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A probe having a spacially periodic potential is created by a bifilar winding of small tungsten wire. This 
geometry results in an electric field configuration having an extremely short penetration distance into the 
plasma. When the behavior of this probe is studied in extended negative glow and back-ditrusion type 
plasmas, the floating mode current-voltage characteristic curve is seen to be quite m e r e n t  from that of the 
usual double probe in that no etfects of the electrons are observed. The behavior of the periodic probe is con- 
trolled by the ion inertia established in the diffusion region which lies just in front of the probe. The im- 
portant parameter of the characteristic curve is the slope near zero applied voltage difference which can 
be related in a simple manner to the flux of plasma ditrusing to the probe and to the diffusion drift energy 
of the ions as they reach the probe. The electrons make no contribution to this slope for low applied voltage 
differences. This probe thus provides a very sensitive method for measuring the dihsive flux of plasma to a 
containing wall. 

I. INTRODUCTION 

Contact probes of various types continue to provide 
a popular, although sometimes very frustrating, a p  
proach to the determination of electron density and 
temperature in a plasma. If a Langmuir probe is used, 
the electron temperature is determined from the shape 
of the probe characteristic curve near the ion current 
saturation, and the electron density usually from the 
electron saturation current.‘ In  some plasmas, such as 
the extended negative glow,” a good electron saturation 
is not obtained. Furthermore, one is usually concerned 
about the perturbations produced by drawing large 
electron currents to the probe. 

The double probe technique‘J minimizes the per- 
turbation due to the probe, but the interpretation of ion 
current saturation in terms of electron density is not as 
clear. In both of these techniques, the field penetration 
into the plasma due to the potentials applied to the 
probes is not well defined and may depend on the 
applied potentials themselves. From another point of 
view the effective collecting area of the probe in the 
saturation region is an unknown, although slowly vary- 
ing, function of the applied potentials and is therefore 
difficult to determine accurately. Because of the small- 
ness of this collecting area, the sensitivity of the double 
probe is relatively low. Furthermore, the use of these 
probes in a magnetic field is extremely suspect due to 
the lack of a satisfactory theory for this case. 

Recently in this laboratory we have been investigat- 
ing the properties of a probe consisting of many very 
small parallel wires, closely spaced in a plane array. 
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If alternate wires are connected to a common potential 
and the intermediate ones to a second potential, but 
floating with respect to the plasma, the result is a 
periodic configuration, as in Fig. l ( a ) ,  which exhibits 
some of the aspects of the usual double probe, but 
provides a high order multipole field with very short 
penetration distance. 

The geometry under study consists of a boron nitride 
form measuring approximately 1.5X 1.5X0.5-cm thick, 
the center of which has a clear aperture measuring 
1x1 cm. Around this form is a bifilar winding of 
0.0125-cm-&am tungsten wire, wound with 0.025-cm 
separation between wire centers so that the wires span 
the square aperture and are parallel to one edge. For 
some probes 0.005-cm wire was used at  0.010-cm center 
to center spacing. 

It can be shown that the field penetration of such a 
con6guration in the absence of plasma, is an exponential 
with an e-folding length less than the spacing between 
adjacent wires. This spacing can be made smaller than 
the mean-free path between electron-neutral collisions 
for pressures up to several Torr in helium. In  helium at  
1 Torr the m.f.p. is approximately 0.5 mm. To quite 
good accuracy the effective collecting area is determined 
by the total cross-sectional area provided by the elec- 
trodes in the array (Ef .  Sec. IV) . This collecting area is 
relatively large thus assuring a rather high probe 
sensitivity. However, because of the large area of the 
electrodes, the periodic potential probe presents a 
large geometric perturbation to  the plasma and is thus 
best considered as a wall probe. Indeed, operated in a 
floating mode, the periodic probe draws zero net current 
and therefore, at distances greater than a few e-folding 
lengths, appears like any other portion of an insulating 
wall. When such a probe is operated in floating mode in 
a helium extended negative glow plasma, the electron 
temperature cannot be derived from the probe curve, in 
direct contrast to the behavior of the usual double 
probe (cf. Fig. 2). 

5290 



5291 P E R I O D I C  P O T E N T I A L  P 

I -  

, ,  

K O B E  C O N F I G U R A T I O N  

IS, I XI. BASIC THEORY OF THE 
MULTIPOLE POTENTIAL 

The total electric field in the vicinity of the probe 
results from the combined effect of the impressed 
potential difference between the two electrodes of the 
probe and the space charge densities in the plasma. 
Since the space charge field associated with ambipolar 
diffusion to the wall results mainly from the space 
charge density located in the plasma proper rather than 
very near the probe, the contributions of applied field 
and ambipolar field are essentially decoupled. Therefore 
they can be calculated separately and then be super- 
imposed to obtain the total field. We will now neglect 
the ambipolar field and calculate the applied field 
contribution using the Laplace equation, thus obtaining 
the maximum penetration distance of the applied field 
into the plasma. In  principle, if the plasma density is 
sficiently high, screening of the applied field by the 
plasma will be present and a solution of the Poisson 
equation will then be needed for any exact description 
of the field. The field penetration in this case will be less 
than for the Laplacian solution, which therefore repre- 
sents the maximum field penetration from such a probe 
operated in a floating mode. The subject of screening 
and sheaths will be discussed further in Sec. IV. If this 
penetration length is sufficiently small, we will expect 
that the field between plasma and probe due to the 
space charge densities in the plasma proper will be, to 
first order, the same as that present between the plasma 
and any other section of an insulating boundary. 

