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Enhancing divalent optical atomic clocks with the 1 S0 ↔ 3P2 transition
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Divalent atoms and ions with a singlet S ground state and triplet P excited state form the basis of many
high-precision optical atomic clocks. Along with the metastable 3P0 clock state, these atomic systems also have
a nearby metastable 3P2 state. We investigate the properties of the electric quadrupole 1 S0 ↔ 3P2 transition with
a focus on enhancing already existing optical atomic clocks. In particular we investigate the 1S0 ↔ 3P2 transition
in 27Al+ and calculate the differential polarizability, hyperfine effects, and other relevant atomic properties.
We also discuss potential applications of this transition, notably that it provides two transitions with different
sensitivities to systematic effects in the same species. In addition, we describe how the 1S0 ↔ 3P2 transition can
be used to search for physics beyond the Standard Model and motivate investigation of this transition in other
existing optical atomic clocks.
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I. INTRODUCTION

Optical atomic clock species with two long-lived excited
states have proven to be very useful in constraining systematic
effects and searching for new physics beyond the Standard
Model. Prominently, the most stringent constraints on the
time variation of the fine structure constant come from a
comparison of two clock transitions in Yb+ [1,2]: an electric
quadrupole transition (E2) and electric octupole transition
(E3). In addition, while the E3 transition is much narrower
and is more suited to low-uncertainty, high-stability clock
operation, the E2 transition provides important information on
systematic effects, for example, allowing in situ measurement
of the electric quadrupole field [3]. Here we consider similar
applications with the previously unused 1S0 ↔ 3P2 transition
in divalent systems using 27Al+ as a specific example. We find
that the 1S0 ↔ 3P2 has uses as an auxiliary transition which,
when used along with the well-established 1S0 ↔ 3P0 transi-
tion, can provide insights into atomic structure calculations,
inform clock-related systematic shifts on both transitions, and
provide higher measurement stability due to the longer excited
state lifetime. Although the 1S0 ↔ 3P2 transition involves
a J �= 0 state and requires a slightly different spectroscopy
sequence, the transition retains the insensitivity to blackbody
radiation of the 1S0 ↔ 3P0 transition and is amenable to high-
accuracy clock operation.

II. DIVALENT ATOMIC CLOCK SPECIES

Common species of optical atomic clocks are divalent
atoms or ions, with a 1S0 ground state and a metastable 3P0

excited state. Among the most prominent examples are neutral
Sr and Yb and singly ionized Al+ and In+ [4]. Illustrated
in Fig. 1(a), the ions are confined in a linear rf trap and
the neutral atoms in an optical lattice. For each of these

species, a nearby 1S0 ↔ 3P1 transition, which has a lifetime
many orders of magnitude shorter than the strictly forbid-
den clock transition, provides narrow-line cooling, efficient
state preparation, and readout. A dipole-allowed 1S0 ↔ 1P1

transition also allows for state detection and broader Doppler
cooling, although in the case of ions this transition lies in
the vacuum ultraviolet (VUV) and is unused. As a result,
these clocks use co-trapped ions with more easily accessible
cooling transitions for sympathetic cooling and state readout
via quantum logic spectroscopy [5]. However, in all these
systems, there also exists an additional metastable 3P2 state
that has typically not been utilized, although in some neutral
atoms this transition has been considered for applications
with many-body physics and quantum simulation [6,7], and
searches for new physics [8]. In the case of ions, while this
transition has not been yet been studied in detail, operating
a single clock on multiple transitions is greatly simplified
compared to neutral atoms as low uncertainty operation does
not require the existence of a magic wavelength. Here we
investigate the clock-related properties of the 1S0 ↔ 3P2 tran-
sition and, for concreteness, focus on 27Al+. While many of
our results inspire further investigation with other systems, the
case of 27Al+ was particularly interesting, as clock compari-
son measurements with existing 27Al+ ion clocks are close
to being limited by the 20.7 s lifetime of the 3P0 0P state [9].
The longer-lived 3P2 state with a lifetime of around 300 s is
occasionally populated by background gas collisions during
typical clock operation and has long been considered as a pos-
sible means of obtaining higher stability in the same single-ion
system. In addition, the 3P2 state lies only around 1 THz
higher than the 1S0 ↔ 3P0 transition and could be driven with
minimal changes to the clock laser.

More generally, we emphasize the utility of an addi-
tional narrow linewidth transition in a well-established atomic
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FIG. 1. (a) Low-lying energy levels of divalent ions (left) and neutral atoms (right) (not to scale). Neutral atoms can be confined in an
optical lattice while ions can be stored in a linear rf trap, enabling the use of an additional ion for sympathetic cooling or quantum logic.
Additional low-lying D levels (not shown) exist in divalent neutral atoms but are at much higher energy in ions. (b) Level structure of 27Al+,
including the hyperfine splitting of the 3P2 state. Line thickness illustrates the relative strength (not to scale) of the transitions.

species. In the case of trapped ions, motional shifts, which
can constitute a large fraction of the uncertainty budget, are
exactly the same for both transitions. As a result, differential
frequency measurements between the two transitions, either
with cotrapped ions [10] or a single ion, can reach a higher
precision than absolute frequency measurements or frequency
ratio measurements between two completely different sys-
tems. In addition, some optical atomic clock species, notably
Yb+ and Lu+, routinely rely on auxiliary transitions to con-
strain shifts of the primary clock transition using only one ion
[3,11]. Furthermore, in the case of the Yb+ ion clock, high-
precision frequency ratio measurements between the E2 and
E3 transitions provide extremely tight constraints on certain
types of proposed physics beyond the Standard Model [1].
Despite the sparse energy level spacing and lack of a level
crossing in divalent ions, the existence of long-lived 3P0 and
3P2 states, in principle, allows for similar measurements.

