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Soliton microcombs provide a chip-based, octave-spanning
source for self-referencing and optical metrology. We use a
silicon nitride integrated photonics foundry to manufacture
280 single-chip solutions of octave-spanning microcombs on
a wafer. By group-velocity dispersion (GVD) engineering
with the waveguide cross section, we shape the soliton spec-
trum for dispersive-wave spectral enhancements at the fre-
quencies for f-2f self-referencing. Moreover, we demonstrate
the other considerations, including models for soliton spec-
trum design, ultra-broadband resonator external coupling,
low-loss edge couplers, and the nonlinear self-interactions of
few-cycle solitons. To cover the fabrication tolerance, we sys-
tematically scan 336 parameter sets of resonator width and
radius, ensuring at least one device on each chip can yield
an octave-spanning comb with an electronically detectable
carrier-envelope offset frequency, which has been supported
by our experiment. Our design and testing process permit
highly repeatable creation of single-chip solutions of soliton
microcombs optimized for pump operation ∼100 mW and
high comb mode power for f-2f detection, which is the central
component of a compact microsystem for optical metrology.
https://doi.org/10.1364/OL.527540

Kerr microresonator soliton frequency combs, or microcombs,
have undergone rapid development because of the insights they
provide to nonlinear dynamics and their application possibilities
[1]. These broadband laser sources are composed of discrete
spectral lines with the relation fn = nfrep + fceo, where n is an
integer comb mode number, frep is the repetition frequency, and
fceo is the carrier-envelope offset frequency. Several applications
require phase stabilization of frep and fceo, including optical fre-
quency synthesis [2] and measurement with respect to either
microwave or optical clock signals, optical clock metrology,
and optical frequency division [3].

Realizing a phase-stabilized microcomb involves generation
of an octave-spanning spectrum with sufficient optical power
for f-2f self-referencing and phase-locking of the fceo and frep sig-
nals [4–6]. Management of group-velocity dispersion (GVD)
is critical for all of these tasks. The spectrum of a soliton
microcomb is mostly determined by the integrated dispersion,
Dint = νµ − (ν0 + FSR µ), where µ is the relative mode number
to the pump mode, νµ is the cold cavity resonance frequency,
and FSR is the free spectral range at the pump [7]. While dark

solitons in normal GVD have higher pump-to-comb conver-
sion efficiency [8], bright solitons in anomalous GVD offer
the broadest spectra, characterized by a bandwidth adjustable
mostly with the second-order dispersion parameter and coher-
ent emission of dispersive waves (DWs) [9–11] that arise due
to higher-order dispersion. We consider dual DW microcombs
with a shortwave DW (SWDW) and a longwave DW (LWDW)
at higher and lower frequency than the pump laser, respec-
tively. These DWs are designed according to the condition
Dint = 0, and they greatly enhance the comb mode power and
bandwidth. We control octave microcombs mostly by adjust-
ing Dint with the resonator geometry. Indeed, the SWDW and
LWDW are very sensitive to fabrication tolerance. Therefore,
an approximate target design exists; however, to date it has only
been implemented with carefully controlled, low-volume fab-
rication, requiring iterative device selection and fabrication or
device trimming post-fabrication [12]. For frequency metrol-
ogy, foundry manufacturing as a high-volume fabrication of
f-2f microcombs would revolutionize the use of the SI second
in the optical domain.

Here, we present a single-chip solution of microcombs with
harmonic, dual DW spectra and electronically accessible fceo

(∼10 GHz) for the highest efficiency in f-2f detection and fab-
ricate at a volume on a wafer with a commercial silicon nitride
foundry. We model the target design through detailed SiN disper-
sion engineering, optimized microcomb dynamics that enhance
DW power for f-2f detection, and wavelength-dependent exter-
nal resonator coupling across octave span. A new feature of our
modeling is an analytical expression for the complex, octave-
spanning microcomb. To ensure every chip has qualified devices,
each chip carries 336 resonators with a programmed variation
in ring width (RW) and ring radius (RR) to account for the fab-
rication tolerance. Post-fabrication device screening in concert
with our models is used to identify qualified devices on a single
chip. We demonstrate that the two DW frequencies and fceo can
be independently controlled in a predictable fashion sweeping
resonator geometry. Finally, we discuss post-fabrication manip-
ulation of the soliton spectrum through the control of the pump
laser. This process reveals interesting DW dynamics that can lead
to step-changes in the DW frequencies and power. Our work
demonstrates a reliable procedure of generating ready-to-use
octave-spanning combs through a commercial foundry and also
expands the theory of the DW dynamics in soliton microcombs.

