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Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped
ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols
that enhance, through motional parametric excitation, the coherent spin-motion coupling of ions obtained with a
spin-dependent force. The experiments are performed on two-dimensional crystal arrays of approximately 100
9Be+ ions confined in a Penning trap. By modulating the trapping potential at close to twice the center-of-mass
mode frequency, we squeeze the motional mode and enhance the spin-motion coupling while maintaining spin
coherence. With a stroboscopic protocol, we measure 5.4 ± 0.9 dB of motional squeezing below the ground-state
motion, from which theory predicts a 10-dB enhancement in the sensitivity for measuring small displacements
using a recently demonstrated protocol [K. A. Gilmore et al., Science 373, 673 (2021)]. With a continuous
squeezing protocol, we measure and accurately calibrate the parametric coupling strength. Theory suggests this
protocol can be used to improve quantum spin squeezing, limited in our system by off-resonant light scatter. We
illustrate numerically the trade-offs between strong parametric amplification and motional dephasing in the form
of center-of-mass frequency fluctuations for improving quantum spin squeezing in our setup.
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I. INTRODUCTION

Trapped-ion systems have demonstrated high-fidelity
quantum logic gates [1–5], spin squeezing [6–10], the gen-
eration of many-ion entangled states [11,12], and motional
sensing below the ground-state motion of the ions [13–16].
In these experiments, the interaction between qubits is engi-
neered by coupling the spins to the collective motion of the
ions using lasers or magnetic-field gradients. Depending on
the source of decoherence, stronger spin-motion coupling can
enable higher-fidelity gates and improved quantum sensing.
However, the interaction strength is limited by the available
laser power or current that can be driven through the trap
electrodes. In the case of laser-based interactions, the domi-
nant source of decoherence is typically spin decoherence from
spontaneous emission, so increasing the laser power alone will
not necessarily improve the fidelity.

A viable approach to stronger spin-motion coupling that
overcomes some of these technical and fundamental chal-
lenges is parametric amplification [17,18]. By modulating
the trapping potential at twice the motional mode frequency,
one quadrature of motion is amplified while the orthogo-
nal quadrature is attenuated [19]. This leads to motional
squeezing and an amplification of the spin-motion coupling
strength. Improved displacement sensing of a single ion [16]
and faster two-qubit ion gates have recently been achieved
with this technique [20]. Here we experimentally characterize
both a stroboscopic and a continuous squeezing protocol on

two-dimensional (2D) crystal arrays of approximately 100
ions. Based on this characterization, we estimate the potential
improvements for displacement sensing and spin squeezing
with large trapped-ion crystals.

In the stroboscopic protocol, parametric amplification is
applied over a discrete interval to create a squeezed motional
state. The size of this motional squeezing is experimentally
characterized through a phase-coherent Ramsey sequence to
measure the variance of the center-of-mass (c.m.) motion in
the squeezed and unsqueezed directions. The c.m. motion is
squeezed by 5.4 ± 0.9 dB (10.8 ± 1.8 dB) below the ground-
state motional uncertainty (variance). By applying this level of
squeezing to amplify a spin-independent displacement, theory
predicts a 10-dB improvement in the sensitivity for measuring
small displacements, accounting for c.m. frequency fluctua-
tions. This has the potential to improve the sensitivity for
measuring small displacements obtained with the protocol
demonstrated in Ref. [13] from 8.8 dB to nearly 19 dB below
the standard quantum limit (SQL). Here the SQL is given by
the ground-state c.m. mode zero-point fluctuations.

For faster higher-fidelity quantum simulations, we also
investigate a continuous squeezing protocol [20]. In this ex-
periment, the parametric drive is applied simultaneously with
the spin-dependent force to amplify the strength of the spin-
motion coupling. Theory [17] shows that this protocol leads
to an equivalent interaction Hamiltonian with a rescaled de-
tuning and stronger interaction strength. By measuring this
rescaled detuning, we experimentally determine the paramet-
ric coupling strength g, which agrees well with predictions
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from a numerical model. As an application of this contin-
uous protocol, we explore theoretically how this increased
interaction strength will lead to an improvement in quantum
spin squeezing [6]. Our model suggests that frequency fluctu-
ations of the c.m. mode will be the primary limitation to the
enhancement. With a reduction of the frequency fluctuations
from our current 40 Hz to 10 Hz, theory predicts 14 dB of
spin squeezing is possible for a 400-ion crystal.

The rest of the paper is structured as follows. In Sec. II
we describe the Penning trap setup and the implementation of
parametric amplification. In Sec. III the stroboscopic squeez-
ing protocol is discussed. We describe how the motional
squeezing is characterized and the predicted improvements in
the sensitivity of detecting small displacements. Section IV
focuses on the continuous squeezing protocol. Experimental
data with and without continuous parametric amplification
are presented, from which the parametric coupling strength
is extracted without precise control of the phase of the para-
metric drive. Theory predicts that this continuous parametric
amplification protocol will enable improved spin squeezing in
the presence of decoherence due to off-resonant light scatter
[6]. The amount of improvement will likely be limited by the
frequency stability of the c.m. mode. A summary is given in
Sec. V.

II. EXPERIMENTAL APPARATUS

In our experimental apparatus [14], 2D crystal arrays of
approximately 100 9Be+ ions are confined in a Penning trap as
shown in the simplified schematic of Fig. 1. The ions are con-
fined axially by a quadratic potential formed by static voltages
applied to a stack of cylindrical electrodes. Radial confine-
ment results from �E × �B induced rotation of the crystal. This
rotation of the crystal through the �B = 4.5ẑ T magnetic field
(9Be+ cyclotron frequency of �c/2π = 7.6 MHz) produces a
radially confining Lorentz force. In the rotating frame of the
crystal, to a very good approximation, the confining potential
can be written as

qφtrap = 1
2 Mω2

z (z2 + βrρ
2), (1)

where M is the mass and q is the charge of 9Be+, z (ρ) is the
axial distance (cylindrical radius) from the trap center, and the
axial c.m. oscillation frequency ωz/2π = 1.59 MHz quanti-
fies the strength of this confining potential. The magnetic-field
strength and rotation frequency determine the relative strength
of the radial confinement

βr = ωr (�c − ωr )

ω2
z

− 1

2
, (2)

which we control by setting the rotation frequency ωr/2π =
180 kHz through the use of a weak dipole rotating wall poten-
tial [21] [neglected in Eq. (1)].

