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Lj\itig a unified theory of spectral  line broadening previously dcveloprd,  the effvcts ( ~ f  time- 
iird(>rinp ovcr tlic c.omplc’tc l i n e  profile a r e  investigated. T h e  behavior o f  the t ime-ordered thermal 
av r rap r  arid uri-titnr-l,rdrred tlrermal average a r e  compared. T h e  Fouricr transform of the thermal 
avvrapc. is ihtainc-d analytically. Calculations for the  line profile of  the Lyman-a l ine of hydrogen are 
prc:sc.ntc*d a n d  art. represental i ie  in that the ful l  thermal average is  replaced by the thermal averagr  
w i t h  the  clertron vc+wity distribution approximated byf(u)=d (ma,.) where u,, is the  thermal velocity 
f i l r  thr pla\nia in quc>tioii. 
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1. Introduction 

Classical path calculations of Stark-broadened profiles have usually been made within the  
framework of two different models, valid over different regions of the profile. The  impact theories 
of, Cr iv tn ,  Kolb, and Shen [ l ] ’  and Baranger [ 2 ]  yield results appropriate to the line center 
(Aw<: a,,, w,, being the plasma frequency). In these theories, the electron collisions a re  assumed 
t o  be completed and electron correlations a re  approximated by impact parameter cutoffs. Initially, 
the calculations of the S-operator were made to second order only. Later Shen and Cooper [ 3 ]  were 
able to calculate t h e  un-time ordered S-operator to all orders. In the other limit, quasi-static 
theories were used to describe the wings of the profile (Am> A q , ,  AwC being the Weisskopf fre- 
quency). Recently, a “unified theory” has been developed by Smith, Cooper, and Vidal [4]. The 
expression for the line shape derived in this theory is (under certain conditions) valid over the 
entire profile and yields both the impact and single perturber quasi-static results in the center 
and wings respectively. 

Line profile calculations on the basis of the “unified theory” have been made for hydrogen by 
the same authors [5]. In  describing the transition region from the line center to the line wings, 
the calculations include the effects of incompleted collisions through the use of a more general 
time-development operator which does not employ the usual completed collision assumption. 
Further, a s  in the case of Shen and Cooper [3],  the calculations were made to all orders for the 
un-time-ordered exponential form of the time-development operator. The  interaction potential 
was approximated to be of the dipole type and the ion broadening was treated a s  quasi-static. 
The correlation between the plasma perturbers was considered by cutting off the interaction 
potential at the Debye-length of the plasma. Additionally, for numerical convenience, a strong 
collision sphere was employed, inside which the collisions were assumed strong enough to 
destroy the phase coherence of the radiator. The  radius of this sphef-e was taken to be p,,=A+n2ua,,  
where A is the thermal de Broglie wavelength of the colliding electron. Time-ordering was not 
included in these calculations. 

In the S-matrix limit, Bacon, Shen, and Cooper [6] have investigated the effect of time- 
ordering on the Lyman-alpha profile. In addition, their interaction potential included all terms in 
the multipole expansion. The results of these calculations indicate that a dipole type potential 
yields little deviation from the more general case including all multipole terms, until impact 
parameters smaller than about 3 k are  reached. The effects of level-splitting caused by the ion- 
fields were ignored when calculating the time-development operator (S-operator). The upper 
impact parameter cutoff was fixed at the Debye length and the lower impact limit was taken to 
be the thermal de  Broglie wavelength of the perturbing electron. 

