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Quantum metrology algorithms for dark matter searches with clocks
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Quantum algorithms such as dynamical decoupling can be used to improve the sensitivity of a quantum sensor
to a signal while suppressing sensitivity to noise. Atomic clocks are among the most sensitive quantum sensors,
with recent improvements in clock technology allowing for unprecedented precision and accuracy. These clocks
are highly sensitive to variations in fundamental constants, making them ideal probes for local ultralight scalar
dark matter. Further improvements to the sensitivity are expected in proposed nuclear clocks based on a nuclear
transition in the thorium-229 isotope. We investigate the use of various quantum metrology algorithms in the
search for dark matter using quantum clocks. We propose a broadband dynamical decoupling algorithm and
compare it with quantum metrology protocols that have been previously proposed and demonstrated, namely,
differential spectroscopy and narrowband dynamical decoupling. We conduct numerical simulations of scalar
dark matter searches with realistic noise sources and accounting for dark matter decoherence. Finally, we propose
an alternative thorium nuclear transition excitation method that bypasses the technical challenges associated with
vacuum ultraviolet lasers.
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I. INTRODUCTION

The extraordinary improvement in the precision of atomic
clocks over the last 15 years [1,2] has put clocks in an
uncharted territory in which the fundamental postulates of
modern physics are untested. For example, if fundamental
constants, such as the fine-structure constant α, are space-time
dependent, then so are the atomic, molecular, and nuclear
transition frequencies. Variations of fundamental constants
would change the ticking rate of clocks and make them depend
on the location, time, or type of clock since the frequencies
of different clocks depend differently on the fundamental
constants.

Ultralight scalar fields arise in many theories beyond the
Standard Model [3,4] and may source variations of funda-
mental constants that affect atomic clock frequencies [5,6].
Such particles can also be dark matter (DM), which makes
85% of all matter in the Universe, but it is of yet unknown
origin. In our galaxy, such dark matter exhibits coherence and
behaves like a wave with an amplitude ∼√

ρDM/mφ , where
ρDM = 0.4 GeV/cm3 is the local DM density and mφ is the
DM particle mass [6]. The coupling of such DM to the Stan-
dard Model leads to oscillations of fundamental constants, and
therefore, clock transition frequencies. Since different clocks
have different sensitivities to such effects, measurements of
the ratio of two clock frequencies over time can be used to
extract an oscillation signal at the DM Compton frequency for

*Contact author: hani@udel.edu
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a wide range of DM masses and interaction strengths [6–8].
These advances started a new era of clock experiments aimed
at detecting dark matter, with several ongoing searches [4].

It was recently suggested that ultralight DM can form grav-
itationally bound objects that may be trapped by an external
gravitational potential, such as that of the Earth or the Sun [9].
It was shown in Ref. [10] that such a halo can have extremely
large DM overdensities, up to 17 orders of magnitude at 0.1
AU from the Sun, drastically increasing the discovery poten-
tial. Tsai et al. [10] proposed a clock-comparison satellite
mission with two clocks onboard, to the inner reaches of the
solar system to search for a dark matter halo bound to the
Sun and look for the spatial variation of the fundamental con-
stants associated with a change in the gravitational potential.
However, in this scenerio, the DM distribution peaks for about
10−13 eV DM masses (∼24 Hz), at which clocks lose sensi-
tivity due to the probe duration of the clocks. In this work,
we explore different quantum algorithms for clock operation
and propose a broadband dynamic decoupling scheme that
allows one to reach such masses without significant losses of
sensitivity.

Here, we consider the linear coupling of ultralight scalar
dark matter φ with the photon field, which, by using
the convention of Ref. [11], is given by the interaction
Lagrangian [6,11]

Lφγ = κφ
de

4e2
FμνFμν, (1)

where κ = √
4π/MPl with MPl being the Planck mass, e

is the electron charge, and de is the (dimensionless) dark
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matter-QED coupling constant. We use natural units in the
introduction unless otherwise specified. The present day so-
lution for φ, assuming negligible self-interactions, is given
by [6]

φ = φ0 cos (mφt − �kφ · �x + · · · ). (2)

Here, the amplitude φ0 = √
2ρDM/mφ , the wave vector mag-

nitude is determined by the virial velocity |�kφ| = vvirmφ ≈
10−3mφ , and · · · represents higher-order terms in the
relativistic expansion. The dark matter-QED coupling is
determined by

de = ∂ ln α

∂ (κφ)
. (3)

Integrating this, we obtain

α = α0(1 + deκφ), (4)

where α0 is the bare (unperturbed) fine-structure constant.
The sensitivity of an optical clock to any variation of α

is quantified by the dimensionless enhancement factor K .
Clocks with the best stability, total systematic uncertainty,
and the highest possible values of 
K = K1 − K2 for clocks
1 and 2 have the highest discovery potential. The K factors
are small, 0.008–1.0, for all current clocks based on optical
lattices and most trapped ion clocks, with the exception of the
Hg+ quadrupole (K = −3) and Yb+ octupole clock (K = −6)
transitions [12]. Clocks based on nuclear transitions can have
much higher sensitivities to variations in the fundamental
constants [13]. For a thorium isomer nuclear clock, the clock
transition frequency depends on the fine-structure constant
ν ∝ αK , with K = 5900(2300) [14]. The fractional amplitude
of oscillations of the clock transition frequency can be given
as a function of the QED-dark matter coupling constant

Kdeκφ0 = Kde
6.4 × 10−31 eV

mφ

. (5)

From here onwards mφ is understood to be in units of eV.
The smaller the minimum detectable oscillation amplitude,
the lower the value of de can be probed from the experiment.