To parametrically amplify the axial c.m. mode, the confin-
ing potential is modulated at near twice the mode frequency.
This modulation is achieved by applying a sinusoidal voltage
with an amplitude ranging from 1 to 51 V at a frequency ωp ∼
2ωz in addition to the confining voltage VM = −1.75 kV (see
Fig. 1). Ideally, this modulation parametrically amplifies the
c.m. motion along one quadrature and attenuates the motion
in the orthogonal quadrature, producing motional squeezing.

FIG. 1. Simplified cross-sectional schematic of the Penning trap.
To generate the ωz/2π = 1.59 MHz axial confinement potential
(blue solid curve), voltages VC = −2 kV and VM = −1.75 kV are ap-
plied to three of the ring electrodes (yellow) with radius RW = 1 cm.
This confining potential is modulated to induce parametric amplifica-
tion by applying a sinusoidal voltage of zero-to-peak amplitude Vp on
top of VM . A small tuning voltage VT = −43 V shifts the ion crystal
(blue dots) to the null of this modulated potential. These electrodes
are held in the room-temperature bore of a B = 4.5 T superconduct-
ing magnet to provide radial confinement of the ions. When cooled,
the ions form a 2D crystal with an ion-ion spacing of approximately
15 µm, resulting in a crystal with a radius of approximately 100 µm.
The two optical dipole force beams (green) intersect at a 20◦ angle at
the ions to form the 1D traveling-wave potential with a wavelength
of 900 nm and a frequency μ that is equal to the frequency difference
between the two beams.

However, if the ion crystal is not in the null of the mod-
ulated potential, motion is also directly driven at ωp. To
minimize this motion, we modulate the confining potential at
an off-resonant frequency ωp/2π ∼ 1.7 MHz, and detect this
driven motion using techniques similar to those in Ref. [15].
A small tuning voltage VT is then applied to one of the endcap
electrodes, which shifts the crystal axially, and this experi-
ment is repeated. Through this process, the axial position with
the minimum driven motion (null of the modulated potential)
is determined to within 0.1 µm.

For our experiments, the two-qubit states are the |↑〉 ≡
|S1/2, ms = +1/2〉 and |↓〉 ≡ |S1/2, ms = −1/2〉 valence elec-
tron spin projections of the 2S1/2 electronic ground state,
which are separated by approximately 124 GHz. Global spin
rotations are implemented with a microwave source with a
π -pulse duration tπ of about 50 µs [22].

In this apparatus axial motion is coupled to the spins
through the implementation of a spin-dependent optical dipole
force (ODF). Two far-detuned approximately-313-nm beams
are overlapped at a 20◦ angle at the ions, as shown in Fig. 1, to
form a moving 1D optical lattice with an effective wavelength
of 900 nm and a tunable beat frequency μ. As described in the
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Supplementary Information of Ref. [23], the frequency and
polarizations of the ODF laser beams are adjusted to null the
ac Stark shift of each beam and to produce a force on the |↑〉
state that is equal and opposite to the force on the |↓〉 state.

With the assumption that the ODF couples only to the c.m.
mode, the interaction Hamiltonian describing this spin-motion
coupling is [17,18]

ĤODF = h̄ f

2
√

N
(âe−iφODF + â†eiφODF )

N∑
i

σ̂ z
i − h̄δâ†â, (3)

where f represents the strength of the ODF interaction, σ̂ z
i

is the Pauli z operator for spin i, δ = μ − ωz is the detun-
ing of the ODF beat note frequency μ from the c.m. mode,
â† (â) is the raising (lowering) operator for the c.m. mode,
and φODF is the phase of the optical dipole force. When the
ODF is applied for a duration τ on-resonance δ = 0, a spin-
dependent displacement D̂sd(α) ≡ exp[(αâ† − α∗â)

∑
σ̂ z

i ] is
created with α = −i f eiφODFτ/2

√
N .

III. STROBOSCOPIC PROTOCOL

A. Characterizing motional squeezing

To characterize the motional squeezing from parametric
amplification, we use a stroboscopic protocol as shown in
Fig. 2(a). First, pulses of Doppler and electromagnetically
induced transparency (EIT) cooling are sequentially applied
to cool the c.m. mode to n̄z = 0.38 ± 0.2 and the other axial
drumhead modes to near their motional ground state [24,25].
A repump laser then initializes the spins in the state |↑〉⊗N .
The c.m. motion is then squeezed, followed by an analysis of
the motional state with a resonant (μ = ωz ) spin-dependent
force [26].

For initial spin states that are product states and resonant
applications of the spin-dependent force, the spins remain
uncorrelated and the calculation of the expectation value of
the composite spin of the system reduces to calculating the
expectation value of an individual spin [27]. We also begin
by treating the c.m. motional state as a Fock state and extend
this treatment to a thermal state by averaging a mixture of
Fock states. Therefore, after the spins are optically pumped,
we assume the system is in the state |�0〉 = |↑〉 |n〉, where |n〉
is the harmonic-oscillator Fock state of the c.m. mode.

The c.m. mode is squeezed by briefly modulating the trap
potential to induce parametric amplification, which is de-
scribed by the interaction Hamiltonian [17,18]

Ĥs = ih̄
g

2
(â2e−iθ − â†2eiθ ), (4)

where g and θ are the parametric coupling strength and phase,
respectively. The parametric coupling strength is dependent
on the amplitude of the voltage modulation Vp of the quadratic
trapping potential. By numerically modeling the trap geome-
try and applied voltages, we calculate the expected g for an
applied modulation amplitude Vp.