We first illustrate in Fig. 1 the procedure to obtain an octave-
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Fig. 1. Key concepts of chip-scale search for an octave-
spanning comb from a commercial foundry. (a) Our chip testing
setup (left) and photos of the wafer, a chip, and a resonator (clock-
wise from middle). The bottom spectrum shows an octave-spanning
microcomb with an on-chip pump power of (151 ± 10) mW, RR of
23.475 µm, and RW of 1690 nm. (b) and (c) Enlargements of DW
spectra for different microresonator geometries. The DW locations
are sensitive to RW (panel b; RW values: 1670 nm, 1690 nm, and
1710 nm) but less sensitive to RR (panel c; RR values: 23.475 µm,
23.535 µm, and 23.58 µm). This allows DW control through RW
and fceo control through RR.

spanning microcomb through chip-level device selection. The
three essential parameters of our devices are layer thickness
(th), RW, and RR. Before fabrication, our analytical model and
simulation provided a suggested set of parameters: th = 760 nm,
RW = 1697 nm, and RR = 23.45 µm. The devices were fabri-
cated by Ligentec with a programmed variation in RW and RR
around the suggested values. The upper inset of Fig. 1(a) shows
chips on our wafer and individual devices (right side) and our
experimental setup for soliton generation and device selection
(left side). The pump from a C-band continuous-wave (CW)
laser is amplified by an EDFA and coupled into a microresonator
chip. The chip layer is made of silicon nitride and covered by
silicon dioxide top cladding, providing low edge coupling loss
(<3 dB per edge). By fast sweeping the pump frequency with a
single-sideband suppressed-carrier (SSB-SC) frequency shifter,
we achieve a stable access to the single soliton state without any
feedback control and thermal compensation [13]. Then we finely
adjust the detuning to optimize two DWs, monitored by an opti-
cal spectrum analyzer (OSA). The lower inset of Fig. 1(a) is a
measured spectrum of an octave-spanning microcomb with two
DWs at 145.43 THz and 290.92 THz, respectively. Figures 1(b)
and 1(c) show more details about how we vary RW and RR to
tune the DW frequencies and fceo for a workable octave-spanning
microcomb. In Fig. 1(b), we fix RR and sweep RW from 1670
nm to 1710 nm, while in Fig. 1(c), we fix RW and sweep RR
from 23.475 µm to 23.58 µm. The measurement results indi-
cate that the DW frequencies can be tuned by RW, and they
are less sensitive to RR. On the other hand, fceo is sensitive to
RR, which enables us to optimize fceo without changing the DW
frequencies. Tuning RW also changes fceo but its influence can
be easily counteracted by a relatively wide scan of RR values.

Fig. 2. Analytic model and simulation of comb spectrum. (a)
Simulated Dint curves with th = 760 nm, RR = 23.45µm, and RW =
1670 nm (blue), 1697 nm (black), and 1730 nm (green). The inset
shows a typical ring mode profile. (b) Simulated (line) and measured
(squares) Qc versus frequency for RR = 23.535 µm, WGW = 500
nm, gc = 950 nm, and L = 17µm. (c) Comparison among measured
comb spectra (blue), prediction from our analytic model (black)
and LLE simulation (red) with Qi =1.4M, F2 = 37.2, α = 33. (d)
SWDW power versus th, predicted by our analytic model with F2 =

37.2 (Pin = 150 mW) and α = 33. For each th, we adjust RWso that
the two DWs span an octave.

With the programmed variation in microresonator geometries,
we can identify microcombs with an electronically accessible
fceo and enhanced DWs at frequencies for f-2f self-referencing.

Next, we will discuss the steps to generate a pre-fabrication
design. We first regard th as a variable. To ensure an octave
span, for each th, we find the proper RW by using COMSOL to
calculate Dint since DWs appear at Dint ≈ 0. Figure 2(a) shows
the simulated Dint with varied RW. The inset shows a typical
ring mode profile. The blue, black, and green curves plot the
Dint with RW of 1670 nm, 1697 nm, and 1730 nm, respectively.
For the black curve, two solutions of Dint = 0 span an octave,
indicating that 1697 nm is the proper RW for this th.