In the following sections, we first detail calculations of
the clock-related atomic properties of the 1S0 ↔ 3P2 transi-
tion in 27Al+. We then describe averaging schemes that have
been developed for other species with J �= 0 and could be
applied to the 1S0 ↔ 3P2 transition in 27Al+ to compensate
leading systematic shifts. We also discuss possible appli-
cations of the 1S0 ↔ 3P2 transition in 27Al+. Of particular
note, atomic structure calculations are available for both clock
transitions in 27Al+ and an accurate frequency ratio measure-
ment of the 1S0 ↔ 3P0 and 1S0 ↔ 3P2 transitions can provide
much needed theoretical input. Finally, we identify potential

measurements of physics beyond the Standard Model and
a measurement of the blackbody radiation environment that,
while challenging for the specific case of 27Al+, are likely to
be of interest for similar species.

Although we focus here on 27Al+, consideration of the
1S0 ↔ 3P2 transition will be similar in other optical atomic
clocks based on trapped, divalent atoms. In general, the 1S0 ↔
3P2 transition is UV for most singly ionized group-13 el-
ements such as B+ [12,13] and In+ [12,14], and VUV for
high-Z elements such as Tl+ [15] or doubly ionized group-
14 elements such as Sn2+ [16] and Pb2+ [17]. All of these
candidates have been identified, or used, as species highly
suited to clock operation on the 1S0 ↔ 3P0 and can potentially
benefit from the additional 3P2, although in some cases it may
be more practical to drive the similar, but lower wavelength,
3P0 ↔ 3P2 transition.

III. ATOMIC PROPERTIES

A. Method of calculation

To calculate systematic effects of our clock transition,
we first start with a general description of atomic prop-
erties and perform theoretical calculations of 27Al+. As
discussed above, 27Al+ is a divalent ion and contains
[1s2, 2s2, 2p6] core electrons and two valence electrons.
We use a relativistic high-precision approach that com-
bines configuration interaction (CI) and coupled-cluster (CC)
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TABLE I. Low-lying energies (in cm−1) of the even- and odd-parity levels calculated in the pure CI (labeled “CI”), CI+MBPT (labeled
“CI+MBPT”), and CI+all-order (labeled “CI+All”) approximations. For the 3s2 1S0 state, we present its valence energy (in a.u.), which can
be compared to the sum of two ionization potentials IP(Al+) and IP(Al2+) [22]. The energies of the excited states (given in cm−1) are counted
from the ground state. The experimentally determined values (labeled as “NIST Exp.”) are taken from the NIST Atomic Spectra Database [22]
and the differences between theoretical and experimental values are given in the following columns, labeled “NIST-CI,” “NIST-MBPT,” and
“NIST-All,” respectively.

CI CI+MBPT CI+All NIST Exp. [22] NIST-CI NIST-MBPT NIST-All

3s2 1S0 1.71583 1.73640 1.73712 1.73737 1.2% 0.06% 0.01%
3p2 1D2 83 508 85 423 85 509 85 481 2.3% 0.07% −0.03%
3s4s 3S1 90 106 91 316 91 370 91 275 1.3% −0.05% −0.10%
3p2 3P0 92 598 94 062 94 095 94 085 1.6% 0.02% −0.01%
3p2 3P1 92 657 94 127 94 158 94 147 1.6% 0.02% −0.01%
3p2 3P2 92 772 94 247 94 279 94 269 1.6% 0.02% −0.01%

3s3p 3P0 55 236 54 083 53 548 53 548 3.0% 0.09% −0.06%
3s3p 3P1 56 858 55 707 55 196 55 196 3.0% 0.09% −0.06%
3s3p 3P2 60 979 59 757 59 228 59 228 3.0% 0.09% −0.06%
3s3p 1P1 80 162 80 166 79 912 79 912 0.5% −0.06% −0.03%

methods [18,19] that allows us to efficiently include correla-
tion corrections.

We start with a solution of the Dirac-Hartree-Fock (DHF)
equations to construct the finite basis set used in the calcula-
tions. The 3s, 4s, 3p, 4p, 3d , and 4d orbitals were constructed
in the DHF Al3+ frozen core potential. The remaining virtual
orbitals were formed using a recurrent procedure described
in Refs. [20,21], and our constructed functions were then
orthonormalized with respect to the functions of the same
symmetry. The basis sets included a total of six partial waves
(lmax = 5) and orbitals with a principal quantum number n up
to 25. We included the Breit interaction on the same basis
as the Coulomb interaction in the stage of constructing the
basis set.

In a CI + CC approach that allows us to include core-
valence correlations [18,19], the wave functions and energy
levels of the valence electrons were found by solving the
multiparticle relativistic equation [18]

Heff (En)�n = En�n, (1)

where the effective Hamiltonian is defined as

Heff (E ) = HFC + �(E ), (2)

where HFC is the Hamiltonian in the frozen-core approxima-
tion. The energy-dependent operator �(E ) accounts for the
virtual excitations of the core electrons and is constructed
in two ways: using (1) second-order many-body perturbation
theory (MBPT) over the residual Coulomb interaction [18]
and (2) the linearized coupled-cluster single-double (LCCSD)
method [19]. We refer to these approaches as the CI + MBPT
and CI + all-order methods and treat the difference between
the two results as the uncertainty of our calculation.

B. Energy levels and polarizabilities

To calculate the differential polarizabilities of the two
clock states, we begin by calculating the low-lying energy
levels in the pure CI, CI+MBPT, and CI+ all-order approx-
imations. To verify the convergence of the CI approach, we
performed several calculations and sequentially increased the

size of the configuration space. Sets of configurations were
constructed by including single and double excitations from
the main even (3s2) and odd (3s3p) configurations in the upper
shells. The set of configurations in which the convergence
of CI was achieved included excitations to the orbitals up to
20s, 20p, 20d, 20 f , 20g, designated [20spdf g]. The results of
these calculations are presented in Table I. For the 3s2 1S0 state
we present the valence energy (in a.u.) which can be compared
to the sum of two ionization potentials IP(Al+) and IP(Al2+)
[22].

