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Tailoring microcombs with inverse-designed,  
meta-dispersion microresonators

Erwan Lucas    1,2,4 , Su-Peng Yu1,2, Travis C. Briles1, David R. Carlson1,3 & 
Scott B. Papp    1,2 

Nonlinear wave mixing in optical microresonators offers new perspectives 
to generate compact optical-frequency microcombs, which enable an 
ever-growing number of applications. Microcombs exhibit a spectral profile 
that is primarily determined by their microresonator’s dispersion. One 
example is the sech2 spectrum of dissipative Kerr solitons under anomalous 
group-velocity dispersion. Here we introduce an inverse-design approach to 
spectrally shape microcombs, by optimizing an arbitrary meta-dispersion 
in a resonator. By incorporating the system’s governing equation into a 
genetic algorithm, we are able to efficiently identify a dispersion profile that 
produces a microcomb closely matching a user-defined target spectrum, 
such as spectrally flat combs or near-Gaussian pulses. We show a concrete 
implementation of these intricate optimized dispersion profiles, using 
selective bidirectional-mode hybridization in photonic-crystal resonators. 
Moreover, we fabricate and explore several microcomb generators with such 
flexible ‘meta’ dispersion control. Their dispersion is not only controlled by 
the waveguide composing the resonator, but also by a corrugation inside 
the resonator, which geometrically controls the spectral distribution of the 
bidirectional coupling in the resonator. This approach provides programmable 
mode-by-mode frequency splitting and thus greatly increases the design space 
for controlling the nonlinear dynamics of optical states such as Kerr solitons.

Microcombs—optical-frequency combs generated in driven Kerr 
resonators1—are versatile light sources that offer unique properties 
for applications and integration of frequency-comb systems on a 
chip. Through experimentation and advances in the fabrication of 
integrated resonators, microcombs have progressed from a theo-
retical framework for Kerr-nonlinear optics2,3 to the generation of 
octave-spanning combs for accurate and precise optical metrology4. 
The large mode spacing and spectral width of microcombs have already 
found applications in parallel coherent communication5, distance 
measurement6–8 and phase stabilization9 for photonic-integrated 
frequency synthesis4.

Microcomb generation often entails the formation of dissipative 
Kerr solitons (DKSs)10,11, which exist by balancing losses from nonlinear 

gain, anomalous group-velocity dispersion (GVD) and pump-laser 
detuning, through nonlinear phase shifts. Dominated by second-order 
dispersion, the resulting DKS pulses feature a squared secant hyper-
bolic profile in the time and frequency domains (Fig. 1a). Owing to 
this equilibrium with the Kerr nonlinearity, the dispersion of the  
resonator—or more generally mode-by-mode frequency mismatch 
from the resonator’s free-spectral range (FSR)—primarily determines 
the pulse shape and spectrum of nonlinear states it supports.

Tailoring the comb spectral profile is desired in applications 
such as telecommunications, where high power per mode and spec-
tral flatness improve the performance and efficiency of data links. 
However, there is currently no direct relationship connecting the 
desired microcomb spectrum with the required dispersion, material 
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via multiple selective mode splitting20–22 to create a meta-dispersion  
(Fig. 1c). We demonstrate a full iteration of the design process and first 
experimental evidence of microcomb shaping. The design steps fol-
lowed in our work are summarized in Fig. 1d. First, we numerically solve 
the governing equation of the resonator and use a genetic algorithm 
(GA) to iteratively optimize the dispersion and pumping parameters 
to create a desired microcomb shape. Although a similar GA-based 
method has been developed concurrently23, our approach notably 
introduces an analytical model based on the target comb’s Kerr shift 
to efficiently generate an initial dispersion. Second, we determine the 
PhCR topology needed to achieve the optimized dispersion. Finally, we 
demonstrate realizations of meta-dispersion in PhCR microresonators 
and initial observations of comb generation in these devices.

Results
Inverse-design dispersion optimization
We first describe our precise formalism and notation. The Lugiato– 
Lefever equation2 (LLE) accurately models the driven nonlinear 

properties or physical geometry of the resonator. Additionally, achiev-
ing precise dispersion control in resonators has historically been a 
substantial challenge, lacking a demonstrated technique for impart-
ing arbitrary dispersion properties. Nevertheless, recent advances 
in numerical computation and machine learning have introduced 
new capabilities and tools for system design and optimization12–15. 
Integrated photonics, meanwhile, not only offers potential for the 
miniaturization of large-scale systems, but also allows greater con-
trol over guided modes of light, particularly in photonic crystals16, or 
topology-optimized elements17,18, which have paved the way to highly 
customizable inverse-designed microresonators19.

