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We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear
phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are
determined by nonlinear light-matter interactions, making them both technologically flexible and broadly
reconfigurable. We utilize a nanostructured inner-wall modulation in the resonator to achieve universal
phase matching for OPO-laser conversion, but coherent backscattering also induces a counterpropagating
pump laser. This depletes the intraresonator optical power in either direction, increasing the OPO threshold
power and limiting laser-conversion efficiency, the ratio of optical power in target signal and idler
frequencies to the pump. We develop an analytical model of this system that emphasizes an understanding of
optimal laser-conversion and threshold behaviors, and we use the model to guide experiments with
nanostructured-resonator OPO laser-conversion circuits, fully integrated on chip and unlimited by group-
velocity dispersion. Our Letter demonstrates the fundamental connection between OPO laser-conversion
efficiency and the resonator coupling rate, subject to the relative phase and power of counterpropagating
pump fields. We achieve ð40� 4Þ mW of on-chip power, corresponding to ð41� 4Þ% conversion
efficiency, and discover a path toward near-unity OPO laser-conversion efficiency.
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Introduction.—Optical parametric oscillation (OPO)
features common behaviors in many physical systems.
The intensity distribution of the optical field shows as a
Turing pattern, similar to those in biological systems [1]
and sand dunes [2]. These patterns arise from nonlinearity
of the reaction-diffusion equation. With sand dunes there is
a nonlinear surface velocity profile [3], while for nonlinear
optics it is the nonlinear refractive index. Since OPO is
a coherent process, it is subject to a narrow range of
phase-matching solutions. Still, we can trace the coherent
oscillating output of the OPO to its constituent nonlinear
dynamics [4,5]. For example, accidental [6] and
controllable [7–9] mode frequency shifts have been used
to balance group-velocity dispersion (GVD) and Kerr
shifts in microresonator OPO. Recently, photonic-crystal
resonators (PhCRs) have provided a route to phase match
OPO in nearly any dispersion regime, which we call
universal phase matching [10]. The accessibility of these
controls for nonlinear dynamics in OPO makes the system
both interesting to search for novel phenomena and to
understand similar dynamics in related physical systems.
OPO laser conversion also has numerous applications in

engineering. Degenerate OPO works as a converter of
the pump-laser frequency to a tunable signal and idler
frequency, providing a coherent source with designable
wavelength [11]. Microresonators further make OPO laser
converters chip integrated. An intrinsic condition of OPO
is phase matching, which is traditionally achieved by

designing anomalous GVD to balance Kerr frequency
shifts. With GVD engineering, OPO in microresonators
has been realized in silica [12,13], aluminum nitride [14],
silicon nitride [15,16], and tantalum pentoxide [17] plat-
forms. Microresonator OPO has also been explored with
novel bound states in the continuum to tailor wavelength-
dependent coupling conditions [18]. With PhCR OPO [10],
nanostructuring the microresonator waveguide induces
coherent backscattering and a controllable frequency split-
ting of one or more azimuthal modes. This provides direct
phase matching between three modes of the device.
While tunable phase matching is important for a laser

converter, the conversion efficiency (CE), defined as the
ratio between the signal and idler output power and the
pump laser power, is essential as well. In previous
research, the highest CE of microresonator OPO with
standard couplers is < 40%, and the highest reported on-
chip output is ≈20 mW [12,19–22]. In the case of PhCRs,
backscattering depletes the available power available for
OPO threshold and reduces conversion efficiency in a
single propagation direction. Despite this, CE in PhCRs
exceeding 10% has been demonstrated by operating in the
overcoupled regime [10]. On the other hand, for frequency-
comb generation, which has a similar operating principle
as OPO [23–25], a pump-to-comb conversion efficiency
as high as 83% has recently been demonstrated by placing
a pump reflector to maximize the pump intensity in a
PhCR [26]. However, the upper limit of OPO CE and
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optimal system integration of the PhCR with pump
reflector remains a research question. Moreover, a physical
understanding of this system will enable future devices
with access to large parametric gain for broadly reconfig-
urable wavelength access and the highest output power.
Such chip-scale technologies would be useful for appli-
cations as diverse as optical telecommunications [27,28],
spectroscopy [29], and optical sensors [30,31]. This Letter
investigates the OPO CE in a PhCR with pump reflector
and provides guidance for future device design.
Here, we develop an analytical framework to describe

