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Abstract
Residual time delays in time transfer systems such as two-way satellite time and frequency
transfer (TWSTFT), or GPS carrier phase (GPSCP) change over time. A double difference such
as TWSTFT—GPSCP provides information on the changes in the relative time delays of the two
systems. These changes are referred to as aging or time dispersion. A first difference statistic,
RMS time interval error, TIERMS, provides the RMS time dispersion. The time deviation statistic
(TDEV) or a variation on the Allan deviation (ADEV), referred to here as ADEVS, provide
information on the nature of the random fluctuations in aging. This paper describes analytical
and Monte Carlo techniques used to estimate the aging (time dispersion) from TDEV or
ADEVS statistics, and finds that the aging can be more than a factor of four larger than TDEV
or ADEVS. The use of ADEVS is recommended over TDEV since it is sensitive to time drift.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A number of National Metrology Laboratories now have mul-
tiple, independent, high stability time transfer links. Typically
these are two-way satellite time and frequency transfer,
TWSTFT, and GPS carrier phase, GPSCP, though a few
also have optical links. With two independent time trans-
fer systems a double difference of, for example, TWSTFT-
GPSCP can be calculated that eliminates the clock instabil-
ities and offset. Figure 1 shows 12 years of daily aver-
age double difference data between the National Institute
of Standards and Technology, NIST, and the Physikalisch-
Technische Bundesanstalt, PTB, in Germany. Specifically, it is
TWSTFT—GPSCP for UTC (NIST)—UTC (PTB). The GPS
carrier phase data is TAIPPP [1] from the Bureau International
des Poids et Mesures. A few known large time steps and out-
liers have been removed from the double difference. This data
should not be considered a rigorous example of either fully
calibrated or uncalibrated links. It is a mixture of both due
to incomplete documentation at NIST in the early days of
GPSCP. For the purposes of this study it is just an example
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of a long series of reasonably well behaved double difference
data that includes some bridging calibrations on the TWSTFT
and some small calibration steps in the recent GPSCP data.

Double difference data can provide valuable information
on the long-term stability of time transfer systems, though it
is the combined instabilities of both systems. Figure 2 shows
the time deviation, TDEV, of the data in figure 1, where τ
is the averaging time interval in seconds. Note that the last
four points use TOTAL TDEV [2] to provide better confid-
ence limits. TDEV is used here to characterize the noise type
in this double difference data. We see from a weighted fit
that the noise characteristic has a power law dependence of
τ 0.27, which is about half way between flicker phase, with no
dependence on τ , and random walk phase (white frequency),
which has a τ 0.5 dependence.

2. Aging in time transfer systems

An important characteristic of time transfer systems is how the
time delays through the systems change with time. This time
dispersion [3] is sometimes referred to as aging [4]. The RMS
time dispersion, dRMS, can be calculated with a first difference
statistic as shown in equation (1),
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Figure 1. Double difference, TWSTFT—GPSCP, for UTC
(NIST)—UTC (PTB). MJD is the modified Julian date.

Figure 2. TDEV of data in figure 1. Dashed lines show various
power law dependencies.

dRMS (τ) =

√√√√1
n

n∑
i=1

(di+τ − di)
2 (1)

where di is the time difference at point i as in figure 1 and n
is the number of data intervals. dRMS is equivalent to the RMS
time interval error, TIERMS in [5] which is used in the telecom-
munications industry. Time dispersion is quantified by dRMS,
but this statistic does not clearly distinguish noise types. Also,
(1) can only be used on double difference data in which clock
frequency offsets and clock instabilities have been removed by
the differencing. Any apparent linear time drift (average fre-
quency offset) in double difference data reflects a true change
in time transfer delays and is a real contributor to aging.

A double difference and the commonly used TDEV provide
valuable information on the magnitude and nature of aging.
However, TDEV has an important weakness. As a second
difference statistic on time it is insensitive to a linear drift

in time. An alternative statistic to TDEV that does not have
this problem is also available, though less commonly used. As
shown in [6], the standard equation for the Allan deviation,
ADEV, calculated from fractional frequency, y, can also be
used with other parameters such as current or voltage, where
y is replaced with another parameter. The same process can
be used with double difference data, d, in which di is substi-
tuted for yi. In this paper we will refer to this as ADEVS (S for
substitute), to distinguish this statistic from the normal ADEV
second difference calculation using time difference data. Like
TDEV, ADEVS also distinguishes between white phase mod-
ulation, WPM, flicker phase modulation, FPM, and random
walk phase modulation, RWPM, but also has the advantage
that it is sensitive to time drift. The use of ADEVS in this study
is discussed in section 2.2.

