again given by 
the Fourier transform of the light train autocorrelation 
function (see also eq (1.13a) of ref. [I61 or eq (11.13) of 
ref. [17]) hence a phase shift decreases the phase 
correlation thereby broadening the Fourier spectrum 
(line shape). In these phase shift theories, d ( t )  has the 
form exp [-iwot-iq(t)] where q ( t )  represents the 
phase shifts produced by collisions. The autocorrela- 
tion function i s C ( t ) = d ‘ e x p  ( - h o t )  (exp [ - iq ( t ) ] )  
where < . . . > denotes an average over phase shifts 
(thermal average). The Weisskopf theory assumed that 
small phase shifts (less than unity) have no effect on 
C ( t ) ,  whereas large phase shifts (greater than unity) 
destroy the phase correlation of the light train and 
cause C ( t )  to fall to zero. This effect is only apparent 
after one performs an average over a probability dis- 
tribution of phase shifts. To show this, we consider a 
collision which occurs in the time interval ( I ,  t + A t )  
and produces a phase shift qo. If the duration of this 
collision T is very short, 7 < At,  then we have C ( t +  A t )  
= C ( t )  (exp ( - i q ~ ) )  (the two factors are independent 
and are averaged separately as in the impact approxi- 
mation; see sec. (11.3.2) of ref. [17]), where (exp 
( - i q o ) ) = J  exp(-iqn)P(qo)dqo andP(q0)denotes the 
probability of finding a phase shift of magnitude q0. If 
P(qo)  does not vary rapidly, then the rapid oscillation 
of exp (- i q o )  for qo > 1 will produce 

ix exp (-iqo)P(qo)ciqo < 1 

(the integral from - m to - 1 is also much less than 1) 

whereas the integral from - 1 to + 1 is on the order of 
unity. Thus, for q0 > 1, we have C ( t +  At)  = 0 and for 
qll < 1. C ( t + h )  = C ( t ) .  While the average over q) 
is given more accurately by later phase shift theories 
(e.g., Lindholm’s theory), the qualitative results for the 
line shape stated by Weisskopf for 1 are basically 
unchanged. It is in this sense that we will regard a 
large phase shift as an effective termination of the 
light train. 

b. Quantum Mechanical Theory 

In the quantum mechanical problem the radiators 
in a gas emit a series of spectral lines which are broad- 
ened due to the perturbation V. We are usually interest- 
ed in just one of these broadened lines corresponding 
to some given unperturbed frequency 00. The photons 
which contribute to this particular line are emitted in 
radiative transitions between some particular initial 
and final energy levels of the radiator (which may be 
perturbed). In this case, the light train is the wave 
function for a photon emitted in such a transition; 
the amplitude of the light train gives the probability of 
finding a photon emitted after some time t. Baranger 
has shown that the filnction C ( t )  defined in eq (8) may 
be interpreted as the autocorrelation function for the 
light train amplitude (see p. 498 of ref. [4]). Thus the 
line shape is obtained from the Fourier transform of 
the light traip autocorrelation function just as in the 
classical theories. 

The effects of a collision may be roughly divided 
into two categories: adiabatic and nonadiabatic. We 
will discuss these separately although a single collision 
may have both effects. An adiabatic collision will 
simply shift the energy levels thereby producing a 
phase shift (which may be time dependent) in the 
time development operator T ( t ) .  Such collisions will 
reduce the phase correlation between d(0) and d(t)= 
T + ( t ) d T ( t )  just as the  collisions in the classical phase 
shift theories. A nonadiabatic collision will induce a 
radiationless transition out of the initial state. This 
type of transition usually “terminates” the probability 
that the radiator will emit a photon with a frequency 
near w,,. However, if there is another state whose energy 
is very close to that of the initial state, nonadiabatic 
collisions may simply produce transitions back and 
forth between these two states without completely 
destroying ehe probability of emission near wo. The 
latter situation is usually referred to as the problem 
of overlapping lines (although it is sometimes called 
a “phase-memory’’ effect) [18]. In a classical oscil- 
lator having more than one mode of oscillation, a non- 
adiabatic collision simply changes the oscillation from 
one mode to another. The Lorentz interruption theory 
implicitly assumes that the mode whose frequency is 
00 is the only mode of interest and a (nonadiabatic) 
collision terminates this mode. However, if there were 
another mode with a frequency very close to 001 non- 
adiabatic collisions could switch the oscillator back 
and forth between these two modes without destroy- 
ing the phase coherence of the light train (overlapping 
line case). For example, an oscillator in the mode wo 
will have a phase mot at some time t (apart from an 
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arbitrary initial pliasch). If this oscillator is switched t o  
the mode 01 at some time t and, after a time t o ,  is 
switched back to wo, the resulting phase shift in the 
natural oscillation is 7) = [wo( t+ to )  - ( w o t + w l t o ) ]  = 
( ~ o - w l ) t t l .  Estimating t o  by the mean free time ( l / vr )  
and noting that the collision frequency ur may be 
identified with the halfwidth Awl/Z, (in a Lorentz pic- 
ture), we have 7) = (wo-wI)/Awl/2. If (wo-wl) > Awl/* 
(isolated lines), we have 7 > 1 and we may say that 
the  light train is terminated by nonadiabatic collisions 
(as the Lorentz theory assumes). If (wo-wl) < Awl12 
(overlapping lines), w e  may say that the light train has 
retained a “memory of its initial phase.” Thus w e  
see that nonadiabatic collisions are analogous to those 
considered by the Lorentz interruption theory only in 
the case of isolated lines. In the case of overlapping 
lines, nonadiabatic collisions are not treated by any 
classical theories although the classical analog is 
obvious. We also note that a collision which produces 
both adiabatic and nonadiabatic effects cannot be 
conveniently treated by classical theories either. 