We then found the static polarizabilities of states 3s2 1S0,
3s3p 3P0, and 3s3p 3P2 and the differential polarizabilities
α(3P0) − α(1S0) and α(3P2) − α(1S0) with the scalar and tensor
components of the total 3P2 polarizability defined as [23]

α(3P2, m) = α0(3P2) + α2(3P2)

(
m2

2
− 1

)
, (3)

where m is the projection of the total angular momentum
J = 2. The uncertainties of �α are given by the difference
between the CI+ all-order and CI+MBPT values, both in Ta-
ble II. Comparing the present results with the results obtained
in Refs. [12,24,25], we see good agreement between them.

TABLE II. Static polarizabilities of the 1S0, 3P0, and 3P2 states
(including core and cv contributions) and differential polarizabilities
�α (in a3

0, where a0 is the Bohr radius), calculated in the pure CI,
CI+MBPT, and CI+all-order approximations, are presented. Total
polarizability α(3P2) was calculated at m = 1. Uncertainties are given
in parentheses.

CI CI+MBPT CI+All Ref. [12]

Static α(1S0 ) 24.449 24.091 24.096 24.048
α(3P0) 24.907 24.567 24.582 24.543
�α 0.458 0.476 0.486(10) 0.495

α0(3P2) 25.016 24.679 24.695
α2(3P2) 0.610 0.562 0.565
α(3P2) 24.711 24.398 24.413
�α 0.262 0.307 0.317(10)
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As seen in Table II, the polarizabilities of the 1S0 ↔ 3P0 0P
and 1S0 ↔ 3P2 states are quite similar, with the differen-
tial polarizability of the 1S0 ↔ 3P2 transition being slightly
smaller. As a result, the 1S0 ↔ 3P2 transition will have a
sensitivity to blackbody radiation (BBR) similar to the 1S0 ↔
3P0 transition, which is among the lowest of all currently
existing clock species. In a later section, we describe how the
existence of two narrow clock transitions in the same species
can provide an in situ measurement of the BBR environment,
although for the case of 27Al+ this measurement is challeng-
ing, as the fractional BBR shift at room temperature of both
transitions is on the order of 1×10−18. We note, however,
that the calculations of the differential polarizabilities of both
transitions are very similar, and, as a result, measurement
of both differential polarizabilities would provide valuable
insight into the accuracy of these calculations. Measurement
schemes have been demonstrated that enable measurement
of the differential polarizability of a clock transition to high
accuracy [11,26], potentially benchmarking atomic theory in
mid-Z atoms.

C. Zeeman shift

The linear Zeeman shift of the 1S0 ↔ 3P2 transition is
larger than that of the 1S0 ↔ 3P0 transition by roughly
μB/μN , the ratio of the Bohr magneton to the nuclear mag-
neton. In addition, there exists a quadratic Zeeman shift,
including a small component that is proportional to the mag-
netic dipole polarizability of the 3P2 state that arises from
mixing with the nearby 3P1 state. Although, in general, av-
eraging over Zeeman sublevels is necessary for high accuracy
clock operation, as with the 1S0 ↔ 3P0 [27] transition, we first
calculate the hyperfine constants and the Zeeman shifts for a
fixed sublevel.

1. Hyperfine constants and Zeeman shift

We first calculated the magnetic dipole and electric
quadrupole hyperfine constants Ahfs and Bhfs for the 3P2

state. For 27Al+ with nuclear spin I = 5/2, the nuclear mag-
netic moment μI = 3.6415069(7) μN [28] and the nuclear
quadrupole moment, Qnuc = 0.1466(6) b [29].

In the presence of a weak external magnetic field B, we
need to consider both the hyperfine and Zeeman interactions:

H = Hhfs − μatB, (4)

where μat = −μ0gJJ − μN gI I. Here gJ is the electron g fac-
tor, given in the nonrelativistic approximation by the formula

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
(5)

and gI = μI/(I μN ) ≈ 1.4566. In the absence of an external
magnetic field, the hyperfine splitting is given by

�Ehfs/h ≡ (
�E (1)

hfs + �E (2)
hfs

)
/h (6)

= 1

2
AhfsK + Bhfs

3/4K (K + 1) − J (J + 1)I (I + 1)

2I (2I − 1)J (2J − 1)
,

(7)

where K ≡ F (F + 1) − J (J + 1) − I (I + 1) and h is the
Planck constant.

Our calculation within the framework of the CI + all-order
approximation (including random phase approximation cor-
rections) gives Ahfs ≈ 1132 MHz and Bhfs ≈ 30 MHz. As an
example, for the total momentum F = 1/2, we find for the 3P2

state

�E (1)
hfs /h ≈ −7924 MHz,

�E (2)
hfs /h ≈ 21 MHz. (8)

We then estimate the quadratic Zeeman shift with-
out any averaging and neglect the contribution of the
electric-quadrupole interaction to the hyperfine splitting, as it
is 400 times smaller than the contribution of the magnetic-
dipole interaction.

The operator Hhfs is diagonal in both F and M (where M
is the projection of F) while the operator μat is diagonal in M
but not in F . To take into account hyperfine and Zeeman inter-
actions, we use a basis of |Jm, Iλ〉 (where λ is the projection
of I) or just |m, λ〉 since J and I are constants within a given
level. If M = m + λ is fixed, we have the basis |m, M − m〉.
In the case of a weak magnetic field, the Zeeman interaction
can be treated as a perturbation to the |F, M〉 basis.

