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ABSTRACT 
Previously obtained results for scattering of radiation in the presence of collisions are restated 

in a density matrix formalism which employs an irreducible-tensor description of the radiation field. 
This formalism is pariicularly useful for problems associated with radiative transfer theory. The 
redistribution is then extended to include the effect of a weak magnetic field. By averaging over a 
finite bandwidth which is on the order of the Doppler width, simplified expressions of physical 
significance for the scattering in the Doppler core and the Lorentz wings are obtained. Expressions 
are also obtained for the corresponding source function of radiative transfer theory. 
Subject headings: magnetic fields - polarization - radiative transfer 

I. INTRODUCTION 

In a preceding paper (Omont, Smith, and Cooper 1972, hereafter referred to as 
Paper I), we derived the general expressions for the intensity of scattered light as a 
function of incident and emergent polarizations and frequencies. The formalism of 
Fiutak and Van Krandendonk (1962) was closely followed, and the radiation field was 
described in terms of “pure” polarization states. In the present paper, these results 
will be restated in a more general formalism which employs an irreducible-tensor 
description of the radiation field. This formalism will be particularly useful for the 
multiple-scattering problems which arise in radiative transfer theory. This density 
matrix formalism is outlined in § I1 and a detailed discussion is given in Appendix A. 

The theory is extended in 9 111 to include the effect of a weak magnetic field. To 
simplify the mathematics, the incident and scattered radiation are averaged over a 
finite bandwidth A which is on the order of the Doppler width. The physical signifi- 
cance of the results obtained for frequencies in the Doppler core or in the Lorentz 
wings are discussed in $IV. In §V, the corresponding expressions for the source 
function of radiative transfer theory are presented; it is shown that these expressions 
can be reduced to very simple form for the core as well as for the Lorentz wings of 
the line. In the Doppler core, Hanle effect and depolarizing collisions are important 
processes; in the wings, only the coherent-scattering term is to be taken into account 
for polarization computations, as was pointed out by Zanstra (1941). 

In this paper (as in Paper I) we stress the details of collisional effects on the frequency 
redistribution of polarized light. For a broader review of the density matrix formula- 
tion applied to emission and absorption of polarized light, the reader is referred to 
Lamb (1971), Lamb and ter Haar (1971), and the review of optical pumping by 
Happer (1972). 
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11. DENSITY MATRIX FORMALISM 

In Paper I we calculated the probability of scattering an incident plane wave with 
frequency wl, propagation vector kl,  and polarization vector el into an outgoing plane 
wave w2, k2,  ez. In equations (41) and (42) of Paper I this probability was Fxpressed in 
the form 

-% *+ -#  

F(wl,  = 2 [MlKfiK(wlw!2) + M23Kf3K(W1W2)1 7 *- (1) 
K 

where flK and f23K are frequency-dependent (line shape) factors. The amplitude factors 
M I K  and M23K were given by equations (47) and (48) in the form 

M23K = W(jfjtjeK) 2 (- 1)QP-QK(.1€1*)P~K(e2.2*) Y (2) 
Q 

where j i ,  jey j f  refer to the initial, excited, and final atomic states involved in the 
scattering and PQK is a Kth-rank polarization tensor formed from the tensor com- 
ponents of the polarization vectors e ,  and e2 (see eq. [B4] of Paper I): 

4 

~ ' Q ~ ( E Z * E I )  = -2 (1 lqq'lKQXEZ*)q(da* (3) 
aa' 

In order to express these results in a density matrix formalism, we consider the 
density matrix (or polarization matrix) for an incident plane wave w l ,  k .  This density 
matrix is given by equation (A3) of Appendix A in the form 

P R k ( w l )  = 2 PIC~8(~l>I(k)ea><(~)e8 I (4) 
0.8 

(the subscript R is used to distinguish radiation field operators from operators on 
particle states). Using equations (1)-(4), the density matrix for the outgoing plane 
wave w2, k' is just 

where e,, e, and e,', e8, are the various unit polarization vectors orthogonal to k and 
k' respectively. 

Notice that this result does not depend on the directions of k and k' (except that 
e,, e8 and e,., eB, must be orthogonal to k and k', respectively). This is a property of 
electric dipole processes ; that is, the absorption depends on the electric field strength 
at the atom but not on its spatial distribution. One is therefore led to consider a matrix 
representation which is independent of k .  Several such representations are discussed in 
Appendix A, but the one of interest here is the multipolar or irreducible-tensor expan- 
sion (see eqs. [A91 et seq.) 
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where uq ( q  = 0, 2 1) is a unit vector in spherical tensor notation (eq. [A7]). The 
transformation from the Pa8 representation to pQK is shown to be (see eq. [A14]) 

f Q K ( W 1 )  = 2 P Q K ( e B * ~  e ~ ) P a B ( W l )  9 (8) 
CrB 

and similarly for p Q K ( u 2 ) .  We therefore use the identity (verify using Messiah 1966 
eq. [CW) 

Q 

= 2 (2K' + 1)(- l)KCK' 
K' 

1 
1 

to transform thefIK term, and the identity 

P -  QK(e,e,*)PQK(eB'ea,*) = P - QK(e,*e,)PQK(e,.*e8.) 

to transform the f 2 3 K  term. Multiplying equation (5)  by P-QK(e,.*e,,), summing over 
a'p', and using z,, (e,.)-,(e,,*), = (- l>"S,,, (see eq. [A81 and note that 2, puppap* = 
6,,), we finally obtain 

r 

which is the desired density matrix formulation of the scattering process. 
In the irreducible-tensor density-matrix formulation, the scattering is diagonal in 

K and independent of Q ;  this is a consequence of the spherical symmetry of the prob- 
lem, and it shows that this formalism is particulgrly well suited to spherically sym- 
metric problems. 