To make our discussion of the quantum mechanical 
C ( t )  more quantitative we will consider the case of a 
quantitative three-state radiator having a ground state 
with energy Eo and two excited states with energies E1 
and E,. We will also assume that the ground state is not 
perturbed by the interaction V(t )  and we use Voo=Vol 
=Vo2=0 (as well as  Vij=Vji). A generalization to more 
complicated cases may be achieved by means of an 
obvious extension of the following arguments. The time 
development operator for the radiator (see eq (39)) will 
be written in an interaction representation defined by 

T,  ( t )  = exp (- i t H , / h )  T’ ( t )  , (49) 

where 

Y‘ ( t )  = exp (itH,/h) V ( t )  exp (- i t H , , / h ) ,  (50) 

and 0 is the time ordering operator [19]. Notice that 
Voj= VjO=O implies that TAo= 1 and TAj= TjO=O for 
J! # 0; this simplification is the reason for neglecting 
ground state interactions. 

If we are interested only in the line whose unper- 
turbed frequency is w I O =  ( E l  -Eo) /h ,  w e  do not need 
all of the terms in the trace over states of the radiator 
(see eq (11)). We need only consider the terms 

where exp ( -Ej /kT) .  The natural oscillation exp 
( - i o l o t )  in the first term may be regarded as an un- 
perturbed light train which causes the Fourier trans- 
form of this term (eq (7)) to be large in the vicinity 
of 010. Thus, when calculating the line w10 we need 

on ly  consider those terms in eq (11)  whose natural 
oscillation is close to will. The second term in eq (51) 
describes radiation near wZll: this term will be important 
(when calculating the will line) on ly  if the lines wl(1 

and wZI) overlap (Le.. if their halfwidths are on  the 
order of (wlo-wZll)). It will be shown later in this sec- 
tion that the phase of the off-diagonal terms such as 
Ti,  varies according to the line spacing wl,; thus when 
the average time between collisions (which is on the 
order of l/Awlpl) is small compared with l/wl,, these 
off-diagonal terms will become important and phase 
memory effects (overlapping lines) will have to be 
considered. If wIo and 0 2 0  are isolated lines (Le., their 
halfwidths are much smaller than wlz), the second term 
in eq (51) (as well as the off-diagonal T‘ matrix elements) 
may be neglected. For some lines in the microwave 
region it may happen that the halfwidth of wlo is on the 
order of win; in this case it would be necessary to add 
the “negative resonance” terms, exp (- iwolt) , to 

If we factor the natural oscillation out of C _ ( t ) ,  
we may write C ( t )  = exp (- iwiot)C( t )  where C ( t )  
is a decreasing function o f t  [15]. The IiFe shape (see 
eq (7)) is proportional to J exp ( i tAw)C( t )d t  where 
Aw = (w - wIo) .  Since exp ( i tAw) oscillates rapidly 
for t > l /Aw,  the intensity at th_e point Aw is deter- 
mined primarily by the part of C ( t )  for which 

eq (51). 

For this reason, l /Aw is frequently referred to as the 
time of interest in evaluating the intensity at the 
point Po. 

If the duration of a collision is much longer than the 
time of interest, the perturber may be regarded as 
stationary during this time. This quasi-static approxi- 
mation is frequently employed in the description 
of ions in  a plasma [4, 61. Such static perturbations 
simply add a constant to the oscillation frequencies 
win, mzo, etc. The influence of dynamic perturbations, 
for which the collision time is less than or the order of 
the time of interest, is obtained by calculating ( T i j )  
and (Ti , ) .  

We are interested in  the classical correspondence 
for the quantum mechanical C ( t )  primarily as an aid 
in  establishing a criterion for the so-called strong col- 
lisions (this will be done in sec. 7.3). When a single 
collision is capable of reducing C ( t )  to zero, it is re- 
ferred to as a strong collision. To study this effect 
w e  need only consider the influence of a single col- 
lision on C ( t ) .  We will consider some particular 
type of collision (e.g., given values of impact parameter, 
velocity, etc.) which is described by the interaction 
potential V ( t ) .  We will assume that this is the first 
collision to occur after some arbitrarily chosen start- 
ing time t = O  (if a collision does not reduce C ( t )  
to zero, it is “weak,” and to find a strong collision 
criterion we may neglect the effects of all previous 
“weak” collisions). The collision will begin at some 
time t o  2 0, and we define a collision time 7 such that 
V ( t )  = 0 unless t o  c t c  to+^. From eq (50) we see 
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that T ’ ( t ) = l  when t <  to; when t > ( ~ o + T ) ,  we 
change the variable of integration to t“= ( t ’ - t o )  
and obtain 

T’ ( t ) =  exp (it&,/h)S exp (- i toH,/h),  (53) 

where S is the S-matrix for the collision, 

and 

P ( t )  =exp ( i t ~ , / h ) ~ ( t + t O )  exp ( - i t t i , / h ) .  (55) 

The contribution to C ( t )  from this collision will be 
called C ( V ( t ) ,  t ) ;  this function will have the same 
form as C ( t )  in eq (51) except that there will be no 
average <. . . > over collisions. To obtain C ( t )  
we would simply average C( V ( t )  , t )  over the collision 
parameters for the first collision (and all successive 
collisions if the first collision is not strong). 

c. Isolated lines 

If the lines 010 and wzo are isolated, C ( V ( t ) ,  t )  
is given by XjdjodolT,’i pja) exp ( - i w l o t ) .  In this 
series Tio=O (no ground state interaction) and Ti2 

is unimportant (for isolated lines only). As mentioned 
earlier, to show that T,’z is unimportant it is necessary 
to average over to. This has been done for the line 
wings in eq (19) of ref. [20] and the second term in this 
equation, which contains the off-diagonal elements of 
the time development operator, is negligible in the 
case of isolated lines (see also the following section 
on overlapping lines). Using this fact we have 

C ( V ( t ) ,  t )a  &foplT;l(t) exp ( - iw lo t ) .  (56) 

Since the complex function T l l ( t )  can always be writ- 
ten in the classical form exp [ - i r , ( t ) - ~ ( t ) ] ,  the 
classical correspondence for C (  V (  t )  , t )  becomes ob- 
vious. Collisions for which E = O  are equivalent to the 
collisions in the classical phase shift theories and those 
for which E ,> 1 are equivalent to the nonadiabatic col- 
lisions in the Lorentz theory. To illustrate the func- 
tional form of r, and E ,  we will evaluate T l l ( t ) ,  for 
t >  to+^), to lowest order in V ( t ) .  We will use 
Yll = Vz2 = 0 since V has no diagonal matrix elements 
in most problems (i.e., V usually has nonvanishing 
matrix elements only between states with different 
angular momenta). Using eqs (53), (54), and (55) we 
obtain 