OPO laser converters with counterpropagating pump fields,
and derive formulas for CE and threshold power. Moreover,
we develop and implement the experimental infrastructure
for an integrated PhCR with a pump reflector in the bus

waveguide. The PhCR induces coherent backscattering
within the resonator, and the pump reflector transforms
the pump into counterpropagating fields. Thereby, we con-
trol the phase between the counterpropagating pump fields
in the bus waveguide and the backscattered pump mode
inside the PhCR, suppressing the unused pump power in
one direction and optimizing the utility of pump power.
Our experiments systematically explore the interaction of
counterpropagating pump laser fields in the PhCR. The
result is in good agreement with our analytical model of
the nonlinear system. By measuring the output power, the
sum of the power of idler and signal in both directions, we
demonstrate ð41� 4Þ% CE of OPO, defined as the ratio
between the on-chip output power and the on-chip pump
power. This measurement corresponds to ð40� 4Þ mW
on-chip output power with idler and signal at ð185.06�
0.04Þ THz and ð200.04� 0.04Þ THz. The corresponding
spectra are in the Supplemental Material [32]. This
Letter illuminates a regime of OPO in which we unleash
universal phase matching and high CE through nanopho-
tonic design, and finds a path to on-chip tunable frequency
converter with low threshold and near-unity efficiency. Our
theoretical model also helps understand other pump recy-
cling laser systems such as parametric down conversion
systems [33].
Theory.—The dynamics of the system depends both on

the linear coupling process between the bus waveguide and
the PhCR, and a nonlinear process within the PhCR. The
nonlinear process is described by the normalized, modified
Lugiato-Lefever equation (LLE) [34]:
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The diagram in Fig. 1(a) shows the components of the
field in our devices. The fields in the bus waveguide
propagate in both transmitted and reflected directions,
denoted by subscripts t and r, respectively. Superscripts i
and o further denote the input and output fields relative to
the PhCR in each direction. The fields in the PhCR also
have two counterpropagating directions: clockwise (CW)
and counterclockwise (CCW), coupling with the light
transmitted and reflected in the bus waveguide, respectively.
We decompose the field in each direction inside the PhCR
into different modes, denoted by Etμ (CW) and Erμ (CCW),
where μ represents the mode number relative to the pump

FIG. 1. Φ dependence. (a) A diagram and a transmission trace
of a PhCR with pump reflector. The blue curve is the normalized
transmittance from experiment. The orange dashed line plots the
fit. (b) Pthre vs Φ with K ¼ 6.0� 0.6, R ¼ 0.8� 0.1. The solid
curve shows analytic Pthre with η ¼ 29.7 mW and the squares
are experimental data. (c) CE vs Φ with K ¼ 6.0� 0.6,
R ¼ 0.8� 0.1. The solid and dashed curve plot the analytic
CE at OPhM for F ¼ 1.8 and 2.3 respectively. The diamonds are
the corresponding simulation results for F ¼ 1.8 (red) and 2.3
(blue). Squares are experimental results with F ¼ 1.80� 0.05.
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mode, μ ¼ 0. The field here is normalized such that the
nonlinearity thresholds when EtμðErμÞ ∼ 1. We use Itμ ¼
jEtμj2 or Irμ ¼ jErμj2 to denote the intensity of each mode.
Ft and Fr are the effective driving force in each direction,
δμ;0 is the Kronecker delta, α is the detuning of the pump
laser, and Dμ is the integrated dispersion defined by
Dμ ¼ νμ − ðν0 þ FSRμÞ, where νμ is the cold cavity res-
onance frequency of mode μ and FSR is the free spectral
range [4,10]. The interaction between CW and CCW fields
induced by the nanostructured inner-wall modulation
is characterized by ξ [10]. Variables α, Dμ, and ξ are
normalized by the half-width of the resonator Δν=2 ¼
κ=ð4πÞ, and the time t is normalized by 2=κ. The total
loss rate of the ring is κ ¼ κi þ κc, where κi is the intrinsic
loss rate and κc is the rate of energy exchange between
the bus waveguide and the ring. The value K ¼ κc=κi is the
coupling coefficient.
According to coupling theory (see Supplemental