An exact solution of the Laplacian potential field for 
the case of cylindrical wire electrodes is quite compli- 
cated (cf. Appendix). Since the exact approach further- 
more does not clearly exhibit the gross features of the 
solution, we will use a Fourier series approach in order 
to establish the l /e  penetration distance of the probe 
potential. For the case of cylindrical wire electrodes, this 
Fourier series method is not strictly correct, since 
separation of the equations in x and y is not possible; 
the coefficients cn are functions of y. However, for a 

FIG. 1. Schematic cross section thru the top layer of wires in the 
periodic probe. 

A ,  Volts (Dcuble Probe) 

FIG. 2. Typical floating mode current vs voltage curves for 
(a) the periodic probe and (b) a normal double probe, for a helium 
extended negative glow discharge. 

photoetched probe, where the electrodes have negligible 
extent in the y direction, the approach is valid and 
would lead to an exact solution if the correct coefficients, 
cn, were known. This solution will still be approximately 
correct for the wire probe. 

Let us then describe the electrostatic potential near 
the probe, in the total absence of plasma, by the expres- 
sion 

0 

4(x, Y )  = C cnfn(y) ex~( inax) ,  (1) 
n-1 

where, as in Fig. 1, x is the coordinate along the array, 
perpendicular to the electrodes, and y is the coordinate 
perpendicular to the surface in which the array lies. 
With no further loss in generality we can setf,,(O) = 1, 
thus obtaining for y=O 

+ ( x ,  0) = cn exp(inax), (2) 
n 

which is a Fourier series representation of the potential 
4 ( x ,  0), periodic in x .  Substitution of Eq. (1) into 
the Laplace equation yields 

a2t$/d9+az4/af=O= - C cnnza”f,(y) exp(inar) 
n 

+ C cn[a’f.(~)/af] exp(inax). 

For electrodes of infinitesimal extent in the y-direction 
this will hold if and only if 

[a:a’f,(~)/af]=n’aa”f.(y) for all n. (3) 

Keeping in mind thatf,,(O) = 1,  we see that the solutions 
of Eqs. (3) are of the form 

n 

f n ( y ) =  exp(-nay). (4) 

Then Eq. (1) becomes 
ce 

$ ( x ,  y )  = C cn exp(-nay) exp(inax1. (5) 
n-1 

The periodicity in x for Ax= 2 4  where d is the spacing 
between adjacent electrode centers of the probe, re- 
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FIG. 3. Change in the 
shape of a double probe 
curve as the contamina- 
fion of the probe surface 
increases. 

a , volts 

quires that a= r / d .  Thus the l/e penetration distance 
of any given order potential term is given by 

y = d/nr. ( 6 )  
In order to calculate the potential +(x,y), the 

appropriate coefficients, Cn, must be known. These 
coefficients depend on a knowledge of the form of the 
potential function +(x, 0 ) ,  which itself can be exactly 
determined only thru the solution of an infinite series 
image problem. A good approximation to +(x,O) is, 
however, the flat-topped triangular function of Fig. 
1 (b) . Defining A = r / d ,  where r is the electrode radius, 
and X = x / d ,  Y=y/d,  Eq. (5) can be written in the 
form 

+ ( X ,  Y )  = C c, esp(-urY) cosnsX, (7a) 
n= 1 

where 

c,= [8/1z27?( 1- 2,4)] cosrmd for odd n, (7b) 

and 
cn=O for even iz. 

III. EXPERIMENTAL RESULTS 

For the initial measurements a periodic probe was 
mounted flush with the wall of an estended negative 
glow helium plasma2 for which the electron density, 
n, was about 3X 10" cm+ and the electron temperature, 
kT,, was approximately 0.07 eV. This discharge was 
operated in a tube of approximately 4-cm radius at  
gas pressures near 1 Torr (13.6 kg m-2). Subsequently, 
estended negative glow discharges in neon and xenon 
at  0.1 Torr, t w 3 X  loLo and 3X 10" ~ m - ~  respectively, 
and in hydrogen a t  0.2 Torr, 12-2X1O1O ~ m - ~ ,  were 
used. In all cases when the probe is operated in floating 
mode as indicated in Fig. 4, one is immediately im- 
pressed by the total lack of a break in the current- 
voltage curve at  a voltage near the electron temperature. 
In order to investigate the effect of surface impurities 
on the probe curve, a normal double probe'-3 was 
operated in the same discharge. The striking difference 
between these two probe curves is illustrated for helium 
in Fig. 2. 

With insufficient baking, the shape of the observed 
double probe curve changes drastically in the low volt- 
age region following the termination of a cleaning 
procedure in which the probes are heated to red heat 

by electron bombardment. Immediately after cleaning, 
the double probe curve displays a sharp break which 
yields an electron temperature in rough agreement with 
previous spectroscopic measurements.' The shape then 
changes with time, yielding a progressively higher 
apparent temperature. This behavior is shown in Fig. 
3. The time constant for this change in the shape of the 
probe curve is a measure of the relative impurity level 
in the discharge. With a relatively poor bake-out using 
heat lamps, a time constant of about 1 min was ob- 
served. As the bake-out procedure is improved the 
time constant is increased until finally, with overnight 
baking in an oven a t  approximately 400°C, the correct 
electron temperature is frequently obtained without 
further cleaning of the double probes, and the probe 
shape shows no deterioration with time over several 
hours. 

In contrast to the above, curves of the periodic probe 
in these same discharge conditions exhibit no change in 
shape. The measured curve is totally independent of 
the impurity level indicated by the double probe and is 
also totally unaffected by resistively heating the wires 
to red heat prior to measurement. It is always similar 
to that shown in Fig. 2(a). In reference to Fig. 2, we 
will now describe the resulting curve as Type A or 
Type B depending on whether it resembles the periodic 
probe or double probe characteristic curve, respectively. 