The purpose of this paper is to present a model calculation of the effect of time-ordering 
o n  the resultant line shape a s  obtained within the framework of the “unified theory” of Smith, 
Cooper, and Vidal [4]. The calculation is representative in that the full thermal average is 
replaced by  the thermal average evaluated at  an average electron velocity for the plasma. The 
effects of incompleted collisions and a Debye-shielded potential, a s  well a s  a strong collision 
sphere cutoff o n  the potential were included. The results of the time-ordered calculation are 
compared with the un-time orderrti result for Lyman-alpha. The calculations are done for an 
electron density of 10” cn-:i and tAlectron temperature of 20,000 K [6].  
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2. The Unified Theory Line Shape for Lyman-Alpha 
The approximations inherent in a classical path treatment are well known [7, 81. In addition 

to these we will approximate the effects of the ion microfields in a quasi-static manner by regarding 
their collective field as essentially constant during the times of interest, l / A w .  The final profile 
is obtained hy averaging the line shape for a given static ion field over the distribution of ion fields 
for the plasma in  question: 

r 

;I (w)=  P ( E )  I (w,  E )  dE. i (2.1) 

The distribution function, P(E),  is the low frequency component of the fluctuating microfields in 
the plasma [9, 101. The  line shape for a given static ion field obtained from the “unified theory“ 
is given as [SI  

I 1 1 
7T <,a 

I (0 ,  E)=- ImC<a ld l /3>  <p’ ld la ‘>  <aIpIa> <P’a’ l  Aw,p .C(Aw, , )  -‘1/3a>, ( 2 . 2 )  

where the sums are over atomic states. Matrix elements of Am,, give the frequency perturbation 
from the position of the Stark component, shifted due  to the static ion fields. TheT-operator is 
defined within the impact approximation (not to be confused with the impact theory which makes 
the completed collision assumption) by the following expression: 

BP 

itAw,, <6, - 1 > dtAw,,. .P (Aw,,p)=-iAwop e i (2 .3)  

In general, the time-development operator is tetradic. This is necessary to include the effects 
of both upper and lower state perturbations; however, for the Lyman lines lower state inter- 
actions are negligible and the time-development operator between lower states may be replaced 
by a unit operator, thus, the time-development operator becomes 

Here (3 denotes the chronological ordering operator and the time-development operator has to 
be evaluated only between the upper states of the line. 

The potential operator, V in the above expression is written in an interaction representation 
and is defined in terms of the classical interaction potential, V,  by 

(2.5) 

where HI, is the Hamiltonian of the atomic system in the static ion field. In the expression for the 
2-operator (eq. 2.3), the brackets around the time-development operator denote the usual thermal 
average over perturber states. In the classical path approximations the thermal average becomes 

(2.6) F , ( t ) = < 8 , - l > = n , . ~ x 1  dv, W ( q )  [n,(Rl,  x,, v,, t )  -1 I , 
where R denotes the position of the atomic orbital electron, the perturbing electron position and 
velocity being xI and v, and the  subscript one indicates a binary collision of a single electron (a 
conskquence of the impact approximation). W ( v l )  is the classical electron velocity distribution 
appropriate to electrons of temperature T,,. Generally, this velocity distribution of the electrons 
is taken to be Maxwellian resulting in the distribution W being related to the Maxwell distribution 
of speeds through W(vl)=f(vl)/4.rrul’. As mentioned earlier, however, in this calculation f ( v l )  is 

replaced by 6(v-v,,) where u ; , ~  is the thermal velocity v,,= J- 3kTe/m, for the plasma in question. 

I n  terms of the more convenient collision variables (see Appendix of [ 8 ] ) ,  the thermal average 
reduces to 
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Here !) points along t h e  z-axis, v,, along the x-axis and t,, denotes some reference time of the 
pc rt u I l  i t’ r. 

To ot)tain the line shape it is necessary to invert the matrix 

with /u>, la‘>, IP> and IP‘> being H,, eigenstates. For hydrogen, the indicated eigenstates are 
taken t o  be parabolic. When considering well isolated lines such as Lyman-alpha, the off-diagonal 
elements in principal quantum number are generally small and the no-quenching approximation 
can be applied. Thus, matrix elements are taken to be non-zero only when occurring between 
states with the same principal quantum number. The  2’-operator matrix elements for Lyman- 
alpha become 

<2qm/k? (Aw,,)J2q’mf> = -iAw2p,,lAo29,r,,, e itAw2,,,, <2qml FI(va\,, t)12qfm’>dt, (2.9) 

where t h e  dependence on la> and la’> has been dropped since these states correspond to the 
single final state, I loo>, for Lyman-alpha which is essentially unperturbed as previously dis- 
cussed. The  quantum number q is defined in terms of the usual parabolic quantum numbers, ni and 
n,, according to q=n,-n2 and m is the magnetic quantum number. 