Material), for the transmitted direction, the fields input
to and exiting the PhCR satisfy Ei

tμ ¼ Ftδμ;0=
ffiffiffiffiffiffiffi
rEF

p
and

Eo
tμ ¼ Ei

tμ −
ffiffiffiffiffiffiffi
rEF

p
Etμ, respectively. rEF ¼ 2K=ðK þ 1Þ is

the conversion coefficient between the field in the bus
waveguide and Ft or Fr, and is of the utmost importance to
optimizing CE. With a perfect pump reflector that only
reflects the pump frequency, the pump mode field Eo

t0 is
recycled into the CCW driving force Fr ¼ rðFt − rEFEt0Þ,
and thus improves CE. The reflection coefficient is
r ¼ ffiffiffiffi

R
p

eiΦ, where R is the reflectivity and Φ the reflector
phase. Similar to the transmitted wave, the reflected wave
inside the bus waveguide satisfies Ei
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The normalized input power equals jEi
t0j2 ¼ jFtj2=rEF.

For convenience, we replace Ft with F and assume it to be a
real number below. The transmitted and reflected pump-
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Therefore, the total output power of nonpump modes isP
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Replacing Ei
t0; E

o
t0; E

o
r0 with Et0; Er0, and F, and solving Ic,

we obtain

CE ¼ r2EF
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We further simplify the formula above for some specific
cases. For an ordinary resonator without pump reflector,
Er0 ¼ 0 andEq. (3) becomesCE¼ r2EFðRe½Et0�=F−It0=F2Þ
[19,35]. However, PhCRs are quite different. For wide span
OPO with normal GVD, phase matching requires ξ ≫ 1,
whichwe call the largemode split approximation. The strong
interaction between the CW and CCW wave of the pump
mode establishes coherence between them: Et0 ≈ −Er0 for
the red-shifted resonance mode (α > 0); see Supplemental
Material. According to Eq. (3), a smaller It0 enables the same
CE with smaller F. When OPO exists, It0 is determined by
the phase-matching condition [19]. For ordinary rings, the
phase matching is determined by Dμ only. However, in
PhCRs, the effect ofDμ on phase matching can be compen-
sated by ξ. When It0 ¼ 1 and Et0 have the same complex
angle as 1 − r, CE is largest. This is satisfied by optimizing ξ
and sweeping α, which we call optimal phase matching
(OPhM); see Supplemental Material. At OPhM and ξ ≫ 1,
Eq. (3) reduces to

CE ¼ r2EF

�
1

F
j1 − rj − 1

F2
ð2 − rEFRe½r�Þ

�
: ð4Þ

Further, F at threshold is the solution of CE ¼ 0:

Fthre ¼
2 − rEFRe½r�

j1 − rj : ð5Þ

The actual input power P in experiment can be written as
P ¼ ηF2, where η originates from the normalization of the
modified LLE [Eq. (1)], and depends on the half-width of
the resonator, the linear and nonlinear refractive index of
the PhCR, and the mode volume [36]. However, without
calculating η, we can control F through P based on Eq. (5)
and the threshold power Pthre measured in the experiment:

F ¼ Fthre

ffiffiffiffiffiffiffiffiffi
P

Pthre

s
ð6Þ

Equation (4) depends on four variables: F, Φ, R, and
K (included in rEF). The maximum of CE happens at
F ¼ 2Fthre (namely P ¼ 4Pthre), which we call saturation
CE and denote by CEsat,