The transition frequencies of nuclear energy levels are
well outside the laser-accessible range, by four to six orders
of magnitude, with a single exception of the 229Th nuclear
isomer transition. Designing a clock based on this ultranarrow
nuclear transition [15,16] is particularly attractive due to its
insensitivity to many systematic effects. In addition to α, this
transition is predicted to have a very large sensitivity to varia-
tions in mq/�QCD [13,17], where mq are the quark masses and
�QCD parameterizes the strength of the strong force, larger
than all present atomic clocks.

Recently, significant experimental progress has been made
in the development of a thorium nuclear clock [18–21]. In
2024, laser excitation of the 229Th nuclear transition was
demonstrated for the first time in Th-doped CaF2 crystals
using a table-top tunable laser system [19]. The nuclear
resonance for Th4+ ions in Th:CaF2 is measured at the
wavelength 148.3821(5) nm, with the fluorescence lifetime
in the crystal is 630(15) s, corresponding to a lifetime of
2510(60) s for a nucleus isolated in a vacuum. Shortly after,
a frequency-stabilized VUV frequency comb was used to

improve frequency resolution by ∼106 and directly resolve
nuclear quadrupole splitting in Th-doped CaF2 [21]. The nu-
clear transition frequency was determined to be 2 020 407
384 335(2) kHz. The ratio of the isomer and ground-state
quadrupole moments was also determined in Ref. [21] from
the precise measurement of the nuclear quadrupole splittings.
This enabled an estimate of the sensitivity K using a geometric
model [14].

The mass of ultralight scalar dark matter particles is un-
known over a very large range corresponding to a Compton
frequency anywhere from μHz to THz. Typically, optical
clocks are operated in a manner that is optimized to reach
the highest possible precision for measuring static frequency
differences or ratios at asymptotically long averaging times.
This is achieved by probing the clock transition using Rabi or
Ramsey spectroscopy with as long of a probe duration as pos-
sible while maintaining coherence between the clock laser and
the atoms. These measurements are sensitive to oscillations
at frequencies below the recriprocal of the probe duration of
order 1 Hz.

The fundamental limit to the measurement precision is
set by quantum projection noise, and, for clocks based on
unentangled atoms, this limit is referred to as the standard
quantum limit (SQL), with uncertainty σSQL ∝ 1/

√
Tp, where

Tp is the probe duration. Thus, extending Tp improves the
sensitivity of dark matter searches for light particle masses.
For several highly forbidden clock transitions, the atomic
coherence time can be orders of magnitude longer than that
of the best present-day clock lasers, so laser noise sets the
experimental limit to measurement precision.

For frequency ratio measurements between two optical
clocks, a new technique called differential spectroscopy (DS)
has recently been proposed [22] and demonstrated [23] which
circumvents the laser coherence time limit to the probe du-
ration. In differential spectroscopy, the two clocks are probed
synchronously using lasers that are phase locked to a common
frequency comb, such that the correlated laser noise can be
circumvented. We focus on the case of frequency ratio mea-
surements between an optical lattice clock and a trapped ion
clock. The probe duration of the ion clock can be extended
all the way to its atomic coherence time if the lattice clock
is operated with two atomic ensembles probed alternately
to achieve a zero-dead-time measurement of the laser phase
[see Fig. 1(a)]. Zero-dead-time differential spectroscopy is a
promising technique for ultralight scalar dark matter searches
at the low particle mass limit, which would manifest as slow
oscillations in the frequency ratio between thorium nuclear
transition or ytterbium octupole transition trapped-ion clocks
with a large sensitivity to the DM field, and strontium or
ytterbium optical lattice clocks with a small sensitivity that
would serve as the stable reference. As shown in the right
panel of Fig. 1(a), clocks operated using differential spec-
troscopy (and also standard Rabi or Ramsey spectroscopy) are
primarily sensitive to oscillations at frequencies lower than
the reciprocal of the clock probe duration, with the sensitiv-
ity decreasing rapidly with increasing frequency above this
cutoff. While the sensitivity at frequencies higher than the
inverse probe duration can be improved by reducing the probe
duration, this comes at the cost of lower sensitivity at low
frequencies.
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FIG. 1. Diagrams of experimental setups (left), pulse sequences (middle), and examples of theoretical sensitivity plots (right) for different
quantum metrology algorithms: (a) zero-dead-time differential spectroscopy, (b) narrowband dynamical decoupling, and (c) broadband
dynamical decoupling. Clock lasers are depicted as blue and yellow boxes; optical cavities used to stabilize the clock lasers are depicted
as light gray cylinders with conical ends; feedback paths are indicated by black dashed lines; ensembles of atoms confined in optical lattices
are depicted as stacks of red disks; and ions confined in ion traps are depicted as four yellow trap electrodes. The pulse sequences depict π/2
and π pulses as blue rectangles with increasing time from left to right. The sensitivity g(t ) of the pulse sequence to clock transition or laser
frequency fluctuations as a function of the time of the frequency fluctuations during the pulse sequence is shown as a red line. The sensitivity
plots show the theoretical minimum detectable fractional amplitude of an oscillating signal as a function of the oscillation frequency, such that
higher sensitivity is indicated by the curve being lower on the plot. fπ is the frequency of π pulses, Tm is the total duration of the measurement
campaign, and Tp is the probe duration, i.e., the time between the two Ramsey π/2 pulses before the state of the atoms is measured. The
gray curves show how the sensitivity changes when Tp is decreased by a factor of 10. The sensitivity for BBDD does not depend on Tp. All
sensitivity plots depict the same range of frequencies and sensitivities, with both axes being logarithmic.