Although it is generally difficult to isolate the quadratic
component of the Zeeman shift, we consider the extreme state
F = 9/2 and denote the magnitude of the applied magnetic
field as B. It can be shown (see Appendix for more details)
that for m = 2, λ = 5/2, and M = 9/2 the matrix element is

〈m = 2, λ = 5/2 |H | m = 2, λ = 5/2〉
= 5hAhfs + 2μ0gJB (9)

and does not contain the term ∼B2. For M = 7/2 there are
only two possible states |m = 2, λ = 3/2〉 and |m = 1, λ =
5/2〉 and we can define them as the basis. The quadratic
contribution in B, designated as �E (2), is (see Appendix)

|�E (2)| = 1

18

(μ0gJ )2

hAhfs
B2. (10)

Using gJ (3P2) = 3/2 and Ahfs(3P2) = 1132 MHz, we find
that for 3P2,

|�E (2)| ≈ 1.433 × 10−23 J

T2
B2, (11)

�ν (2) ≡ �E (2)/h ≈ 22
kHz

(mT)2
B2. (12)

We again emphasize that while these shifts are large, they
are easily taken into account by proper averaging over the
Zeeman sublevels. As these averaging schemes suppress not
only Zeeman shifts but additional higher order field shifts such
as the electric quadrupole shift, we discuss the details in a later
section.

2. Contribution proportional to M1 polarizability

Nevertheless, a small residual quadratic Zeeman shift due
to the magnetic dipole polarizability of the 3P2 state remains,
even with proper hyperfine averaging. This shift is roughly
inversely proportional to the fine structure splitting of the 3P
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manifold and gives rise to the energy splitting, �E [30]

�E = − 1
2αM1B2. (13)

The magnetic dipole polarizability αM1 is given by

αM1 = αM1
0 + αM1

2
3m2 − J (J + 1)

J (2J − 1)
, (14)

where αM1
0 and αM1

2 are the scalar and tensor parts of the
magnetic dipole polarizability.

For the 3P2 state, the scalar static and tensor polarizabilities
are given by

αM1
0 = 2

15

∑
n

|〈n||μ||3P2〉|2
E (n) − E (3P2)

,

αM1
2 = 4√

21
,
∑

n

(−1)Jn

{
2 1 Jn

1 2 2

} |〈n||μ||3P2〉|2
E (n) − E (3P2)

, (15)

where μ is the magnetic dipole moment operator.
To estimate the shift for the clock transition due to this

term, we note that the αM1(1S0) polarizability is negligibly
small compared to αM1(3P2), so we have

�ν (1) ≡ �E (3P2) − �E (1S0)

h
≈ �E (3P2)/h.

For an estimate of αM1(3P2) we take into account that
the main contribution to this polarizability comes from the
intermediate state 3s3p 3P1. Then, using Eq. (15), we obtain

αM1
0 (3P2) ≈ 2

15

〈3P1||μ||3P2〉2

E (3P1) − E (3P2)
,

αM1
2 (3P2) ≈ − 2

15

〈3P1||μ||3P2〉2

E (3P1) − E (3P2)
. (16)

In this approximation,

αM1(3P2) ≈ 2 αM1
0 (3P2)

(
1 − m2

4

)
. (17)

If m = 2, this contribution to αM1(3P2) becomes zero. If
m = 0, then we have

αM1(3P2) ≈ 2 αM1
0 (3P2). (18)

Numerically, we find the matrix element |〈3P1||μ||3P2〉| ≈
1.5811 μ0, where μ0 ≈ 9.274×10−24 J/T is the Bohr magne-
ton, and note that the values obtained in the CI+MBPT and
CI+ all-order approximations begin to differ only in the sixth
significant figure.

Using Eqs. (13) and (18) and the experimental differential
energy E3P2

− E3P1
≈ 124 cm−1, we arrive at

�ν (1) ≈ 18
Hz

(mT)2
B2,

where the magnetic field is expressed in mT. This shift is
slightly smaller than in the case of the 1S0 ↔ 3P0 transition
and can be readily accounted for by monitoring the magnetic
field via the linear Zeeman shift of opposing hyperfine sub-
levels as has previously been done [27].

D. Electric quadrupole shift

1. Quadrupole moment

The size of the electric quadrupole shift is determined
by the quadrupole moment of the 3P2 state. In general, the
quadrupole moment � of an atomic state |J〉 is given by

� = 2 〈J, MJ = J|Q0|J, MJ = J〉

= 2

√
J (2J − 1)

(2J + 3)(J + 1)(2J + 1)
〈J||Q||J〉, (19)

where 〈J||Q||J〉 is the reduced matrix element of the electric
quadrupole operator. For the 3s3p 3P2 state, we find

〈3P2||Q||3P2〉 ≈ 8.3 ea2
0 (20)

and

�(3P2) ≈ 4.0 ea2
0. (21)

For context, the quadrupole moment of the 3P2 state in
27Al+ is slightly larger than the quadrupole moments of the
2D5/2 states in singly ionized alkaline earth elements [32].

IV. HYPERFINE AVERAGING

As highlighted above, the angular momentum of the J = 2,
3P2 state introduces larger Zeeman shifts and a larger electric
quadrupole shift compared to the 1S0 ↔ 3P0. Previously, Zee-
man averaging of the 1S0 ↔ 3P0 transition was performed by
alternately driving �mF = 0 transitions from the two mF =
±5/2 extreme states. The magnetic and electric quadrupole
moments of the clock states in this transition come from
the 27Al+ nucleus so that the Zeeman shift and electric
quadrupole shift are both small enough that the Zeeman av-
eraging is needed only for monitoring the strength of the
DC magnetic field. A slightly different averaging scheme is
required for the 1S0 ↔ 3P2 transition to eliminate the electric
quadrupole shift and the leading-order Zeeman shifts, such
as have been successfully applied in other clock species with
J > 1/2 states [3,11,33–35].