Time dispersion, or aging, can be calculated from (1) when
the time series is available. However, the ability to determine
time dispersion from TDEV, or ADEVS, can be important in
situations where these statistics are available, but the corres-
ponding time series is not, as in a three-corner-hat analysis [7]
or a plot in a publication. The magnitude of the time disper-
sion is always larger than TDEV, or ADEVS, possibly bymore
than a factor of 4.

2.1. Analysis using TDEV

Because an analytical relation exists between TDEV and time
dispersion for RWPM [3, 8], we will consider TDEV first in
this section. Unfortunately, there is no analytical method to
calculate time dispersion from TDEV for FPM, or intermedi-
ate processes between FPM and RWPM.

A Monte Carlo analysis was performed to provide inform-
ation on the relation between time dispersion and TDEV for
instabilities ranging from FPM toRWPM. TheAllan Tools lib-
rary developed for Python [9] was used to simulate FPM and
RWPM phase noise in a time series. For FPM, the Allan Tools
library function is based on a recursive summation of many
white Gaussian noise processes with logarithmically distrib-
uted persistences. However, it does not generate power law
dependencies between FPM and RWPM. To simulate noise
with power laws between FPM, τ 0.0, and RWPM, τ 0.5, the
method of Kasdin and Walter [10] was used. This method,
based on computing the inverse Fourier transform of any spec-
tral noise density of the form Sy (f)∝ fα, also computes and
inserts a random phase noise series to make successive syn-
thesized noises independent. However, especially over short
averaging intervals, the Allan Tools simulator is more effect-
ive at generating pure FPM than the Kasdin method.

Each generated series has 500 000 data points and was
repeated 100 times. The time dispersion, d, for the simula-
tions is analogous to the time difference in figure 1. Figure 3
shows TDEV and RMS time dispersion, dRMS, from the Allan
Tools simulation of FPM and RWPM as a function of τ /τ 0,
where τ 0 is the minimum averaging time. Error bars for dRMS

(derived from scatter in the 100 simulations) and TDEV are
shown and are negligibly small. The heavy solid RWPM line
is the analytical solution for dRMS and the solid diamonds are
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Figure 3. TDEV (empty) and RMS time dispersion, dRMS (solid)
from simulated FPM (squares) and RWPM (diamonds) data. The
heavy solid red line is the analytical solution for RWPM based on
TDEV.

from the Monte Carlo analysis. The analytical expression for
RWPM time dispersion, dRMS, is

dRMS(RWPM) (τ) = τ ×σy (τ) (2)

where σy(τ ) is the Allan deviation, ADEV [3]. Using the rela-
tion between ADEV, and themodified Allan deviation,MDEV
[8], and between MDEV and TDEV [11], we get

dRMS(RWPM) (τ) =
√
2
√
3TDEV(τ) = 2.45TDEV(τ) (3)

for τ /τ 0 > 10. Here τ 0 can be viewed as 1 d in figure 3, to
be consistent with figure 1. For τ /τ 0 < 10, see the numerical
values in [8]. The agreement is very good between the RWPM
analytical and simulated methods and confirms the validity of
the Monte Carlo analysis. The solid squares and the empty
squares show the results for FPM instabilities. Note that dRMS

is larger than TDEV for both FPM and RWPM instabilities.
The ratio of dRMS over TDEV will be defined as the multi-

plication factor, MFT, such that

dRMS (τ)≡ MFT(τ)×TDEV(τ) . (4)

Figure 4 shows MFT for FPM and RWPM instabilities for
intervals from 1 to 4000 from the data in figure 3. Again, the
solid RWPM line represents the analytical solution and is in
good agreement with the simulated results [12]. From (3) we
see that MFT for RWPM equals 2.45 for τ /τ 0 > 10. The inter-
mediate line (solid dots) also shown is discussed below.

The solid FPM line in figure 4 is a third order fit to the
simulated data. Here we see thatMFT ranges from 1.5 to about
4.2. The third order fit equation is:

MFTFPM = 1.590+ 1.283Log(τ)− 0.2892(Log(τ))2

+ 0.0364(Log(τ))3. (5)

Figure 4. Multiplication factors from simulations of FPM (solid
squares) and RWPM (solid diamonds). The solid lines represent a
third order fit for FPM and the analytical solution for RWPM. An
intermediate power law dependence of τ 0.1 (solid dots) is also
shown.