Dynamical decoupling can be used to shift the sensitivity
of clock-based dark matter searches to higher oscillation fre-
quencies. Ramsey pulse sequences with π pulses inserted into
the free evolution time [see Fig. 1(b)] are used to dynamically
decouple noise from the signal in a quantum system. The
first use of dynamical decoupling was in nuclear magnetic
resonance, with the spin echo effect [24]. It was introduced

in quantum information research as a means of dealing with
decoherence and dissipation [25].

A well-established dynamical decoupling pulse sequence
known as Car-Purcell-Meiboom-Gill (CPMG) is a technique
that is a quantum analog of the classical lock-in ampli-
fier [26,27]. An ion in |↑〉 is prepared in a superposition state
(|↑〉 + |↓〉)/2 by using a π/2 pulse. During the probe, a series
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of regularly spaced π pulses are used to modulate the sign of
sensitivity to atomic or laser frequency fluctuations. A final
π/2 pulse completes the pulse sequence. This sequence is
sensitive to oscillations over a narrow range of frequencies
near one half of the frequency of the π pulses [Fig. 1(b)].
This method was demonstrated on a 88Sr+ ion by Kotler
et al. [28] and analyzed in the context of dark matter searches
by Aharony et al. [29]. To distinguish this method from the
new dynamical decoupling algorithm introduced below, we
henceforth refer to CPMG as narrowband dynamical decou-
pling (NBDD).

In the present work, we propose and evaluate a broad-
band dynamical decoupling (BBDD) scheme that allows us
to probe higher dark matter masses and resolves the disad-
vantages of DS and NBDD schemes. We review each scheme.
Then, we evaluate the performance of all three schemes in
realistic numerical simulations based on the thorium nuclear
isomer transition. We highlight the sensitivity of thorium nu-
clear clocks for dark matter searches in our simulations due
to large sensitivity factor to variations in the fine-structure
constant, K = 5900(2300) [14], to demonstrate the poten-
tial reach of the quantum clock technologies for dark matter
searches, but these algorithms are equally applicable for ex-
isting and future atomic clocks. The simulation results are
compared to contemporary dark matter search experimental
results and other proposals. Finally, an alternative nuclear
excitation scheme in thorium is presented.

II. DARK MATTER SEARCH ALGORITHMS

A. Dark matter search coherent signal analysis

For a given clock transition frequency ν0 and neglecting
decoherence, dark matter induces a sinusoidal change in fre-
quency of amplitude νS , oscillation frequency f , and random
phase θ given by

ν(t ) = ν0 + νS cos(2π f t + θ ). (6)

Here onward, SI units are used unless otherwise stated.
The phase of the atomic superposition state in the rotating

frame accumulated during the jth probe is

φ j =
∫ t j+Tp/2

t j−Tp/2
2πg(t )ν(t )dt, (7)

where t j = jTp is the time at the middle of the probe and
Tp is the probe duration, i.e., the time between the two
Ramsey π/2 pulses before the state of the atoms is mea-
sured. The sensitivity function [30] is defined as the relative
variation in transition probability p due to the infinitesimal
phase step δφ: g(t ) = 2 limδφ→0

δp
δφ

. It determines the change
in the atomic transition probability p caused by a detuning
ν(t ) = νS cos(2π f t + θ ) + νLN (t ) between the ion transition
frequency and the laser frequency, where νLN (t ) is the laser
frequency noise.