It is well known that the electric quadrupole shift and, in
fact, all rank 2 tensor shifts can be canceled either by averag-
ing over several mF levels for fixed F or by averaging over
several F levels for fixed mF [31,36,37]. Both schemes are
illustrated in Fig. 2 with purple and green boxes, respectively.
The latter scheme has been successfully demonstrated in
176Lu

+
and enables each component transition to be first-order

magnetic field insensitive [36]. Such a scheme would be well
suited to 26Al

+
, which (although unstable) has even nuclear

spin and several mF = 0 levels. Here we highlight the fixed
F averaging scheme which is conceptually very similar to the
averaging scheme applied to the 1S0 ↔ 3P0 clock transition
detailed above. There the average of the two transitions has
no linear Zeeman shift, and the difference frequency is used
to measure the magnetic field and constrain the quadratic Zee-
man shift. Averaging over the two 3P2, F = 1

2 states requires
just as many transitions and eliminates the electric quadrupole
shift. In both averaging schemes, rf or microwave drives,
illustrated with black arrows in Fig. 2, applied during the spec-
troscopy sequence, could be used to eliminate the first-order
sensitivity to magnetic field fluctuations [11,33,34]. We note
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FIG. 2. Hyperfine structure of the 1S0 ↔ 3P2 transition in 27Al+

where the F levels of the metastable 3P2 state are vertically offset
and the mF levels are offset horizontally. Optical transitions from
the ground state are illustrated in purple, while rf and microwave
transitions are illustrated in black.

also that passive magnetic shielding is used in other optical
atomic clocks with higher sensitivity to first-order Zeeman
shifts [35,38].

V. PROPOSED MEASUREMENTS

One of the strongest motivations for investigating the prop-
erties of the 1S0 ↔ 3P2 transition in 27Al+ is the longer
lifetime of the excited state, around 300 s rather than 20.7 s
[22]. The standard quantum limit (SQL) imposes a strict
limit on measurement stability during clock comparison mea-
surements, and trapped-ion frequency standards using only
single ions are often limited by probe durations. Techniques
that allow clock comparison measurements beyond the laser
coherence limit such as correlation spectroscopy recently
demonstrated measurement stability with 27Al+ consistent
with the lifetime limit [9], suggesting that further gains may
be possible by using narrower transitions. Among other mea-
surements, this increased stability could be used to measure
differential gravitational redshifts at high precision or to mea-
sure the motional energy near the ground state via the time
dilation shift, both of which would require months long mea-
surement campaigns with the 1S0 ↔ 3P0 transition.

However, it is not always the case that the 3P2 state has a
longer lifetime than the 3P0 state in divalent species [22]. As
a result, although less likely to be directly applicable in 27Al+

we highlight a few additional measurements that the auxiliary
1S0 ↔ 3P2 transition makes possible that do not rely solely on
the exact values of the lifetime.

Most generally, we note that an important use of a second,
long-lived clock transition is to calibrate a primary clock
transition. For example, although the electric quadrupole shift
of the 1S0 ↔ 3P0 transition in 27Al+, due to the nuclear

quadrupole moment, is around an order of magnitude be-
low the current level of accuracy it could become a relevant
systematic effect in future accuracy evaluations. The much
larger electric quadrupole moment of the 3P2 state could then
provide a means of measuring the electric quadrupole field,
as is done with the E2 and E3 transitions in Yb+. Similarly,
interleaved measurements of individual hyperfine 1S0 ↔ 3P2

transitions could potentially provide higher precision mea-
surements of the DC magnetic field, and thus the residual
quadratic Zeeman shift of the 1S0 ↔ 3P0 transition. In this ap-
proach, the different sensitivities to various systematic effects
of two clock transitions in a single species can be leveraged to
constrain systematic shifts of the less sensitive transition. Of
the examples highlighted here, magnetic field measurements
with the 1S0 ↔ 3P2 seems promising to improve the accuracy
of the 1S0 ↔ 3P0 transition.

A. Calibrating clock transitions: In situ measurement
of the blackbody radiation environment

More unique measurements, however, are possible, and
here we apply this approach to the case of measuring the BBR
environment. Blackbody radiation is a prominent systematic
shift in many optical atomic clocks that has remained difficult
to accurately characterize. For example, characterization of
the BBR shift in the Yb+ ion clock [3] required detailed
measurement and modeling of the BBR environment [39],
while a recent measurement campaign with two Lu+ ion
clocks refrained entirely from reporting the BBR shift of the
clock transitions without verification from independent clock
comparisons [11]. In contrast, the most recent accuracy eval-
uations of the 27Al

+
ion clock [27] and the 87Sr lattice clock

[40] were able to bound the BBR shift but unable to provide
statistical errors. As a result, a direct method of measuring
the equivalent temperature of the blackbody radiation envi-
ronment, even if difficult, could be a valuable method to accu-
rately measure and bound the BBR shift without modeling.

We reproduce calculations from Refs. [27,41] here, in
which the Stark shift of an atomic state |a〉 in the presence of
light at frequency ω and a electric field strength E0 is given by

δνa(E , ω) = − 1

4h
E2αa(ω), (22)

where the scalar polarizability αa(ω) is defined as

αa(ω) = e2

me

∑
j

f j

ω2
j − ω2

. (23)

Here ωi and fi are the frequencies and oscillator strengths
of all atomic transitions from |a〉, with the electron charge and
mass denoted e and me, respectively. The Stark shift, �ν, of
the transition |a〉 ↔ |b〉 is then

�νa→b(E , ω) = δνb(E , ω) − δνa(E , ω) (24)

= − 1

4h
E2�αa→b(ω), (25)

where �αa↔b(ω) is the scalar differential polarizabiltiy listed
in Table II for the 1S0 ↔ 3P0 and 1S0 ↔ 3P2 transitions,
respectively. The Stark shift of a clock transition at fre-
quency νclock with differential polarizability �αclock (ω) in the
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presence of BBR at temperature T is then

�νclock = − 1

4ε0π3c3

∫ ∞

0
�αclock (ω)

ω3

eh̄ω/kBT − 1
dω, (26)

which, when integrated, yields the well-known scaling
with T 4.