= 1 - i ( f i C r 4 , / h ~ , I )  [exp { i t A E d h } - l ] d t ,  (57) 

where AE2] = ( E 2 - E l )  and Vz1 denotes the average 
value of VzI ( t )  during the collision. For fast collisions 
(AEz17/h)  < 1,  we have 

l 

Tll(t)  l - f ( v 2 1 T / h ) * .  (58) 

For slower collisions (AEZ17/h) % 1, we replace T by 
when integrating the exponential in e q  (57). We 

then replace AEZ1 by (AEzl + is), perform the integral, 
and then take the limit 6 + 0. The justification for this 
procedure is the “radiation damping” which produces 
the natural line width (see sec. 13.A of ref. [3]). In 
this manner we obtain 

Til(t)  2: l+i(@lT/hhEzl). (59) 

These results may be summarized by 

c(v( t ) ,  t )  a dfOpl exp ( - i w ~ ~ t + i q - ~ ) .  (60) 

where 
0 ( U z i T / h )  4 1 

(61) 
(@i dhAE21) ( U d h )  1 

and 

( v 2  I T/h ) ( h E z i T / h )  e 1 .=[ (62) 
0 ( h E z l T / h )  9 1. 

Notice that if the perttrbation is not strong enough to 
mix adjacent levels, V21 < h E z l ,  then E < 1 and we 
have only a-phase shift. That is, all collisions are 
adiabatic if V Z 1  4 AE21. If adjacent levels are mixed, 
w e  will have phase shifts produced by slow (adiabatic) 
collisions and inelastic transitions produced by fast 
(nonadiabatic) collisions. 

For a series of collisions which do not overlap in 
time (or for which this overlap is negligible) the classi- 
cal form is preserved and the net result is a phase shift 
7) and a damping E which are obtained by adding up 
the phase shifts and damping constants from each of 
the collisions. When two collisions overlap, quantum 
mechanical mixing effects occur and the classical 
form is destroyed. 

d. Overlapping lines 

If the lines b l o  and w20 are not isolated we must 
consider all terms in eq (51): 

C ( V ( t ) ,  t )  a [ ~ l d E : O T I I + ~ ~ d ~ ~ d ~ ~ T i ~ l  exp ( - i w ~ o t )  

+ [p2dj0Ti2 + pld lod , ,J~,  ] exp (- iwzot) . (63 ) 

The plTil term gives the probability that a radiator 
initially in the state El  will remain in that state after a 
time t ;  the p2T12 term gives the probability that a radia- 
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tor initially in the state E' will make a radiationless 
transition to E l  during the time t ;  together these two 
terms describe the probability, at the time t ,  that a 
radiator will emit a photon with a frequency near 010. 

The remaining terms in eq (63) describe the probability 
of emission near 0 2 0  (we must consider these terms 
when the lines win and wzo overlap). 

When t < to, the radiator is unperturbed hence 
T i l = T i , = l  and T;,=Til=O; in this ca se ,C(V( t ) ,  t )  
a [pldio exp ( - iwlot)  +p.&exp ( - i m o t ) ] .  When the 
collision occurs, we get a probability for switching 
between the modes wIo and w2o as discussed earlier; 
that is, T; ,  and 7'$, increase in amplitude while TI, and 
Ti2 decrease. To show this effect, we will calculate the 
T matrix elements for t > ( t o +  7). 

The condition for overlapping lines is (AEzl/h) 
<Awl/';  since we may identify Awl/t with vc where 
( 1 1 ~ ~ )  is the mean free time between collisions and 
since T is usually much less than l /vc  (at least for 
strong collisions), we must have (AE21~/h) Q 1. Noting 
the results of eqs (57) and (58), we see that when 
( A & l ~ / f i )  4 1, the S matrix elements may easily be 
evaluated to all orders with the following results: 

SI I=SZ: !=COS (V,iT/h) 

S ~ ~ = S Z ~ = - ~  sin (VZ1T/h).  (64) 

Using eqs (55). (63), and (64) we may give-an explicit 
expression for C ( V ( t ) ,  t )  in terms of (V2&). To 
simplify the following discussion we will use C ( V (  t )  , t )  
= C l ( V ( t ) ,  t )  + C , ( V ( t ) ,  t ) ,  where 

C , ( V ( ~ ) ,  t )  a p l [ d f o e x p  ( - i o l o t )  cos ( V , ? T / ~ )  
-idj:fo(dlo/dxo) exp (-iwznt+iozlto) sin ( V r l ~ / f i ) ] ,  

(65) 

and C , ( V ( t ) ,  t) contains the two p2 terms in eq (63). 
(C2 may be obtained by interchanging the indices 2 
and 1 in Cl.) We will discuss only CI since the inter- 
pretation of Cr is obviously identical. 

C , ( V ( t ) ,  t )  describes the behavior of a radiator 
which was initially in the state E l .  Before the collision 

C,( V ( t ) ,  t )  a pld?, exp (- i w d )  (66) 

and a f t g  the collision, t > ~ u + T ,  CI is given by eq (65). 
cos ' ( V z ] ~ / h )  gives the probability that the radiator 
will be in the state El after the collision, and sin' 
(V21~/h)  gives the probability that the collision will 
induce a radiationless transition to the state E,. If 
( V ] g / h )  = (7r/2), the collision will definitely cause a 
transition to E' and we would have 

C,(V(t) ,  t) apld&(dl0/d2o) exp (-iwzot+ iwzlto) 

after the collision. Equation 
train for the line 020 with a 
as in the classical oscillator 
factor dlo/dzo represents the 

(67) 

(67) describes a light 
phase shift 021 t o  just 
discussed earlier (the 
arbitrary initial phase 

difference between the two modes as  well as an ampli- 
tude difference if one should exist). This result is 
identical with the result for a two mode classical oscil- 
lator because, when (VI27/h)  equals some odd multiple 
of ( ~ / 2 ) ,  there is definitely a change of mode: for 
other values of (V12~/#i), the quantum mechanical 
expression, eq (65), shows only a probability for this 
mode switching effect. Notice that the mode switching 
or phase-memory effects are described by the off- 
diagonal T' matrix elements. These off-diagonal 
elements were not needed in the description of iso- 
lated lines because the average phase shift 021 t o  
is greater than unity (recall that the average value 
of to  is the mean free time (l/vc) which is estimated 
by l / A a ~ ~ , ~ )  and these elements vanish after the t o  
average. 