In this Article we propose and implement an inverse-design pro-
cess to shape the spectral envelope of microcombs. Our approach 
numerically optimizes an arbitrary dispersion profile to tailor the 
associated nonlinear state of the resonator towards a target pulse 
shape and spectrum. The resulting complex dispersion relation is 
then implemented indirectly by means of photonic-crystal resona-
tors (PhCRs), where the resonance frequencies can be controlled 
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Fig. 1 | Concept of microcomb inverse design via meta-dispersion 
engineering. a, Microcomb generation in an optical microresonator. The 
resonator dispersion determines the comb spectral envelope, following the 
Lugiato–Lefever equation (LLE). Applying this nonlinear model, knowing 
the resonator parameters, can be viewed as direct design. b, The concept 
of inverse design consists of the reverse operation, that is, assignment of a 
desired comb envelope and determination of the optimal microresonator 
dispersion for which the resulting comb shape is closest to the target. This 
‘inverse LLE’ is accomplished here with a GA. The optimized dispersion profiles 
are implemented using PhCRs. c, A PhCR is a microring resonator where the 
inner ring waveguide wall is patterned with a subwavelength modulation (λ/2). 

This leads to targeted and tunable single mode splitting, with the formation of 
a red- and blueshifted pair of modes (respectively shifted to lower and higher 
frequency). The PhCR approach can be generalized to split multiple modes 
simultaneously by superposing several modulation patterns (bottom panel). The 
combined effects of waveguide dispersion and mode splitting create a composite 
dispersion, or meta-dispersion, on the blue- and redshifted branches. d, Our 
procedure for tailoring microcombs consists of several steps. A desired comb 
shape is first defined. A GA calculates the optimized dispersion profile, which is 
then converted into meta-dispersion parameters, determining the geometry of 
the PhCR. The devices are nanofabricated and characterized, before pumping 
the suitable resonators.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 17 | November 2023 | 943–950 945

Article https://doi.org/10.1038/s41566-023-01252-7

resonator and can be written as a set of coupled mode equations in 
the spectral domain:

∂ ̃Aμ
∂t

= −[ κ
2
+ i (δω − Dint(μ))] ̃Aμ

+ i g0 ℱ[|A|
2A]

μ
+√κex

Pin
ℏω0

δμ=0
(1)

where μ is the azimuthal mode number relative to the pumped  
mode, || ̃Aμ(t)||

2
 is the number of photons in mode μ as a function of  

the ‘slow’ time t, Pin and δω = ω0 − ωpump are respectively the pump  
power and detuning terms11 (the detuning is positive if the laser fre-
quency is lower than the resonance frequency), κ is the resonator 
full-width at half-maximum (FWHM) linewidth, and κex is the coupling 
rate. ℱ[⋅]μ represents the Fourier series operator and g0 the per-photon 
Kerr shift of the resonator modes. Pth = ℏω0κ3/8g0κex is the threshold 
pump power for initial four-wave mixing in resonators and is useful to 
rescale the power quantities. The operator Dint(μ) = (ωμ − ω0) − D1μ  
represents the resonator dispersion24 and measures the deviation of 
the resonance frequencies from an equidistant FSR, D1.

Optimization problem. The dispersion plays a key role in determining 
the temporal and spectral shape of localized structures emerging from 

nonlinear effects in a resonator. One problem of interest is to find the 
dispersion Dint of the resonator that yields a comb with desired proper-
ties, and is a steady-state solution of the LLE (Fig. 1b).

To simplify the problem, we describe the dispersion using a set of 

polynomial coefficients Dk such that Dint(μ) = ∑8
k=2

Dk
k!
μk + γ0

2
δμ=0 . 

The extra degree of freedom, γ0, corresponds to a discrete shift in 
the frequency of the pump mode, which is known to favour the forma-
tion of pulses, notably in the normal-dispersion regime20,25,26. An addi-
tional constraint limits the pump power within a specified budget of 
Pmax. Our objective is to determine the values of Dk, γ0, δω and Pin that 
result in a stationary comb profile that best satisfies our objective, as 
quantified by the error function ℰ( ̃Aμ)  (see Methods for details).  
To solve this optimization problem, we use a genetic evolutionary 
algorithm23,27,28.