The sensitivity function is time dependent and can be set
to any value between −1 and 1 by applying laser pulses that
change the orientation of the Bloch vector. A standard Ramsey
sequence, for example, consists of two π/2 pulses separated
by the total sequence duration T . We use the convention that
the first π/2 pulse rotates the Bloch vector by π/2 radians

about the x axis, and the second π/2 pulse rotates the Bloch
vector by π/2 radians about the y axis. (Here, we assume that
the durations of the laser pulses are much shorter than the
total sequence duration and can be neglected.) The Ramsey
algorithm has a sensitivity function g(t ) = +1 for the duration
of the sequence and is therefore optimal for the detection
of a time-independent detuning. The sign of the sensitivity
function can be flipped by applying π pulses about the x axis
during a Ramsey sequence.

For a deterministic frequency oscillation with amplitude νS

at frequency f [Eq. (6)], the phase accumulated during the jth
probe

φdet
S, j ( f ) = 2πνS

∫ t j+Tp/2

t j−Tp/2
g(t ) cos(2π f t + θ )dt

= 2πνS[gI, j cos θ − gQ, j sin θ ], (8)

where

gI, j ( f ) =
∫ t j+Tp/2

t j−Tp/2
g(t ) cos(2π f t )dt and

gQ, j ( f ) =
∫ t j+Tp/2

t j−Tp/2
g(t ) sin(2π f t )dt (9)

are the in-phase and quadrature components of the sensitiv-
ity function of the jth probe. Here, integration is performed
over the duration of the jth probe. Ultralight DM induces
oscillations of the transition frequency that are stochastic in
nature with a nonzero linewidth [31]. In this case, the phase
accumulated due to the dark matter signal is given by

φS, j =
∫ t j+Tp/2

t j−Tp/2
2πg(t )νS (t )dt, (10)

where νS (t ) is the detuning caused by the dark matter field.
The measured phase for the jth probe φM, j = φQPN, j +

φLN, j + φS, j where φQPN, j and φLN, j are the contributions due
to quantum projection noise and laser noise, respectively. All
these contributions are random variables centered on zero.
Motivated by Eqs. (8) and (9), at the end of a measurement
campaign consisting of Np = Tm/Tp probes, we compute the
measured signal φM as a function of the analysis frequency
f by adding the phases of each probe with modulation-
frequency-dependent signs, so that the signal contribution
adds coherently

(φM )2 = 1

2

⎛
⎝Np−1∑

j=0

sgn[gI, j ( f )]φM, j ( fDM)

⎞
⎠

2

+ 1

2

⎛
⎝Np−1∑

j=0

sgn[gQ, j ( f )]φM, j ( fDM)

⎞
⎠

2

. (11)

This equation defines a coherent analysis of all probes to-
gether and is new in this work. The contributions from noise
sources are independent of the dark matter signal contribution
and thus add incoherently.

The expectation value of the minimum detectable frac-
tional signal amplitude νS/ν0 for coherent oscillations of the
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transition frequency at f can be written as

σ ( f ) = 1

ν0

√
〈(φN )2〉

〈(φS/νS )2〉 . (12)

Here φS (φN ) is the total accumulated phase due to signal
(noise). In the following, we refer to this quantity as the
sensitivity.

B. Ramsey or differential spectroscopy

In differential spectroscopy [Fig. 1(a)], the sensitivity to
deterministic oscillations of the ion clock transition frequency
is equivalent to that of the standard Ramsey spectroscopy, with
the key distinction that in differential spectroscopy (DS), the
ion clock probe duration Tp is not limited by the laser coher-
ence time, which limits the probe time in standard Ramsey
spectroscopy. Extending the probe duration results in im-
proved sensitivity to low-frequency oscillations and reduced
sensitivity to oscillations at frequencies larger than 1/Tp. In
the oscillation frequency range 1/Tm � f � 1/Tp where Tm

is the total duration of the measurement campaign, the sensi-
tivity to deterministic oscillations of unknown phase θ is given
by [31]

σRamsey( f ) = σRamsey,0
π f Tp

| sin(π f Tp)| , (13)

where

σRamsey,0 = XRamsey

2πν0
√

TpTm
. (14)

In the following, we refer to this quantity as the uncertainty.
This defines the bounds that can be placed on the size of
νS . XRamsey is an order unity constant that depends on the
confidence interval and whether the search is for deterministic
or stochastic signals. For deterministic signals and XRamsey ≈
5.3, the oscillation amplitude |νS| < σRamsey( f )ν0 with 95%
confidence [31]. This is a measurement of the ion clock tran-
sition frequency with respect to the lattice clock transition
frequency. In contrast, the dynamical decoupling sequences
described below are measurements of the ion clock transition
frequency with respect to the cavity resonance frequency.