In the case of overlapping lines, C(V( t ) ,  t) does 
not have the simple classical form which was obtained 
for isolated lines. In this case we would average 
C(V(t) ,  t) eve! collision parameters by defining a 
quantity E =  (V127/h) and a function P(E) which gives 
th_e probability that the collision will produce a 
( V 1 2 ~ / f i )  whose magnitude is E. The average over 
C( V(t ) ,  t) contains terms like 

J P(c )  cos E& and J P ( E )  sin €de .  

If P ( E )  does not vary rapidly then we may say that 
collisions for which E > 1 effectively terminate the 
wave train (this argument is analogous to the treat- 
ment of large phase shifts in the classical theories). 

7.3. Strong Collisions 

In discussing the approximations relevant to the 
density matrix and the wave functions, our general 
procedure will be to show that each approximation 
breaks down only during a "strong collision." It 
is thus convenient at this point to clarify our meaning 
of strong collisions and to discuss briefly the dynamics 
of certain types of collisions. 

In the previous section it was shown that each col- 
lision produces a phase shift and changes the ampli- 
tude of the light train. In this manner, a series of 
collisions will eventually destroy the correlation 
between d ( t )  and d(0)  and reduce C ( t )  to zero. It 
may happen that a single collision is capable of 
reducing C ( t )  to zero; such an event is defined to be 
a strong collision. From the results of the previous 
section we see that a strong collision is one which 
produces a large phase shift, 7 > 1, or a large decrease 
in amplitude, E > 1. Such collisions terminate the 
light train and therefore satisfy the hypotheses of 
the Lorentz interruption theory when E > 1,  or Weiss- 
kopfs phase shift theory when r ) >  1. The general 
program of classical path theories is to describe all 
but the strong collisions assuming that these will 
be treated by some other method such as  a Lorentz- 
Weisskopf approximation (211. 

From the results of the previous section, we see that 
a strong collision will occur when 
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(F’T/bi) ,> 1 (68) 

unless the levgl spacing is grsater than V (cf eq. (61) 
using AEt,  > Vtl). If hEXI > VzI we must replace the 
V in eq (68) by Veff= V i , / A E t I ;  in this case, Veff is the 
actual perturbation of the radiator since w e  have used 
VI, =O. It is in this sense that we use eq (68) as a work- 
ing definition of strong collisions. It should be noted 
that our definition of a strong collision as one which 
terminates the light train is basically equivalent to 
the strong collisions in the impact theory [21] which 
are said to occur when the terms in the S-matrix 
expansion (see e q  (54)) are on the order of unity or 
larger. 

Most classical potential functions are inversely 
proportional to some power of the perturber position 

r(t) 2: po+ v(t’)dt’, where po is the radiator-per- 

turber separation at the time of closest approach 
and v(t) is the instantaneous perturber velocity. 
The maximum value of the potential where Ir(t)l 
is smallest, namely when r (0)  = po. The half maximum 

occurs when I.(.)[ = I&+ v(t’)dt’I = 2p0 (which 

may be taken as a definition of the collision time T ) .  
If v (  t )  changes very little during a collision we may use 
V(T)  =v(0)=vo or I.(.)[ = Ipo+~voI = 2pO. Since 
po- vo = 0, the collision time is on the order of 

T = p o / V o  (69) 

I’ 

1 

where vo is the velocity at the time of closest approach. 
It can be shown by a rather lengthy analysis of hyper- 
bolic trajectories, that this estimate is valid even when 
the radiator is an ion which accelerates a charged 
perturber. 

If the radiator is electrically neutral, w e  may esti- 
mate vo by the thermal velocity v,,= m. If both 
radiator and perturber are charged particles, we may 
estimate vo by 

vi= vi\. - 2ZrZ,,eX/mpo (70) 

where Z ,  and Z ,  denote the charge of the radiator and 
perturber respectively. 

8. Validity Criteria 

8.1. General 

An expression for the “thermal average” has been 
derived, eq (47), using a classical path treatment. 
This expression, or one like it, is the starting point 
for most of the modern semiclassical line broadening 
theories and it may be regarded as the end result of 
the classical path approximation. It is therefore worth- 
while to examine the validity criteria for this expression. 

It has been shown that the classical path approxi- 
mation, as it is used in line broadening theories, 
actually embodies several types of approximations. 
As we have stated them, they may be roughly divided 

into three classes; ( a )  the representation of the gas by 
a collection of “interacting cells, (2) simplifications 
of the density matrix, and (3) a classical treatment of  
the perturber wave functions. 

In order to justify the mathematical model which 
is used by most line broadening theories, we have 
assumed that the average spacing between radiators 
is large enough that all d,irect and indirect interactions 
between radiators are negligible. (By indirect inter- 
actions we -mean that one radiator may influence a 
perturber which is interacting with another radiator.) 
It is probably possible to justify the mathematical 
model with more relaxed assumptions, however, 
since our assumptions are satisfied for virtually all 
problems of interest, this may not be necessary. For 
resonance broadening in neutral gases, this approxi- 
mation may have to be reconsidered. 

It should be noted that the radiator Hamiltonian 
H ,  should describe translational motion of the radiators 
as well as their internal structure (Le., bound states). 
In practice, however, one usually neglects this trans- 
lational motion and calculates only the discrete spec- 
trum. This procedure neglects Doppler shifts which 
also broaden a given line. The Doppler broadening 
may be reinstated, in an approximate manner, by 
means of convolution integrals [6]. This folding pro- 
cedure should be valid if the radiators trajectory, 
during the time of interest, is not appreciably altered 
by collisions with other particles. For most plasma 
line broadening problems this criterion is well satisfied 
however, for some foreign gas broadening problems 
one may have to treat Doppler effects more carefully. 