CEsat ¼
r2EF
4

j1 − rj2
2 − rEFRe½r�

: ð7Þ

For a PhCR without a pump reflector, Fthre ¼ 2 and
CEsat ¼ ½K=ðK þ 1Þ�2=2. For a fixed R, Fthre < 2 at
some Φ, and CEsat is maximized when Φ ¼ π. The
maximum of CEsat is K2=½ðK þ 1ÞðK þ 1=2Þ� when
r ¼ −1, which is greater than the CE limit of ordinary
resonators ½K=ðK þ 1Þ�2 [19].
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Experiment.—We explore and measure OPO laser con-
verters with a PhCR and a pump reflector, demonstrating the
close connection between lasers we implement with inte-
grated photonics and our predictive model of the system.
Figure 1 presents the foundations of our system, including
the Φ dependence of threshold power and CE. The pump
reflector is a series of waveguide-width modulations with
tapering period and amplitude that controls the width
and the location of the reflection band [37]. The PhCR
enables deterministic single-mode splitting by periodically
modulating the resonator inner wall with a nanostructured
period that determines the split resonance wave vector. The
amplitude of the modulation is proportional to ξ [10]. We
implement the PhCR with pump reflector in the tantala
integrated photonics platform developed by us [17,38]. The
pump laser is a tunable continuous wave laser amplified
with an erbium-doped fiber. More details of fabrication and
experimental testing are in Supplemental Material.
To test our analytic model, we compare the results with

experiment and numerical simulation, using Eq. (1) (see
Supplemental Material). The measured pump reflectivity
varies from 72% to 83% due to the uncertainty of the
measurement and the tolerance of fabrication between
different chips. In each plot, we tested the devices with
similar Rs and use their average R in the analytic curves
and simulations. By rotating the nanostructured inner-wall
resonator modulation, we equivalently change the relative
phase Φ between reflected light in the bus waveguide
and the field inside the PhCR. We measure Φ as well as
K and ξ by fitting the transmission, T; see Fig. 1(a) and
Supplemental Material. Figure 1(b) shows the Φ depen-
dent measurement of Pthre [black squares; Fig. 1(b)], which
is consistent with Eq. (5) [solid curve; Fig. 1(b)] after
fitting the conversion coefficient, η ¼ 29.7 mW.
Figure 1(c) shows the Φ dependent measurement of CE

[black squares; Fig. 1(c)]. We control F to 1.80� 0.05 by
comparing the input power with Pthre for each device,
according to Eq. (6). We calculate CE from the inferred on-
chip output and input power, with an uncertainty of 0.4 dB.

The solid and dashed curves are the analytic CE [Eq. (4)] at
OPhM with F ¼ 1.8 and 2.3 respectively. We also per-
formed a numerical simulation based on Eq. (1) to verify
our analytic CE formula [red (F ¼ 1.8) and blue (F ¼ 2.3)
diamonds in Fig. 1(c)]. Both simulation and experimental
results match our analytical CE model well. Figure 1
demonstrates that the sensitive CE dependence on Φ.
Although the device withΦ ¼ π reflector has the maximum
saturation CE, for small input power, the devices with
reflectors of other phases achieved higher CE first due to
lower Fthre.
As discussed above, the coupling coefficient K is

critical to CE. We change this parameter by adjusting the
gap between the bus waveguide and the PhCR; see
Supplemental Material. Figure 2 shows the dependence
of CE on K. The solid curve plots the analytic CE at OPhM
with F ¼ 1.85, Φ ¼ 1.715π, and R ¼ 0.8. The black
squares are the experimental results and the red diamonds
are the simulation results with the same parameters obtained
from the modified LLE Eq. (1). The results are nearly
overlapping, demonstrating the validity of the derived
analytic expressions. The dashed curve is the analytic CEsat
with the same reflectivity but optimal phaseΦ ¼ π. It shows
that even without modification on the reflector structure,
CE can reach nearly 80% with K ¼ 6 when Φ is optimized
and the input power is increased to saturation, P ¼ 4Pthre. In
addition, according to Eq. (7), with an ideal reflectivity
R ¼ 100%, CE can reach the theoretical upper boundary
K2=½ðK þ 1ÞðK þ 1=2Þ�, which asymptotically approaches
unity when K → þ∞.
Our simplified CE formula [Eq. (4)] is valid only when