TDEV for FPM noise is dependent on the measurement
bandwidth, fh, in the term ωhτ 0, where ωh = 2πfh in [8]. From
the ratio of MDEV/ADEV for the Allan Tools simulated FPM,
we find that the effective bandwidth parameter is ωhτ 0 ∼= 3 [8].
See below for more discussion of bandwidth.

To simulate noise with power law dependencies between
FPM, τ 0.0 and RWPM, τ 0.5, the Kasdin method was used.
For FPM it does not generate as flat a TDEV characteristic
as the Allan Tools simulator, but MFTs for the two techniques
agree to within 4%. The MFT agreement between Kasdin and
Allan Tools for RWPM is very good at better than 0.1%. The
solid dots in figure 4 showMFT for τ 0.1, illustrating that MFT
changes rapidly in going from FPM to RWPM. The effect-
ive bandwidth parameter, ωhτ 0, for Kasdin FPM is midway
between 3 and 10, making it a little larger than with Allan
Tools FPM. The effective bandwidth is important in experi-
mental data and is dependent on the amount of averaging. For
example, in figure 1 it is a one day average. This will have a
small affect onMFT. The fact that it is different for Kasdin and
Allan Tools simulations reflects the different techniques used
to produce the simulations.

Figure 5 shows MFT calculated using the Kasdin model as
a function of the TDEV power law exponent x, (as in τ x), for x
ranging from 0 to 0.5. Curves for various τ values relevant to
aging for τ /τ 0 > 10 are shown. The data in figure 5 show that
MFT ∼ 2.5 for 0.25 < x ⩽ 0.5 and τ /τ 0 > 10. MFT is larger
and depends strongly on x and τ /τ 0 for x below∼0.25. Table 1
shows the MFT values and uncertainties from figure 5.

2.2. Analysis using ADEVS

Following the same procedures as in section 2.1, the multi-
plication factor has been calculated using ADEVS. As men-
tioned above, ADEVS was calculated by replacing yi with di
in the standard equation for ADEV using fractional frequency
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Table 1. Values of MFT and uncertainties in figure 5.

τ /τ 0 = 16 τ /τ 0 = 128 τ /τ 0 = 1024 τ /τ 0 = 8192

x MFT Unc. MFT Unc. MFT Unc. MFT Unc.

0.00 2.894 0.012 3.482 0.014 3.973 0.019 4.405 0.033
0.05 2.771 0.011 3.182 0.012 3.466 0.015 3.671 0.028
0.10 2.670 0.010 2.949 0.010 3.112 0.012 3.257 0.023
0.15 2.589 0.009 2.774 0.009 2.873 0.011 2.926 0.023
0.20 2.522 0.008 2.646 0.008 2.694 0.009 2.722 0.021
0.25 2.473 0.008 2.551 0.007 2.572 0.008 2.592 0.019
0.30 2.438 0.007 2.487 0.006 2.501 0.007 2.501 0.018
0.35 2.419 0.007 2.447 0.005 2.454 0.007 2.446 0.020
0.40 2.412 0.007 2.428 0.005 2.436 0.007 2.424 0.019
0.45 2.421 0.006 2.430 0.005 2.426 0.008 2.438 0.019
0.50 2.445 0.006 2.450 0.004 2.451 0.007 2.442 0.021

Figure 5. MFT for various τ /τ 0 values as a function of the TDEV power law dependence, x.

yi. ADEVS has the same power law dependence as TDEV for
the various PM noise types but is sensitive to a linear drift
in time difference. ADEVS is about 10% larger than TDEV
for FPM and about 39% larger for RWPM. The multiplication
factor using ADEVS, MFA, is defined in a manner analogous
to MFT as shown below,

dRMS (τ)≡ MFA(τ)×ADEVS(τ) . (6)

Figure 6 showsMFA as a function of τ /τ 0 for x= 0 (FPM),
x = 0.1, and x = 0.5 (RWPM) and is similar to figure 4. We
see that MFA is 1.4 at τ /τ 0 = 0 for all three values of x, and
is a constant value of 1.73 for RWPM at τ /τ 0 > 10. For FPM,
MFA approaches 4 at large τ /τ 0. MFA is overall smaller than
MFT. Figure 7 shows the results for the power law dependence
of MFA and is analogues to figure 5 for MFT. Table 2 shows
the values of MFA and the uncertainties from figure 7.

Simulated data shows that MFA = 1.41 in the limit where
drift dominates over random fluctuations. Because ADEVS
is sensitive to drift, the use of ADEVS is recommended over
TDEV.