8.2. Density Matrix 

The approximations relevant to the density matrix 
are for the purpose of achieving a product form, eq 
(8),  which permits us to factor the trace operations, 
as in eq (ll),  and thereby perform the average over 
perturber states without affecting the sum over states 
of the radiator. In this weak coupling approximation, 
the subsystems are statistically independent and this 
is what is meant by the neglect of back reaction as it 
applies to the statistics (density matrix). This approxi- 
mation has been made by replacing the term exp 
( - V / k T }  in the Boltzmann factor by unity; that is, 
we have assumed that all V matrix elements (or at 
least those which pertain to the spectral line of in- 
terest) will satisfy V e  kT.  It should be noted that in 
obtaining this inequality we have tacitly assumed that 
the radiators and perturbers are in thermal equilibrium 
at a temperature T. For many line broadening experi- 
ments, however, the radiators and perturbers have 
different temperatures. Nonetheless, if the perturbers 
are in thermal equilibrium at a temperature T,, the 
weak coupling approximation will still be valid for 
V e  kT, and the perturber statistics will be described 
by a Boltzmann factor as in e q  (47). In such a case, 
the statistical weights for the atomic states (matrix 
elements of p‘“)) would be determined from the rate 
equations which describe the population and depopu- 
lation of atomic levels. We will henceforth take 
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V + kT, where T is the perturber temperature, as  
the validity criterion for the weak coupling approxi- 
mation. It is obvious that this inequality will be vio- 
lated for some interactions, however, it will be shown 
that the errors made by this approximation are impor- 
tant only in the far wings of a line where h A w >  kT.  

If the perturbation V 2  kT is produced by a static 
ion (one which does not move appreciably during the 
time of interest, see eq (52)) in a plasma, the Stark 
splitting is on the order of kT,  and it is immediately 
obvious that this will influence only the far wings, 
A o  > k T / h ,  of a line. 

When the perturbation V > kT is produced during 
a collision with a dynamic perturber (we will con- 
sider electrons as representatives of dynamic per- 
turbers), the radiator-perturber separation must be 
on the order of X,,=h/=kT(the thermal wave- 
length, or average de Broglie wavelength, for the 
perturber) or smaller [22]. Using V = k T ,  po=+iav 
and vO=vav in eq (68), we see that, for neutral radia- 
tors, V 2 kT can occur only during a strong collision 
(for most neutral radiators the energy spacing between 
adjacent states is less than kT and it is not necessary 
to consider V,, as  discussed in sec. 7.3). If a charged 
perturber collides with an oppositely charged radiating 
ion, it will be accelerated by the Coulomb attraction 
Vo, hence vo > vav. IJsing V =  kT ,  PO=&,,, and 
~ O = ~ ~ , ( V O / V ~ ~ )  in eq (68), we find that ( V T / ~ )  is on 
the order of (vav/vo), which is less than 1. Thus, 
in this case, V >  kT need not correspond to a strong 
collision. In a collision involving a radiating ion and 
a charged perturber of like sign, the perturber will 
be decelerated, and it is unlikely that it will come 
close enough to the radiator to produce V , > k T .  
To show this, we note that the smallest value of pc 
given by eq (70) is (2e2/mpo)=vf, or po=KaV(2e2/h) 
m T ;  in order that po be on the order of X,,, it  
is necessary that T be larger than loH deg K. 

Regarding C(t) as a weighted sum of d-d( t )  terms 
as discussed in section 7.1, it is clear that the approxi- 
mate density matrix p(‘l)p(j’) will incorrectly weight 
only those d .  d(t)  terms which correspond to a 
radiator initially undergoing a V 2 kT collision (i.e., 
the density matrix weights each term according to the 
state at t=0 ) .  This does not preclude the  possibility 
that V 2  kT collisions may occur at later times, t > 0, 
in the remaining, correctly weighted, d d(t) terms. 
Such events will indeed occur, however, they are 
determined by the dynamics of the system and this 
has no connection with the statistical weighting (den- 
sity matrix) of the corresponding initial states. If w e  
define a collision frequency VkT for the v 2 kT collisions 
then the probability that such a collision will occur 
within a time T of t = O  is vkyr. The number of incor- 
rectly weighted d * d(  t )  terms will therefore be v k y r N ~ ,  
where NT is the total number of terms. The number of 
correctly weighted terms will be (1 - u ~ T T ) N T ,  and the 
error resulting from the use of the weak coupling den- 
sity matrix will be on the order of u k g / (  1 - v k n ) .  
Since the duration, T ,  of a V > kT collision will be 
much smaller than the time between such collisions, 
we may replace (1 -vkyr) by 1 and the error estimate 

becomes v k g .  The error will be largest when all col- 
lisions produce V 2 kT; in this case we may estimate 
the collision frequency by Awl/? ,  the  halfwidth of the 
observed line. The largest value of ~ = p , j / v ~ ,  for a 
V ?  kT collision occurs for po=Ka, and uo=vav  (de- 
celerated perturbers, vo < Uavr are not likely to pro- 
duce V b kT). The largest value of T is hlkT hence 
the largest error is on the order of hAol /JkT .  Since 
hAollr is much less than kT for virtually all lines of 
interest, this error is negligible. A more detailed 
analysis of the incorrectly weighted terms shows that 
this error estimate breaks down when A o  %- Awl / z .  In 
this case the time of interest is less than the average 
time between collisions (recall that Awl/l’ u ~ T  for 
the worst case), and some of the correctly weighted 
d*d( t )  terms will not suffer a collision during the 
time of interest. These “unperturbed” terms will have 
little influence on the line shape in the region A o  > 
(their dominant influence is in the line center when 
A o  < Aw1/2). We must therefore compare the number 
of incorrectly weighted terms with ( u m / A o )  (1 - v k T r ) N T  
(the number of correctly weighted terms which have 
undergone a collision during the time of interest, l /Ao) .  
In this case the error estimate becomes hAw/kT which 
is small if A o  + kT/h. It must be emphasized that these 
error estimates are only an upper bound for the true 
e r ror  which, in most c a s e s ,  is  much less  t han  
(hAw,pJkT) or ( h A o / k T ) .  