One possible eqlanation of this difference in probe 
behavior is that the curve of the periodic probe is pro- 
duced by a surface leakage where the wires cross over 
the boron nitride form. Although the measured leakage 
resistance in the absence of plasma is greater than 
10" Q ,  it  is still possible that a surface charge layer may 
cause a greater leakage in the presence of a plasma. In 
order to measure such an effect, a special periodic probe 
was prepared having four interspersed, cylically ordered 
windings of wire on the boron nitride form. The wires 
thus appear in the order 1, 2, 3, 4, 1, 2, 3, 4, etc. If 
windings 1 and 3 are connected together and likewise 
windings 2 and 4, then the configuration is identical 
with that of Fig. 1 and the number of leakage paths is 
equal to the total number of wires minus one. If on the 
other hand, we connect windings 1 and 2 together and 
similarly windings 3 and 4, then the number of leakage 
paths is reduced by a factor of two. When this probe 
was operated in the same plasma in these two different 
ways, the curves coincided. We conclude from this that 
the surface leakage has a negligible effect on the charac- 
teristic curve of the probe. 

We now consider the possibility that the observed 
behavior of the periodic probe might be due to a 
peculiar property of the extended negative glow plasma. 
In this plasma each ionization event is associated with 
an excess energy transfer from the electron beam of, on 

' E. R. Mosburg, Jr., Ph 's. Rev. 152, 166 (1966) ; R. S. Powers, 
Jr., Appl. Phys. 37, 3821 (1966). 
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the average, 10 or 15 eV. It is conceivable that second- 
ary electrons of this energy could be present in sufficient 
numbers to balance the ion current to the periodic probe 
and thus maintain a high floating potential. If the 
floating potential were so high that, for example, the 
thermal plasma electrons could not reach the probe, 
then a curve of Type B could not be observed. In order 
to investigate this possibility, measurements were made 
in the afterglow of a pulsed extended negative glow 
plasma. The curves remained of Type A indicating that 
secondary electrons are not responsible for the observed 
periodic probe behavior. 

As an independent check on this, measurements in 
an entirely different type of plasma were desired and 
the periodic probe was therefore placed in the back- 
diffusion type plasma chamber of the Electrotechnical 
Laboratory in Tokyo, operated with helium and argon 
at  pressures of 1.5X10-2Torr (0.204 kg m-2). This 
metal chamber has an inner diameter of 30 cm and a 
length of 80 cm. The back-diffusion type sources 
mounted axially at  each end, produced electron den- 
sities ranging from lo8 to 2X lo9 cmP3 and electron 
temperatures KT,, from 0.2 to 2 eV, depending on the 
mode of operation. 

The results of these measurements are qualitatively 
the same as those in the negative glow plasma. Both 
periodic and double probe measurements were made. 
The probes were movable, although it was not possible 
to bring the probes any closer than approximately 5 cm 
from the wall of the plasma chamber. 

The fact that such similar curves are observed in these 
two greatly different plasmas is a strong argument that 
the origin of the differences between periodic and double 
probe curves depends, not on any peculiar property of 
the plasma, but rather on the conditions in the vicinity 
of the probe which are imposed by the probe geometries. 

As a help in understanding the difference between the 
periodic probe and double probe curves, another type 
of probe was made which has the small physical size of 
the double probe but the close wire spacing of the 
periodic probe. This probe is made of two wires 0.0125 
cm in diameter and spaced 0.025 cm apart. The active 
length of the probe is approximately 0.5 cm. In refer- 
ence to its geometry we have called it a “close dipole 
probe” (CDP). It was placed in the plasma with the 

TABLE I. Type of characteristic robe curve: A and B refer 
to Figs. 2(a) and (b); H or L ingcate relatively high or low 
magnitude of probe floating potential. (The higher potentials 
indicate the presence of a diffusion sheath in front of the probe.) 

Probe location 

Probe type Center Wall 

Periodic probe A H  A H  
Closedipoleprobe B L A H  
Double probe B L  ... 

PROBE MEASURING CIRCUIT 

Probe 
Electrodesp.. Plasm0 Anode 

Lurrent 
Sensing 
Resistor 

Average 

Lanqmuir ’,/ 
Flooting ’ 

-El- 
FIG. 4. Circuit diagram illustrating the floating mode and 

Langmuir mode measurements. In the Langmuir mode the voltage 
difference, A,  is fixed and the voltage to ground, V ,  becomes the 
independent variable. 

wires parallel to the axis of the tube and was mounted 
in such a way that it could be moved smoothly in a 
radial direction between the center of the plasma and 
the wall. 

The results of many floating mode measurements 
made with these three types of probe are summarized 
in Table I. If, as is discussed in Sec. IV, the periodic 
probe curve is determined by the ion inertia imparted to 
the ions in the diffusion sheath region, then we would 
expect to observe exactly the behavior shown in Table 
I. Here the periodic probe is sufficiently large to create 
its own diffusion sheath, while both the double probe 
and the close dipole probe are much too small to do so. 
However, the movable CDP, which can be placed 
within 1 mm of the glass wall of the negative glow 
plasma, is able in this case to enter the diffusion sheath 
of the wall and thus measure a curve of Type A .  