Initialization. It is useful to leverage prior knowledge to initialize the 
problem as closely as possible to a potential solution. An initial disper-
sion profile is first derived based on a simple heuristic, inspired by the 
essential principle of the soliton balance of dispersion by the Kerr shift. 
Thus, in the frequency domain, the dispersion Dinitial

int (μ) is initialized 
as the opposite of the Kerr spectral shift δKerrμ  of the target comb state 
̃Atarget
μ , according to20
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Fig. 2 | Dispersion optimization for comb shaping. a, Flowchart of the 
evolutionary algorithm used to optimize the dispersion and driving parameters 
to match a given comb spectral profile. b, Comb spectra of a targeted Gaussian 
comb envelope (red), the initial comb profile computed from the Kerr shift 
initialization (black) and the evolutionary algorithm result (blue). The driving 
parameters {2δω/κ, Pin/Pth} are initially {4.4, 13} and {5, 8.6} after optimization. 
c, Computed Kerr-shift-based initialization (black crosses) and the integrated 
dispersion profile after evolutionary optimization (blue). d, Set of comb spectra 

for a targeted raised-cosine shape (β = 0.8; Methods): initial driving {4.4, 13} 
and optimized set {6.5, 11.7} (key as in b). e, Corresponding dispersion for the 
spectra shown in d (colours as in c). f, Optimization with the objective of reaching 
a minimum power-per-line requirement over a given bandwidth: initial driving 
{3.5, 7} and optimized set {1.2, 7} (key as in b). g, Corresponding dispersion for 
the spectra shown in f (colours as in c). Although the initial dispersion is in the 
anomalous regime, the optimized dispersion is mainly normal.
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⎞
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(2)

This relation is hence fitted with a polynomial to obtain the initial 
dispersion coefficients. The pump-laser parameters (Pin, δω) are 
also initialized, below Pmax for the former and based on the maximum 
single-mode Kerr shift for the latter29. A population of dispersion can-
didates, with a typical size of Npop = 208, is then generated from random 
variations around these initial parameters.

Evolution step. The GA loop for finding the optimal parameters  
consists of two steps, as presented in Fig. 2a. First, the steady- 
state intra-resonator field is computed for each member of the  
population by integrating the LLE equation via split-step Fourier trans-
form. Next, the steady-state comb solutions are ranked based on  
an error function ℰ( ̃Aμ) that measures their fitness for the optimiza-
tion goal. This metric can be the mean square error to a target comb  
shape or a binary criterion that checks whether a given power  
target is reached for certain lines. To ensure stable and low-noise 
combs, highly fluctuating states are penalized. If a solution meets  
a fitness threshold or a maximum generation number is reached,  
the algorithm stops. Otherwise, a new population is created by  
combining two parents’ dispersion coefficients (crossover) and  
adding a random variation (mutation) to generate each new  
candidate, before the loop continues. The GA is further detailed in  
the Methods.

Optimization results. First, we show how the dispersion can be opti-
mized to obtain a comb with nearly Gaussian spectral profile in the 
resonator. Figure 2b shows the target comb, the initial comb and 
the result after optimization. The initial dispersion profile, shown in  
Fig. 2c, is calculated from the target comb Kerr shift using equation (6).  
The optimized dispersion appears almost identical to this initial profile. 
The GA mainly modified the pumping conditions to fit the spectral 
width to the target.

For applications, such as telecommunications, a flat microcomb 
with high conversion efficiency and maximum power per line is typi-
cally required. Using a rectangular comb target is problematic as the 
function is discontinuous. A raised-cosine shape makes a more real-
istic target for optimization as it has a smoother decay outside the 
bandwidth of interest, as shown in Fig. 2d. Moreover, the regularity of 
the function makes it possible to compute the Kerr shift, which again 
provides an excellent starting point (Fig. 2e). The GA mainly modifies 
the pump mode shift γ0 and the driving parameters. These examples 
demonstrate that our method can perform a ‘fitting’ of a specific comb 
target by changing the parameters of the LLE. Our initialization tech-
nique also proves to be very effective in coarsely matching a desired 
comb shape, which can speed up the convergence of the GA, especially 
if it preferentially adjusts the pumping parameters. An exhaustive 
search could even be conducted.