For neutral radiators V 2 kT occurs only during 
a strong collision. Since a strong collision completely 
disrupts the light train, the weighted sum of all 
d .d(t) terms which correspond to a strong collision 
at t = O  will have fallen to zero by the time these colli- 
sions are completed. That is, the halfwidth for the 
sum of all incorrectly weighted d * d ( t )  terms will 
be on the order of r = h / k T  or smaller. The corre- 

-- sponding Fourier transform will thus be a constant for 
h A o  < kT. Since the incorrectly weighted terms 
add only a constant to Z(o) for hAw < kT,  the approxi- 
mate density matrix will not affect the shape of 
Z(w) for neutral radiators. Since most V,> kT collisions 
are strong collisions even when the radiator is an ion, 
the above argument may be loosely applied to ion 
lines as well. We may therefore give the condition 
for validity of the weak coupling density matrix as 

h A o  < kT. (71) 

This condition was also obtained by Baranger [5,23] 
within the framework of a quantum mechanical impact 
theory. We note, in passing, that the region of validity 
for the impact approximation is given TOAO< 1 
where T O  i s .  some representative collision time (see 
sec. 5.1 of ref. [4]). Since TO 2 h/kT ,  we may state 
that when the impact approximation is valid the weak 
coupling density matrix may be used; the converse 
of this statement is not necessarily true. 

8.3. Wave Functions 

The dynamics of the system are needed only to 
calculate d(t) from d(0) for each given initial state; 
this requires a knowledge of T ( t )  but not T(R, x, t). 



That is, since we are working with a trace, eq (8), 
i t  is not necessary to know the wave functions 
"(R, x, t )  for the system (although it is necessary 
t o  define a set of basis functions). Semiclassical 
approximations have been made in the wave functions 
simply to permit the use of a classical potential 
function, V")(R,  x(l), v'l), t ) ,  in the time development 
operator. These semiclassical approximations, which 
are the hallmark of the classical path approximation, 
permit a simple physical interpretation of the dynamics 
of the system. More powerful quantum mechanical 
treatments are available [3,4]; however, in many 
cases, the results of these theories differ only slightly 
from the classical path-treatment and the physical in- 
sight afforded by the latter is frequently advantageous. 

The wave packet assumption was used to obtain 
the relation 

which is the usual condition for validity of WKB calcu- 
lations (see eq (7.13) of ref. [28] noting that h(dp/dx) 
may be replaced by Ap). W e  will assume for the mo- 
ment that this inequality can be satisfied, and i t  will 
be shown that the other validity conditions are easily 
met. 

We wish to represent those perturbers which are 
not interacting with the radiator by Gaussian wave- 
packets of width Ax, and momentum spread Ap,, 4 pav 
at some instant of time. For this wave packet construc- 
tion we must require that Ax, be much less than the 
average particle spacing nP1l3 ( n  is the perturber 
density) so that the wave packets do not overlap. 
Using AxyApy = h (for a Gaussian wavepacket), we see 
that the condition Apy 4 pav also requires Ax, 9 h/pav 
=Kav. We must therefore be able to satisfy. 

where Vi) is a classical function of the classical 
position and velocity coordinates xCi )  and di). V(R,  x) 
can be expressed as a sum of interactions V ( R ,  xj) 
between the radiator and each perturber (recall that 
x=(xI,  x2, . . . xN)), thus we need only require that 

V ( R ,  ~j )cp"' (~j ,  t ) =  V("(R, x'j! v(;! t)cp"'(xj, t )  (73) 

when V(R, xj) # 0 in order to obtain eq (72). Mes- 
siah [24] has shown that eq (73) is obtained if the 
perturber is represented by a classical wave packet 
[25, 261 and if the potential field seen by the per- 
turber does not vary appreciably (as compared with 
the perturbers kinetic energy) over the width of the 
wave packet. 

The conditions for validity of eq (73) are discussed 
in detail by Messiah and we shall only outline this 
discussion as it applies to our problem. We must 
show; (1) that it is possible to construct a wave packet 
which does not overlap with the wave functions for 
the other particles, (2) that this wave packet does not 
spread appreciably during a collision (i.e., when 
V ( R ,  xj) is nonzero), and (3) that the potential seen 
by the perturber does not vary appreciably over the 
width of a wave packet. The potential seen by the 
perturbers may be obtained by iterating the Schrii- 
dinger equations for and c p ( i )  to the next higher 
order as discussed in section 5. This potential will 
be the matrix elements of V ( R ,  x) between atomic 
states or, in some cases, it will be Verf as discussed 
in section 7.3, (or some other type of optical potential) 
[271 The momentum of a perturber moving in the 

potential V ( R ,  x) is given by p = d 2 m ( E - V ) ,  
where E denotes the perturber energy. From this 
expression we see that A p = m A V / p ,  where A p  
and A V  denote the variation in p and V over the width 
of a wave packet. The condition that A V 4 p 2 / 2 m  
is thus equivalent to 

A P 4 P  (74 f 

For virtually all problems of interest we have %av 4 
n-Il3, hence it will be possible to construct Gaussian 
wave packets for the overwhelming majority of per- 
turbers at some instant of time. 

Since static perturbers (e.g., ions in a plasma) are 
regarded as stationary during the time of interest, 
it is only necessary that they be represented by wave 
packets at some instant of time. As discussed above, 
this will be possible for the overwhelming majority 
of perturbers if &. + n-'13. The treatment of static 
perturbers will be discussed further in I1 and for the 
remainder of this section we will consider only dynamic 
perturbers. 

During a collision a wave packet will generally in- 
crease both its width, Ax,  and its momentum spread, 
Ap. If Ap 4 p (or A V  < $'/2m, which will be verified 
shortly), the increase in momentum spread will be 
negligible, and for a collision of duration T=po/uo, 
the wave packet will increase its width to a maximum 
of AxT= ( A x + ~ A p / m ) .  To prevent overlap with the 
radiators wave function during the collision AxT 
should satisfy (AX, + Ro) < po, where Ro denotes the 
effective "extent" of the perturber wave function. 
Using T =  po/uO and Ap 4 p ,  we see that ( ~ A p / m )  + po 
hence we need onlv require (Ax + R o )  < po. 