In order to obtain matrix elements of Fl(vav, t ) ,  we require elements of U ,  which in turn 
require matrix elements of the form 

I 
- 

(2.10) 

At this point we simplify the right hand side by invoking the sudden approximation which allows 
us to set the exponential equal to one in the preceding equation. This approximation has been 
dealt with in some detail by Van Regemorter [ l l ]  and will not be discussed further, however, 
i t  is made in previous Stark-broadesing calculations (for a more complete discussion see refer- 
ence [ 8 ] ) .  Thus, matrix elements of V(t )  become simply matrix elements of the classical interaction 
potential, V(t). In evaluating the thermal average of F ,  we have to perform the spherical average 
which is most  conven ien t ly  d o n e  in sphe r i ca l  e igens t a t e s .  We rewr i t e  t h e  2 - o p e r a t o r  
matrix elements as 

<2qm 12 (Ao,,) I2q’m‘> = - iAo29,,,Aor,,,,,.~<2qm~21m> <21’m’ /2q‘m’> 
It ’  (2.11) 

itAwZq,,, <2LmJFi(v,,,., r))ZL’m’>dt. 

The transformation coefficients between spherical and parabolic states, <nqmln‘l‘m’>, have 
been obtained by Hughes [12] and are diagonal in magnetic quanfum number. 

Returning to the calculation of the thermal average, we must evaluate the following expression: 

on r 

(2.12) 

U ,  is ekaluated in the collision axes. In  performing the angular average, the atomic axes are rotated 
through fl into the space axes defined by p and v. The angular average then becomes 

(2.13) 
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wtrvre the D matrices are thr  convrn t iond l  rotation matrices [ 131. 
['h? t hernial averdgt. n o w  beconit.> 

(2.14) 

which is diagonal in spherical states. Thus, only the elements <2001F11200> and <21mlF,(21m> 
are needed for the line shape. (These elements are independent of m as a result of the spherical 
average.) 

3. Calculation of the Time-Ordered U, 
To obtain the full time-ordered time development operator, one may integrate the differential 

equation defining this operator (the subscript one will be dropped for the remaining discussion 
and a binary collision is assumed to he considered). In order to obtain the differential equation 
in terms of the collision variable, to,  we differentiate the Dyson expansion of the time-development 
operator (see, for example, reference [I41 page 240) with respect to t o  where this expansion 
is given by 

The  resulting differential equation becomes 

ih d l d t , ,  U(t +tl) ,  t,,)=V(t+to) U(t+t,, t,))-U(t+t,,, t o )  V(t0). (3.2) 

Up to this point no mention of the form of the interaction potential has been made. In prin- 
cipal, the full multipole expansion of the potential can be used; however, this would result in 
prohibitively long machine calculations. Further, since a dipole approximation of the interaction 
yields the major contribution to time-ordering [6] this form of the potential was used. Using the 
Debye-cutoff and the strong-collision cutoff, the interaction potential is given as  

where C p ' = d E )  YkV, R is the position of the orbital electron and rl,= J p"+&. t' is the 

radial position of the 
atomic dimensions as  
taken at the thermal 

perturber. In effect, the perturber is considered to remain outside the 
required by the classical path theory. The hard sphere cut-off, pmin, was 
wavelength of the colliding electron. In terms of spherical eigenstates, 

eq. (3.2) becomes for Lyman-alpha 

ih d / d t o  <21mlU)21'm1>= <21mJV(t+t,,)l2LM> <2LMIU12Lfm'> (3.4) 