An alternative approach to obtain efficient flat comb generation 
is to modify the fitness metric to enforce a comb line power of at least 
Pmin over a given bandwidth (Methods). We initialize the dispersion 
from the Kerr shift of a flat-top comb model (Methods), which does not 
satisfy the power criterion, although we sought to obtain the highest 
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Fig. 3 | Meta-dispersion in PhCRs. a, Design principle of the meta-dispersion 
PhCRs. First, the resonator dispersion is chosen to match the dominant sign of 
the targeted dispersion returned by the GA, which sets the waveguide cross-
section. The spectral distribution of mode splitting is then set equal to twice 
the deviation between the target dispersion and that of the waveguide near 
the central modes. Finally, the required grating profile is generated by Fourier 
synthesis. The various components of the grating are superposed with a chirp 
to distribute the grating modulation more evenly along the ring. b, SEM image 
of a meta-dispersion PhCR. The inset on the right highlights a section of the 
chirped corrugation. c, Measured integrated dispersion of a PhCR (rw = 2.3 μm, 

th = 570 nm). The designed splitting profile follows a Gaussian curve. d, Fitting 
of the split resonance of mode μ = 0. The asymmetric lineshape41 originates 
from interference with the chip Fabry–Pérot (facets reflections) fitted on the top 
panel. A mode-splitting model42 is then fitted to the PhCR resonance to extract 
the loaded and intrinsic quality factors (QL, Qi) and splitting parameters (lower 
panel). e, Distribution of mode splitting retrieved from fitting the resonances 
of several PhCR devices. The splitting distributions are designed with the same 
Gaussian profile, where only the splitting of the zeroth mode is varied from 
device to device. Single-mode control of the splitting is maintained.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 17 | November 2023 | 943–950 947

Article https://doi.org/10.1038/s41566-023-01252-7

possible power. After optimization, the power criterion is met by the 
resulting comb, as shown in Fig. 2f. Interestingly, the associated disper-
sion profile, shown in Fig. 2g, is dominantly normal for higher relative 
mode number, and turns locally anomalous near the pump mode. The 
general comb shape resembles the typical ‘platicon’ spectrum obtained 
in normal dispersion25,26,30, that is, a strong central lobe surrounded 
by two pronounced wings, which is known to have high conversion 
efficiency31. However, the centre lobe here has a flattened sech-like 
profile11. In this optimization problem, where the target comb is not 
provided, the GA plays a prominent role, because it extensively explores 
the parameter space and converges to a radically different solution 
from the initialization. Overall, the heuristic approach and the GA are 
complementary tools in the inverse-design process. The former can 
be used to quickly obtain a rough estimate of the optimal parameters 
in specific problems, whereas the latter can refine the parameters 
and explore a broader range of solutions. Finally, it should be noted 
that the algorithm does not guarantee to find a global optimum to the 
problem. However, we tested the convergence robustness by repeating 
this optimization problem three times, and obtained similar dispersion 
profiles for all iterations.

An additional scenario, targeting enhanced dispersive-wave emis-
sion, is discussed in the first section of the Supplementary Information. 
Before finalizing the meta-dispersion design, bidirectional LLE simula-
tions32 are performed, with sweeps of δω, Pin and γ0 to ensure that the 
desired nonlinear state can be achieved in the resonator, under realistic 
driving conditions (Supplementary Section 3 provides details).

Meta-dispersion
The complex dispersion obtained with the GA is realized by means 
of engineered mode splittings in a PhCR (Fig. 1c). A distributed cor-
rugated grating is fabricated on the inner wall of a ring resonator, 
introducing a clockwise–anticlockwise coupling and hence a mode 
hybridization. The corrugation’s period and amplitude respectively 
control the impacted longitudinal mode and the splitting amplitude. 
By appropriately superposing multiple corrugations, we generalize this 
concept to simultaneously control multiple dozens of modes, while 
faithfully retaining a designed spectral distribution of mode splitting, 
γμ. The combined ring waveguide dispersion and mode-splitting dis-
tribution define an effective synthetic dispersion, or meta-dispersion, 
on the blue- and redshifted branches, corresponding to the up- and 
down-frequency-shifted split modes.