Application of this Hamiltonian for duration ts implements
the unitary squeezing operator

Ŝ(ξ ) ≡ exp[ 1
2 (ξ ∗â2 − ξ â†2)], (5)

FIG. 2. (a) Motional squeezing resulting from parametric am-
plification is characterized by entangling the spin and motion of
the ions through a spin-dependent displacement and then measuring
the coherence of the spins, which is sensitive to the overlap of the
displaced squeezed states. The relative phase between the parametric
drive (yellow block), which squeezes the motion, and the spin-
dependent displacement (orange block) is controlled. To reduce spin
decoherence from magnetic-field fluctuations, the spin-dependent
displacement is performed in a spin-echo protocol where φODF in the
second arm is advanced by π . This is equivalent to the Ramsey se-
quence shown in the block diagram. The phase-space diagram shows
the c.m. motional mode in a frame rotating at ωz. Axis labels repre-
sent c.m. momentum [pz ∝ Im(α)] and position [z ∝ Re(α)] in the
c.m. mode rotating frame. (b) The measured bright fraction (black
points) depends on the relative phase �φ [see Eq. (6)], shown with a
theoretical fit (12) (green curve). Confidence intervals (green shaded
region) represent uncertainty in the fitted n̄z. When the displacement
is parallel (perpendicular) to the squeezed axis, corresponding to
�φ = 0 (�φ = π ), the overlap of the displaced motional states is
small (large) and the resulting bright fraction is high (low). The fitted
value for the reduced motional uncertainty of the squeezed state is
5.4 ± 0.9 dB below the motional uncertainty of the ground state.
The blue line is the signal that would be obtained from the c.m.
motional ground state without squeezing, calculated from Eq. (12)
with r, n̄z = 0. Error bars represent the standard deviation in the
bright fraction over the 50 experimental trials.

where ξ (r, θ ) = r exp(iθ ) and r = gts. Along the squeezed
axis the motional uncertainty is reduced by exp(−r) and
in the orthogonal direction the motional uncertainty is am-
plified by exp(r), so the phase-space uncertainty area is
preserved. For this sequence, the modulation at ωp = 2ωz ∼
2π × 3.18 MHz is typically applied for a duration of about
ts = 40 µs, which squeezes the initial state into the squeezed
motional state |�1〉 = |↑〉 Ŝ(ξ ) |n〉. A phase-space sketch of
this squeezed state is shown in Fig. 2(a).

We define the relative phase of the parametric drive to the
spin-dependent displacement as

�φ = θ − 2φODF − π. (6)
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The factor of 2 is due to the parametric drive occurring at
twice the frequency of the ODF beat note and the additional
π is to define in phase (�φ = 0) as when the squeezed axis
and spin-dependent displacements are aligned in the same
direction. This relative phase �φ is actively stabilized and
controlled [14].

The amount of motional squeezing is experimentally de-
termined by measuring, through a Ramsey sequence, the
coherence of the spins under the application of a spin-
dependent ODF as a function of the relative phase �φ

[26]. A first microwave π/2 pulse rotates the spins to
create

|�2〉 = R̂

(
π

2
, 0

)
|�1〉 = |↑〉 + |↓〉√

2
Ŝ(ξ ) |n〉 , (7)

where we define the following qubit rotation matrix:

R̂(θr, φr ) =
(

cos( θr
2 ) −e−iφr sin

(
θr
2

)
eiφr sin

(
θr
2

)
cos

(
θr
2

)
)

. (8)

The spin and motion are then entangled through a spin-
dependent displacement D̂sd(α) created by applying the ODF
beams for a duration τ . This separates the spin states in phase
space as shown in Fig. 2(a) to form the state

|�3〉 = D̂sd(α)R̂

(
π

2
, 0

)
|�1〉

= |↑〉 D̂(α) + |↓〉 D̂(−α)√
2

Ŝ(ξ ) |n〉 , (9)

where D̂(α) ≡ exp(αâ† − α∗â).
A final π/2 pulse then creates

|� f 〉 = R̂

(
π

2
, 0

)
D̂sd(α)R̂

(
π

2
, 0

)
|�1〉

= 1

2
|↑〉 [D̂(α) − D̂(−α)]Ŝ(ξ ) |n〉

+ 1

2
|↓〉 [D̂(α) + D̂(−α)]Ŝ(ξ ) |n〉 (10)

and maps this entangled state into a population imbalance
in the |↑〉 and |↓〉 spin states. The probability of measuring
|↑〉 for state |� f 〉 is dependent on the overlap between the
displaced states

P(n)
↑ = 1

2 + 1
2 〈� f | σ̂ z |� f 〉 e−�τ , (11)

where we have included a spin decoherence rate � due to
off-resonant light scatter from the ODF laser beams. Taking
a Boltzmann-weighted thermal average over all Fock states,
we obtain

P↑ = 1

2
− 1

2
e−�τ exp

(
− 1

4N
| f τ |2(2n̄z + 1)χ (r,�φ)

)
,

(12)

where

χ (r,�φ) = e2r[1 + cos(�φ)] + e−2r[1 − cos(�φ)] (13)

contains the dependence on the parametric drive parameters.
Equation (12) reduces to Eq. (A5) of Ref. [27] when no

parametric drive is applied (r = 0). The population in |↑〉 is
measured by pulsing on the parallel Doppler cooling beam
and counting the resulting fluorescence. This is referred to as
the bright fraction throughout this paper.

Figure 2(b) shows the resulting bright fraction versus the
relative phase �φ for a crystal of N = 86 ± 10 ions. Each
data point (black circles) is an average over 50 experimental
trials. Using Eqs. (12) and (13) to fit these data, we extract
r = 1.25 ± 0.2, where the uncertainty in r results from the
scatter of the data and the uncertainty in the temperature
n̄z = 0.38 ± 0.2. This agrees well with the predicted r =
1.3 ± 0.2 from the applied parametric drive voltage and du-
ration. The green solid curve shows this theory fit, where the
shaded region represents the uncertainty in the measured n̄z.
When the spin-dependent displacement is along the squeezed
axis (�φ = 0, 2π ), the overlap between the displaced states
is small and the bright fraction is high. In contrast, when
D̂sd(α) is orthogonal to the squeezed axis, there is strong
overlap between the states resulting in a low bright frac-
tion. The motional uncertainty of the fitted squeezed state
has been attenuated by 5.4 ± 0.9 dB (10.8 dB in variance)
below the ground-state motional uncertainty. Higher squeez-
ing might be possible, as will be discussed in Sec. IV, but
higher squeezing will also be more sensitive to noise in
�φ, providing a trade-off in the utility of employing higher
squeezing.