-<2Lm(U(ZLM> <2LM( V(to)(21'm'> . 1 
The cutoff on the potential at the Deh>e-sphere and the strong-collision sphere make the calcu- 
lations velocity dependent for all values of the collision variables. For values of p>>IOA w e  find 
that the real parts of the matrix elements in eq. (3.4) become equal to the un-time ordered values. 
A s  discussed in more detail at the end of t h i s  section, this is merely a consequence of the fact 
that a second order expansion of the time-development operator is valid in this region. In this 
region U was approximated by U,, where 

(3.5) 
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,. I h e  calculation of thc un- t i rnv  oi-deretf t l iernial  average for  the “unified theory’‘ lint: shape has 
beell discussed in detail in the reference mentioned earlier [SI. At very small impact parameters 
(up to about .?A) an approximation d u e  to fkrman and Lamb [15] was employed. I n  this approxi- 
mation a unitary operator K ( t )  is introduced which instantaneously diagonalizes the interaction 
potential. The  time-ordered time-development operator is then approximately given by 

The region of validity of this approximation occurs for values of p<<p,,. (pi,. being the Weisskopf 

collision radius defined as  6 A n‘). In the intermediate region (.3+ <p<lOh) eqs. (3.4) were 

integrated numerically (Appendix A). For large interaction times, the time development operator 
has to converge to the S-matrix limit according to [8] 

(3.7) 

This convergence allowed the time-development operator to be  replaced by the S -operator for 
values o f t  which were found to satisfy t>>lO/w,, (w, being the plasma frequency). Physically this 
corresponds to times of interest large enough such that virtually all collisions are completed. 
The solution of the time-ordered 5’-operator required a Debye cut-off and hard sphere cut-off on 
the interaction potential and in this respect differed slightly from the previously mentioned calcu- 
lation of Bacon, Shen and Cooper [6]. (Also, the full thermal average was replaced by the thermal 
average evaluated at the thermal velocity.) 

For comparison, the un-time ordered time-development operator of eq. (3.5) was calculated 
in spherical states. This calculation differed from that of Vidal, Cooper, and Smith [5] only in 
that the thermal average was evaluated at the thermal velocity instead of making the full velocity 
average. From the results for the U-operator and the un-time ordered Uo-operator, it was possible 
to generate a difference function, D ( t )  = U ( t )  - U , ( t ) ,  which represents the effect of time-ordering. 

This effect is illustrated by figure 1, in which we plot the ratio C ( t ) / F ( t )  as a function of time 
for the (200) and (21m) matrix elements of the thermal average. Here C ( t )  is the thermal average 
of D ( t )  and F ( t )  the thermal average of the time-ordered time-development operator U ( t ) .  The 
time scale is normalized with respect to the inverse of the plasma frequency such that 

s=w,, t =  J 2 w,,t. (3.8) 

The effect of time-ordering is negligible for small times of interest corresponding to the static 
limit where Aw? Aw, and increases monotonically to a constant value for large times of interest. 
The largest effect on the thermal average occurs for times greater than about .I/&,, and for the 
(200) element is a 14 percent decrease while for the (21m) element it is a 11 percent increase. The  
accuracy of the calculations for C ( t ) / F ( t )  correspond to - 2 .005. 

In  order to clarify again the effect of time ordering on the time development operator, one 
can rewrite eq. (3.1) in the following manner [16] : 

x t * \ l l  



-0.oSC \ ,l1:01 

/ 

I I I I 

-0.12 

-0.14 

t -0.16 

-0.18 i 
FIGURE 1. Ratio of the thermally averaged difference function to the thermal average of the time- 

ordered time-development operutor. The time sccde i s  norniulized with respect to the 
inverse of the plasma frequencJ- ta=Gpt=g\/2 w p t ) .  