PhCR design. Figure 3a shows the implementation of the optimization 
result using meta-dispersion. The dispersion is decomposed into two 
components. First, the ring’s dispersion is chosen to match the general 
sign of the optimized dispersion at high mode numbers, which allows 
us to set the waveguide’s cross-section. The mode-splitting spectral 
distribution γμ near the central modes is then taken as twice the dif-
ference between the target dispersion and that of the waveguide, so 
that one of the shifted branches coincides with the target dispersion. 
Finally, the corrugation’s azimuthal profile ρ(ϕ) is calculated by use of 
Fourier synthesis of this distribution:

ρ(ϕ) = ∑
μ∈ℤ

̃ρμ
2 cos (2(m0 + μ)ϕ + ξμ2) (3)

where the modulation amplitude ̃ρμ is determined based on an exper-
imental calibration of the frequency splitting versus PhC amplitude 
relation γ(ρ) (Methods). m0 is the ‘carrier’ modulation that sets the 
azimuthal mode index of the central mode, μ = 0.

Importantly, the various frequency components of the grating are 
superposed with a phase offset (chirp ξ) to distribute the corrugation’s 
amplitude evenly across the ring perimeter. This minimizes the cor-
rugation peak amplitude and preserves the shape of the desired split-
ting distribution. Indeed, because we use the fundamental transverse 

electric mode of the waveguide, which has the highest quality (Q) fac-
tor, the relationship γ(ρ) is non-monotonic. A similar dispersion control 
approach was developed concurrently in ref. 22, using the transverse 
magnetic mode, for which γ(ρ) is monotonic.

Characterization. We fabricated the designed devices in a 570-nm-thick 
Ta2O5 (tantala) layer on thermal silicon oxide, without top cladding (see 
ref. 33 for the fabrication details). The ring resonator baseline disper-
sion was controlled by changing the width of the waveguide (rw). The 
resonator FSRs were selected as 200 or 400 GHz. Figure 3b presents 
a scanning electron microscopy (SEM) image of a completed PhCR, 
revealing the corrugation pattern.

The dispersion and quality factors were characterized by use of a 
scanning laser spectroscopy method34, and the resonances frequen-
cies were detected and the integrated dispersion Dint retrieved. We first 
performed a meta-dispersion demonstration with a Gaussian splitting 
profile in a normal-dispersion ring, shown in Fig. 3c. The integrated 
dispersion Dint illustrates the deviation of each frequency-splitting 
branch from the continuous resonator dispersion. The resonance 
pair for each longitudinal split mode was fit with a model to recover 
the characteristics of the resonances. Thus, we found that adding the 
corrugation does not degrade the Q factor for modulation depths 
under 10% of the ring width. The splitting spectral profile γμ was also 
retrieved and shows a Gaussian shape, in excellent agreement with 
the design.

This characterization was repeated for several resonators, in which 
only the zeroth mode splitting was changed. Their respective splitting 
distributions are reported in Fig. 3e, which shows first the excellent 
reproduction of the global Gaussian profile across the devices. Second, 
we observed that single mode splitting control is accurately retained, 
in spite of splitting multiple tens of adjacent modes.

Figure 4 shows further examples of meta-dispersion demonstra-
tions, with various configurations of base ring dispersion (normal 
and anomalous) and to tailor the dispersion of the red- or blueshifted 
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branch. The principle works remarkably well in all cases, such as flatten-
ing the blueshifted branch or carving a localized stronger dispersion. 
Deviations from the measured profiles are nevertheless observed, 
caused by avoided mode crossing. These are due to the presence of 
higher-order modes in the resonator and can be problematic for the 
formation of DKSs35.

Comb generation
We conducted comb generation experiments in PhCR structures with 
meta-dispersion profiles for two configurations of target comb spec-
tra. To initiate comb generation, the laser power was increased, and 
its frequency was swept through the redshifted resonance of the split 
mode μ = 0, starting from the centre of the split and increasing the 
laser wavelength.

The first configuration targeted a comb with a minimum comb line 
power. The measured dispersion, shown in Fig. 5a, corresponds to that 
of a normal-dispersion ring resonator (rw = 2.3 μm, radius 109 μm) with 
a slight anomalous meta-dispersion near the pump, to reproduce the 
optimized design shown in Fig. 2g. The device was pumped with 55 mW 
on-chip. The detuning was first increased to trigger the formation of 
an initial comb state and then reduced (backward tuning) to induce 
switching into the state shown in Fig. 5b. The spectrum is analogous to 
a platicon comb25, but with a flattened centre lobe compared to a single 
PhC device (shown in red in Fig. 5b), and a wider bandwidth for the same 

pump power and base ring dispersion. The number of consecutive teeth 
within the 5-dB bandwidth is increased from ~20 to ~50. Notably, the 
power per line in the central lobe is lower than in the wings, as featured 
in the predicted inverse-design comb in Fig. 2f. We confirmed that 
this comb is a low-noise state by recording its intensity noise, which 
coincides with the instrument’s noise floor (Fig. 5c). Several comb state 
transitions and breathing stages were observed by changing the power 
and detuning (Supplementary Fig. 3), revealing complex dynamics.