B. Improved displacement sensitivity

One application of this stroboscopic squeezing proto-
col is improving the experimental sensitivity for detecting
small displacements. Experiments conducted with a single
ion [16] demonstrated an enhancement of 17.2 ± 0.3 dB
to the displacement sensitivity with parametric amplifica-
tion. On the large 2D crystals confined in this device, a
displacement sensitivity of 8.8 ± 0.4 dB below the stan-
dard quantum limit has recently been achieved [13]. In this
section, we theoretically explore improving this sensitivity
through the addition of parametric amplification in a crystal of
ions.

Figure 3(a) shows the proposed experimental sequence for
improved displacement sensing. When no parametric amplifi-
cation is applied, this protocol is identical to the sequence used
in previous sensing work [13]. The c.m. motion is entangled
with the collective spin via a many-body echo, enabling detec-
tion of a small displacement through the resulting spin rotation
while avoiding quantum backaction and thermal noise. By
squeezing the motional mode before and antisqueezing af-
ter the applied displacement as shown in the phase-space
diagram of Fig. 3(b), the displacement is amplified, re-
sulting in a larger geometric phase and ideally improving
the detection sensitivity. The amplification obtained with
the squeeze-displace-antisqueeze sequence is given by the
identity

D̂sd(β f ) ≡ Ŝ†(ξ )D̂sd(βi )Ŝ(ξ ), (14)

where the initial displacement βi is amplified by G = exp(r)
to β f = Gβi when the displacement is in the direction
of maximum parametric amplification. Ideally, this would
improve the displacement sensitivity (�β )2, the variance
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FIG. 3. (a) and (b) After Doppler cooling and initializing the ions
in the spin-up state, a many-body spin echo enables detection of
small displacements of the ion crystal caused by weak electric fields
resonant with the c.m. motion (green block and arrows). The addi-
tion of the squeezing and antisqueezing operations (yellow blocks
and arrows) amplifies this spin-independent displacement β (red
and green arrows) by er (effective displacement, blue arrows). The
amplified effective displacement βer (blue arrows) encloses a larger
phase-space area compared to no squeezing, as shown by the red area
without squeezing and the additional enclosed blue area from the
effective amplified displacement. This larger enclosed phase-space
area is predicted to improve the sensitivity to small displacements.
(c) Previous experimental (black points) and theoretical (red curve)
work [13] without parametric amplification showed the displacement
sensitivity to be limited by 40-Hz frequency fluctuations of the c.m.
mode. Confidence bands represent c.m. frequency fluctuations be-
tween 20 and 60 Hz. The addition of motional squeezing will amplify
this frequency noise, but displacement sensitivity nearly 19 dB below
the SQL (orange line) is still predicted (blue curve), assuming the
duration of the squeezing and displacement are short compared to τ .

with which βi can be determined in a single measurement,
by exp(2r).

In Ref. [13], experimental measurements and theory
showed that the displacement sensitivity of the protocol
in Fig. 3 without parametric amplification was limited by
σ/2π = 40 Hz frequency fluctuations of the c.m. mode. The
analysis assumed the c.m. mode frequency was constant dur-
ing a single experiment but exhibited Gaussian fluctuations
with standard deviation σ from one experiment to the next.
Expanding the theoretical treatment of Ref. [13] to include
both c.m. frequency fluctuations and parametric amplification,
we generalize Eq. (S48) of the Supplementary Information of
Ref. [13] for the sensitivity (�β )2 of the protocol shown in

Fig. 3(a). We obtain

(�β )2 ≈ e2�τ

4 f 2τ 2e2r

[
1 + σ 2τ 2

3
+ σ 2

g2

(
r − 1 − e−2r

2

)

+ σ 2τ

g

1 − e−2r

2

]
+ σ 2τ 2

2e2r

(
1 + sinh(r)er

gτ

)2

×
(

n̄z + 1

2

)
+ f 2σ 2τ 4

9e2r
, (15)

where the duration of the squeeze and excitation of the spin-
independent displacement are assumed to be short compared
to τ . Here τ is the duration of an ODF pulse in a single arm of
the spin-echo protocol of Fig. 3. When no squeezing is applied
(r = 0), Eq. (15) recovers the prior displacement sensitivity
results. The exp(2r) term in the denominator expresses the
ideal enhancement to the sensitivity if the squeezing only
amplifies the displacement. However, the squeezing also in-
creases the noise from frequency fluctuations, which reduces
the overall gain. For a more detailed discussion and physical
interpretation of the individual terms of Eq. (15), see the
Supplementary Information of Ref. [13].

In Fig. 3(c) we plot the prior experimental data (black
circles) and theory (red curve) of the displacement sensitivity
without parametric amplification [13]. Assuming the same
experimental parameters as this previous experiment and the
addition of the demonstrated r = 1.25 of motional squeezing,
Eq. (15) predicts nearly 10-dB enhancement to our displace-
ment sensitivity [blue curve in Fig. 3(c)]. With the assumption
that the duration of the squeezing and displacement are short
compared to the duration of the spin-dependent force, the
quantum enhancements from the many-body echo and the
squeezing approximately add, resulting in a displacement sen-
sitivity nearly 19 dB below the SQL. Further improvements
may be possible by reducing the temperature of the ion crystal
with EIT cooling, increased squeezing, and reduced frequency
fluctuations of the c.m. mode.