Equation (9) may be regarded as an identity for the 3 x 3 density matrix which 
describes the electric dipole part of the radiation field. That is, equation (9) is more 
general than our derivation (based on the density matrix for a single plane wave) would 
indicate; for example, for a unique plane wave, p(wl) could be brought to the form 
of a 2 x 2 matrix pRk(ul) by a suitable transformation (see Appendix A), but in the 
general case this is not possible. We have introduced the density matrix formulation 
as a simple generalization of the more elementary results of Paper I, although a more 
formal a priori derivation is also possible. One feature which is not obvious from our 
generalization of Paper I is the fact that, in the presence of a magnetic field, the real 
functions f l K  and f 2 3 K  become complex functions of both K and Q,  as we shall see in 
the following section. In equation (A12) of Appendix A we show that the Hermitian 
nature of P R  requires that the matrix elements of pQK satisfy (pQK)* = (- l ) Q p - Q K ,  
which requires thatfIKQ = (flK-Q)* and similarly forf2,KQ (cf. eq. [9] or [20]). 

111. WEAK MAGNETIC FIELD 

We now consider the effect of a small magnetic field on the light scattering. The 
atomic Hamiltonian becomes 

Ho' = Ho + HM = Ho + 2 fiwJ,, 
a 
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where Ho refers to the unperturbed atom, H M  is the Zeeman Hamiltonian, the z-axis 
is parallel to the magnetic field 8, and W, is the Larmor frequency of the state 01. The 
magnetic field is assumed to be small enough that W ~ T ~  << 1 where T~ is the mean 
duration of a binary collision. This means that binary collisions are unaffected by 3?, 
hence the operator @ which describes collisional relaxation (see eqs. [12] and [14] 
of Paper I) is unchanged. The effect of the magnetic field is then included in the results 
of Paper I by simply writing the operators A in the form (cf. eq. [12] of Paper I) 

A(T) = exp [-i7(L0 + L M  - i@)] , (1 1) 

where LM is the Liouville operator corresponding to the Zeeman Hamiltonian HM. 
The operator LM is defined by its action on any matrix B (where B is a matrix operator 
on atomic states) 

LMB = [ H M ,  B] . (12) 

The evaluation of the scattering process could now proceed as in 0 IV of Paper I 
using the coupled basis states Ij,j,KQ)) defined by equation (25) of that paper. The 
only new feature of the weak-magnetic-field problem is in the operators LM or H M  

which, unlike the unperturbed operators Lo or H,, are not diagonal in IjajbKQ)). 
This results in a rather complicated coupling of tensors which would tend to obscure 
the physics of the problem with unecessary mathematical complications. We will 
avoid this problem by the artifice of frequency averaging. 

We assume that the spectrum of the incident radiation has a spread A about the 
average value GI. This bandwidth is assumed to be much larger than the natural 
widths, the collision frequency (pressure width @), and all Larmor frequencies. We 
also assume that the scattered radiation is smeared out over a bandwidth A about W2. 
This approximates the smearing effect of Doppler broadening when A is on the order 
of the Doppler width AD. This model should adequately describe the depolarization 
due to collisions or magnetic rotation (Hanle effect). I t  will not be adequate for the 
absolute Zeeman shifts which are used in magnetographs (see, e.g., Stenflo 1971); 
however, these shifts give only small effects, which are hidden in the overall Doppler 
width. 

A comparison of A with Iwl - we*! ,  Jw2 - weil ,  and Iwl - wet - w2 + we,[ leads 
to the consideration of five separate cases: 

Case A :  IW1 - well << A ,  
Case B :  IGl - we{ /  >> A ,  
Case C :  /GI - well << A ,  
Case D :  IG1 - we{l >> A ,  
Case E:  /GI - well >> A ,  - we,] >> A , IG1 - - + well << A ,  (13) 

We now consider the Fourier transform the the A operators (see eqs. [9], [lo], and 

IG2 - we,l << A ; 
IG2 - we,/ << A ; 

- well >> A ; 
IW2 - we[( >> A , IW1 - wet - W2 + we,/ >> A ;  

where Gl and w2 are the mean frequencies of the itcident and scattered light. 