After RW is determined, we design an optimal coupler that
maximizes the coupling rate, denoted by κcµ , at the SWDW,
since κcµ is usually smaller at a short wavelength. The coupling
is determined by three parameters: the bus waveguide width
(WGW), the gap between the bus waveguide and the ring, gc,
and the pulley length, L. We use a Lumerical FDTD solver to
simulate the coupling quality factor, defined by Qc = 2πνµ/κcµ ,
and find the best values of WGW, gc, and L. The curve in Fig. 2(b)
shows the simulated Qc with th = 751 nm, RR = 23.535 µm,
RW = 1659 nm, WGW = 500 nm, gc = 950 nm, and L = 17 µm.
The black squares are the measured Qc with nominal RW and th
to be 1690 nm and 760 nm, which agrees well with the simulation
considering the fabrication uncertainty.

We now present a quasi-analytic model for solitons generated
in resonators with arbitrary Dint profiles and use it to quan-
titatively predict the spectral mode distribution of the optical
power, Pµ , given the device parameters and some estimation
about the pump laser. This model is critical for obtaining a
sufficient DW power for f-2f self-referencing. Here, we define
a mode-dependent conversion efficiency CEµ = Pµ/Pin, where
Pin is the input pump power (≈150 mW in our experiment). Pµ

can be estimated from CEµ which is related to both the field
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inside the resonator and the coupling. The intracavity dynam-
ics of the Kerr microresonator is governed by the normalized
Lugiato–Lefever equation (LLE) in mode basis [14]:

∂Eµ

∂t
= −

(︁
lµ + i

(︁
α + Dµ

)︁ )︁
Eµ + Fδµ,0 + i

∑︂
µ1 ,µ2

Eµ1 Eµ2 E
∗

(µ1+µ2−µ)
.

(1)
Equation (1) is exactly the Fourier transform of the regular LLE
in the temporal form, and the split-step Fourier method is used in
its numerical solution. We account for the frequency-dependent
loss in terms of the ratio of the loss rate between mode µ and
the pump (µ = 0), lµ = (κiµ + κcµ)/(κi0 + κc0), where κiµ is the
intrinsic loss rate. α is the detuning of the pump laser, nor-
malized by the half-width of the pump mode (κi0 + κc0)/(4π).
Dµ = 4πDint/(κi0 + κc0) is the normalized Dint. F is the normal-
ized driving force and related to Pin and Pthre by F2 = Pin/Pthre,
where Pthre is the threshold power and has a range of (4 ± 1) mW
in the experiment.

The relation between coupling and CEµ is characterized
by rµ = 2Kµ/(Kµ + 1), where Kµ = κcµ/κiµ is the coupling
coefficient of mode µ, and CEµ has the following form [14]:

CEµ =
|Eµ |

2lµrµ
F2/r0

×
ωµ

ω0
, (2)

where ωµ is the output angular frequency of mode µ. As dis-
cussed above, κcµ can be calculated from Qc. While Qc varies
greatly over frequency, the intrinsic quality factor Qi = 2πνµ/κiµ
has much smaller variation. We assumed Qi to be a constant
measured in previous fabrication. Then, lµ and rµ can be cal-
culated from Qc. Equation (2) suggests that we can calculate
CEµ if we know Eµ and F. In resonators with low loss and
purely quadratic dispersion, Dµ = d2 µ

2/2, the soliton spectrum
is approximated by [15] the following:

E(0)
µ =

√
d2

2
Sech

[︄
π

2

√︃
d2

2α
µ

]︄
. (3)

For non-quadratic dispersion, currently no model can approxi-
mate the soliton spectra. Here, we provide two extra orders of
correction for Eµ which can characterize the spectrum around
DWs through the perturbation method. To distinguish Eq. (3)
from our correction, we denote it with a superscript (0).

Our model assumes that Dµ ≈ d2 µ
2/2 for small µ but diverges

from the quadratic shape at large µ. For a steady comb, ∂Eµ/∂t =
iλEµ , where λ is the time rate of change of the phase and equals
the difference between frep and FSR. For a Dint with even parity,
λ = 0. We assume λ = 0 in our model but will discuss later that
nonzero λ will result in a DW switching phenomenon. As a
result, for nonzero µ, we rewrite Eq. (1) into the following:

Eµ =

∑︁
µ1 ,µ2

Eµ1 Eµ2 E∗

(µ1+µ2−µ)

−ilµ + α + Dµ

. (4)