In general, the BBR environment “seen” by the clock ion is
not well described by a single temperature. In the absence of a
BBR shield of uniform temperature and emissivity [35,42,43],
the trap chamber is typically a polished metal well thermalized
to the laboratory temperature, while some elements of the trap
are locally heated, by up to a few degrees. We propose measur-
ing the frequency difference of the 1S0 ↔ 3P0 and 1S0 ↔ 3P2

transitions, which we now denote as �ν2,0, to high precision
in a cryogenic environment with a blackbody radiation envi-
ronment characterized by the the electric field contributing to
the BBR shift, 〈E2〉4K. The frequency difference, including
the BBR shift of �ν2,0, then becomes

�ν4K = (ν2 − ν0) − 1

4h
〈E2〉4K(�α2 − �α0), (27)

where ν2, ν0 and α2, α0 are the respective frequencies and
differential polarizabilities of the 1S0 ↔ 3P2 and 1S0 ↔ 3P0

transitions. Near 4 K, the BBR shift is suppressed by around
eight orders of magnitude, and we can safely make the approx-
imation that �ν2,0 ≈ �ν4K. When �ν2,0 is again measured at
room temperature, and even in an entirely different apparatus,
the BBR shifted frequency difference is given by

�ν300K = (ν2 − ν0) − 1

4h
〈E2〉300K(�α2 − �α0). (28)

The differential polarizabilities �α0, �α2 can each be mea-
sured to high accuracy via a well-characterized light shift on
a co-trapped Ca+ ion [26]. The differential polarizability of
the 2S1/2 ↔ 2D5/2 transition in 40Ca

+
is around two orders

of magnitude larger than both �α0 and �α2 and has been
measured to a relative precision of around 3×10−4 [44]. The
individual differential polarizabilities �α0 and �α2 can be
measured in a similar manner by varying the intensity of laser
coincident on the Ca+ and Al+ ions while monitoring the
frequency shift of ν2 or ν0 against a stable reference. Equa-
tion (28) can be rearranged so that the electric field spectrum
contributing to a BBR shift is given by

〈E2〉300K = 4h
�ν4K − �ν300K

�α2 − �α0
. (29)

Although this technique requires measurement in a cryo-
genic environment, we emphasize that this measurement only
needs to be performed once and can be performed in a com-
pletely different apparatus from the one in which the clock,
using either transition, will ultimately be operated in. The
frequency difference ν2 − ν0 could be measured to high pre-
cision in a high-performance cryogenic apparatus located at
a metrology institute which could then be used to calibrate
the BBR environment of a higher-uncertainty room tempera-
ture system, e.g., a transportable clock. Transportable optical
atomic clocks have been proposed for use in geodesy [45,46]
and would naturally be exposed to various BBR environments,
as a result, an in situ measurement could be crucial for low-
uncertainty operation. Similarly, as a transportable optical

atomic clock is likely to use a lower stability probe laser,
the measurement would benefit from spectroscopy schemes
such, as correlation spectroscopy, which enable high-stability
frequency difference measurements beyond the limit imposed
by laser phase noise [9]. Such a technique could be easily
applied to two co-trapped ions as demonstrated in Ref. [10].

Nevertheless, the insensitivity to BBR of both the 1S0 ↔
3P0 and 1S0 ↔ 3P2 transitions means that such a measurement
would inevitably be difficult and require averaging down to
below the 1×10−18 level to provide errors that are similar
to the nonstatistical errors reported in Ref. [27]. However,
we note that the 3P0 lifetime limited stability of correlation
spectroscopy [9] allows a fractional statistical uncertainty of
1×10−18 to be reached with less than one day of measurement
time.

B. Searching for new physics: Violation of local
Lorentz invariance

Finally, we investigate the suitability of the 1S0 ↔ 3P2

transition in the search for physics beyond the Standard
Model. Two clock transitions in a single species can be a valu-
able tool here, with the most well known example being the
Yb+ ion, where a comparison of an electric quadrupole and
electric octupole transition currently set the tightest bounds on
potential time variation of the fine structure constant [1]. Simi-
larly, an apparent oscillation of these transition energies would
be a signature of ultralight dark matter [47,48]. In the case
of 27Al+, as a low-Z , light ion, sensitivity to variation of the
fine structure constant is minimal for both the 1S0 ↔ 3P0 and
1S0 ↔ 3P2 transitions. However, as the 3P2 state has nonzero
orbital angular momentum it is sensitive to potential violation
of local Lorentz invariance (LLI) and Einstein’s equivalence
principle (EEP). Here we calculate these sensitivities and note
a similar consideration applies to many other optical atomic
clocks based on divalent atoms and ions.

Violation of local Lorentz invariance (LLI) and Einstein’s
equivalence principle (EEP) in bound electronic states results
in a small shift of the Hamiltonian that can be described
by [49]

δH = −
(

C(0)
0 − 2U

3c2
c00

)
p2

2
− 1

6
C(2)

0 T (2)
0 , (30)

where we use atomic units, p is the momentum of a bound
electron, c is the speed of light, and

T (2)
0 ≡ p2 − 3p2

z .

The coupling constants C(q)
0 ,U, and c00 are discussed in detail

in [49].
The change in 27Al+ energy levels depends on the values of

the 〈Jm|p2|Jm〉 and 〈Jm|p2 − 3p2
z |Jm〉 matrix elements. The

stretched and reduced matrix elements of the T (2)
0 operator are

connected as

〈Jm|T (2)
0 |Jm〉 = (−1) j−m

(
J 2 J

−m 0 m

)
〈J||T (2)||J〉.
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TABLE III. Results obtained in the CI, CI+MBPT, and CI+all-
order approximations, including the RPA corrections (in a.u.).

Matrix element CI CI + MBPT CI + All

〈1S0|p2|1S0〉 3.39 3.55 3.55
〈3P2|p2|3P2〉 3.05 3.17 3.17
〈3P2|p2|3P2〉 - 〈1S0|p2|1S0〉 −0.34 −0.37 −0.38
〈3P2||T (2)||3P2〉 3.58 3.70 3.70

Writing the 3 j symbol in explicit form, we have

〈
Jm

∣∣T (2)
0

∣∣Jm
〉 = −J (J + 1) + 3m2

√
(2J + 3)(J + 1)(2J + 1)J (2J − 1)

× 〈J||T (2)||J〉. (31)

The value of the angular factor in Eq. (31) for 3P2 is
−0.2390 + 0.1195 m2.