IV. CONTINUOUS PROTOCOL

A. Measuring g from shifts in the decoupling points

Figure 4(a) shows the continuous squeezing protocol,
where the spin-dependent force and the parametric amplifi-
cation are applied simultaneously [16,17]. In this protocol,
the spin-dependent force is detuned from resonance with the
c.m. motion by δ. The parametric amplification is applied at
twice the frequency of the spin-dependent force. The total
Hamiltonian of the system is now given by

ĤT = h̄ f

2
√

N
(âe−iφODF + â†eiφODF )

N∑
i

σ̂ z
i

− h̄δâ†â + ih̄
g

2
(â2e−iθ − â†2eiθ ). (16)

Under the condition 0 < g < δ, the total Hamiltonian can be
written in a simple form as

ĤT = h̄

2
√

N
( f ′∗b̂e−iφODF + f ′b̂†eiφODF )

N∑
i

σ̂ z
i − h̄δ′b̂†b̂,

(17)
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FIG. 4. (a) Pulse sequence implemented with the continuous
squeezing protocol to measure the parametric coupling strength g.
The c.m. mode is initially heated to increase the signal size due
to spin-motion entanglement. A spin-echo sequence is then used
to couple the spin and c.m. motion of the ions with the ODF and
parametric drive applied simultaneously in each arm for a duration
τ . (b) Phase-space trajectories for the state |↑〉⊗N during the first
(red) and the second (green) arm of the pulse sequence. Without
parametric amplification, the spin and motion are decoupled in each
arm (closed loop in phase space) when 2π/δ is an integer multiple
of τ . Parametric amplification squeezes and antisqueezes the motion
along this trajectory (gray circles) and shifts the decoupling points
to higher frequencies. A new effective detuning δ′ = √

δ2 − g2 sets
the condition for closing loops in phase space when 2π/δ′ is an
integer multiple of τ . (c) Scan over several decoupling points without
parametric amplification. The curve is a theory fit used to extract
the elevated n̄z and coherent excitation β resulting from the heat-
ing pulse. (d) and (e) With parametric amplification the decoupling
points (black, blue, and red arrows) are shifted to higher frequency
as predicted by theory (curves). The shaded region reflects the un-
certainty in �φc within [0, 2π ]. The theory curve then assumes an
intermediate value of �φc = π/2 and all curves are averaged over
40-Hz frequency fluctuations of the c.m. mode. Below δ = g (dashed
lines) is not scanned as the ions are rapidly heated.

by using a Bogoliubov transformation b̂ = â cosh(r) +
ieiθ â† sinh(r), with r = 1

4 ln( δ+g
δ−g ). Here the new effective de-

tuning is δ′ ≡
√

δ2 − g2 and the rescaled strength of the ODF
interaction is f ′ ≡ f (cosh r + ei�φc sinh r). The relative phase
between the parametric drive and the ODF in the continuous
protocol is defined as �φc = θ − 2φODF − π/2, so �φc = 0
results in the largest amplified effective force f ′. We note that
this definition gives rise to a π/2 phase shift relative to the
definition of �φ in Eq. (6) for the stroboscopic protocol. The
state evolution under the total Hamiltonian (17) is provided in
Appendix A.

The continuous squeezing protocol provides an alternative
method for measuring the parametric coupling strength g that
is insensitive to shot-to-shot noise in �φc. With no parametric
amplification, circular trajectories in phase space are driven.
These trajectories are closed when δ is a multiple of 2π/τ ,
which results in a decoupling of the spin and motion of the
ions [Fig. 4(b)]. Here τ is the duration of the ODF application
in each arm of the spin-echo sequence. The area enclosed in
the phase-space loop is equal to the acquired geometric phase.
With the parametric drive applied at twice the frequency of the
spin-dependent force μ, the circular trajectories are distorted
into ellipses as the c.m. motion is squeezed and antisqueezed
along the path. In addition, the frequency of the first decou-
pling point [17] shifts to

δ =
√

(2π/τ )2 + g2. (18)

By measuring this frequency shift when the parametric drive
is applied, we can extract the parametric coupling strength.
The frequency offset δ required to drive a closed loop in
phase space only depends on τ and g and is independent of
the phase of the spin-dependent force relative to the phase of
the parametric drive. Therefore, this method of measuring g is
insensitive to shot-to-shot fluctuations in the relative phase.

When the spins and motion are decoupled (closed loop in
phase space), the measured bright fraction at the end of the
sequence given in Fig. 4(a) will be at a minimum. To better
resolve these decoupling points, the c.m. motion is heated.
This improves the resolution by increasing the spin-motion
entanglement signal, which depends on the motional tem-
perature [27,28]. The heating pulse is applied directly after
Doppler cooling. It is white noise with a 10-kHz bandwidth
centered around ωz. This noise heats the c.m. mode, but the
other axial modes remain near the Doppler limit.

The measured bright fraction versus detuning away from
the c.m. mode is shown in Fig. 4(c) when no parametric
amplification is applied. As predicted for the ODF duration
τ = 1.0 ms, the minimum in the measured bright fraction
occurs at multiples of 1/τ = 1.0 kHz. With only thermal mo-
tion, the bright fraction would saturate at 0.5. The higher
observed bright fraction suggests the addition of a coher-
ent displacement. This displacement arises from the heating
burst not being purely random. The curve through the data of
Fig. 4(c) is a fit used to extract n̄z = 28.0 ± 13 and the co-
herent displacement of amplitude β = 13.0 ± 0.4. The phase
of the coherent displacement is assumed to be random when
averaged over many experiments (see Appendix A).
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FIG. 5. From the shift in the decoupling frequency, the paramet-
ric coupling strength g is calculated for a range of drive voltages
and ODF arm durations. As predicted by theory (blue line), g in-
creases linearly with the amplitude of the parametric drive reaching
g/2π = 15.5 kHz at 51 V. The 5% horizontal error bars of the
experimental data represent the uncertainty in the applied voltage
and the vertical error bars (smaller than points) reflect the frequency
step size of the scans over the decoupling points. To calculate g from
the applied voltages, the trap potential is numerically modeled. The
shaded region is the 10% uncertainty in that model.

Figures 4(d) and 4(e) show equivalent scans, but with the
addition of different strengths of parametric amplification.
As the parametric drive voltage is increased, the decoupling
points shift to higher frequency as predicted. From this fre-
quency shift, we extract the parametric coupling strength by
solving for g in Eq. (18). Experimentally, we find that for
δ < g the ions are heated significantly, making recovery with
Doppler cooling difficult.