[I 1 J of Paper I). The required integrals are all of the general form 

exp [i(w, - Lo - LM + i@)7]dT = i(w, - Lo - L, + i@)-l, (14) 

where wP represents the various frequencies f wl, t- w2,  _+ (wl - w2), and 0. Since 
Ho is degenerate within a multiplet, Lo may be replaced by its eigenvalues uab when 
it operates on lab)) = lj,!fl,jbmb)), where a orb can equal e,fi i (see eq. [13] of Paper 

Iom 
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I). There are three cases of interest (see eqs. [20], [21], and [22] of Paper I) which 
become, under the frequency averaging discussed above, 

(i) = ( i /Az)J  
6 1  + A12 6 2  + A12 

dw,! dwz((fel(wz - we, + L,  - i@)-ljfe)) 
6 1  - A12 6 2  - A12 

x ((fil(w1 - wei - w2 + wer - L M  + io)- ' I f i ) )  

x ( (e i i (wl  - wei - L.M + iQ,)-llei)), (15) 

dw2(( fe[ (w2 - wel + L,  - iQ,)-llfe)) 
6 2  + A12 

(ii) + (iii) = (i/A2) 161+A'2 d u l l  
61 - A / 2  Jj2 - A12 

x ((eel(& - iQ,)-l[ee)) 

x [((iel(wl - wet + LM - iQ,)-'Iie)) - ((eil(wl - uei - L, + iQ , ) - ' [ e i> ) ] ,  (16) 

where we have used Ifi)) as a shorthand notation for lj,m,j,m,)), etc. The functions 
F(i) and F(ii) + F(iii) are obtained from equations (15) and (16) after multiplying by 
the matrix elements of e-p. and summing over m as in equations (9), (lo), and (11) 
of Paper I or equations (BI) and (B3) of the present paper. 

These expressions will now be discussed for each of the different cases defined in 
equation (13). 

Case A :  IW1 - weil << A, Iw2 - well << A. The absorption and emission are both 
resonant, hence we extend the limits of the integrals to (a, -a). Since the matrix 
elements of LM are real and the real part of Q, is positive (cf. eq. [14] of Paper I), the 
w2 integral in equation (15) is of the form 

dw m 

= 0,  

where CL and fl  are complex numbers whose imaginary parts are positive. The integrals 
over equation (16) are of the form 

* dw - = In(-1 T io) = T i r r .  s f a 
The (i) term thus vanishes by equation (17) and 

(ii) + (iii) = (n/A2)((fe[fe)) 

x ((eel(@ + iLM)-llee))[((eilei)) + ((ielie))] . (19) 
In the weak-magnetic-field case, one still obtains results in the general form of 

equation (9). For case A which we have been considering, the fl term is zero [because 
the (i) term integrated to zero] and equation (9) becomes 

This result could have been deduced from equation (46) of Paper I by averaging over 
w1 and w2 and replacing ye (K)  by ( ye (K)  + iQw,,) corresponding to the diagonal ele- 
ments of (@ + iL,) (recall that y,JX) is the real part of see eqs. [30] and [32] 
of Paper I). Notice that the KQ term of the incident radiation field induces only a KQ 
component in the excited state. 
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Case B: (GI - wei( >> A, IWz - well << A. This corresponds to absorption of a 
photon in the Lorentz wings and reemission in the Doppler core. In this case the 
integral A - l  dw, simply replaces w1 by Wl. Further, since 161 - weil >> IW2 - WefJ, 

we will expand factors like (GI - wei - w2 + we, +_ LM.T i@) to lowest order in 
powers of (G1 - wet)-'. The w2 integral is evaluated by using equation (IS), and one 
obtains 

(ii) + (iii) = ( ~ / A ) ( G ~  - wei)-z((felfe)><(eel(@ - iLM)-l1ee)) 

x [((eil(@ + iL,)\ei)) + ((iel(@ + iL,)lie))l, (23) 

where it was necessary to expand (GI - we, - L, & i@)-l to second order in 
(G1 - 

In Appendix B it is shown that these results can again be put in the form of equation 
(20) with 

in equation (23) because the first-order terms cancel. 

Case C: (Wl - wei( << A, IG2 - we,[ >> A. This case is essentially the same as case 
B; the (i) term is the same as equation (22) except that (GI - wet) is replaced by 
(Gz - we,) and, in the (ii) + (iii) term, we again expand (w2 - we, - LM - i@)-l to 
second order in (G2 - because the first-order term vanishes due to the require- 
ment thatfKQ = ( f K - Q ) *  discussed in § 11. In this manner we obtain 

Case D: Iw1 - wetl >> A, Jw2 - we,I >> A, [z2 - we, - Wl + well >> A. Both. w1 
and w2 are replaced by their mean values wl and W 2 .  There is no more integratlon; 
hence the expressions are more complicated. Following the methods of Appendix B, 
one can show that 

where the first term in the brackets of the first equation comes from (ii) + (iii), the 
- 1 term comes from (i), and the dots denote additional terms arising from (i) which 
are independent of the magnetic field and which vanish when yet1) = y e t 1 )  and y i t K )  = 
0 (e.g., when i = f and there is no quenching in the ground state). The calculation of 
equation (26) is not given in Appendix B, but it is obtained by a straightforward 
though tedious application of the techniques presented there. 
Case E: IW1 - wei( >> A, IwZ - well >>A, (wl - we, - G2 + we,/ << A. This is the 

case of "coherent" scattering. The leading term comes from equation (15) where 
integration over Iwl - wei - w2 + we,[ yields 