Calculations were carried out in the CI, CI+MBPT, and
CI+ all-order approximations. The RPA corrections, which
describe a reaction of the core electrons to an externally
applied perturbation, were included. The results are listed in
Table III in atomic units. We note that we present the reduced
matrix elements for the T (2)

0 operator but the stretched matrix
elements for p2 because this is a scalar operator.

We use the CI + all-order values given in the last col-
umn of Table III for the matrix elements to obtain the
energy shift. Atomic units are converted to Hz using 1 a.u.
≈ (6.57968×1015 Hz)h.

We obtain the following:

〈1S0|p2|1S0〉 ≈ 3.55 a.u. ≈ (2.3×1016 Hz) h,

〈3P2|p2|3P2〉 ≈ 3.17 a.u. ≈ (2.1×1016 Hz) h,

〈3P2|T (2)
0 |3P2〉 = (−0.884 + 0.442 m2) × 3.70 a.u.

≈ [(−2.2 + 1.1 m2) × 1016 Hz]h.

Substituting these values into Eq. (30), we obtain the fre-
quency shift (in Hz)

1S0 :
�E

h
≈ −1.2×1016

(
C(0)

0 − 2U

3c2
c00

)
,

3P2 :
�E

h
≈ −1.1×1016

(
C(0)

0 − 2U

3c2
c00

)
+ (3.7 − 1.8 m2)

× 1015 C(2)
0 .

The LLI-induced energy shift between the highest (m = 2)
and lowest (m = 0) sublevels of the 3P2 state is given by∣∣∣∣∣ �E

h C(2)
0

∣∣∣∣∣ ≈ 7.2×1015 Hz. (32)

For comparison, this sensitivity is around 50% larger than
in Ca+, which previously was used to set the tightest con-
strains on LLI [50], and around an order of magnitude smaller
than Yb+, which provides the current best constraints [51].
Again, given that 27Al+ is a low-Z , relatively nonrelativistic
ion, this result is somewhat surprising and suggests that fu-
ture investigation into other species is fruitful. An immediate

example is the 115In
+

ion clock with Z = 49, with a similarly
unused 1S0 ↔ 3P2 transition lying far in the UV but still
laser accessible. Optical clocks based on Pb2+ [17] (Z = 82)
and Sn2+ [16] (Z = 50) may be promising systems for LLI
searches in the future. Notably, lead and tin have many stable,
even isotopes and the 1S0 ↔ 3P2 transition, in combination
with the 1S0 ↔ 3P0, would be a natural candidate for King
plot nonlinearity measurements [52,53].

VI. OUTLOOK

Optical atomic clocks based on a 1S0 ↔ 3P0 transition are
both common and highly successful including, among oth-
ers, clocks using neutral Sr or Yb and trapped ion clocks
using Al+ and In+. Universally, these species also contain
an electric quadrupole 1S0 ↔ 3P2 transition that is typically
unused. We have investigated the properties of this transition
in 27Al+ and found that it retains many favorable properties
of the 1S0 ↔ 3P0 transition, most notably the low sensitivity
to BBR. While the nonzero orbital angular momentum of this
state makes the spectroscopy sequence slightly more complex,
we show that many of the techniques used in other clock
species with similar J > 0 states are easily applicable and that
the use of transitions involving J > 0 states does not impact
fundamental accuracy or stability.

We have also described a few example use cases of this
transition, for example an in-situ method of measuring both
the BBR coefficient and equivalent electric field intensity
at the position of a trapped ion—a measurement that has
been difficult to characterize and bound but which can pro-
vide valuable input to evaluate systematic uncertainties and
to test atomic structure calculations. We also highlight the
potential of the under-utilized 1S0 ↔ 3P2 transition to provide
constraints on physics beyond the Standard Model—in the
case of 27Al+, a search for LLI and EEP violation. Here we
note that calculation of the clock-related atomic properties of
the 1S0 ↔ 3P2 transition in other established clock systems
seems particularly fruitful. In species with many stable, even,
isotopes, e.g., Yb and Sn2+, the existence of a second clock
transition could prove beneficial for King-plot nonlinearity
tests and other searches for new physics. Meanwhile, in sys-
tems such as 27Al+ where the lifetime of the 3P0 state is
limited by hyperfine mixing, the longer-lived 3P2 state could
potentially be used in high-stability measurements in which
the atomic state lifetime is a limiting factor [9]. Notably, the
atomic state lifetime is already a limitation for the In+ ion
clock while the roughly 300 s lifetime of the 3P2 state in
27Al+ balances the possibility of long probe durations with
low probe light-induced Stark shifts.
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APPENDIX

1. Hyperfine formalism

We use the basis set |JmIλ〉 = |Jm〉|Iλ〉, where F = J + I
and M = m + λ. Keeping only the magnetic-field dipole in-
teraction in the operator Hhfs, we have

H = Hhfs − μatB

= hAhfs JI + (μ0gJJ + μN gI I) B. (A1)

Assuming that B is directed along the z axis and neglecting
the third term in Eq. (A1) (because μ0 � μN ) we can write

Eq. (A1) as

H ≈ hAhfsIzJz + hAhfs

2
(J+I− + J−I+) + μ0gJJzB

= (hAhfsIz + μ0gJB)Jz + hAhfs

2
(J+I− + J−I+). (A2)

Here J± and I± are the ladder operators for which

J±|Jm〉 =
√

(J ∓ m)(J ± m + 1)|J, m + 1〉,
I±|Jλ〉 =

√
(I ∓ λ)(I ± λ + 1)|I, λ + 1〉. (A3)

Using Eqs. (A2) and (A3) we can express
〈Jm′Iλ′|H |JmIλ〉 as

〈Jm′Iλ′|(hAhfsIz + μ0BgJ ) Jz|JmIλ〉
= δmm′δλλ′ (hAhfsλ + μ0BgJ )m. (A4)

Using Eq. (A3) we find

〈Jm′|J+|Jm〉 =
√

(J − m)(J + m + 1)〈m′, m + 1〉,
= δm′,m+1

√
(J − m)(J + m + 1)

and

〈Iλ′|I+|Iλ〉 =
√

(I − λ)(I + λ + 1)〈λ′, λ + 1〉,
= δλ′,λ+1

√
(I − λ)(I + λ + 1).