In addition to the floating mode measurements, the 
Langmuir mode was also used, in helium, as illustrated 
in Fig. 4. Typical current vs voltage curves for this 
type of measurement are shown in Fig. 5. Several 
important features are apparent. First of all, the ion 
saturation knee of the curves, from which the electron 
temperature can be calculated, is clearly visible in the 
periodic probe curves and yields values of kTp0.07 eV 
in agreement with values measured by other methods.’ 
This is further evidence that surface impurities on the 
periodic probe are not a problem. A feature of the 
periodic probe curves which is not present in the double 
probe curves is the vertical shift which occurs when a 
constant voltage difference, A, is applied between the 
two electrodes. This vertical shift indicates that  the 
two electrodes interact strongly with each other, that is, 
the sheath regions of the two electrodes overlap. 
Finally, the potential a t  zero current crossing, which is 
of course equal to the floating potential in the floating 
mode measurements, is quite distant from the knee 
of the curve. This indicates that electrons cannot con- 



E A R L  R .  M O S B U R G ,  J R .  

8 ,  

s 0 - h  .4 - J  -; .; d , 2 
V O l l S  

FIG. 5. Typical current vs voltage curves, in Langmuir mode, 
for (a) the periodic probe and (b) the double probe, for a helium 
extended negative glow discharge. 

tribute significantly to the characteristic curve of the 
periodic probe in floating mode. When similar Langmuir 
mode measurements are made with the CDP a t  the 
plasma center, we notice that the zero current crossing 
is a t  a low voltage, as for the double probe, but a very 
definite vertical shift is present, closely similar to the 
periodic probe curves. 

When the probes are operated in floating mode and 
the floating potential, V,, as indicated in Fig. 4, is 
measured as a function of the voltage, A, the resulting 
curves are those of Fig. 6. Here the periodic probe 
exhibits two distinct regions with transition occurring 
a t  about 10 V. The rapid increase in the magnitude of 
the potential V, for values of A greater than 1OV is 

-1 O 

9 

-10 -8 -6 - 4  -2  G 2 4 6 8 IO 
A ,  Volts 

FIG. 6. Floating potential, V I ,  of the periodic probe vs the 
applied voltage difference, A in a helium extended negative glow 
discharge. The voltage V I  is measured relative to the discharge 
anode. The two curves result from reversing the leads to the two 
probe electrodes thus showing the asymmetry in the contact of the 
plasma with the electrodes. 

I 

Ion 10 n 

1 -  
"a I 

Q PA 
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FIG. 7. Circuit diagram il- 
lustrating the periodic probe 
measurements with an imposed 
bias current. 

because in this region A/2> (V,- V i )  and the floating 
potential must increase like A/2 in order to prevent the 
more positive of the electrodes from becoming positive 
relative to the plasma potential, V,. This transition is 
probably responsible for the suggestion of a saturation 
which is noticeable in Fig. 2(a) a t  about 1OV. This 
rapid increase in floating potential above A=lOV is 
equivalent to an additional bias voltage which may 
effect a further perturbation of the plasma. The distinc- 
tive behavior of the periodic probe is to be found in 
the region A<Z(V,-V,), where the parameter of 
particular interest is the slope of the current-voltage 
characteristic curve a t  zero applied voltage, d l / d A  a t  
A=O. This will be discussed more fully in Sec. IV. 

Using negative glow discharges in helium, xenon, 
neon, and hydrogen, and the back-diffusion plasma 
chamber with helium and argon, the flux determined 

TABLE 11. Values of the slope of the probe curve at  A = O  and the 
average probe potential for different values of bias current. 

Bias d I / d A  
Current V. a t  A = O  

(PA)  (VI (Q-'1 

-150 -9.33 51.8XlG" 
-100 -8.09 55.5 

-6.86 58.8 - 50 
zero -5.83 62.2 + 50 -4.85 67.3 
+lo0 -3.89 72 .0  
$150 -3.07 76.6 
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from the periodic probe by the equation 

+M = Ck ( Ti+ Te) / A  a . ] d I / d A  1~1-4 

was compared with the flux calculated from the known 
ion mobility by 9, = 760p+k (T,+ TJ n/Ap,  A being the 
diffusion length, p the gas pressure in Torr, and a, the 
effecting collecting area of the periodic probe. These 
values generally show a correlation within a factor of 
about two over a range of 0 values equal to approxi- 
mately 200. Considering the uncertainties in the 
parameters involved, this is a reasonably good correla- 
tion between the two sets of CP values. 

In order to experimentally verify the lack of influence 
of electrons on the slope of the characteristic curve, a 
further test was made using the circuit shown in Fig. 7 
so that a bias current is drawn through a high resistance, 
coupled symmetrically to the periodic probe. If the 
bias current is made higher than the current calculated 
by multiplying the electronic charge into the calculated 
ambipolar flux of plasma to the probe, we can then be 
fairly certain that no electrons are reaching the probe. 
The behavior of the measured slope of the characteristic 
curve for different bias currents is shown in Table I1 
for helium a t  1.4 Torr. Since n = 9.4X loL1 ~ m - ~ ,  A = 1.69 
cm and k( T,+T,)%0.13 eV, we obtain a value of 

4.1X lo1' cmz sec-'. Assuming the probe area to be 
1 cm2, the corresponding current, e0,A = 66 PA. The 
slope for zero bias current yields a value @.M= 2.0X lo*' 
cm-2sec-1 which compares well with the value of CP, 
above. 

A bias current of between -50 and - 100 PA, which 
should result in the elimination of any electron con- 
tribution to the probe characteristic curve, results in a 
decrease in the slope by only 6% to 12%. Therefore we 
must conclude either that the electron contribution to 
the measured circulating current exhibits a slope 
essehtially the same as that for the ions (a  rather un- 
likely conclusion) , or that the electron contribution to 
the current is negligible. A theoretical argument in 
support of this latter conclusion will be given in Sec. 
IV. 