C. Narrowband dynamical decoupling

Differential spectroscopy experiences a reduction in sensi-
tivity at higher frequencies, especially at peaks of insensitivity
that occur at integer multiples of 1/Tp, which is a result of
an integer number of dark matter oscillations fitting into the
probe time. Narrowband dynamical decoupling in the style of
Ref. [28] introduces π pulses during the probe to shift the
sensitivity to higher oscillation frequencies, and a DM search
based on this method was performed by Aharony et al. [29]. In
Ref. [29], the rate of π pulses fπ was constant and the same
for every probe, leading to a sensitivity plot with the shape
shown in Fig. 1(b) given by [29,32]

σnb( f ) = σnb,0

∣∣∣∣∣ f Tp cos(π f / fπ )

sin(π f Tp − π fπTp/2) sin2[π f /(2 fπ )]

∣∣∣∣∣,
(15)

where

σnb,0 = Xnb

2πν0
√

TpTm
. (16)

Furthermore, the data were analyzed under the assumption
that the phase of the signal for each probe is uniformly dis-
tributed over 2π and there is no correlation of the phase
between different probes. In this case Xnb ≈ 8.9 corresponds
to the 95% confidence interval. (Here, we use the Wilson
confidence interval method [33], but other methods give sim-
ilar results [34].) A downside of this protocol is that it offers
improved sensitivity for signals with a only narrow frequency
range 1/Tp centered at fπ/2. The latter problem can be over-
come by randomly choosing a different value of fπ for each
probe. Furthermore, the sensitivity can be further improved by
analyzing all of the probes coherently by using knowledge of
the correlation between the signal phase between probes using
the method proposed above. This is the approach we adopt
here, and we refer to this as narrowband dynamical decoupling
(NBDD).

D. Broadband dynamical decoupling

For dark matter searches over a broad range of particle
masses, corresponding to a wide range of detuning oscilla-
tion frequencies fDM, we propose and analyze a broadband
dynamical decoupling algorithm [Fig. 1(c)]. In this algo-
rithm, π pulses about the x axis are inserted into a Ramsey
sequence at random times with a distribution designed to max-
imize sensitivity to the oscillation frequency range of interest.
Our numerical simulations are consistent with the emperical
equation

σbb( f ) = σbb,0

√
1 +

(
f

fπ/23/2

)2

, (17)

where

σbb,0 = Xbb

2πν0
√

Tm/ fπ
. (18)

In this case, fπ is the average frequency of π pulses. For deter-
ministic signals and the 95% confidence interval, Xbb ≈ 4.8.
Notably, this limit does not depend on the probe duration
Tp. Broadband dynamical decoupling (BBDD) offers similar
advantages as NBDD with different random π pulse frequen-
cies in each probe when searching for a signal with unknown
frequency, but relaxes the requirements on laser coherence.

III. DARK MATTER SEARCH SENSITIVITY
WITH THORIUM

We perform numerical simulations to determine the sen-
sitivity of various quantum metrology algorithms to clock
transition frequency oscillations induced by dark matter. In
these simulations, we include realistic noise sources and the
stochastic nature of scalar field dark matter.

The phase-accumulated during each probe due to laser
frequency noise follows Eq. (7). For differential spectroscopy,
because of the feedforward phase correction from the lattice
clock, the effective laser phase noise is actually the quantum
projection noise of the lattice clock. It is taken to be Gaussian
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white noise with an Allan deviation set by the standard quan-
tum limit for the lattice clock, which is taken to be a strontium
lattice clock composed of 1000 atoms with a probe time of 1 s.
For the dynamical decoupling algorithms, the laser frequency
noise is taken to follow a 1/ f power spectral density as is
typical for cavity-stabilized lasers. The quantum projection
noise in the clock contributes φQPN, j = ±1, which is added to
the laser frequency noise contribution to give the total phase
accumulated due to noise in the jth probe φN, j . The phase
accumulated in each probe due to the dark matter signal φS, j is
calculated accounting for the nonzero dark matter line width
and decoherence, which are due to the dark matter velocity
distribution. Further details pertaining to obtaining φS, j and
φN, j are given in the Appendixes. We account for nonzero
dark matter line width by analyzing over a range of analysis
frequencies f around the dark matter Compton frequency
fDM. Then, the computed measurement result is fitted to the
expected lineshape.

We run a detailed simulation for DS, NBDD, and BBDD.
For each dark matter Compton frequency fDM, we analyze
1000 frequency points f in the vicinity. The measurement
time used is Tm = 106 s, and with a spectroscopy pulse se-
quence duration of Tp = 1 s, this translates into 106 simulated
probes per analysis frequency. We use time steps of 0.1/ fDM

and 0.01/ fDM for the dark matter line shape and laser fre-
quency noise computations, respectively. The probe time used
for differential spectroscopy, narrowband dynamical decou-
pling, and broadband dynamical decoupling searches are Tp =
100 s, Tp = 1 s, and Tp = 0.25 s, respectively. For broadband
dynamical decoupling, five π pulses are inserted into each
probe at random times such that the average π pulse frequency
fπ = 20 Hz. For narrowband dynamical decoupling, the π

pulse frequency is different for each probe and is selected
from a uniform random distribution ranging from 2 Hz to
20 Hz. These are selected to optimize the sensitivity in both
cases to oscillations between 1 and 10 Hz. For each mea-
surement protocol, we simulate at least 100 measurements
for dynamical decoupling algorithms and 1000 measurements
for the differential spectroscopy case and fit to obtain the
maximum amplitude of the theoretical dark matter line shape
with 95% confidence.