Then

hAhfs

2
〈Jm′Iλ′|J+I−|JmIλ〉 = δm′,m+1δλ′,λ−1

√
(J − m)(J + m + 1)(I + λ)(I − λ + 1) (A5)

and

hAhfs

2
〈Jm′Iλ′|J−I+|JmIλ〉 = δm′,m−1δλ′,λ+1

√
(J + m)(J − m + 1)(I − λ)(I + λ + 1). (A6)

In total, we obtain

〈Jm′Iλ′|H |JmIλ〉 = δmm′δλλ′ (hAhfsλ + μ0BgJ )m + hAhfs

2
[δm′,m+1δλ′,λ−1

√
(J − m)(J + m + 1)(I + λ)(I − λ + 1)

+ δm′,m−1δλ′,λ+1

√
(J + m)(J − m + 1)(I − λ)(I + λ + 1)]. (A7)

Taking into account that λ = M − m, we can rewrite the equation above as follows:

〈Jm′I (M − m′)|H |JmI (M − m)〉 = δmm′ [hAhfs(M − m) + μ0BgJ ] m

+ hAhfs

2
[δm′,m+1

√
(J − m)(J + m + 1)(I + M − m)(I − M + m + 1)

+ δm′,m−1

√
(J + m)(J − m + 1)(I − M + m)(I + M − m + 1)]. (A8)

2. Application of the formalism to the 3P2 state

Here we apply this formalism to the 3P2 state. Because J and I are the same for an initial and final state, we use a shorter
notation for the basis states |m, (M − m)〉 instead of |Jm, I (M − m)〉.

We have J = 2 and, respectively, m = −2,−1, 0, 1, 2. Then we can construct the 5×5 matrix 〈m′, (M − m′)|H |m, (M − m)〉.
As follows from Eq. (A8), only elements of the main and two secondary diagonals of this matrix will be nonzero. Designating
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the matrix elements by ai j we obtain the following nonzero elements:

a11 ≡ 〈2, (M − 2)|H |2, (M − 2)〉 = 2[hAhfs(M − 2) + μ0gJB],

a12 = a21 ≡ 〈2, (M − 2)|H |1, (M − 1)〉 = hAhfs

√
(I + M − 1)(I − M + 2),

a22 ≡ 〈1, (M − 1)|H |1, (M − 1)〉 = hAhfs(M − 1) + μ0gJB,

a23 = a32 ≡ 〈1, (M − 1)|H |0, M〉 = hAhfs

√
3
2 (I + M )(I − M + 1),

a34 = a43 ≡ 〈0, M|H | − 1, M + 1〉 = hAhfs

√
3
2 (I + M + 1)(I − M ),

a44 ≡ 〈−1, (M + 1)|H | − 1, (M + 1)〉 = −hAhfs(M − 2) − μ0gJB,

a45 = a54 ≡ 〈−1, (M + 1)|H | − 2, (M + 2)〉 = hAhfs

√
(I + M + 2)(I − M − 1),

a55 ≡ 〈−2, (M + 2)|H | − 2, (M + 2)〉 = −2[hAhfs(M + 2) + μ0gJB]. (A9)

Let us consider two particular cases of M = 9/2 and M = 7/2.

a. M = 9/2

We fix M = 9/2. There is only one value of the total an-
gular momentum, F = 9/2, which corresponds to M = 9/2.
Since M = m + λ, for M = 9/2 there is only one option:
m = 2 and λ = 5/2. Then from Eq. (A7) we obtain

〈2, 5/2|H |2, 5/2〉 = 5hAhfs + 2μ0gJB. (A10)

As we can see, in this case, there is no term ∼B2.

b. M = 7/2

Now fix M = 7/2. There are two values F = 9/2 and
F = 7/2, the projection of which can be equal to M = 7/2.
It can be obtained in only two ways: |m = 2, λ = 3/2〉 and
|m = 1, λ = 5/2〉 We can define these states as a basis. To
find the energy shift, �E , we have to solve the equation

〈|H |〉 = �E , (A11)

where

|〉 =
(|m = 2, λ = 3/2〉

|m = 1, λ = 5/2〉
)

. (A12)

Using Eq. (A9) and noting that only ai j (i, j = 1, 2) will
be not equal to zero, we obtain

a11 ≡ 〈2, 3/2|H |2, 3/2〉 = 3hAhfs + 2μ0gJB,

a12 = a21 ≡ 〈2, 3/2|H |1, 5/2〉 = hAhfs

√
(I + 5/2)(I − 3/2)

=
√

5 hAhfs,

a22 ≡ 〈1, 5/2|H |1, 5/2〉 = 5
2 hAhfs + μ0gJB, (A13)

where we accounted for I = 5/2.
Thus, we have to solve the equation(
3hAhfs + 2μ0gJB − �E

√
5 hAhfs√

5 hAhfs
5
2 hAhfs + μ0gJB − �E

)
= 0.

The solutions to this equation are

�E1,2 = 11hAhfs

4
+ 3

2
μ0gJB

± 9hAhfs

4

√
1 + 4μ0gJB

81 hAhfs
+ 4 (μ0gJB)2

81(hAhfs)2
. (A14)

Then, extracting the quadratic contribution from B, designated
as �E (2), we find

|�E (2)| = 1

18

(μ0gJ )2

hAhfs
B2.

To verify Eq. (A14) we can put B = 0, arriving at

�E1 = 5hAhfs,

�E2 = 1
2 hAhfs. (A15)

From this we obtain

�E1 − �E2 = (9/2)hAhfs, (A16)

as it should be, because �E1 = �EF=9/2, �E2 = �EF=7/2

and

�EF − �EF−1 = FhAhfs. (A17)
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