The curves of Figs. 4(d) and 4(e) are theory assuming the n̄z

and β obtained from the fit of Fig. 4(c) and g determined from
the shift in the first decoupling frequency. The shaded region
reflects the uncertainty in the relative phase between the ODF
and parametric drive. For these experiments, we focus on
the shift in the decoupling points, which are insensitive to
the relative phase, so the relative phase at the ions is not
measured prior to each experiment. Including this uncertainty,
the theory confidence intervals largely encompass the mea-
sured values. The observed increase in the bright fraction at
the first decoupling frequency results from spin squeezing
(see Appendix A for a detailed theory) and a convolution
of the narrow dip in the bright fraction at the decoupling
point with the measured 40-Hz frequency fluctuations of the
c.m. mode.

Figure 5 plots the measured g versus the applied para-
metric drive voltage Vp for three different values of τ . The
coupling strength increases linearly with the voltage. We
see no saturation in g/2π up to the highest measured value
of 15.5 kHz at 51.0 V, which suggests that even higher
parametric coupling strengths may be achievable. The blue
line of Fig. 5 is the predicted coupling strength from the
applied voltage, which is in excellent agreement with the
measurements.

B. Spin squeezing limited by frequency fluctuations

As an application of the continuous squeezing protocol,
we investigate how the increased spin-motion coupling will
improve quantum spin squeezing in the presence of deco-
herence due to off-resonant light scatter. At the decoupling
points, the spin-state evolution under the application of Eq. (3)
simulates the Ising model,

ĤI = 1

N

∑
i< j

Ji j σ̂
z
i σ̂ z

j , (19)

where the spin-spin interaction Ji j ≈ J̄ = f 2/2δ because the
c.m. mode is primarily driven in our experimental setup
[6,23]. This leads to one-axis twisting and quantum spin
squeezing [29,30]. Using the continuous parametric am-
plification protocol, Eq. (3) transforms into an identical
Hamiltonian with rescaled detunings and modified interaction
strengths [Eq. (17)]. Under optimal relative phase (�φc =
0), the spin-dependent force is amplified, resulting in an in-
creased spin-spin interaction J̄ = f 2/2(δ − g). In Ref. [17]
the predicted improvement in quantum spin squeezing from
parametric amplification was explored. Here we extend this
analysis to include frequency fluctuations of the c.m. mode,
which will limit the potential enhancement.

Quantum spin squeezing is characterized by the Ramsey
squeezing parameter ξR, where ξ 2

R = 1 for coherent spin states
and ξ 2

R < 1 for squeezed states [29] (see Appendix B). In
previous experiments on 2D crystals of approximately 100
ions, 4.0 ± 0.9 dB of spin squeezing was measured, funda-
mentally limited by off-resonant light scatter from the optical
dipole force laser beams [6]. In these experiments, �/J̄ ≈
0.05, where � is the single spin decoherence rate due to off-
resonant light scatter and J̄ is the spin-spin interaction strength
obtained with a detuning of δ/2π = 1 kHz. Parametric ampli-
fication will enhance the spin-spin interaction strength J̄ while
keeping � fixed by the laser power, which can enable greater
spin squeezing.

Figure 6(a) illustrates the potential enhancement in the
spin squeezing with parametric amplification on a crystal
containing 400 ions, cooled to n̄z = 0.5, and assuming no
frequency fluctuations of the c.m. mode. Here �/J̄ = 0.05,
where now J̄ is the strength of the spin-spin interaction with
δ/2π = 0.83 kHz and g = 0. When g = 0, the spin squeezing
is limited by spin decoherence from off-resonant light scatter
to 11.3 dB. We note this larger spin squeezing as compared
to Ref. [6] is due in part to the larger ion number, as well as
technical experimental limitations. As g is increased, the ratio
�/J̄ is decreased, enabling greater spin squeezing. The opti-
mal squeezing approaches the spin decoherence-free value of
16.4 dB for large g.

However, frequency fluctuations of the c.m. mode will
place a limit on the improvement to spin squeezing from
parametric amplification. As the parametric coupling strength
increases, the frequency separation between the ODF detun-
ing δ and g decreases as shown by Eq. (18) and Figs. 4(d)
and 4(e). To realize the maximal optimal spin squeezing free
from noise associated with the c.m. frequency fluctuations,
σ � δ − g.

In Figs. 6(b) and 6(c) the predicted spin squeezing is
plotted as a function of the parametric coupling strength for
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FIG. 6. (a) Ramsey squeezing parameter ξR plotted versus the
interaction duration τ assuming 400 ions, no frequency fluctuations
of the c.m. mode, and with a decoherence rate � due to off-resonant
light scatter of � = 0.05J̄ , where J̄ is the strength of the spin-
spin interaction [see Eq. (19)] with δ/2π = 0.83 kHz and g = 0.
Single-loop gates are assumed, where for each interaction duration
τ a detuning δ given by Eq. (18) is assumed. Larger values of g
reduce the effective �/J̄ and produce large spin squeezing. (b) and
(c) Predicted spin squeezing assuming the same parameters as in
(a) but now including (b) 10-Hz and (c) 40-Hz frequency fluctuations
of the c.m. mode. As the frequency fluctuations are increased, the
gain in the quantum spin squeezing with parametric amplification is
limited.

the same parameters as in Fig. 6(a) but including 10- and
40-Hz frequency fluctuations of the c.m. mode. Spin decoher-
ence from off-resonant light scatter and frequency fluctuations
limit the spin squeezing in the absence of parametric ampli-
fication. Figure 6(c) shows a 1.1-dB gain in spin squeezing
with a g/2π = 4 kHz and the current 40-Hz frequency fluc-
tuation of the c.m. mode. However, at larger values of g,

the 40-Hz frequency fluctuations limit further improvements.
In Fig. 6(b) we show that a 2.8-dB gain is possible if the
frequency fluctuations are reduced to 10 Hz with a g/2π =
40 kHz.