The second configuration aims at generating Gaussian-shaped 
combs. The ring features anomalous base dispersion (rw = 1.55 μm, 
radius 53 μm), and the meta-dispersion is chosen to replicate the com-
puted optimized dispersion in Fig. 2c over a limited range of the red-
shifted branch, as shown in Fig. 5d. This meta-dispersion PhCR device 
is compared to a regular ring resonator with the same geometry to pro-
vide a baseline for comparison. Figure 5e shows the combs produced 
in each resonator in the unstable modulation instability (MI) regime, 
when pumping with ~90 mW on-chip. We also ensured that the comb 
states have comparable intensity noise properties and are in the same 
stage of MI (subcomb merging36). The regular ring produces a typical MI 
comb, with powerful comb lines surrounding the pump (correspond-
ing to primary lines) and a dip in comb-line power near the pump. The 
meta-dispersion resonator exhibits a markedly different comb enve-
lope, with a smoother decrease in power from pump to wings. The MI 
comb bandwidth is also largely reduced, highlighting the impact of the 
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Fig. 5 | Comb generation in meta-dispersion PhCRs. a, Measured integrated 
dispersion. The meta-dispersion resonator (in blue) features a flattened and 
slightly anomalous dispersion near the centre modes (on the down-shifted 
branch), in an overall normal-dispersion ring. A normal-dispersion ring with  
a single mode splitting at μ = 0 that allows comb generation is shown in red.  
b, Optical-frequency comb measured on an optical spectrum analyser, obtained 
in the meta-dispersion resonator (blue) and regular PhCR (red). The on-chip 
pump power is 55 mW and 56 mW, respectively. c, The intensity noise of the 

combs shown in b (blue, red) coincides with the electrical spectrum analyser’s 
noise floor (black), confirming a coherent mode-locked state. d, Integrated 
dispersion of a PhCR microresonator for Gaussian-shaped comb generation 
(blue), compared with a regular ring with anomalous GVD (red). e, Comb states 
generated in each ring (PhCr in blue, regular in red), in the noisy modulation 
instability regime. The pump powers are 91 mW and 89 mW, respectively.  
f, Intensity noise of the combs shown in e. The peaks indicate MI instabilities.
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PhCR in shaping the microcomb. Unfortunately, stable mode-locked 
soliton sates36 could not be obtained in this meta-dispersion device, 
nor in the regular ring, probably due to the photothermal effect in 
the cavity37,38, which is particularly strong in Ta2O5. The presence of an 
avoided mode crossing near the pumped mode can also hinder soliton 
formation35. Therefore, the PhCR comb envelope does not match the 
expected Gaussian shape, which is obtained in the soliton state, as 
shown in the following. Nevertheless, we believe that these limitations 
are not fundamental, but are of technical nature, and that the desired 
states can be achieved on a more mature technology platform.

Comb simulation. We compared these experimental observations 
with bidirectional LLE simulations32, as detailed in the Supplemen-
tary Section 2. First, we set out to reproduce the comb states in noisy 
MI to validate our model. The parameters used were taken from the 
experimental measurements of the resonators shown in Fig. 5d. The 
detuning was the only adjusted parameter, to recover the unstable MI 
regime in each resonator. The averaged spectra shown in Fig. 6a are in 
good agreement with our experimental observations.

Second, because numerical simulations are not subject to ther-
mal effects, they allow us to extrapolate the shape of the stationary 
‘mode-locked’ pulsed states in each resonator, which are reached 
at higher detuning (Supplementary Section 3). The corresponding 
comb spectra are overlaid in Fig. 6b. The PhCR comb clearly deviates 
from the usual DKS sech2 profile formed in the standard resonator, 
and follows a Gaussian shape within the meta-dispersion bandwidth. 
These projections further show that the nonlinear cavity field state is 
governed by the meta-dispersion.

The results presented here show only the combs co-propagating 
with the pump. Because the combs are supported by hybrid modes, 
whose splitting amplitude is substantially larger than the Kerr shift20,26, 
they are typically generated with near equal power in the clockwise 
and counterclockwise directions. However, transitions to a dominant 
direction have been observed, especially when the dispersion is pre-
dominantly normal.