Fractional frequency uncertainty plots are presented in
Fig. 2. Differential spectroscopy rapidly loses sensitivity at
frequencies above fDM = 1/Tp due to more than one dark
matter oscillation fitting into the probe time. Narrowband dy-
namical decoupling achieves sensitivity for higher dark matter
masses. Broadband dynamical decoupling offers comparable
sensitivity to NBDD with a lower probe time Tp which is
uniform throughout the large range of masses unlike either
DS or NBDD. Most importantly, we clearly demonstrate that
BBDD reaches the 10−13 DM mass range without a significant
loss of sensitivity, critical to a recent proposal to search for a
DM halo bound to the Sun [10].

Figure 2 shows results for two different levels of laser
frequency noise, and BBDD is shown to be less sensitive to
laser frequency noise than NBDD. This is because in NBDD,
each probe is sensitive to both signal and laser noise at only
one frequency. Thus, the laser noise contribution to the mea-
surement at each oscillation frequency is averaged over only
a small fraction of the total probes of the measurement. In

FIG. 2. Smallest detectable fractional frequency amplitude of
oscillating clock frequencies due to dark matter for differential
spectroscopy, narrowband dynamical decoupling, and broadband dy-
namical decoupling. The sensitivity of the dynamical decouping
algorithms depends strongly on the laser frequency noise, which is
set to different levels for the filled and open circles.

contrast, in BBDD each probe is sensitive to both signal and
laser noise at all frequencies simultaneously. Quantitatively, in
Eq. (12), the signal 〈(φS )2〉1/2 is proportional to the number of
probes in the measurement that are sensitive to any particular
frequency, whereas with the noise 〈(φN )2〉1/2 grows with a
smaller power that depends on the spectrum of the laser noise.
Hence, the signal-to-noise ratio is lower for BBDD than for
NBDD because more probes are sensitive to noise at each
frequency.

BBDD also relaxes the required fidelity of the π pulses. In
our NBDD simulations, up to 19 π pulses are inserted into
the Ramsey sequence. In our BBDD simulations, only five π

pulses are inserted into the Ramsey sequence. In either case,
the π pulse infidelity times the number of π pulses per probe
must be much smaller than one. Trapped-ion optical qubits
have achieved π pulses with an infidelity of 5 × 10−3 [35].

An exclusion plot for de presented in Fig. 3 shows an
improvement in sensitivity by many orders of magnitude with
nuclear clock experiments. For higher dark matter masses,
only the proposed 1-km atom MAGIS interferometer [4] of-
fers a sensitivity similar to that of a tabletop nuclear clock
with dynamical decoupling.

IV. ELECTRON BRIDGE TWO-PHOTON SPECTROSCOPY

Isolated 229Th3+ions are expected to have a very long
isomer half-life of 1740(50) s for a nucleus isolated in a
vacuum [40]. The electronic and nuclear energy-level struc-
ture of 229Th3+is shown in Fig. 4. For spectroscopy sequence
durations that approach the lifetime limit of the isomer state, a
natural choice of the electronic state for nuclear spectroscopy
is the 5F5/2 electronic ground state [16]. In this case, the nu-
clear transition is most naturally driven using a single 148-nm
photon. Although significant progress has been made towards
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FIG. 3. Exclusion plot for the linear coupling constant of scalar
dark matter to the QED electromagnetic field tensor. Coupling con-
stants above the solid lines have already been ruled out by previous
experiments [7,8,29,36–38]. Plotted circles show the simulated sen-
sitivities of searches based on thorium nuclear clocks. The three
quantum metrology algorithms considered here are shown. Other
proposed experiments are shown as dashed lines [39]. More details
of these lines can be found in Ref. [4].

constructing narrow linewidth lasers at this wavelength [41],
these lasers are very challenging and have limited up-time.

An alternative method is two-photon electron-bridge
spectroscopy [42,43]. Starting from the metastable g7S1/2

electronic excited state (where the g superscript indicates the
nuclear ground state), a two-photon transition to the nuclear
excited state m7S1/2 can be driven using g7P1/2 as an inter-
mediate state. The second step of this transition is enhanced
because m7S1/2 contains a small admixture of the g8S1/2 state
with an estimated amplitude of ∼10−5 [43]. The electron-
bridge technique shifts the required laser wavelength from the
very challenging VUV near 148 nm up to less challenging UV
wavelengths of 270 nm and 330 nm.

For precision nuclear spectroscopy using the electron-
bridge technique, we propose detuning by ∼10 GHz from
the intermediate state and driving off-resonant two-photon
transitions [44]. For sufficiently low Rabi frequencies, the
g7P1/2 is not populated and the spectroscopic coherence time
will be limited by the 0.6 s electronic decay lifetime of the
7S1/2 state [45]. This is sufficient for dynamical decoupling
sequence durations up to a few hundred ms that are well
suited for searches for dark matter oscillations in the 0.1 to
1 kHz frequency range. Table I compares various parameters
in direct and electron bridge excitation methods.