For a collision involving a neutral radiator the 
perturber momentum may be taken to be pav, hence 
we may use Ax = Axy and Ap = Apy (which will then 
satisfy Ap 4 p). Since Ax may be within an order of 
magnitude of kV (and still satisfy Ax %Xav),  we may 
obtain ar? order of magnitude estimate of the overlap 
condition, (Ax+Ro) < PO, by considering ( % a v + R ~ )  < PO. 
If Ro ( X , , ,  the wave functions will overlap only when 
po<,XaV, and for neutral radiators, this produces a 
strong collision (see sec. 8.2). If RO %Sav, a more 
detailed analysis of the perturbation potential is 
required; as an example we will consider the Stark 
broadening interact ion,  V e2Rolpi, for which 
( V T / ~ )  = (Ro/poXe2/huav). Since (e2/hvav) 2 1 for 
temperatures of 106 K or less (for electron perturbers), 
we see that the overlap condition, RO > PO, is violated 
only during a strong collision. Thus, for neutral radia- 



tors, the wave functions will overlap only during a strong 
collision. In  the case where a radiating ion accelerates a 
charged perturber the deBroglie wavelength of the 
perturber is decreased, ' K O =  h/mvo<_X,,. If vn is not 
much larger than uav, there is essentially no difference 
between this case and the neutral radiator discussed 
above. If vl)% uav the situation is somewhat different. 
In this case the perturber will come very close to the 
radiator and it is necessary to construct the initial 
wave packet with a width Ax much smaller than %,,. 
Since we construct the wave packet so that 
Ax > S o  which, using AxAp f i , implies that Ap < Po.  
Such a wave packet will not hold together very long, 
however, it will hold together for a time on the order 
of ~ = p ~ ~ / u )  which is all that is required by eq (73). 
In this case we will have % n e  Ro and the wave func- 
tions will overlap when pn<Ro. The perturbation 
potential will be 

V = Ze2Ro/pa and (V7/h)  = (Zt?Rn/hpovo); 

we do not need to consider a Veff  as  discussed in 
section 7.3 because when Po 5 Ro, V is comparable to 
the ionization energy for ions [29].  If w%-va,, then, 
from eq (70), we have w = (2Ze2/mpo)' /2  and 

(V+) = [ (212)  (R~/pnao) ] ' /2  

where ao= h2/me2 is the Bohr radius (we have chosen m 
as  the electron mass; for an ion perturber ( V T / ~ )  
would be even larger). Since Ro is larger than a(h we 
see that the overlap of wave functions again produces 
a strong collision. 

It is interesting to note that, for Stark broadening 
in plasmas we have ( V T / ~ )  = (Ze2Rl)/hpl)vlJ ,> (ZRo/a l~l ) ,  
where l=mpovo/h is the  angular momentum of the 
perturber. Since Ro > ao, w e  will have strong colli- 
sions when 1 < 1 .  Other interaction potentials may be 
treated in a similar manner with the same general 
results. In any case, the wave functions will not overlap 
if Xo < po; using &= h/mvo and 1 = mpovolh, w e  find 
that the radiator and perturber will be distinct (i.e., 
their wave functions do not overlap) when 

1 >  1.  (76) 

It is also interesting to note that the perturbers will 
look like classical particles as they pass the radiator 
only if Ax e x and Ap 4 p ;  using AxAp -- h,  we again 
obtain the inequality h < mpov0 or 1 > 1. We note 
further that A l = % l  in a dipole transition, t h u s  A1 < 1 
and it is in this sense that the angular momentum of a 
perturber is conserved during a collision, as it must be 
if we are to use classical mechanics to describe the 
perturbers. 

We have now shown that the validity criteria for 
the use of classical wavepackets are all easily satisfied 
if A p  Q p ,  or equivalently, A V G  p2/2m.  That is, the 
essential validity criterion for the classical wave- 
packets is the same as the condition for validity of a 
WKB calculation. This was also noted by Baranger [4] 
who found that the results of a quantum mechanical 

impact theory reduce to the classical path results 
when a WKB treatment of the wave functions is 
employed. 

To show that the condition AV < p2/2m is satisfied 
w e  note that V increases monotonically as t h e  radiator- 
perturber separation is decreased, thus AV 6 V and it 
is sufficient to show that V < p2/2m. Again V may be 
replaced by Veff  if V is not strong enough to mix 
adjacent states. Using p2 /2m = mv;/2, r=po /vO,  and 
1 = mpovll/h, w e  obtain 

(77) (VT/hl )  < 1. 

Noting eqs (68) and (76), it is clear that this inequality 
can be violated only during a strong collision (recall 
that 1 < 1 produces a strong collision). 

Equation (73) requires that a perturber be repre- 
sented by a wave packet when it collides with the 
radiator. If w e  let ~ g ! ~ , ( x j )  denote a Gaussian wave 
packet for the j th particle then the wave function 
cp")(xj, t ) =  Tj(t)p(i)(xj, 0), where Tj is the time devel- 
opment operator for this particle, will be a Gaussian 
packet at some time tj if we construct cp")(xj, 0) such 
that 

cp(;)(xj, 0)= Tj( - tj)pt!p(xj) (note that Z'j(tj)Tj(-tj)=l). 

In this manner w e  can arrange the wave function 
cp(;)(x, t)=njcp(;)(xj, t)  in such a way that all particles 
which collide with the radiator during the time of 
interest are represented by Gaussian wavepackets 
at the  time of their collision. In general these particles 
will not be represented by wavepackets before or 
after their collisions, but this does not matter as far 
as eq (73) is concerned. 

We have now shown that it is possible to represent 
the perturbers by. classical wavepackets as required 
by eq (73) unless a strong collision occurs (in which 
case we do not use wavepackets). It is interesting to 
note  that it may be possible to treat some strong col- 
lisions by classical path methods. That is, eq (77) could 
be satisfied when ( V T / ~ )  2 1 if 1 is sufficiently large. 
If one wished to do this, it would be necessary to 
reexamine the validity criteria in  more detail. For the 
purposes of this paper, however, it is sufficient to 
state that the  use of classical wavepackets is justified 
for all collisions which are not strong collisions. 

8.4. An Approximate Classical Potential 

Although we have justified the use of a classical 
potential as given by eq (73), we have not yet specified 
its functional form. If back reaction effects in cp(')  
are negligible, the potential V i )  will result from 
a perturber passing by the radiator on a straight 
line trajectory (or a hyperbola if both radiator and 
perturber are charged particles). If back reaction 
effects are important, the trajectory will be a rather 
complicated function of velocity, acceleration, etc. 
A wavepacket formed by WKB calculations (the 
iterative procedure discussed in sec. 5) may be 



able t o  account for the true classical trajectory, how- 
ever, the perturber wave function ( ~ ( 1 )  would no 
longvr be an  H,, eigenfunrtion. While this may not 
matter for some scattering problems, it makes a 
great deal of difference in line broadening. 