IV. DISCUSSION OF RESULTS 

The physical interpretation of the frequency-dependent (line shape) functions given 
in 9 V of Paper 1 was based on a two-state model atom. This model is not sufficient 
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for a discussion of magnetic field effects, so we consider instead the casej, = j, = 0, 
j ,  = 1, where the upper level has three magnetic substates; we also neglect perturba- 
tion of the lower level. From equation (32) of Paper I we see that y e ( K )  is the sum of 
the collisional damping rate for the 2K-pole moment of the excited level yeC(K),  and the 
radiative damping rate re (the natural life of the excited state is 1/re). The term ye i ( l )  
is given by the sum of the mean radiative damping rate )(I?, + I?,) and the collision 
broadened line width for e tt i transitions yetC(l). From equations (30), (61), and (A4) 
of Paper I we see that 2ye:(l) is just the total collision rate: 

Similarly we see that yeC(O) is the rate at which collisions destroy (quench) the excited 
states by inducing inelastic collisions out of the j e  = 1 level : 

The terms yeC(l)  and yec(2) are respectively the collisional destruction rates of the 
orientation (magnetic dipole) and the alignment (electric quadrupole) of the excited 
state. These rates are both larger than yeC(O) because alignment and orientation are 
destroyed by the yeC(O) “quenching” collisions and also by “depolarizing” collisions 
which induce transitions between the magnetic substates me of thej, = 1 level. 

I t  is important to make a distinction between K = 0 and the cases K = 1, 2 when 
discussing the meaning of the various scattering terms. The K = 0 equations describe 
the scattering isotropically without regard for the polarization whereas the K = 1, 2 
results are sensitive to both the direction of propagation and the polarization. 

Most of the new results due to the magnetic field appear in the magnetic depolariza- 
tion factor ~ , ( ~ ) / ( y , ( ~ )  + iQwwe), where QwHe is the difference in Larmor precession 
frequencies for the magnetic substates me and me’ where Q = me - me’. If the Larmor 
frequencies are much smaller than the relaxation rate, wHe << ye(K),  the relative phases 
of the various me states do not change appreciably during the lifetime of the 2K-pole 
moment of the excited state and the magnetic depolarization factor is essentially unity. 
If the precession frequency is large, the polarization of an emitted photon can be much 
different from that of the photon which excites such a state, and it is exactly this 
depolarization which is described by the term y,’K)/(y,’K) + iQww,). For K = 0 we 
have Q = 0, and the magnetic depolarization factor does not appear. 

It must also be noted that we have averaged the incident and scattered radiation 
over a bandwidth A which is greater than all Zeeman splittings and collisional line 
widths. Because of this smearing, our results will not show the detailed structure of the 
line center which is produced by the splitting and relative intensities of the individual 
Zeeman components. Our results will describe bulk features such as the relative im- 
portance of magnetic as opposed to collisional depolarization and the effects of these 
mechanisms on the redistribution of radiation from the Lorentz wings to the Doppler 
core, etc. We also note that, due to the frequency averaging, the probability for 
resonant emission or absorption (within +A/2 of the line center) is given by l/A rather 
than the usual line shape function. 

We note finally that a constant (2n2/I‘,) must be factored out of the functionsfKQ 
and combined with Alie to produce the appropriate normalization (see eqs. [49] and 
[55 ]  of Paper I). 

Case A :  The scattering proceeds via resonant absorption and emission, each 
with a probability l /A. Equation (21) thus contains the depolarization factor 
~ e ( ~ ) / ( y , ( ~ )  + iQwHe) multiplied by A - 2 ,  the normalization factor (2nz/re) and the 
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“branching ratio ” for radiative decay of the excited state without destruction 
of the 2K-dipole moment. This branching ratio was discussed in 9 V of Paper I (for 
K = 0),  where it was noted that our  redistribution function is normalized not to 
unity but rather to l?e/ye(K); this represents the fact that inelastic collisions reduce the 
scattered intensity in the frequency region of interest around W2. 

Case B: With Iwl - well >> A, the probability for absorption is given by the 
asymptotic wing of a Lorentz profile y,;l) /r(i& - w,i)2. This may then be multiplied 
by the probability (2y,,(l) - ye“9/2ye;l) of having a collision which redistributes 
radiation over the line profile without destroying the 2K-pole moment, and by the 
branching ratio for radiative decay F e / y i K )  (see the discussion following eq. [66] in 
Paper I). Finally, multiplying by the resonant emission probability l/A, the depolariza- 
tion factor yLK)/(yLK) + iQw,,) and the normalization 2r2/Fe, we obtain the result 
stated in equation (24). 

At this point it is interesting to elaborate on two of these factors by noting the 
identity 

The left side of this equation represents the probability of emission before destruction 
of the 2K-pole moment multiplied by the amount of magnetic depolarization which 
occurs before destruction of this moment. The right side of the equation contains 
the probability (2yei(l) - ~ ~ ( ~ ) ) / 2 y ~ l ( l )  of having a collision which redistributes the 
radiation without destroying the 2K-pole moment multiplied by the amount of mag- 
netic depolarization 2y,tl)/(2~,i(~) + iQwH,) which takes place between these collisions; 
this product is raised to the power n, representing a sequence of n such collisions, and 
summed over all possible sequences from n = 0 to n = 00. The remaining multiplying 
factors on the right-hand side represent the magnetic depolarization which takes place 
before the first collision occurs multiplied by the probability of radiative decay 
re/2yel1). Thus the right-hand side of this equation is a sum over all possible sequences 
of events which could occur before destruction of the 2K-pole moment, and the effect 
of all these possibilities is represented collectively by the simple product on the left 
side. 