V. DISCUSSION

Ultralight scalar dark matter is highly theoretically mo-
tivated and there has been an increased interest in searches
for such dark matter candidates. Thorium-based nuclear clock

FIG. 4. Energy level diagram of 229Th3+isomer showing two
methods of driving the clock transition. Einstein A coefficients for the
transitions are listed based on the values in Ref. [46]. The direct nu-
clear isomer transition wavelength and lifetime are from [19], while
the wavelength of the 7P1/2-7S1/2 transition is obtained from [45].
The electron bridge transition wavelength is calculated using these
values.

experiments will offer better sensitivity to ultralight scalar
dark matter than any other existing or proposed experiment
by many orders of magnitude for a large range of dark matter
masses. Although differential spectroscopy offers an excel-
lent scheme for such experiments for a lower dark matter
mass range, for f > 1/Tp sensitivity is greatly reduced ow-
ing to many dark matter oscillations being packed within
the probe time of the experiment. Dynamical decoupling se-
quences offer a solution and offer increased sensitivity for
higher dark matter masses within the ultralight dark matter
mass range, matched only by the proposed MAGIS-km exper-
iment. Broadband dynamical decoupling, in particular, offers
all these advantages, with sensitivity not being dependent
on the probe time, so lower probe times can be used when

TABLE I. Comparison of direct and electron bridge excitation
methods.

Direct Electron bridge

Laser wavelength (nm) 148 270 330
Laser power (W) 10−6 10−8 1
1/e2 beam radius (µm) 10 30 3
Detuning (GHz) 10

Min. π pulse duration (ms) 40 4
Coherence time (s) 103 0.6
Spont. emis. prob. per pulse 0.02
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employing this scheme. We developed detailed simulations of
clock experiments searching for ultralight scalar dark matter
via α variations, which include dark matter decoherence, laser
noise, and quantum projection noise. Using these simula-
tions, we demonstrate that broadband dynamical decoupling
exhibits reduced sensitivity to laser noise. Consequently, over
a broad range of masses, it provides comparable sensitivity to
ultralight scalar dark matter, regardless of whether the laser
noise level is at 10−16 or 10−17.

Our simulations show the superiority of the differential
spectroscopy approach when searching for lower-frequency
signals. However, we are interested in how to search for higher
frequencies, where dynamical decoupling is better suited.
Figure 2 shows that the performance of BBDD is better than
that of NBDD, for the parameters that we chose to search for
a signal of an unknown frequency. Once the frequency of the
signal, in this case ultralight scalar dark matter, is known,
NBDD would be better suited with a narrower frequency
range and we expect better performance than given here.

The broadband dynamical decoupling algorithm proposed
here is a general technique that can be used to search for fre-
quency or phase oscillations of atomic transition frequencies
or qubit transition frequencies in other platforms, for example,
due to decoherence or new physics, where the oscillation fre-
quency is unknown. One important difference from previous
work is that all of the pulses are analyzed coherently. BBDD
could, for instance, be used in laser frequency noise measure-
ments similar to the work of Bishof et al. [47]. The frequency
stability of lasers is typically characterized by measuring the
beat note of the laser under test with a more stable reference
laser. However, for state-of-the-art clock lasers a more stable
reference laser is often unavailable. In this case, the frequency
stability of the clock laser can be characterized using the
atoms of an optical clock as the more stable reference, and the
broadband dynamical decoupling algorithm provides a tech-
nique for performing laser frequency noise characterization
at noise frequencies higher than is possible with conventional
Ramsey spectroscopy.

ACKNOWLEDGMENTS

The authors thank J. Valencia and D. A. Hite for critical
reading of the manuscript. This work was supported by the
Army Research Office (Grant No. W911NF-20-1-0135), the
National Institute of Standards and Technology, the National
Science Foundation Q-SEnSE Quantum Leap Challenge Insti-
tute (Grant No. OMA-2016244), the Office of Naval Research
(Grant No. N00014-20-1-2513), the NSF award 2326810
and the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(Grant No. 856415). This research was supported in part
through the use of University of Delaware HPC Caviness and
DARWIN computing systems: DARWIN is a resource for
computational and data-intensive research at the University of
Delaware and in the Delaware region [48].

APPENDIX A: DARK MATTER DECOHERENCE

We treat the dark matter field as stochastic, rather than de-
terministic, based on the approach of Ref. [49]. This approach

accounts for dark matter decoherence and hence is more ap-
propriate than a deterministic model for higher frequency dark
matter, which corresponds to smaller coherence times. For
stochastic fields, the power spectral density is not merely a
delta function at the Compton frequency, but is distributed
around it. It is proportional to the lineshape

F (ω) = (2π )−1/2τcη
−1e−η2

e−(ω−2π fDM )τc

× sinh{η
√

(η2 + 2[ω − 2π fDM)τc]}. (A1)

Here η is the ratio of galactic velocity and vvir which is
the virial velocity of the dark matter halo, which is taken
to be 1, while τc ∼ λDM/vvir = h/(mφv2

vir ) = c2/( fDMv2
vir ) =

106/ fDM is the coherence time, and λDM and fDM are the dark
matter Compton wavelength and frequency, respectively. The
analysis frequency f is taken to correspond to all ω = 2π f
for which F (ω) is nonzero.