The slight changes in the measured slope as indicated 
in Table I1 are consistent with slight changes in the 
drift energy of the ions due to changes in the potential 
V,. Thus as V ,  becomes more negative we would expect 
the ion drift energy, a t  the probe, to increase slightly. 
The ions would then be harder to deflect and the 
measured slope would decrease as observed. 

IV. FURTHER THEORETICAL CONSIDERATIONS 

We turn now to consider the probable sheath condi- 
tions when the inequality X<<r<<L is valid. Here X is 
the Debye length; I, the radius of the probe electrode; 
and L, the electron-neutral or ion-neutral mean-free 
path. For a small floating probe in such a situation, it 
can be argued that an effective electrostatic sheath 

thickness smaller than the radius of the probe is not 
possible. In essence this argument can be presented as 
follows. In the following we consider the plasma poten- 
tial far from the probe to be zero and measure all other 
potentials with respect to it. Starting now a t  the probe, 
which has a potential of magnitude I V,I, and pro- 
ceeding outward, we find that the magnitude decreases 
in some monotonic manner. For our purposes we will 
define the effective sheath edge as that point where the 
magnitude of the potential reaches a value, I V ,  1, 
small enough to present only a negligible perturbation 
to the particles in the free plasma some distance away. 
Thus 

and 

Unless the probe potential is very close to the plasma 
potential, we also have the condition I V.  I << I V ,  I .  

We now assume that this sheath thickness is much 
less than the probe radius and consider the consequences 
when the probe potential is negative relative to the 
plasma. Since the perturbation is assumed negligible, 
the flux and density of the attracted particles, the ions, 
at  the sheath edge will be' 

e I V. I <<kTi, 

e I V.  I <<kT.. 

( 8 4  

(8b) 

@pi= niji/4, ( 9 4  

(Ob) ni= n/2. 

On the other hand the flux and density of the repelled 
particles, the electrons, which are assumed to have a 
Maxwellian distribution, are given by 

and 

Because I V .  I is by definition very small, there must be 
quasi neutrality and hence n,Xni a t  the sheath edge. 
But the equality of Eqs. (9b) and (lob) for the den- 
sities, can be satisfied only if 

9=nij, exp(-eV./kT,), (104  

ne= n exp( - eVJkT,). (lob) 

eV.',xkT, ln2. (11) 
Because of the inequality (Sa)t we amve at  the require- 
ment that 

kl i/kTJ> ln2, (12) 
a condition that cannot be satisfied for the plasmas we 
are considering where Td>Ti.6 If the sheath edge is now 
allowed to expand outward so that the sheath thickness 
is of the order of the probe radius, then the solid angle 
blocked by the probe decreases and ni increases and can 
be expressed as 

where 2 < c < l .  Equation (12) then becomes 
ni= n/c, (13) 

kTi/kT>> lnc, (14) 
For a positive probe, T, and Ti are reversed in Eq. (12) and 

fhP ineauality can then be true for common plasmas. 
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FIG. 8. Curves of the normalized plasma drift velocity 
I = u/[k ( Ti + T,) /MI1'* 

and the plasma potential e A V / k (  Ti+T.) vs the radius parameter 
y/yma. are given for different values of R, the ratio of recombina- 
tion loss rate to diffusion loss rate at the plasma center. The 
notation is that of Ref. 8. The curves are for an extended negative 
glow discharge. 

which can be satisfied for c sufficiently close to unity, 
even when T>>T,. 

Since, as shown above, the electrostatic sheath 
around a negative probe must of necessity be at least 
the order of the probe radius in size, then it is clear that 
when such probes are placed a probe diameter apart, as 
for the periodic probe configuration, the sheath regions 
will be overlapping to some extent, The observed verti- 
cal shift of the Langmuir mode curves (described in 
Sec. I11 and Fig. 5 )  provides experimental confirmation 
of this effect. It should be noted that the penetration 
distance of the multipole potential, given by Eq. ( 6 )  is 
then less than the size of such a sheath. The periodic 
potential probe can therefore be considered as a 
geometry for which both electrodes are immersed in a 
common sheath. 

For such a large probe the perturbation to the plasma 
is quite large. In fact if the probe is much larger than 
the mean-free path, it  acts to a large extent like a section 
of the confining wall. This effect can be increased by 
mounting the probe so that its face is flush with the wall 
of the plasma container. In  such a case, a well developed 
diffusion region, or diffusion sheath, will be present 
under ambipolar flow conditions. This diffusion region 
is, to a large extent, a bulk plasma phenomenon and the 
associated space charge field penetrates the whole 
plasma. 

We will now consider the conditions in the plasma at  
some small distance from the periodic probe, such as 
y-24  where we are well outside of any inner sheath 
and where the effect of the applied multipole potential 
is negligible. We now ask to  what extent the ion drift 
energy is developed in this region. 