Discussion
In summary, we have demonstrated the spectral shaping of microcombs 
by inverse design, using an optimization layer on the LLE, and we have 
demonstrated the scalable use of PhCRs for effective meta-dispersion 
engineering. This flexible approach enables mode-by-mode selectiv-
ity and control of nonlinear frequency shifts that are critical in Kerr 
microcombs. We also showed that meta-dispersion can be used in the 
nonlinear regime to perform spectral shaping of microcombs.

Further fundamental studies are still needed to fully understand 
the nonlinear dynamics in hybrid modes, to help control comb forma-
tion in these new devices, and to refine our inverse design approach. 
Moreover, we are considering several ways to enhance our method. The 
optimization algorithm could occur directly on the meta-dispersion 
parameters, using the bidirectional LLE within the evolution loop. This 
nonetheless requires a robust method of seeding the cavity field in both 
directions. In this respect, machine learning could contribute to speed 
up the computation, and robustly find the soliton or related nonlinear 
eigenstates. Other implementations of the optimized dispersion can be 
conceived, based on coupled resonator chains31,39, through engineered 
avoided mode crossing with higher-order modes40, or by using discrete 
inverse-designed reflectors19.

We believe that our comb customization procedure is promising 
to fully unlock the application potential of microcombs, first in optical 
telecommunications, where it can maximize the conversion efficiency 
and the power per line in the bandwidth of interest. In spectroscopy, 
our concept can help open access to new wavelength ranges, or shape 
combs that target specific chemical species. Additionally, one could try 
to optimize the control of the comb parameters (repetition frequency 
and offset) to improve its intrinsic stability. Finally, the presented 
method offers new avenues for nonlinear physics, making previously 
unrealistic dispersion profiles accessible, while contra-propagative 
coupling promises to produce a myriad of complex dynamics that 
remain to be explored.
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Methods
Genetic algorithm
Our goal is to find the parameters Dk, γ0, δω and Pin that yield a station-
ary comb profile (for the LLE) ̃Aμ that minimizes an error function  
ℰ( ̃Aμ), which quantifies our objective. The optimization problem can 
be formalized as follows:

⎡⎢⎢⎢⎢
⎣

minimize
Dk ,γ0 ,δω,Pin

ℰ( ̃Aμ)

subject to {
eq. (1) = 0

Pin ≤ Pmax

(4)

The latter term constrains the pump power within a limited power 
budget. Based on the available power and our resonator’s properties, 
we set Pmax = 13Pth.

The LLE steady-state field for each member of the population is 
estimated using split-step Fourier-transform integration43 of equa-
tion (1). An initial pulse consisting of an approximate soliton profile3 
is seeded in the simulation, and its evolution through the LLE is com-
puted for 100 photon lifetimes. The pump power and detuning are 
kept constant. Although the stationary state of the LLE can be found 
using a Newton–Raphson method3, we found that its convergence was 
slower and less systematic than the split-step approach, especially in 
complex dispersion profiles.

The steady-state solution of each member of the population is 
then ranked according to a metric ℰ( ̃A, Dk), which measures each comb’s 
‘fitness’ with respect to the optimization goal. The smaller the error, 
the more fit the candidate. This metric can be the squared Euclidean 
distance to a target comb shape ̃Atarget

μ :

ℰ( ̃A) = ∑
μ≠0

(| ̃Aμ| − | ̃Atarget
μ |)

2
(5)

This metric can be complemented to favour stable low-noise states, 
by adding the standard deviation of the mean comb power, estimated 
during the second half of the split-step evolution.

The raised-cosine comb spectrum shape is defined with the fol-
lowing expression:

̃Atarget
μ =

⎧
⎪
⎨
⎪
⎩

1, |μ|
∆

≤ (1 − β)

cos2 [ π
4β
( |μ|
∆
− (1 − β))] , ||

|μ|
∆
− 1|| ≤ β

0, otherwise

(6)

where Δ is the comb’s 3-dB bandwidth and β is the roll-off factor,  
which controls the slope of the power decay in the outer lines of  
the comb.

Another metric can be used to ensure a minimum comb line power 
Pmin over a given bandwidth Δ:

ℰ( ̃A) = ∑
μ∈∆

max (0, Pmin −
ℏωμ D1

2π | ̃Aμ|2) (7)

In this way, comb lines exceeding the criterion are not penalized. A soft 
threshold function can also be used to force the power to be within 
a given range. The flat-top comb initial model follows the equation 
Aμ = A0/(1 + μ/B)8, where B sets the bandwidth and A0 the comb-line 
magnitude. A0 was set to the maximum value authorizing convergence 
to a stable comb state.