V. CONCLUSION

In summary, we have shown experimental results char-
acterizing parametric amplification using two different pro-
tocols. With the stroboscopic protocol, motional squeezing
of 5.4 ± 0.9 dB below the ground-state motion was demon-
strated corresponding to a squeezing parameter r = 1.25 ±
0.2. Phase noise between the ODF and parametric drive pre-
vented larger amounts of squeezing from being achieved.
Theory predicts that this level of squeezing will improve
the sensitivity of measuring small displacements of large
trapped-ion crystals by nearly 10 dB. With the continuous
protocol, stronger parametric coupling strengths were demon-
strated, even in the presence of shot-to-shot phase noise, by
measuring the shift in the frequency of the spin-motion de-
coupling points. A linear increase in the measured parametric
coupling strength g with the applied parametric drive volt-
age up to g/2π = 15.5 ± 0.1 kHz was observed. Measured
values of g agreed well with the predicted strength from
numerical modeling of the trap potentials. Stronger paramet-
ric coupling strengths may be possible with larger applied
voltages. An improvement in quantum spin squeezing in the
presence of decoherence due to off-resonant light scatter is
predicted with the continuous squeezing protocol. The amount
of improvement will be limited by the current 40-Hz fre-
quency fluctuations of the c.m. mode. With reduced frequency
fluctuations, further improvements to both the displacement
sensitivity and spin squeezing might be possible.
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APPENDIX A: DERIVATION OF THE BRIGHT FRACTION
UNDER THE CONTINUOUS PROTOCOL

Here we describe the calculation used to generate the the-
oretical curves of Figs. 4(c)–4(e). Because the continuous
protocol of Fig. 4 generates correlations between the ion spins,
a single-spin calculation like that described in Sec. III is no
longer adequate.

Assume that the spin of the ions is initially in |ψ〉s = |↑〉⊗N

and that the c.m. motional mode of interest is a thermal
coherent state described by a thermal occupation number n̄z

and coherent amplitude β. The initial motional state den-
sity matrix is then given by ρ̂m = D̂(β )

∑
n pn|n〉〈n|D̂†(β ),
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where pn = 1
1+n̄z

( n̄z

1+n̄z
)n and D̂(β ) = exp(βâ† − β∗â) is the

displacement operator with amplitude β. To derive the effect
of the motional thermal coherent state on the bright fraction,
it is most convenient to write [31]

ρ̂m = 1

π n̄z

∫
e−|γ |2/n̄z |β + γ 〉 〈β + γ | d2γ . (A1)

Because of the mixture of ρm in terms of coherent states |γ̄ 〉
with γ̄ = β + γ , we can start with the initial system as

|ψ0〉 = |↑〉⊗N |γ̄ 〉 . (A2)

Then we can average out the contribution from different co-
herent mixtures.

Consider the protocol shown in Fig. 4(a). After the π
2 |y

pulse, we have |ψ1〉 = |+〉⊗N |γ̄ 〉, where |+〉 = 1√
2
(|↑〉 +

|↓〉). The spin-dependent ODF is then applied simultaneously
with the parametric amplification for a duration τ . According
to Refs. [17,18], the effective interaction from Eq. (17) can be
described by a product of two unitary operations of the spin-
spin interaction and spin-motion coupling in the interaction
picture of −h̄δ′b̂†b̂, which are

Ûss(t0, t1) = exp

⎛
⎝i�(t0, t1)

∑
i, j

σ̂ z
i σ̂ z

j

⎞
⎠ (A3)

and

Ûsm(t0, t1) = D̂sd[α(t0, t1)], (A4)

where the spin-dependent displacement

α(t0, t1) = eiφODF

2
√

N
[α̃(t0, t1) cosh r + ei�φc α̃∗(t0, t1) sinh r]

(A5)

and the geometric phase

�(t0, t1) = − 1

4N

∣∣∣∣ f ′

δ′

∣∣∣∣
2

[(t1 − t0)δ′ − sin δ′(t1 − t0)]. (A6)

Here f ′ = f (cosh r + ei�φc sinh r) is the enhanced spin-
dependent force with parametric drive from Eq. (17),
α̃(t0, t1) = ( f ′/δ′)(e−iδ′t1 − e−iδ′t0 ) is the displacement of the
Bogoliubov mode b̂, and α(t0, t1) is the displacement in the
original motional mode â.

After a simultaneous parametric amplification and ODF
pulse for a duration τ , the state is given by

|ψ2〉 = Ûss(0, τ )Ûsm(0, τ ) |ψ1〉 . (A7)

The π |x pulse for a duration tπ flips the state of the spins.
After the second pulse of parametric amplification and ODF,
the state is

|ψ3〉 = Ûss(τ + tπ , 2τ + tπ )Ûsm(τ + tπ , 2τ + tπ )R̂X (π ) |ψ2〉

= R̂X (π ) exp

⎛
⎝i�T

∑
i, j

σ̂ z
i σ̂ z

j

⎞
⎠D̂sd(αT ) |ψ1〉 ,

(A8)

where R̂X (π ) = R̂(π, π/2)⊗N [see Eq. (8)] and the expression
has been simplified by commutating R̂X (π ) with the opera-
tors to its right, combining the spin-spin interaction terms by

recognizing Ûss(τ + tπ , 2τ + tπ ) = Ûss(0, τ ), and collecting
the spin-spin interaction and the spin-motion coupling terms,
respectively. Here the total displacement is

αT ≡ α(0, τ ) − α(τ + tπ , 2τ + tπ )

= eiφODF

2δ′√N
[ f ′(e−iδ′τ − 1)(1 − e−iδ′(τ+tπ ) ) cosh r

+ ei�φc f ′∗(eiδ′τ − 1)(1 − eiδ′(τ+tπ ) ) sinh r] (A9)

and the effective total geometric phase is

�T ≡ 2�(0, τ ) − Im[α(τ + tπ , 2τ + tπ )α∗(0, τ )]

= | f ′|2
2δ′2N

{sin(δ′τ ) − δ′τ + [1 − cos(δ′τ )] sin δ′(τ + tπ )},
(A10)

which recovers the results in Ref. [24] when we take r = 0.
To measure the bright fraction, we rotate |ψ3〉 by another π