With this equation, we can calculate our first-order solution E(1)
µ

by replacing Eµ on the right side with E(0)
µ . Instead of directly

doing the summation, a more clever way is to notice that E(0)
µ is a

good approximation when Dµ is exactly d2 µ
2/2. So, according to

Eq. (4),
∑︁

µ1 ,µ2
E(0)

µ1
E(0)

µ2
E(0)∗

(µ1+µ2−µ)
≈ (−ilµ + α + d2 µ

2/2)E(0)
µ , and

E(1)
µ has the following expression:

E(1)
µ = c(1)µ E(0)

µ , c(1)µ =
−ilµ + α + d2 µ

2/2
−ilµ + α + Dµ

, (5)

where c(1)µ is the first-order correction. This expression already
gives insight into comb power distribution across a dispersion
profile. A striking feature of DWs is that Pµ has a local maximum
at modes where Dint ≈ 0. This is explained by Eq. 5: for most
modes, Dµ ≫ α, lµ , and |c(1)µ |2 is relatively small, but when Dµ

decreases to −α, the line shape of |c(1)µ |2 becomes a Lorentzian
with a peak value ≈

(︁
d2 µ

2/(2lµ)
)︁2.

A more accurate spectrum needs the second-order correction:

E(2)
µ = E0

µ

∑︁
µ1 ,µ3

c(1)µ1
c(1)µ3−µ1

c(1)∗
(µ3−µ)

E(0)
µ1

E(0)
µ3−µ1

E(0)∗
(µ3−µ)

/E(0)
µ

−ilµ + α + Dµ

. (6)

Note that Sech[x] ⩽ 2 Exp[−|x|] and |µ1 | + |µ3 − µ1 | + |µ3 −

µ| ⩾ |µ|. E(0)
µ1

E(0)
µ3−µ1

E(0)∗
(µ3−µ)

/E(0)
µ vanishes exponentially except

for the case where µ ⩽ µ3 ⩽ µ1 ⩽ 0 or µ ⩾ µ3 ⩾ µ1 ⩾ 0,
and E(0)

µ1
E(0)

µ3−µ1
E(0)∗

(µ3−µ)
/E(0)

µ ≈ d2. Then E(2)
µ can be expressed as

follows:

E(2)
µ = c(2)µ c(1)µ E(0)

µ , c(2)µ =
−ilµ + α + d2

∑︁
µ1 ,µ3

c(1)µ1
c(1)µ3−µ1

c(1)∗
(µ3−µ)

−ilµ + α + d2 (|µ| + 1)(|µ| + 2)/2
,

(7)
where the summation is done over µ ⩽ µ3 ⩽ µ1 ⩽ 0 or µ ⩾
µ3 ⩾ µ1 ⩾ 0. In c(2)µ , we retain −ilµ + α in the numerator and
replace µ2/2 with (|µ| + 1)(|µ| + 2)/2. This modification makes
c(2)µ converge to 1 when c(1)µ = 1.

Using Eqs. (2) and (7), we can calculate the spectrum of the
output comb with given values of Dµ , lµ , rµ , F, α, and Pin.
Equation (3) indicates that larger α leads to more power, as
observed in the experiment as well. While absent from Eq. (7),
F2 affects Pµ indirectly by altering the soliton existence range,
for which the upper bound of α is π2F2/8 [15]. During the
design, we set F based on our laser power and the measured
Pthre and perform a numerical simulation with MATLAB, based
on Eq. (1) directly, to estimate the maximum α and the comb
spectrum more accurately. Figure 2(c) is a comparison among
our analytic approximation (black curve), LLE simulation (red
curve), and measured spectrum (blue trace) with nominal RW
and th to be 1690 nm and 760 nm, respectively. For the ana-
lytic approximation and numerical simulation, we use the same
device parameters as in Fig. 2(b) and Qi is 1.4M. Consid-
ering the fabrication uncertainty, the analytic, simulated, and
experimental spectra agree well.

The last parameter to optimize is th. We calculate the SWDW
power versus th using our analytic model, shown in Fig. 2(d).
Here, we set RR = 23.45 µm, Pin = 150 mW, F2 = 37.2, and
α = 33. RW is adjusted to keep an octave span of DWs. It shows
that th = 760 nm will yield the highest SWDW power.