Clearly, if the commutators in the above expression can be ignored, time-ordering is unimportant. 
For collisions which a re  weak ( V ~ / t i <  1 where T is the collision time and V the interaction potential) 
it is apparent that this condition holds. It is this fact which leads to the convergence of U to the 
un-time-ordered result for impact parameters greater than about 10 k. In the quasi-static region, 
A w T > > ~ ,  it can  also be shown [8] that the commutators are negligible. Thus, we anticipate that in 
the static limit, for small times of interaction, the time-ordered and the un-time-ordered results 
for the time-development operator will coincide. 

4. The Fourier Transform of C(t) and the Profile 

The thermal average of the time-ordered time development operator is defined by 

F ,  (t)=F:‘ ( t ) + C  ( t )  (4.1) 

where FY ( t )  is the un-time ordered thermal average. Evaluation of thef-operator matrix elements 
in eq. (2.9) requires the Fourier Transform of F , .  As the Fourier Transform of FY ( t )  has been 
obtained elsewhere [5], we will concern ourselves with the transform of the difference function, 
C ( t ) .  We require the transform of both elements 

<ZOO 1 C ( t )  I200> and <21ni 1 C ( t )  I 2 1 m > .  

Denoting these a5 C ( l ) ( t )  and C“’(t), respectively, it is now poscible t o  proceed in a manner similar 
to that used for obtaining FY (Am). In terms of the variable s (eq. (3.8) ) and t h e  frequency variable 

where Lw=w-w,,. Aw is the frequency perturbation 
w,,. we require 

(4.2) 

from t h t a  position of the unperturbed line 
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As i i i  tht. ('as(' ( i f  k'y, c"(s) diverges at  large values of  s bccause of thr. neglect of  t h v  finite 1ifc:tinres 
of t l i v  statvs involvt~ti in the line. We thus introduce again a (:oiivt'rg:c.nce factor exp (-a) and 
c val u a t (a 

-(€-iAW,,)S C" (AG,,)=lim 1 e C" (s ) d s  
7 T  

c-11 

(4.4) 

In perftrrniing the transform, i t  is convenient to fit C"(s) with an  analytic function. Unfor- 
tunately, the small s behavior is not known analytically; however, both F , ( s )  and FO(s) are  known 
to  go as s:'" for small s. Consideration of the results of Berman and Lamb [IS] indicate that for 
small times of interest C"(s) is expected to go a s  a half-integer power of s. It was found that a 
function of the form 

(4.5) 

fit the available data. A suitable function which has both the large s asymptotic behavior and 
goes as  eq. (4.5) for small s was satisfied by a function of the general form 

lim HI1 (s) =h; S742+hll 
5-0 

!ID+ 2 s ... 

H " ( s ) = C  Hb (s) 

a;:s 

k 

3 k+3 

=c 2k+1/2' 
p (s2+26;k) 

The transform C"(AiL,) is then given by 

1 -(~-i.Ai&) s Crl(AW,,)=C lim - e HIs! ( s )  ds 
e-(, lr 

(4.6) 

(4.7) 

where K,, is the modified Bessel function of zero order. The number of terms included above is 
determined by the desired accuracy of the  fit. In the calculation presented here it was possible to 
f i t  C"(s) down to small values of s with the first two terms of equation (4.6) (k=l  and k=2 terms). 
Writing these terms out explicitly, we have the following: 

-(? ( Z Y ) - 3 ) Y 1  (zy)-(F zy+- 22, J ,  i zy i l l  
Hg (A&,/)=-- a'6' 210 e -"'{ [ (4200 Z;-2112 (Z;)") J,, (Zg)-(256 (Z;)1-5136 (Z;)'+945) Y,, ( Z g )  

+(256 (ZP)'-ll76 (Z$r+l05) 1, (Z$)-(1984 (Z9)'i-2328 Z$') Y ,  (Zp)  1 
+i [ (256 (Z~)'-5136 (Zg)+945)  ,I,, (Z;)+j4200 29-2112 ( Z ; r )  Y,, (Z:) 
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where ,TI’=&’ AG, and Zi=b; A6,. The functions lo, Y,,, J I ,  and Y ,  are Bessel functions of  z e r o  
and first order. For large arguments of Zy or Zg the following asymptotic expansions are useful: 

2” ‘t f... . 
2 1 (2398.3) ( l+i)  - (21434.5) (I-i) 

%;-X Z; 2” ‘t f... . 
2 1 (2398.3) ( l+i)  (21434.5) (I-i) - 

a!:@ 1 
lim H!: (AG,J=-- __ __ 2.3.5.7 r z! 