In general, engineering the error function is a key aspect of 
inverse-design problems, and it requires careful consideration of the 
optimization goals, constraints and trade-offs. The two functions in 
equations (5) and (7) are two extreme cases when it comes to evaluat-
ing the comb’s shape over a bandwidth of interest, as the former gives 

equal weights to all comb lines, whereas the latter only accounts for 
the lines within a spectral region and disregards the lines outside. A 
more general approach is to introduce weight factors that reflect the 
importance of certain comb lines or regions of the spectrum. Alter-
natively, one could also use a weighting function that assigns higher 
importance to certain dynamics of the comb, to identify phenomena 
such as breathing.

Note that if the targeted problem is frequency-symmetric with 
respect to the pump, all odd dispersion coefficients can be set to 
zero and the optimization can be performed only on the even terms, 
reducing the number of variables while ensuring the symmetry of the 
solution.

At each iteration of the GA loop, a new population is created. 
First, the two best individuals from the last generation are carried 
over unchanged (elitism), which guarantees that the current optimum 
is preserved. Then, each new offspring is generated by selecting two 
(or more) parents at random, with a probability inversely propor-
tional to their residual error, so that the fittest for the problem are 
selected more frequently (roulette wheel selection). The dispersion 
coefficients (genes) of the offspring are randomly selected from its 
parents (uniform crossover). The better the fitness of a parent, the 
more likely its genes will be selected. Finally, the offspring’s genes 
are mutated by adding a random value drawn using a normal dis-
tribution with standard deviation σ. As the number of generation 
increases, σ is gradually decreased to favour the convergence of  
the algorithm.

Our genetic evolutionary algorithm was developed in MATLAB, 
without the use of existing optimization libraries. To speed up the 
steady-state intra-resonator field calculation, we implemented par-
allelization of the split-step Fourier-transform computations. This 
allowed us to substantially reduce the computation time, making the 
optimization process feasible within a few hours.

Mode-splitting calibration
The relation between the PhC amplitude, ρPhC, and mode splitting was 
calibrated experimentally on a series of single period PhCRs of identical 
base geometry (ring radius 109.5 μm, width 2 μm, height 570 nm), while 
the PhC amplitude ρPhC was swept. The results are shown in Extended 
Data Fig. 1. Note that the reported amplitude corresponds to the design 
value and not the measured geometry.

Although the relation is linear at small corrugation amplitudes, it 
reaches a maximum at ρPhC of ~200 nm for γ/2π ~ 35 GHz and the tuning 
direction reverses. We found that a near null splitting can be obtained 
for an ρPhC of ~420 nm, before γ increases again for larger amplitude 
values (Extended Data Fig. 1, inset). This counterintuitive bandgap 
closing was observed and explained by Gnan et al. in photonic wire 
Bragg gratings and is related to Brewster angle incidence44 (it is also 
studied in ref. 22).

We did not observe any significant deviation from this calibration 
upon splitting multiple modes. Chirping the frequency components of 
the corrugation to reduce amplitude variations allows us to stay within 
the linear segment of this relationship and ensures a good replication 
of the splitting profile, as shown in Extended Data Fig. 2. Limiting 
the amplitude variations in the corrugation also avoids the need for 
high-aspect-ratio etching, which thus simplifies the nanofabrication 
of the PhCR.

Data availability
The data and code used to produce the figures of this manuscript are 
available on Zenodo at https://doi.org/10.5281/zenodo.7998103.

Code availability
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form the dispersion optimization is available at https://github.com/
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Extended Data Fig. 1 | PhC and mode splitting calibration. Measured mode splitting of the target mode as a function of corrugation amplitude ρPhC (single frequency 
PhC), measured across 114 resonators. The inset shown an extended range of ρPhC.
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Extended Data Fig. 2 | Effect of distributing the PhC pattern along the ring 
perimeter. (a) Measured mode splitting distribution with various amount of 
chirping applied to the corrugation pattern. The design target is the Gaussian 

distribution shown in black. (b-d) Spatial profiles of the designed corrugations. 
(a) Without chirp, the splitting distribution is distorted and even inverted. The 
effect is avoided by chirping the pattern.
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