2 |y
pulse and detect σ̂ z

k , which gives〈
σ̂ z

k

〉
γ̄

= 〈ψ3| R̂Y (π/2)†σ̂ z
k R̂Y (π/2) |ψ3〉

= −e−2|αT |2

2
(e2αT γ̄ ∗−2α∗

T γ̄ + c.c.) cos(4�T )N−1,

where R̂Y (π/2) = R̂(π/2, 0)⊗N . Now we sum up the con-
tributions from different components in the initial motional
thermal coherent state via the integral〈

σ̂ z
k

〉 = 1

π n̄z

∫
e−|γ |2/n̄z

〈
σ̂ z

k

〉
γ̄

d2γ . (A11)

Only the factor e2αT γ̄ ∗−2α∗
T γ̄ + c.c. = e2αT β∗−2α∗

T β

e2αT γ ∗−2α∗
T γ + c.c. will be impacted by the integral. We realize

that 1
π n̄z

∫
e−|γ |2/n̄z e2αT γ ∗−2α∗

T γ d2γ = e−4|αT |2 n̄z ; therefore, we
find 〈

σ̂ z
k

〉 = −e−2|αT |2(2n̄z+1) cos(4θβ ) cos(4�T )N−1, (A12)

where θβ = Im(β∗αT ). The coherent displacement β in this
experiment is caused by the application of noise to heat the
ions. We therefore assume that the phase of this displace-
ment varies from shot to shot, so we average Eq. (A12)
over a random phase θc, giving 1

2π

∫
cos(4|αT ||β| sin θc)dθc =

J0(4|αT ||β|), where J0 is the zeroth Bessel function of the first
kind. The spin decoherence factor exp(−2�τ ) can be included
independently. The bright fraction of the trapped-ion spins at
the end of the pulse sequence is then given by

P↑ = 1
2

(
1 + 〈

σ̂ z
k

〉 )
= 1

2 − 1
2 e−2|αT |2(2n̄z+1)e−2�τ J0(4|αT ||β|) cos(4�T )N−1.

(A13)

This expression was used to model the experimental measure-
ments in Fig. 4. To include 40-Hz frequency fluctuations of the
c.m. mode, we averaged this expression assuming Gaussian
frequency fluctuations of the mode.

APPENDIX B: SPIN SQUEEZING WITH SPIN
DECOHERENCE

This Appendix discusses the calculation of quantum spin
squeezing in the presence of decoherence due to off-resonant
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light scatter and due to frequency fluctuations of the c.m.
mode. The calculation was used to generate the theory curves
of Fig. 6.

Quantum spin squeezing in a direction rotated by ψ

(from the +z direction) about the x axis is defined by
ξ 2
ψ = N (�Ŝψ )2/| 〈S〉 |2, where Ŝψ = cos(ψ )Ŝz − sin(ψ )Ŝy,

(�Ŝψ )2 = 〈Ŝ2
ψ 〉 − 〈Ŝψ 〉2

, and S = 1
2

∑
i(σ̂

x
i , σ̂

y
i , σ̂ z

i ). The
Ramsey spin squeezing is obtained by minimizing (�Ŝψ )2

over the angle ψ ,

ξ 2
R = N minψ [(�Ŝψ )2]

| 〈S〉 |2

= N

2| 〈S〉 |2
{
(�Ŝy)2 + (�Ŝz )2

−
√

[(�Ŝy)2 − (�Ŝz )2]2 + 4 Cov(Ŝy, Ŝz )2
}
, (B1)

where the optimal angle is

ψopt = 1
2 arctan{2 Cov(Ŝy, Ŝz )/[(�Ŝy)2 − (�Ŝz )2]}, (B2)

with

Cov(Ŝy, Ŝz ) ≡ 1
2 〈ŜyŜz + ŜzŜy〉 − 〈Ŝy〉 〈Ŝz〉 . (B3)

In the presence of dephasing at rate �el and spontaneous
spin flips from |↑〉 to |↓〉 (|↓〉 to |↑〉) at rate �ud (�du), spin
dynamics due to an Ising interaction in the ẑ basis can be
modeled by a master equation in the Lindblad form, which
can be solved exactly [32]. For completeness, we quote the
spin correlation functions in the case of uniform coupling, i.e.,
Ji j = J for all i and j,

〈σ̂+
i 〉 = e−�t

2
�N−1(J, t )e−2|α|2 (2n̄z+1),

〈
σ̂ a

i σ̂ b
j

〉 = e−2�t

4
�N−2((a + b)J, t )e−2|α|2(a+b)2(2n̄z+1),

〈
σ̂ a

i σ̂ z
j

〉 = e−�t

2
�(aJ, t )�N−2(aJ, t )e−2|α|2 (2n̄z+1),

(B4)

where a, b ∈ {+,−},

�(J, t ) = e−(�ud+�du )t/2

{
cos

[
t
√

(2iγ + 2J/N )2 − �ud�du
]

+ t
�ud + �du

2
sinc

[
t
√

(2iγ + 2J/N )2 − �ud�du
]}

,

�(J, t ) = e−(�ud+�du )t/2t[i(2iγ + 2J/N ) − 2γ ]

× sinc
[
t
√

(2iγ + 2J/N )2 − �ud�du
]

(B5)

and

J = f ′2

δ′

(
1 − sin δ′t

δ′t

)
,

α = 1√
N

f ′

δ′ {[cos(δ′t ) − 1]er − i sin(δ′t )e−r}. (B6)

Here r, f ′, and δ′ are the same as defined in Appendix A.
The above expressions are obtained assuming the initial state
is a product state with all spins pointed in the x direc-
tion and the motional state is a thermal state. The factor
e−2|α|2(2n̄z+1) describes the effect of spin-motion entanglement
when α �= 0. Here γ = (�ud − �du)/4, � = (�r + �el )/2, and
�r = �ud + �du. The numerical results of the plots in Fig. 6(a)
are obtained using Eq. (B1) together with Eqs. (B4)–(B6).
The numerical results of the plots in Figs. 6(b) and 6(c)
are obtained by averaging Eq. (B1) for 4000 randomly
Gaussian distributed frequencies at the respective frequency
fluctuations.
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