Case C: This case corresponds to resonant absorption in the Doppler core followed 
by emission in the Lorentz wings. The physical interpretation of the scattering terms 
is exactly the same as case B. 

Case D :  The second line of equation (26) can be, written as a product of the 
normalization factor (2r2/Fe) ,  the probability yet1) /r2(Z1. - weJ2(Zz - weJ2 for 
absorption and emission in the wings, and a factor which is a sum of two terms. 
The first term contains the probability for a redistributing collision (2ye t1)  - yecK))/ 
2yei(’) multiplied by the probability for radiative decay re/2yec(l). The second term 
contains the probability for a redistributing collision multiplied by ( re / y iK) ) [ yLK) /  
(ye‘K) + iQwHb)J which was discussed following equation (29). To understand these 
two terms, we must first recall that the probability for emission or absorption in the 
wings, where w1 - wei >> 2yet1)  >> re, will be negligibly small in the absence of col- 
lisions; that is, an atom can “absorb” a photon o1 only within (wl - wei)- ’  seconds 
of a collision. Bearing this in mind, we interpret the first term in case D as an absorp- 
tion and emission due to the same collision (cf. eq. [29]) .  The second term represents 
an absorption due to one collision followed by a sequence of redistributing collisions 
and emission due to yet another collision. I t  is interesting to note that the first term 
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contains no magnetic depolarization because the time between emission and absorp- 
tion is the order of [(wl - wei)-' + (w2 - wei)- ' ]  which is too short for any appreci- 
able depolarization to occur since QWH,[(W~ - wei)-I + (w2 - wei)-'] << 1. 

Case E :  This case represents coherent scattering in the line wings (spontaneous 
emission occurring during a virtual excitation) which is independent of collisions and 
the magnetic field because the virtual excitation lasts only a very short time. Equation 
(27) can be interpreted as a normalization factor (27r2/re) multiplied by the absorption 
probability yet(')/7r(w1 - w , ~ ) ~  and the probability re/2yel(l) that radiation occurs 
before a collision can take place; the resonance factor I/A comes from the resonance 
of (E1 - we,) with (w2 - we,) (cf. the integral A-1Jdw16(wl - w2)  in eq. [60] of 
Paper I). 

We next consider the high-field regime where the splitting between the Zeeman 
components is greater than the collision-broadened line width (wHe > 2yei). In most 
problems, one considers incident light produced by a resonance lamp or by a white 
light source, both of which may be described entirely by cases A and C .  For Q # 0, 
the scattered intensity is inversely proportional to the magnetic field strength (see eqs. 
1211 and [25]), hence the Q = 0 terms dominate the scattering in the high-field regime. 
The Q = 0 terms would show the normal Zeeman pattern of lines if we had not 
averaged w1 and w2 over the large bandwidth A (see House 1970 for a discussion of 
results without this frequency smearing). In order to interpret this result we note that 
the radiation field need not excite a pure jeme state, it may instead excite a state which 
is a linear combination of jeme states. The quantum number Q = me - me' describes 
the magnetic depolarization of such a linear combination when Q # 0. For example, 
during the time the atom is excited, the state me will precess about &' at a rate mewHe 
and, after a time I, the phases of me and me' will differ by QwHet; in the high-field limit 
(A > QwH, > 2ye11)), this phase difference becomes greater than unity (on the 
average) before the excited state relaxes, hence the incident polarization is rapidly 
destroyed for Q # 0 excitations. Summarizing the above argument, one frequently 
says (House 1970) that the diagonal elements ( Q  = 0) represent normal Zeeman 
scattering while off-diagonal elements ( Q  # 0) represent modifications of the normal 
results due to "coherence" or the interference of Zeeman sublevels (the latter being 
negligible in the high-field limit when the Zeeman levels do not overlap). 

In connection with the above, it is interesting to note that coherent scattering in the 
wings (case E) is an example of a coherence effect which does not vanish for Q # 0 
in the high-field limit. This is due to the fact that the virtual excitation responsible 
for this process does not last long enough for phase differences Queer (or collisions, 
for that matter) to become significant. It should also be mentioned that this process 
is not important if excitation is produced by a resonance lamp or a white light source 
(for white light, eqs. [15] and [16] would be integrated over all w1 giving the results 
of cases A and C with A replaced by some other normalization constant). 

Note also that the result for case D does not go monotonically as l/QwH, in the 
high field regime; it goes instead to a constant value which is y,(")/2yei(') smaller than 
its value at QwH, = 0. The residual contribution in the high-field regime is due to 
emission closely following the absorption. A similar residual contribution appears in 
the higher-order terms in cases A, B, and C ;  to study this effect for these cases it 
would also be necessary to include corrections due to integrating wl and w2 over 
(-A/2, +A/2) rather than (- CO, +a). 