To compensate the th variation on the wafer and reduce fceo, we
next decide sweep ranges of RW and RR based on the sensitivity
of DWs and fceo. To characterize the harmonic mismatch between
two DWs, we define the quantity 2νL − νS, where νL and νS are
LWDW and SWDW frequencies, and plot it as a function of
RW and th with a fixed RR = 23.5 µm [Fig. 3(a)]. The green,
black, and red curves with diamonds show the theoretical values
with th = 754 nm, 760 nm, and 766 nm, respectively. The blue
squares are calculated from the measured νL and νS. The plot
shows that a 1 nm variation in th requires a 5 nm sweep in RW
to compensate.
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Fig. 3. Tuning of DW frequencies and fceo. (a) 2νL − νS versus
RW for th = 754 nm (green), 760 nm (black), and 766 nm (red). The
blue squares show the measured data for th = 760 nm. (b) Simulated
(black curve with diamonds) and measured (blue squares) fceo as a
function of RR.

Figure 3(b) plots the theoretical fceo (black curve with dia-
monds) and measured fceo over RR with RW = 1690 nm and
th = 760 nm. We made this measurement with a 1 GHz reso-
lution using a calibrated spectrometer, given the resolved comb
modes. The lowest measured fceo is 5.1 GHz with RR = 23.535
µm and the corresponding spectrum is shown in Fig. 2(c). The
similar slopes over RR highlight the accuracy of our prediction.
The overall shift comes from the error in the effective index
estimation. Since fceo is always less than FSR (∼1 THz ), we
sweep 48 RR values over a range of 0.8 µm, which will always
compensate the overall shift and enable an fceo below ±10 GHz.

Besides device design, we can also use post-fabrication meth-
ods to manipulate the soliton spectrum through the control of the
pump laser. Here, we investigate how α and Pin affect DWs and
the DW switching phenomenon. According to Eq. (3), α deter-
mines the attenuation rate of Pµ versus µ. In addition, we found
both in the experiment and simulation that DWs might switch
from one mode to another nearby mode during the detuning
sweep, enabling fine tuning of DW frequencies. This behav-
ior comes from the nonlinear self-interactions between DWs
and its parent soliton, causing frep to diverge from FSR [16],
namely, λ ≠ 0, which can be regarded as an effective shift in
Dint and switches DW modes. In Fig. 4(a), we plot three LLE-
simulated spectra with varied α: 19 (blue), 26 (green), and 33
(red) (F2 = 37.2). The simulated comb power Pcomb versus α is
shown in Fig. 4(b), where the corresponding α for each spectrum
in Fig. 4(a) is indicated by diamonds in the same color. Each

Fig. 4. Dependence of the comb spectrum on the pump laser.
(a) Simulated soliton spectra with F2 = 37.2, α = 19 (blue), 26
(green), and 33 (red) using resonator parameters from Fig. 2(c)
except α. (µL, µS) are (−51,102) (blue); (−52,100) (green); and
(−53,99) (red). (b) Simulated comb power as a function of α. Each
colored diamond corresponds to the soliton spectrum with the same
color in (a). (c) Measured soliton spectra with the same devices but
different Pin: 74 mW (top), 89 mW (middle), and 126 mW (bottom).

comb is a stable solution of LLE and we have experimentally
verified that these states correspond to low noise combs. The
relative mode numbers of DWs (µL, µS) switch from (−51,102)
(blue) to (−52,100) (green) and then to (−53,99) (red). In con-
trast to quadratic GVD combs, Pcomb does not increase smoothly
in Fig. 4(b). Instead we observe that Pcomb versus α behavior is
interrupted by high noise regions around α = 25 and 32, related
to the intracavity dynamics of DWs that cause jumps of the DW
frequency and power [16].

Pin also affects CEµ by affecting the range of α where the
soliton exists. Figure 4(c) plots the three measured spectra from
the same device but with increasing Pin: 74 mW, 89 mW, and 126
mW. For each Pin, we tuned α to maximize the SWDW power in
the experiment. While Pin increases by less than two times, the
SWDW power increases by tens of dB, which we attribute to a
larger α able to support the soliton.

In summary, with a commercial foundry, we demonstrate
a systematical design process and chip-scale search method
to obtain single-chip solutions of microcombs for f-2f self-
referencing at volume. We tested three chips from different parts
of the wafer. Each includes octave-spanning combs with elec-
tronically accessible fceo. The variation in the DW power is about
10 dB. We also provide an analytical model to predict the soliton
spectrum with two DWs and investigate its dependence on the
device parameters as well as the pump laser. The experiment
results agree well with analytical model and LLE simulations.
Our work represents an important step toward the practical appli-
cations of the microresonator-based octave-spanning combs for
self-referencing.
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