At the boundary itself the approximate ion drift 
energy can be obtained by applying the Bohm criterion6 
which requires that this energy be k (  Ti+T,)/2.  
However, if the space charge field producing this drift 
were confined to a sheath region very close to the 
boundary, then we would not necessarily expect the 
ion drift energy to be large in the region near y=2d.  
By solving the complete nonlinear diffusion equations' 
the drift velocity can be obtained as a function of radius 
within the plasma container, with the Bohm criterion 
automatically satisfied at  the boundary. These equations 
can be modified to include the case of the extended 
negative glow discharge and the effect of volume re- 
combination.8 The plasma potential, V ,  and its cor- 
responding dimensionless parameter,'u, can be calculated 
as a function of radius, by means of th. equation 

'u = e (  Vc-  V )  / k  (T,+ T,) 

=+K~+T-' [ K@+ [ ( K ' / Y ) ~ Y ,  (15) 

where V ,  is the value of V at the plasma center. 
The other symbols are defined in Ref. 8. Typical 
curves of 'u and K ,  the ion drift velocity normalized to 
[k(T,+Te)/M]1'2,  are given in Fig. 8 as a function of 
the radius parameter y/ymax. Similar curves of K vs 
y/y,, are given for a positive column type discharge 
in Ref. 7. Notice in Fig. 8 that the variation in potential 
is not confined to a small sheath region near the bound- 
ary but penetrates deep into the plasma, and that the 
ion drift velocity is well developed long before the 
plasma reaches a region as close to the boundary (or 
the periodic probe) as that specified by the distance 
y-24 which for our plasma corresponds to about 1% 
of the tube radius or less. We will therefore assume 
that, within this distance y-2d, the ion drift energy is 
equal to the value expected at  the plasma boundary 
and will proceed to investigate the consequences of this 
assumption. 

Since the net outward particle fluxes for a floating 
probe are equal for the electrons and ions, it is clear that 
the outward mass flow, or momentum, is in the ratio of 
the particle masses. The flow is therefore completely 
dominated by the ion inertia. Since the ion drift energy, 
k (Ti+ T,) /2, is considerably larger than the value of 
kTi, and since the multipole potential does not penetrate 
into the plasma, the situation at  a distance y-2d from 
the probe surface can be fairlyaccurately represented by 
assuming a uniform, monenergetic ion beam of energy 
Vo incident normal to the plane of the probe. Since the 
penetration distance of the multipole potential applied 

6 D. Bohm, in Characteristics o/ Electrical Discharges in Gases, 
A. Guthrie and R. K. Wakerling, Eds. (hlcGraw-Hill Book Co., 
New York, 1949), Chap. 3. 

K.-B. Persson, Phys. Fluids 5. 1625 (1962); E. R. Mosburg, 
Jr. and K.-B. Persson, Phys. Fluids 7, 1830 (1964). 

8 E. R. Mosburg, Jr., Phys. Fluids 9,824 (1966). 
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to the probe, Eq. (6 ) ,  is less than the distance from an 
electrode needed to establish any effective sheath 
potential, we can therefore calculate the ion trajectories 
to first order using the Laplacian potential, Eq. (7), 
in a collisionless theory. Referring to Fig. 1 (a), we see 
that the problem can be simplified to that of a single 
cell defined by the symmetry planes at  x = O  and x =  1. 
We now consider the ions reaching each electrode with 
grazing trajectories as shown in Fig. 9. 

We will consider the case of thin flat electrodes, 
rather than cylindrical wire electrodes, since Eq. (7) 
can be used to describe the potential close to such elec- 
trodes. The equations of motion of the ions in dimen- 
sionless form are then: 

X =  -+(av/ax)  Y =  -+(av/ay) ,  (16) 

and V is expressed, using Eq. (7), as 

V = D  [8 C O W T A / T Z ~ ~ ~ ( ~ - ~ A ) ]  
odd n 

X exp( - n a y )  cosnnX. (17) 

Here we have used the definitions of X, Y, and A as in 
Eq. (7), T= v$/d, V= @/+Mv3,  and D= (eA/2) /+Mv02, 
where uo is the incident velocity of the ions entering 
the multipole field of the probe. 

Since we are assuming a monoenergetic, normally 
incident ion beam, there will be no crossing of ion 
trajectories, and therefore the calculation of the two 
trajectories which strike the edges of the two electrodes 
in Fig. 9 is sufficient to determine the ion currents to 
these electrodes. Since we desire only the slope of the 
characteristic curve near A =  0, these trajectories have 
a nearly constant value of X z A  so that we may take 
X= A in evaluating the force, -aV/dX, acting on the 
ion. Furthermore the retardation of the ions is negligible 
to first order so that Yxconstant=-l  along the 
trajectory. With these two approximations we may 
write 

Integrating again we obtain 

( 19) 

Taking the partial derivative, aV/aX, of Eq. (17), 
substituting into Eq. (19), and remembering that 
X=O as Y+w 

AX=$D 2 [8 cosnnA/n3n3(1-2A)] sicnrX. (20) 

Referring again to Fig. 9, we see that the ion flux to 
the electrode a t  potential +D is given by 9 ( A - A X )  
and to the electrode a t  -D by 9 ( A + A X ) .  The total 
ion flux to the electrodes of both potentials, given by 
the sum of these expressions, is therefore @ A / 2  and is 

odd n 

X : " / I  

x . 0  
v 

FIG. 9. Ion trajectories in one symmetry cell of the periodic probe. 

independent of the applied potential, D. The effective 
collecting area of the probe is therefore unchanged. 
The measured circulating current of the probe, ob- 
tained from the difference of these fluxes multiplied by 
the electronic charge, is I=2e9AX.  Defining the 
dimensionless current variable as g = I / a e ,  where @ 
is the incident ion flux (ions cmP2 sec-'), and using 
Eq. (20) with X=A, we see that 

dS/dD=[2/(1-2A)] (2 sin2nrA/n3r3). (21) 

The summation of this infinite seriesg can be obtained 
after we have noticed, defining n= 2m, that 

2 [sin2nnA/(2nn)3]=2C-2 , n>O, 

and 

00 

odd n 

odd n n even n 

even n m 

m>O. (22) 

The final result of this manipulation of Eq. (21) is the 
simple result 

Eliminating the dimensionless variables in favor of the 
observed variables, this becomes 

d l / d A  = (9e/2 VU) A = (n&/Mvo) A ,  (23b) 

where eVo=$Mvz is the energy of the incident ions 
expressed in electron volts, and no is the density of the 
incident ion beam just before entering the multipole 
field of the probe. 