A measurement of incoherent scattering in the line wings would provide an interest- 
ing test of the theory as well as a means of measuring both elastic and inelastic cross- 
sections. In the very low field regime QUI,, << ye(") the scattered intensity should be 
independent of the magnetic field strength. As X' is increased through the region 
7:") < QwHe < 2yei(l), the scattered intensity will drop off and finally assume a 
constant value in the high-field regime QwHe >> 2yei(l). The ratio of intensities in the 
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very low and high field regions should be 2 ~ ~ i ( l ) / y e ( ~ ) .  A measurement of this intensity 
ratio as well as the collision width or the magnetic field strengths corresponding to 
transitions into the very low or high field regions should give a fairly accurate measure- 
ment of and For such an experiment, one might use a laser tuned to the 
wings of some atomic resonance line; such an excitation source would be very useful 
in avoiding signal-to-noise problems associated with the very small cross-section for 
scattering in the wings (e.g., redistribution from the center to the wings). 

V. SOURCE FUNCTION 

The expressions derived in the preceding sections give the emissivity of the medium 
for scattering of spectral radiation. As the absorption (“true” absorption plus scatter- 
ing) is very well known, it is a simple matter to derive the source function. In this sec- 
tion we write down the expression for the source function in the formalism of the 
3 x 3 density matrix for the radiation field, pointing out its relation to the usual 
formalism (see, e.g., Chandrasekhar 1950; Jefferies 1968) and discussing the important 
simplifications arising in typical conditions of stellar atmospheres. 

To simplify the discussion, we consider the case i = f and ignore the effect of 
continuum. We further assume that the absorption profile +(a) is a Voigt profile with 
a very small ratio yei/AD of the Lorentz and Doppler widths (as noted previously, we 
assume wHn << AD and we neglect all terms of order wHa/AD or smaller). Consequently 
in the core of the line 

and in the wings 

$ 4 ~ )  z h ( w )  z (rei lm)(w - > lw - well >> AD >> Yei * (31) 

For the Voigt profile with ye[ << AD, the transition between the “core” and the “wings” 
occurs very sharply at [ w  - we,[ 

For the radiation field we define quantities JQK(w) proportional to the density 
matrix elements pQK(l, w),  such as 

3AD. 

where Il and I, are the intensities of two orthogonal polarizations of the light traveling 
in the direction SZ (Chandrasekhar 1950), and J(w) is the usual J integral of the radi- 
ative transfer theory (Jefferies 1968). The components SQK(w) of the source function 
are defined in the same way; for instance, for isotropic and unpolarized radiation 

SoO(w) = S l ( W )  + S,(w) . (33) 

In general the 2 x 2 matrix source function in the direction (8,  4) is derived from the 
components SQK of the 3 x 3 source function through the method of Appendix A 
(see eq. [A21]). 

SQK(u)  is of course proportional to pQK(u2)  ($9 11 and 111) with a summation over all 
incident frequencies, and a division by the absorption profile C(w).  Consequently, 
assuming complete frequency redistribution in the Doppler core, it is straightforward 
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to show (using the results of 4 HI), that the explicit expressions of the SQK(u) are the 
following: for the core 

+ 2yei - ',"S J-  Q"(ul)iW(wl)dw1} * (34) 
2Yd wings 

This equation is correct only to lowest order in ye)l)/A because in the calculation for 
case A we have neglected higher-order terms which are the same order as the first 
nonvanishing contribution to case B which corresponds to the second term in equation 
(34). For the wings we have 

where the definition of the JsK and SQK is referred to the direction of the magnetic 
field (the last term of eq. [35] is valid only if y;") = 0 since it comes from eq. [26]). 
For K = 0 (Q = 0) this reduces to the expression of the two-level problem, par- 

ticularly well known when ri = yecco) = 0, where 

For K # 0, there are a number of simplifications due to the following considerations: 
first 

S, + u ( ~ ) d w / j  +c(w)dw 21 S, 4uiw)dw 2: 2yei/3r~D << 1 ; 
C 

this ratio is typically smaller than in the solar photosphere. Consequently the 
last terms of equations (34) and (35) are always very small, and negligible in most of 
the cases. 

Furthermore, at the optical depths where the wings are formed, the radiation in the 
core is completely depolarized and isotropic, and JQK(w1) 21 0 in the second term of 
equation (35). 

Consequently, for K # 0, it seems a very good approximation to retain only the 
first term in both equations (34) and (35). One sees that in the core, depolarization is 
caused by the depolarization factor W (eq. [50] of Paper I), depolarizing collisions 
(yeC(")), and the magnetic field (emHe). In the wings (besides the influence of W )  only 
coherent scattering conserves the polarization, as was pointed out by Zanstra (1941). 

The same conclusions remain without the assumption of complete redistribution in 
the Doppler core; but the first integral of equation (32) should be replaced by the 
exact Doppler redistribution function (Hummer 1962); the error in the computation 
of polarization rates with the assumption of complete Doppler redistribution is not 
always negligible. But of course the calculations in the wings are not directly affected 
by this problem. 
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To solve a concrete problem, the simplified equations (34) and (35) have to be 
completed by the expressions giving the light intensities from the source function. 
Except in  situations of high symmetry, these equations couple JQ“ not only to SQK 
but also to other terms with different K’s and Q’s. 