In addition, for small values of AW,, C” (A&,) is approximated by 

(4.10) 

In order to compare the results of the transform of C”(t )  with the thermal average of the 
time-ordered time-development operator, it was necessary to obtain F! (A&,). In order to get this 
function, we approximate FP (s) with a function G(s)=G,(s)+G,(s) for both the (ZOO) and (21m) 
elements. The  functions G,(s) and G,(s) are the same as those defined by Vidal, Cooper, and 
Smith [5] and are  given in terms of the normalized time variable as 

(4.11) 

The transform of the time-ordered thermal average now satisfies 

F; (A&,)=G” (A6,)+C” (A&,), (4.12) 

where G” (A&,) denotes the transform of G”(s) defined in eq. (4.11). 
In figure 2 we have plotted the real part of C” (A&J/F:’ (Ah,,) versus the logarithm of Ahg for 

the (200) and (21m) elements. Realizing that for a frequency perturbation A o  we are mainly inter- 
ested in times of the order or smaller than l/Aw, such that 

AwAt>_ 1 (4.13) 

we see that in agreement with figure 1, the largest contribution to the transformed thermal average 
occurs for small Aw. Unlike the effects of electron correlations on the transform, which are 
important for values of Aw< o,, the effects of time-ordering extend somewhat further into t h e  
wings. As expected, however, in the distant line wings where quasistatic collisions occur, 
(A@> Aw,.) the effects of time-ordering are negligible. The  accuracy of the calculation of 

CJ‘ (A&,,)Fy (A&,) is - ? .01. The Weisskopf frequency, defined for Ly-a as Ao,.=v: / - with - m v , . = d F ,  is also marked. 

, The Lyman-alpha profile is  obtained by evaluation of eq. (2.2) followed by averaging over the 
distribution of ion fields appropriate to the plasma in question. This distribution, P ( E ) ,  is taken 
to be the one given by Hooper as  previously mentioned [9, 101. In order to see the effect of time- 
ordering on the full profile, the calculation of the un-time-ordered profile was obtained with 
the thermal average approximated by the G function of eq. (4.11). The  time-ordered result was 
obtained by calculating the profile with the thermal average of eq. (4.12). In figure 3 we have 
plotted the ratio A.3/<JF, versus Aw where 

3h . 

&=;I,., -;I (;. (4.14) 

A;\ is t h e  diKerence between thy  two lint: profiles bascd on  the ordered and un-ordered time- 
development operators. ;$ I . ,  is the time-ordered profile. 
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FIGURE 2. The ra t i o  C:"/E'; versus AGq. C"(AG,j is the Four ie r  transform of'the the rma l l y  averaged 
difference funct ion between the ordered and  the un-ordered timchdecelopoient operators. 
F; i s  the Four ie r  transJorm of the time-ordered thermal  average. 
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FIGLIRE 3.  The ra t io  A J J  versus Sw ichere A J i s  the diflerence between the two l i n e  profiles based on the 
ordered a n d  un-ordered time-development operators. d is the t ime-ordered prof i le.  

The "unified theory" yields a normalized profile; consequently, a s  expected the contribution 
A 2  is normalized to zero. In the same plot we show the results with the ion microfield average 
removed. 