There are two checks on the validity of Eq. (23). 
Since the ions are moving in a noncentral force field, 
angular momentum is not strictly a conserved quantity. 
However, when the potential difference, A between 
electrodes is very small, the force on the particle having 
impact parameter p (cf. Fig. 9) due to the electrode a t  
x =  0 is much greater than the force due to the electrode 
at  x=1. In this case the angular momentum of each 
particle about the near electrode is still approximately 
conserved. When energy and angular momentum in 
such grazing trajectories are assumed to be rigorously 
conserved, we again obtain Eq. (23) in a simple and 

dS/dD= A .  (234 

9L. B. W. Jolley, Summation of Series (Dover Publications 
Inc., New York, 1961), p. 106, Series No. 574. 
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direct manner. A more accurate check is obtained from 
a solution of the equations of motion, Eqs. (16) and 
(17 ) ,  on a CDC 3800 computer. The computed slope 
a t  zero voltage agrees with Eq. (23)  within the 0.1% 
accuracy of the calculation. Furthermore the deviation 
from this slope is less than 2% for values of D= 
(eA/2):Mvo2 less than 0.5. 

When the probe electrodes have appreciable extent 
in the y direction, as for the wire-wound periodic probe, 
the potential will be different from that given by Eq. 
(7) and some modified form of Eq. (23) will be needed 
to describe the slope a t  A=O. The calculation for the 
case of electrodes with circular cross section is treated 
in the Appendix. 

So far in this section we have said nothing about the 
contribution of electrons to the measured probe current. 
However, the experimental data indicate that the 
electrons do not provide a significant contribution to 
this current. As will now be shown, it is possible to 
understand this within the concept of the periodic probe 
developed thus far for thin flat electrodes. 

The average density of ions at  the surface of an 
electrode is dependent on two effects: (1) the deflection 
of ions thru an amount AX(X) which spreads the ion 
trajectories and thus reduces the density as D increases 
and (2) the reduction in speed of the ions produced by a 
potential D> 0 which increases the density. It will now 
be shown that these two effects cancel to first order in 
the limit of small D. 

If all ions were deflected by an equal amount, then, 
neglecting retardation, the density a t  the plane of the 
probe would be unchanged. If, however, as indicated by 
Eq. (20), this deflection is a function of X ,  then the 
density will be modiiied by an amount proportional to 
the rate of change of AX with X ,  

n/no = 1 - ( d / d X )  AX, (24)  

where % is the density in the incident, undeflected 
beam. In order to satisfy the continuity requirement, 
neglecting deflections. for the moment, we must require 
that nY ( Y =  0 )  = noY ( Y =  3 )  = - no, since Y ( Y =  3) = 
- 1. 

Now combining these deflection and retardation 
effects and averaging the density over the plane Y=O 
from X=O to X = A ,  we obtain 

(n)/no= (AY) - I {  [ l - d ( A X ) / d X ] d X ,  (25)  

and hence 
(n)/%= [ A  - AX ( A )  ] / A  Y.  (26) 

Summing Eq. (20) as before: we obtain the expression 
A X ( A )  = AD/2Y2 .  From conservatio? of energy con- 
siderations Yz  ( Y = 0) = 1 - D, hence Y x l -  ( D / 2 )  for 
small D. Substituting these expressions into Eq. (26) 
we see that @ ) / n o  is unity to the first order in D. 

Thus the effect of small values of D is to change the 
flux of ions striking an electrode without changing the 
average ion density at its surface. 

The ion density a t  the plasma boundary can be 
estimated by noting that the product of this density 
with the plasma drift velocity [k( Ti+ T,)/M]1’2 must 
equal the measured or calculated fluxes given by 
@M or @c in Sec. 111. Although this calculation leads 
to a value of the ion density lower by about two orders 
of magnitude than the density at  the plasma center, 
it  is still sufficiently high (-lo9 cmP3) that the approxi- 
mate equality n,Mn, is valid. The Debye length in this 
case is approximately 5x 10-3 cm. Since many electrons 
of very low energy are present near an electrode, this 
equality of n; and ne can be maintained by changes in 
the local space potential which are very small compared 
to the voltage difference applied between the probe 
electrodes. 

Since the plasma diffusion drift velocity is much less 
than the electron thermal velocity, and since the elec- 
trons are repelled by the probe, the electron velocity 
distribution near the probe electrode remains sensibly 
Maxwellian. The electron temperature in such a case is 
unmodified by changes in the repelling potential. Since 
both the electron density and the electron temperature 
are unchanged by the presence of small D, the electron 
flux, nees, to a probe electrode must also be constant. 
There is therefore no contribution by electrons to the 
measured probe current when small difference voltages 
are applied to the electrodes. This conclusion is sup- 
ported by the experimental data described near the end 
of Sec. 111. 

V. CONCLUSIONS 

The periodic potential probe may provide a useful 
new tool for the measurement of the ambipolar flux of 
a plasma to its confining wall. It is particularly useful 
for the measurement of low fluxes since the size of the 
periodic probe can in principle be made arbitrarily large. 
The important parameter is the slope dI /dA  of the 
characteristic curve at  A=O [cf. Eq. (23)]. Because this 
parameter is determined entirely by the ions with no 
significant contribution from the electrons, and because 
the field penetration is so low, we expect that the 
behavior of the periodic probe can be described by this 
theory even in the presence of substantial magnetic 
fields. Since the response of the probe also depends on 
the drift energy with which the ions approach the probe, 
it may be possible to use it, in a situation where the 
ambipolar flux can be accurately calculated, in order 
to determine whether or not the Bohm criterion is 
actually satisfied in the boundary region. Some recent 
CalculationslO have indicated that this criterion is not 
always valid. 