APPENDIX A 
DENSITY MATRIX OF THE RADIATION FIELD 

Since the introduction of the Stokes parameters in 1852 (Stokes 1852) the matrix 
formalism has been extensively used to describe the polarization of light (see, e.g., 
Born and Wolf 1959; Chandrasekhar 1950; Fano 1949; Schmieder 1969; Whitney 
1971); its meaning has become clearer with the development of quantum mechanics 
and the introduction of the density matrix (see, e.g., Fano 1957; ter Haar 1961). The 
interest in the density matrix to discuss the properties of the radiation field itself has 
been underlined in the description of quantum electrodynamics experiments (see, e.g., 
Fano 1957; Fano and Racah 1959), and the density matrix formalism has reached a 
new degree of sophistication with the development of quantum optics and coherent 
light. Nevertheless, the use of the density matrix for light scattering phenomena does 
not always seem to be well understood. We shall therefore review the basic features 
of the photon density matrix which are relevant to electric dipole scattering (see also 
Lamb and ter Haar 1971). 

Electromagnetic radiation is usually described by a superposition of plane waves 
of the form (Messiah 1966, p. 1031 et seq.) 

q R ( r )  = 2 V-l%p(k, a) exp ( ik-r )  , (All 
h a  

where k is the propagation vector, e, denotes a polarization vector perpendicular to 
k,  a(k, a) is an amplitude factor, and V is an arbitrary volume. The subscript R is 
henceforth used to distinguish states of the radiation field from particle states; it is 
not a quantum number or a physical parameter. In a Dirac notation where ( r  I(k)e,) 
represents V-112ea exp ( i k - r ) ,  equation (Al) would be written 

I+R> = 2 a(k, a)l(k)ea) 5 (A21 
k.a 

which may be regarded as an expansion of a state vector for the radiation field in 
terms of the plane wave states l(k)ea). 

The density matrix for a monochromatic radiation field (Le., for a given k )  may 
be defined in the usual way 

PRk = 2 PkaBI(k)ea)((k)eL3( * (443) 
a.8 

This density matrix is proportional to the polarization matrix used in classical 
optics (Born and Wolf 1959; Cohen-Tannoudji and Laloe 1967). The diagonal elements 
Pg,, denote the relative intensities of the different polarization components of the 
plane wave. The off-diagonal elements pkaS represent coupling or “coherence” 
between the polarization states; for a fully polarized wave or “pure” state, Pkas = 

The density matrix elements in this representation are frequently expressed in terms 
of Stokes parameters S k  and the 2 x 2 Pauli u matrices with the usual convention for 
these matrices (Messiah 1966): 

4 k ,  a)a*(k, PI. 

PRk = !duo + 7 (A4) 
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where uo is the 2 x 2 unit matrix and the Stokes parameters are 

s k z  = (Pkaa - Pkbb)  = SI = Q I Z Y  
sk.z = (Pkab + pkba)  = s2 = u/r 3 

s k u  = - - (Pkab  - Pkba) = = (A51 

The parameters Q,  U, and V are unnormalized Stokes parameters, and Z is the inten- 
sity of the plane wave. (Note that eb x e, = k/k.)  

Since there are two orthogonal polarization vectors orthogonal to k ,  the density 
matrix PRk defined by equation (A3) is a 2 x 2 matrix which depends on k.  We could 
obtain a 3 x 3 representation of p R  by expressing the polarization vectors e, in terms 
of the three Cartesian coordinate vectors u,, u,, and u,: 

P R  = 2 pIjlut><ufl 7 p i f  = c p@ipt9j*Pkufl 7 pa1 = ea'uI 9 (A61 
f j = x u z  as 

where pai denote the components of the vector e, in the Cartesian coordinate system. 
Another 3 x 3 representation, which is convenient from the point of view of tensor 
analysis, is based on the coordinate vectors 

uo = u, u ,  = T (u, k iu,,)/d2 . (A7) 
In this representation 

ea = 2 puquq = 2 (- 1Iq(ea)-qUq 9 (A81 
Q 4 

where (e,)* denote the spherical tensor components of the vector e, (see eq. [33] of 
Paper I). Yet another representation may be formed by considering the linear com- 
bination (cf. eq. [25] of Paper I). 

IR; l lKQ>> = C ( - l ) l - q ' < l l q  - q'lKQ>luq)(u,,I 9 (A91 
99' 

where < l l q  - q ' [KQ)  is a Clebsch-Gordan coefficient in the notation of Messiah. 
In this representation p R  is given by 

This representation is nothing more than a multipole or irreducible-tensor expansion 
of p R .  Such a representation can be quite useful for analysis of the angular distribution 
and polarization of radiation emitted by systems which are simultaneously influenced 
by other radiation or fields (Fano and Racah 1 9 5 9 ) .  It should be noted that our 3 x 3 
density matrix p R  was constructed from the three components of the polarization 
vector t? for a single plane wave. Faroux ( 1 9 7 0 )  has shown (see chap. 5 )  that these three 
components correspond to the three components of the state vector for the electric 
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dipole part of the radiation field. Equation (A10) therefore represents a multipolar 
expansion of the density matrix for the electric dipole part of the radiation field; this 
should not be confused with the more general result discussed by Fano and Racah 
(1959). 