In section 6 we used the fact that q(') is an H ,  
eigenfunction to obtain the classical energy expression 
E$'(x('), d')) in eq (44). If the perturber wave function 
were not an energy eigenfunction, the perturber 
density matrix would not be "diagonal in wave packet 
states" and the average over perturber states, eq (41), 
would be intractable in a wave packet representation. 
We must therefore show: (1) that qdi) may be an 
H,, eigenfunction (i.e., back reaction effects in ydl) 
are negligible), and (2) that the energy eigenvalues 
may be represented by E ( ; ) ( x ( ~ ) ,  di)) as stated in 
eq (4). 

Since energy eigenvalues are not time dependent, 
we need only show that E$) represents the H ,  eigen- 
value at some instant of time. This problem is essen- 
tially the same as eq (73) except that all perturbers 
must be represented by classical wave packets at 
some instant. Since we have a large number of per- 
turbers in our system (a cell), there will always be 
some wave functions which overlap; however, for 
virtually all problems of interest we have X,, 6 cl':% 
and it is possible to construct wave packets for the 
overwhelming majority of perturbers at some instant 
of time (cf. eq (75)). It is in this sense that e q  (44) 
is satisfied. 

To show that back reaction effects in (p(!) are negli- 
gible, we consider the perturbation VI) (x(*),  v('), t )  
which results when a perturber moves past a neutral 
radiator on a straight line trajectory (the trajectory 
will be a hyperbola if both perturber and radiator are 
charged particles). The true perturber trajectory 
will deviate from a straight line (or hyperbola) because 
of accelerations (back reaction) resulting from the 
potential V seen by the perturbers (this potential 
may be V,,, as discussed in sec. 7.3). The approximate 
trajectory will be valid if this deviation does not appre- 
ciably alter the potential seen by the rccclicctor 
during the collision (i.e., during the time r 2 po/ull, 

or the time of interest ] / A m ,  if this should be shorter). 
Y(l) is influenced by the perturber trajectory through 
its dependence on r ( t ) ,  the position of  the perturber 
at the time t .  If the deviation, A r ( t ) ,  produced by 
the perturbation is small enough that r(t) + Ar( t )=  r( t ) ,  
the approximate trajectory will provide a good estimate 
of the true perturbation potential (whether the radiator 
is an ion or a neutral). 

For a time on the order of r ,  the magnitude of 
the deviation may be estimated by Ar= (F 1 rL/2ni 
=IVY1rz/m where F=-VV is the back reaction 
force which causes the perturber to deviate from the 
approximate trajectory. Since V is inversely propor- 
tional to some power of r ( t )  we have /VVI = V / r ( t ) .  
Using r ( t )  2 po we have 

Ar Vr2  V r  V r  -<-<-e- 
r 2 n i ~ : ~  hl h 

where r=po/Vo, I=mp~vo/h ,  and I > 1. This result 
shows that ( A r / r ) 4  1 unless a strong collision occurs. 

The above argument shows that the approximate 
trajectory is valid (unless a strong collision occurs) 
for elastic collisions. If an inelastic collision should 
occur, the radiator and perturber will exchange an 
amount of energy AE. This will produce a sudden 
change in the perturber velocity, AE = midi/, which 
will give rise to a deviation Ar s r A v  in the trajectory. 
Again usingr"=po/uO, l=mu,pl)/h, and 1 > 1, we obtain 

(79) 

In section 7.2 it was shown that the probability for 
inelastic t ransi t ions i s  essentially zero unless  
(rAE/h)  5 1 (for a more detailed treatment see ref. 
[30]). .Thus the approximate trajectory is valid for both 
elastic and inelastic collisions. 

It is interesting to note, that the change in the per- 
turbers kinetic energy during the collision is a small 
fraction of its total kinetic energy. 

9. Summary and Comments 

It has been found that if the approximations which 
are used in the classical path treatment of line broaden- 
ing break down, then a strong collision, defined by eq 
(68), is occuring. It should be noted that the converse 
of this statement is not necessarily true; that is, it 
may be possible to extend the classical path treat- 
ment of some problems into the region where (Vr/h) = 1. 
In this case the validity conditions must be considered 
in more detail. 

I n  the application of classical path methods, strong 
collisions are usually treated by interruption approxi- 
mations based on the Lorentz-Weisskopf theory; the 
influence of all other collisions is evaluated by means 
of the time development operator T(:)(t) as discussed 
in section 6. 

In section 8.4 it was shown that back reaction effects 
on the perturber trajectory are negligible whenever 
a classical path calculation is justified. That is, the 
validity criteria for the  use of classical wave packets 
break down at the same time as (or in some cases 
before) the validity conditions for the use of unper- 
turbed trajectories. 

It was noted that our definition of strong collisions, 
eq (68), is essentially the same as the result obtained 
by setting the lead terms in an S-matrix expansion to 
unity. However, using this S-matrix expansion until 
the lead terms are on the order of unity may be a very 
poor approximation of the 5'-matrix; indeed, most errors 
attributed to strong collisions stem from this series 
Cpproximation. To avoid possible confusion, we wish 
t o  emphasize that this approximation concerning the 
S-matrix is not part of the classical path approxima- 
tion and any c"rs resulting from it have no bearing 
on the validity of classical path methods. It is therefore 
quite possible to  improve upon these so-called strong 
collision problems within the framework of the classi- 
cal path approach. The series approximation has been 



improved for Lyman alpha lines [31], by summing 
terms in the series and, for hydrogen lines in general 
[32], by an approximate treatment of the exponential 
definition of the S-matrix. 

The region of validity for the weak coupling density 
matrix has been given as Am < kT/h. We wish to em- 
phasize once again that the approximations relevant 
to this density matrix are not influenced by the semi- 
classical treatment of the wave functions which is a 
part of the classical path approximation. The weak 
coupling density matrix may be (and has been [3, 41) 
used in more rigorous quantum mechanical theories. 
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