OPhM is satisfied. In order to achieve OPhM, we sweep ξ
by adjusting the modulation amplitude of the PhCR’s nano-
structured inner wall. Figure 3(a) shows the CE dependence

FIG. 3. ξ dependence. (a),(b) CE vs ξ and δμ vs ξ. The black
squares are the experiment results and the red diamonds are the
simulation results.

FIG. 2. K dependence. The solid curve is analytic CE at OPhM
with F ¼ 1.85, Φ ¼ 1.715π, R ¼ 0.8. The dashed curve is the
analytic saturation CE with Φ ¼ π, R ¼ 0.8. The squares are
experimental results with approximately same condition. The red
diamonds are the simulation results with the same parameters.
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of ξ with all other parameters fixed. We find CE spans
≈20%–40%, where the experimental results (black squares)
are in good agreement with our numerical simulation based
on Eq. (1) (red diamonds). The small decrease in CE
corresponds to a change in the generated signal and idler
frequencies, whose span in FSR is δμ, as seen in Fig. 3(b),
and suggest that a new pair of PhCR modes achieves phase
matching.
We also investigate the dependence of CE onF, the pump

driving field, which is controlled by the input pump power.
Our results are summarized in Fig. 4. The solid curve and
red diamonds are the analytic CE [Eq. (4)] and simulation
results at OPhM with R ¼ 0.72,Φ ¼ 1.372π, K ¼ 2.8. The
black squares are experimental results with R ¼ 0.7� 0.1,
Φ ¼ ð1.36� 0.05Þπ, K ¼ 2.8� 0.3. The results are con-
sistent at small F, but diverge at larger F. We attribute this
divergence to two reasons. First, our theoretical model
Eq. (4) is limited to the OPO case, which assumes that only
the pump, idler, and signal modes have nonzero intensity.
When F is large, more than one pair of modes can achieve
phase matching, which we call cascade, and decentralize the
pump mode power. This is no longer an OPO process and
therefore not covered by our analytic prediction. However,
our simulations do predict such cascade and thus diverge
from the analytic curve. Second, the imperfect environment
in the experiment is not fully described by either our
analytical model or numerical simulation. For example,
the reflectors in our devices have some reflectivity at the
signal and idler modes andK at the idler mode is larger than
at the pump and signal modes. When CE is high, reflected
idler light may excite other four-wave mixing processes,
further decentralizing the pump mode power. The reflec-
tivity on the signal and idler can be reduced with an
optimized reflector, and the wavelength dependence of K
can be optimized by engineering of the coupler. Moreover,
cascade can be avoided by utilizing other dispersion regimes
and values of ξ, or operating with a larger FSR.

In this Letter, we show that a pump reflector can reduce
OPO threshold power and increase CE by controlling the
coupling of counterpropagating pump lasers in PhCR. We
develop a theory to explain this mechanism and derive
analytic formulas of CE and threshold power for nano-
structured-resonator OPO. Our analytical model has been
systematically verified in our experiments and we have
obtained ð41� 4Þ% CE and ð40� 4Þ mW on-chip power
for OPO laser conversion. Higher CE is limited by the
nonideal reflector spectrum and cascade in our experiment.
Through nanophotonic design, we highlight a regime of
OPO with high CE and universal phase matching and realize
a robust laser platform. Our pump reflector approach also
applies to parametric down-conversion or other laser-
conversion systems.
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