We obtain a useful identity for the complex conjugate of p Q K  by using the fact that 
the density matrix p R  is a Hermitian operator. Using pqq. = pgjq* in equation (A1 l), 
it readily follows that 

(pQ")* = (- l ) Q p - Q K  . (A121 

This identity should not be confused with the definition of Hermitian conjugation of 
a tensor operator T(k, q )  as given, for example, by Edmonds (1960, p. 77). Our pQK 
is defined in terms of the matrix elements of an operator pR; hence p Q K  is not itself an 
operator in the sense used by Edmonds (p. 77). 

We are now in a position to work out the change in equation ( 5 )  when we transform 
from the 2 x 2 representation to the multipolar representation. Substituting pqq, from 
equation (A8) into equation (A1 1) and using (see eq. [B6j of I) 

(eS*)q' = (- 1)q'[(e6)-q']* 9 (A131 

we find 

where PaK was defined in equation (3). 
In practice it is convenient to have explicit formulae relating the density matrix 

elements between the various representations. Such relations between pQK and the 
Stokes parameters for an arbitrary direction of k are given in Appendix A of Lamb 
and ter Haar (1971) in a notation slightly different from ours. In table 1 we give the 
unitary matrix relating the Cartesian components p i j  of equation (A6) to the pQK: 

It is also useful to have explicit relations between the pQK referred to a coordinate 
frame xyz and the Stokes parameters for a plane wave propagating parallel to an 
axis z'. We define a coordinate frame x'y'z' related to xyz by a rotation through the 

TABLE 1 
COEFFICIENTS A j j ,  KQ (eq. [AlS]) RELATING THE DENSITY MATRIX ELEMENTS 

REPRESENTATION pQK (eq. [AlO]) 
IN CARTESIAN COORDINATES ptj (eq. [A6]) AND IN THE IRREDUCIBLE 

Pu 00 10 1 1  1-1 20 21 2-1 22 2-2 

. . . . . . .  0 0 + 1 / 4 6  0 0 -1/2 -1/2 
. . . . . . . . . . .  0 0 + 1 / 4 6  0 0 +1/2 +1/2 

x x . . .  1 / 4 3  0 
yy 1 / 4 3  0 

. . . . . . . . . . .  0 0 -2146 0 0 0 0 
. . . . . . . . . . .  0 0 0 0 +i/2 - 4 2  

zz 1 / 6 3  0 
xy - - i / 4 2  0 
yx ........... 0 + i / 4 2  0 0 0 0 0 +i/2 -i /2 
y z . .  . . . . . . . . .  0 0 + i / 2  -i /2 0 -ij2 -i /2 0 0 
z y . .  . . . . . . . . .  0 0 -i/2 +i/2 0 -ij2 -i /2 0 0 
z x . . .  . . . . . . . .  0 0 +1/2 +1/2 0 + 1 / 2  -112 0 0 
xz . . . . . . . . . . .  0 0 -1/2 -1/2 0 i l l 2  -1/2 0 0 
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X \ 
X I  

FIG. 1 .-Polarization directions for Stokes parameters. The coordinate frames xyz and x'y'z' 
are related through Euler angles (4, 8,O). The polarization vectors are e, = -e,,, e, = e,,, and 
the propagation vector k points in the z' direction. 

Euler angles ((6, 8,O) as shown in figure 1. We define Stokes parameters relative to the 
polarization vectors el = -ex ,  and e, = e,. : 

Z = 11 + 1, , Q = Zi - 1, , (A161 
etc. The relation between p Q K  and Sn is given in terms of the matrix BKQ,n(8, (6) of 
table 2 in the form 

In radiative transfer theory, one generally uses the unnormalized Stokes parameters 
I. Q, U,  and V (see eq. [A5]). The unnormalized tensor components proportional to 
pQK are thus given by 
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We again use the tensors D - Q K  defined in equation (38) of Paper I to obtain 

F(ii) + F(iii) = X Re 2 o - Q ' K ' * ( j , i , j , ~ z ~ , * ) D - g ( g ) ( j , j e j , ~ ~ ~ l * )  

A. OMONT, E. SMITH, AND J. COOPER 

K Q  

x ( 2 ~ e , ( ' )  + iQmHe)(<jejeKQI(@ + iL,w)-'IjejeKQ)) 9 (B6) 

(B7) 

(Bf9 

and we see that thef,, function (cf. eqs. [42] and E441 of Paper I) in case B is just 

f 2 3 B K Q  = (n/h)(Gl - w,&2(2yet1) f i Q W H e ) ( y e ( K )  -k i Q W H e ) - '  . 

f l B K Q  = - (dW1 - me*) - 2  f 

Thef, function for case B follows in the same manner from equation (BI): 

Notice that the fl function does not depend on KQ; such a situation was discussed 
in Paper I, where it was shown (eq. [52]) that f ,  simply adds to thef,, term to give 
equation (24) : 

f B K Q  =fmKQ + f 2 3 B K Q  

= (r/A)(Zl - -  ye(^) + iQwHe) . 039) 
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