3. Discussion

For the simulated FPM and RWPMdata there is always a small
linear drift component (the first and last data points are never
the same). However, it has no significant impact on the results
of this study. At τ /τ 0 = 4096, ADEVS is reduced by less than
2% for both FPM and RWPM when the drift is removed from
the data set. The reduction is even smaller at smaller τ /τ 0.

Figure 8 shows dRMS calculated from the data in figure 1
using (1), and dRMS estimated from MFT and TDEV in
figure 2, where x ∼ 0.27. A similar plot using MFA and
ADEVS is also shown. Error bars are not available for the cal-
culated dRMS. The agreement with dRMS is very good for both
TDEV and ADEVS, illustrating that the method works well
on this real data. TDEV can be used here because the aver-
age drift (−0.5 ps d−1) in figure 1 is small compared to the
level of random fluctuations. Removing the average drift has
a negligible impact on the results, with dRMS reduced by only
4.5% at τ = 1024 d, and less at smaller τ values. The estimate
of ωhτ 0 for the TWSTFT—GPSCP double difference data is
close to 3.

When calibrating time transfer systems it is important to
know how fast the calibration uncertainty will degrade over
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Figure 6. Multiplication factors, MFA, from simulations of FPM (solid squares) and RWPM (solid diamonds). An intermediate power law
dependence of τ 0.1 (solid dots) is also shown.

Table 2. Values of MFA and uncertainties in figure 7.

τ /τ 0 = 16 τ /τ 0 = 128 τ /τ 0 = 1024 τ /τ 0 = 8192

x MFA Unc. MFA Unc. MFA Unc. MFA Unc.

0.00 2.608 0.001 3.135 0.004 3.595 0.012 4.039 0.037
0.05 2.461 0.001 2.820 0.003 3.090 0.010 3.310 0.031
0.10 2.330 0.001 2.572 0.003 2.720 0.009 2.813 0.028
0.15 2.218 0.001 2.377 0.003 2.439 0.008 2.479 0.026
0.20 2.118 0.001 2.220 0.003 2.261 0.008 2.298 0.025
0.25 2.033 0.001 2.102 0.003 2.125 0.008 2.116 0.024
0.30 1.957 0.001 1.994 0.002 2.003 0.007 2.016 0.027
0.35 1.890 0.001 1.911 0.002 1.915 0.007 1.917 0.029
0.40 1.830 0.001 1.840 0.002 1.846 0.007 1.857 0.037
0.45 1.777 0.001 1.783 0.002 1.785 0.007 1.783 0.036
0.50 1.730 0.001 1.730 0.002 1.731 0.008 1.765 0.054

Figure 7. MFA for various τ /τ 0 values as a function of the ADEVS power law dependence, x.

time, or age. If double difference data is available, an estimate
can be made based on the analysis in this paper. Of course
the double difference data does not provide information on

the individual systems, but estimates can be made. A con-
servative estimate would be to assume all the aging is in the
system of interest. Based on a three corner hat analysis of
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Figure 8. Calculated and estimated time dispersion, dRMS, for data
in figure 1.

time transfer instabilities [6], a more reasonable estimate for
TWSTFT—GPSCP is to divide the double difference TDEV
by

√
2 under the assumption that the levels of instabilities are

similar. However, there is some risk of underestimating the
level of aging with this approach.

Tables 1 and 2 can be used as guidelines for estimat-
ing dRMS over time frames relevant to aging if only TDEV
or ADEVS are available. Multiplication factors range from
1.7 to more than 4 when noise processes in the range from
FPM to RWPM dominate. White phase noise, x = −0.5,
is generally not present in the time range relevant to aging
[7]. For the noise processes that are commonly observed in
aging the multiplication factors tend to be in the lower range
around 2.

4. Summary

When double difference data is available from time transfer
systems, the time dispersion, dRMS, can be calculated using
TIERMS, which is available in Python Allan Tools [9] and
Stable32 [13]. This provides valuable information on the aging
of time delays in transfer systems. If double difference data is
not available, we have shown that dRMS, can be estimated from
TDEV or ADEVS, when the nature of the instabilities falls in
the range from flicker phase to random walk phase. ADEVS
can be used in the presence of significant drift. For random
fluctuations the time dispersion is always larger than TDEV
or ADEVS, and the multiplication factor ranges from 1.73 to
more than 4 for FPM at large τ . Though the use of TDEV
is more common, it is recommended that ADEVS be used to

characterize time transfer instabilities since it is sensitive to
drift, whereas TDEV is not.
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