It is clear from figure 3 that the effect of time-ordering in the line center is to decrease the 
intensity. The  profile increases in intensity as we g~ towards the wings until we reach roughly 
one-tenth the plasma frequency. It then decreases followed by a smaller increase near ten times 
the plasma frequency. This latter increase is attributablc. t o  the effects of time-ordering near the 
shifted Stark component. To demonstrate this we have included in figure 3 the  case where the 
Stark splitting due to the ions has been neglected by setting E,,,,=O. To summarize, it appears 
that the efeect of time-ordering o n  the final l ine profile tends to  smear  out the structure near 
the line center. 
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I n  the results of Bacon, Shen, and (Iooper [6] tlie final profiles werc‘ normalized t o  one i n  t he  
line center. 4 plot of the data from this calculation yields an increase i n  the half-width of the line 
due to time ordering by  about 14 percent (this is i n  clirst the results of the Bacon, 
Shrn ,  and (:lJlJper calculation versus that for t h r :  ,‘;h?n-( 

As o n r  goes towards larger values of‘ IL (where n=log,,, (Ah) i n  figs. 2 and 3) ,  we realize that 
the influencr of  time-ordering d r c r r a x s .  Since t h y  time-developrrient rJpc,rator lias been calcu- 
latrd wi th  the same accuracy over t h e  entire rang?. the numerical accuracy of C”(A&,,)/F’((A&jJ 
tlecrea5es a ?  one goes to large u; huwevcr, for valuei of u larger than one, the profile is already 
down by a factor of lo6 from its value at the line center. Thus, we have discontinued the plots 
at u=1.6 (where the profile is about 10’ below the \ d u e  at line center). The effects below this 
point reflect primarily the error introduced in fitting the C”(s) at ver!- ~rnal l  times of interest 
i+ee  eq. ( 4 3 )  causing the ratio A<J/<7, to go slightly negative before returning to zero. 

5 .  Discussion 

l h e  calculation presented here was made within the framework of the classical path model, 
the effects of incompleted collisions and the full time-ordering. It was representative in that the 
fu l l  thermal average was replaced by the thermal average evaluated at the thermal velocity 

IC;,,= 3kT, /m) .  ‘I’he case considered corresponds to an electron density of lo’’ electrons per 

cubic centimeter and an electron temperature of 20.000 I.; with the  interaction potential taken to 
Le of the dipole type. The  calculations were made with the “unified theory” line shape of Smith, 
Cooper, and Vidal [4] and for comparison the  un-time-ordered time-development operator was 
also calculated at u,,.. 

The effect of time-ordering on the thermal average was found to increase monotonically with 
tinir:.  For the Lyman-alpha line (the case considered) the correction to the  (ZOO) matrix element 
approaches a constant value of about -14 percent for large values of time while for the (Zlm) 
niatrix element the correction approaches +11 percent. The  direction in which the correction 
occurs for these elements (decreases the (ZOO) and increases the (21m) with respect to the un- 
time-ordered case) is in agreement with the impact calculation of Bacon. Shen, and Cooper [6]. 
T11t. influence of time-ordering is still important at times of interest somewhat smaller than t=l/o,,; 
however, i t  eventually drops off to zero at values of t - l / A w c  (Aw,.=ZkT,,/3h. This behavior is 
reflected in the Fourier transform where we find an inverse behavior in frequency space. 
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7 7  I he largest c,orrc.c.tion takes p1ac.e for  small valtrc..: 0 1  Iw w i t h  t l i c ~  c.fi'vc.ts c~?ttc.ritiing past 
the* plasma frc'quvticy and finally drop~)ing off t o  z(bro i l l  t I i ( .  wings (Aw>Aw,  ). 