The power spectral density of the dark matter field can be
obtained using the line profile according to

〈|φ̃p|2〉 = πNf

dt
φ2

0F (ωp). (A2)

Here Nf is the number of points taken in frequency space to
have 1000 points on the dark matter line and dt = 0.1/ fDM is
the sampling interval chosen to be appropriately small.

Random coefficients in the frequency domain are obtained
by randomly generating normally distributed complex num-

bers φ̃p

φ0
=

√
1
2

〈|φ̃p|2〉
(φ0 )2 e2π i j , where j is a uniformly distributed

random number between 0 and 1. Finally, the amplitude νS, j

and phase θ j of the oscillating signal in the time domain are

obtained by φ j

φ0
= 2

Nf

∑
p

φ̃p

φ0
ei(ωp−ωDM )t , resulting in

φS, j =
∫ t j+Tp/2

t j−Tp/2
2πg(t )νS, j cos(2π f t + θ j )dt . (A3)

APPENDIX B: DARK MATTER LINESHAPE

The expected lineshape of the dark matter signal is ob-
tained by convolving Eq. (A1) with the absolute value of the
sinc function

Fc = 4π

∫
F ( f − f ′) abs{sinc[( f ′ − f − fDM) Tm]} df ′.

(B1)
Here, f ′ is the independent variable for integration and taken
to be a large number of values ranging from −1000/Tm to
1000/Tm for numerical evaluation of the integral. We take the
number of values to be Ni = 105 if the integration time Tm is
greater than the decoherence time τc, otherwise Ni = 106.

If the interrogation time is significantly lower than the
coherence time, Tm < 0.1τc, we do not use the lineshape (A1)
and instead just use the sinc function

Fc = abs{sinc[( f − fDM) Tm]}, (B2)

where ωDM is the dark matter angular frequency.
The lineshape from the simulation φS comes from Eq. (11)

where the contribution due to dark matter in the jth probe φS, j

is given by Eq. (10). The simulated signal is fitted onto the
expected line shape using the fmincon function in MATLAB,

012601-8



QUANTUM METROLOGY ALGORITHMS FOR DARK MATTER … PHYSICAL REVIEW A 111, 012601 (2025)

where the function minimized is the mean square error

MSE(p1, p2) = mean
((√

p2
1 F 2

c + p2
2 − φM

)2)
. (B3)

The initial guesses for inputs p1 and p2 are taken to be
max(Fc)max(φS ) and

√
Tm/Tp/4, respectively. The fmincon

function finds the values p1 and p2 which minimize the mean
square error.

APPENDIX C: LASER NOISE

We introduce a method for numerical generation of time-
series random numbers with a power-law spectrum S = S0 f λ,
which is used to generate pink laser frequency noise for sim-
ulating dynamical decoupling sequences in this work (λ =
−1). The scale S0 = 1/

√
2 log 2 is chosen so that pink noise

is produced with an Allan deviation of 1 at an averaging time
of 1 s. A Mandelbrot state-space noise model is used. We
generate a model of size m = 10 to approximate the desired
spectrum from a minimum frequency fMin = 10−6 Hz to a
maximum frequency fMax = 103 Hz. The elements of the
transition matrix A, the input vector B, and the output vector
C are given by

A(i, i) = exp

(
−β i−1 dt

ατ

)
, (C1)

B(i, 1) = 1 − exp
(−β i−1 dt

ατ

)
β i−1

, and (C2)

C(1, i) = S0
1√
2
α

6−λ
8 ( fMindt )λ/2

×
m∏

j=1, j �=i

(α − 1)
β i−1

αm

αβ j−1 − β i−1

β j−1 − β i−1
. (C3)

Here, index i goes from 1 to m, dt is the time step chosen
to be an appropriately small fraction of the probe time, τ =
1/(2π fMin), β = (10 fMax/ fMin)1/m, and α = β−λ/2. The state
vector z for timestep j is obtained from the one for timestep
j − 1 according to the update equation

z j = A z j−1 + B r, (C4)

where r is an m element vector of normally distributed ran-
dom numbers, which are regenerated for each j. The state
vector is used to generate the time series of random numbers
according to

y j = C zj . (C5)

This method requires less memory than other techniques
based on Fourier transforming white noise.

The laser noise frequencies are computed as νLN = ν0 ×
σLN × y j , where ν0 = c/λ0 is the laser frequency, with λ0 =
148.3821(5) nm, and σLN = 10−16 or σLN = 10−17 is the
Allan deviation of the pink laser noise.
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