10 P. N. Hu and S. Ziering, Phys. Fluids 9, 2168 (1966) ; H. A. 
Hassan, Phys. Fluids 11, 1085 (1968). 
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Finally it shoul be pointed out that other techniques 
for creating the periodic geometry should be possible. 
We have experimented with a probe consisting of two 
interlocking comb-shaped electrodes, photoetched on a 
small pyrex plate. This array was 1 cm2 and consisted 
of about 200 conducting lines and 200 spaces. Although 
the operation of this type of probe has not yet proved 
satisfactory, efforts in this direction are continuing. 
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APPENDIX 

The potential surrounding an infinite grating of wires 
of circular cross section can be calculated by a Schwartz- 
Christoffel transformation as indicated by Richmond.“ 
Since none of the three cases treated in this reference are 
identical to that of interest here, we will outline the 
modified method used to calculate our case. 

As in Ref. 11, the relation between the coniplex 
position coordinate, z ,  and a complex parameter, t ,  is 
given by 

dz /d t= {P/[ ( t -  l)t]1’2] + {Q/[(t-~)t]”*). (A. l )  

P E R I O D I C  P O T E N T I A L  P R O B E  C O N F I G U R A T I O N  

TABLE 111. Values of the potential and its derivative for circular and flat electrodes for X = d  =0.25. 

This can be integrated to give the relation 

z = 2 P  arc tanh[l- (l/t)]1’’+2Q arc tanh[l- (u/i)]1/2, 

( A 4  
where z=A when t=u,  z=-iA for t = l ,  and z=-i /2  
for t = O .  I t  then follows that the parameter, a, can be 
determined from the equation 

{ l/arc tanh[l- (1/~)]1/~)  

and that 
P= A/2 arc tanhC1- ( l / ~ ) ] l / ~ ,  

and 
Q=A/2 arc tanh(u- 1)112. 

As before, A is the ratio of the electrode radius to the 
distance between the centers of adjacent electrodes. 
The coordinate z is related to our position coordinate, 
Z=X+iY,  by the relation z= -iZ. 

For our case, the derivative dW/dt of Ref. 11 becomes 

+[l/arc tan(u- 1)1’2]= l / r A ,  (A.3) 

(-4.4) 

( A 3  

dW/dt= l/[(t- 1) ( t - ~ ) t ] ” ~  (A.6) 

w = m  I ( l /a)l /K(l/a) (A.7) 

which integrates to give 

where F and K are incomplete and complete elliptic 
integralsu respectively, and 4= arc tan[a/(t- u)I1I2. 

When the value of t ,  determined from Eq. (A.2) for 
a given value of 2, is substituted into Eq. (A.7), the 
real part of W is the value of the potential. In Table I11 
we have compared the behavior of the potential for 
X = A = 0.25 and its derivative d V/dX  for circular and 
flat electrodes. For values of Y >  1 both V and aV/dX 
are proportional to esp( - r Y ) ,  although the propor- 
tionality constant differs by a factor of 1.832 for the 
two cases. This noticeable difference leads to different 
calibration factors when Eq. (19) is evaluated. 

Ratio 
Circular electrode Flat electrode circular/flat - - _ _ _  

E’ V a v/ax V av/ax v av/ax 
0.02 0.886 1.916 
0.04 0.986 5.035 0.808 1.842 1.220 2.733 
0.06 0.970 4.883 0.743 1.760 1.306 2.744 
0.08 0.947 4.674 0.687 1.684 1.378 2.776 
0.1 0.918 4.420 0.637 1.606 1.441 2.752 
0.2 0.737 3.004 0.448 1.248 1.645 2.407 
0 . 4  0.415 1.403 0.233 0.706 1.781 1.987 
0 . 6  0.224 0.719 0.123 0.384 1.821 1.872 
0 . 8  0.1201 0.3795 0.0657 0.2061 1.828 1.841 
1 .0  0.0641 0.2018 0.0350 0.1101 1.831 1.833 
2 .0  0.00277 0.0087 0.00151 0.00476 1.832 1.832 

l1 H. W. Richmond, Proc. Lon. Math. Soc. Ser. 2 22,389 (1923). 
l2 L. M. Milne-Thomson, Handbook of Muthemoticul Functions, M. Abramowitz and I. A. Stegun, Eds. [Natl. Bur. Stand. Appl. 

Math. Ser. 55 (1964)], Pt. 17. 
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TABLE IV. Effective,values of A to be used in Eq. (23) for 
different electrode geometries. 

A = O .  15 A = 0 . 2 5  A = 0 . 3 5  

Flat electrodes 0.15 0.25 0.35 
Circular 0.252 0.505 0.929 

electrodes ( = 1 . 6 8 A )  (=2.02.4)  ( = 2 . 6 5 4 )  

The values of the potential for circular electrodes 
were checked by repeating the calculation for values of 

ASO.O1 where comparison could be made with the more 
simple theory for vanishingly small A .  As a final test, 
with A = 0.25, the potentials for both the circular and 
flat [Eq. ( 7 ) ]  electrode cases were checked by actual 
measurements using conducting paper on which the 
appropriate geometries R-ere painted with silver paint. 

We therefore conclude that the factor, A ,  in Eq. (23) 
for the slope at A=O, is geometry sensitive. In  the case 
of circular electrodes, it must be replaced by the factors 
calcu1;ited using the proper values of aV/aX in Eq. (19) 
and tabulated in Table IV. 