I tic. influcnc:r on t h r .  protile was the greatvst i n  t l i v  l i r i c ,  center w1ic~l-c~ the intensity M ' ~ S  found 
to dccreasr h y  about 12 percent. 'I'he hall-widtti inc,t-c.ases over the un-time-ordered result b y  
ahout 14 percent. 1 his is in agreement w i t h  a coniparison of the in1pac.t calculation [O]  arid the 
results of Shcn and Cooper [ 3 ] .  A s  one goes towards the wings of thc. 1)rofiIr the efect o f  time- 
ordering eventually causes an increase in  the intensity of the profile. 'this increase is smoothed 
out over a fairly large region with a distinct peak occurring at slightly less than an order of 
magnitude past t h e  plasma frequency. This increas? results f rom the effrcts of time-ordering 
in the vicinity of the Stark component shifted due to the ion fields. Beyond about ten times the 
plasma frequency time-ordering ceases to be important. In figure 4 we have plotted the ratio of 
the profile to the Holtsmark Aw-"' wing (resulting from considering only the ions). The un-time 
ordered result is also plotted along with the un-time-ordered result obtained using a full thermal 
average (dotted line). 

In  this plot only the 15, term o f  eq. (4.11) has been considered. A s  mentioned above, the 
effect  of t ime o rde r ing  is to lower t h e  L y - a  profile i n  t he  c e n t e r  a n d  to i n c r e a s e  i t  in t h e  
wings which effectively reduces the structure of the line profile. In comparing the results presented 
with various experiments in the high electron density regime we observe the following facts. For 
the experiment of Elton and Griem [17] (Ly-a, n,.=3.6x10" em-", T,,=20 400 K )  the correction 
from time ordering improves agreement between the theoretical profile and the experimental 
data, while in case of the measurements of Boldt and Cooper [18] (Ly-a, n,.=8.4x1O1' c m P ,  T,  
=I2200 h) the agreement becomrs worse. We also recall that in the S-matrix limit it was found 
[6, 191 for Ly-a,  as well as H,,, that the strong collision parameter is enlarged due  to the effects 
of time ordering. In view of these results it is therefore reasonable to expect that also in the case 
of the recent measurements by Wiese, Kelleher, and Paquette [20] H p  and H,, r~, ,=8.0x10'~ cm-" 
T,.=12700 K), which at the moment may be regarded as among the best Stark broadening measure- 
ments in the high electron density region, the correction due to time ordering improves the 
agreement between the theoretical and experimental profiles. (For more details see also Vidal. 
Cooper, and Smith [21].) 

r l  
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7 .  Appendix A 

The time-consuming portion of the calc,ulation involved obtaining the time-ordered tinie- 
development operator in the intermediate (.37+<p5lo.tC) region where nurrierical solution i ) f  the 
differential equations was required. I n  ordrr to  efficiently solve tlicsr equations a predictor- 
corrector method k n o w n  as Hamming's niethc,cl \ v a s  usc.d [22]. The at l \antayt .  c i f  this n i v t h o d  is 
that the value of thp function and ita derivative at the point i n  question are  obtained in two steps 
rather than by an iterative process. The  form of the differential equation solved is given as 

The  

@=f (x, y). 
dX 

basic equations utilized in the method are given as 

4h 
3 p, ,+ I =y,/-:: +- ( 2Y' ,, -Y',,- 1 + 2Y' /,-A Predictor: 

(A42.1) 

1 
Corrector: c , , + l = ~  (gy,, -~ , , -?+3h  (m' , ,+ l+2~ ' , , -2~ ' , , - l )  ) 

9 
121 Final Value: ~ , , + ~ = c , , + , + -  (p , ,+, -~ , ,*~) .  

Here p,,+] is the predicted value at the  point n + l  in terms of the value of the function, y, and its 
first derivative, y', at the preceding four points, m,,,, is a modification of the predicted value by 
taking into consideration an  estimation of the truncation error (avoiding an iterative type calcu- 
lation), m',,,, is an  estimate of the first derivative based on the  modified predictor, c , , + ~  is a 
correction term which must be applied top,,+,  to obtain the final result, Y, ,+~.  In the above equations, 
h is the step size and is determined by the desired accuracy of the calculation. A variable step 
size was used which insured the calculation remained within the  specified accuracy. A s  these 
formulas are not self-starting (the first four values for y are needed any time h changes) i t  was 
necessary to use a Runge-Kutta procedure to obtain these initial values. 
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