
Letters
https://doi.org/10.1038/s41567-021-01237-9

1Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, USA. 2Department of Physics, University of Colorado, 
Boulder, CO, USA. 3Texas A&M University, College Station, TX, USA. 4Department of Physics, University of Oregon, Eugene, OR, USA. 5Present address: 
Department of Physics, Stanford University, Palo Alto, CA, USA. 6Present address: Department of Physics, University of Oxford, Oxford, UK. 7Present 
address: Department of Physics, Southern Illinois University, Carbondale, IL, USA. ✉e-mail: shaun.burd@colorado.edu; daniel.slichter@nist.gov

Strong and precisely controlled interactions between quan-
tum objects are essential for quantum information process-
ing1,2, simulation3 and sensing4,5, and for the formation of 
exotic quantum matter6. A well-established paradigm for cou-
pling otherwise weakly interacting quantum objects is to use 
auxiliary bosonic quantum excitations to mediate the interac-
tions. Important examples include photon-mediated interac-
tions between atoms7, superconducting qubits8, and colour 
centres in diamond9, and phonon-mediated interactions 
between trapped ions10–12 and between optical and microwave 
photons13. Boson-mediated interactions can, in principle, be 
amplified through parametric driving of the boson channel; 
the drive need not couple directly to the interacting quan-
tum objects. This technique has been proposed for a variety 
of quantum platforms14–24, but has not, so far, been realized 
in the laboratory. Here we experimentally demonstrate the 
amplification of a boson-mediated interaction between two 
trapped-ion qubits by parametric modulation of the trap-
ping potential21. The amplification provides up to a 3.25-fold 
increase in the interaction strength, validated by measuring 
the speed-up of two-qubit entangling gates. This amplification 
technique can be used in any quantum platform where para-
metric modulation of the boson channel is possible, enabling 
exploration of new parameter regimes and enhanced quantum  
information processing.

In many experimental platforms for quantum science, inter-
actions between quantum objects are generated by coupling the 
objects via a shared auxiliary harmonic oscillator degree of free-
dom. The excitations of the harmonic oscillator are bosons (typi-
cally photons or phonons), which mediate interactions between the 
quantum objects. Such interactions have been used to demonstrate 
high-fidelity quantum logic gates25–27, spin-squeezed states of atoms 
and ions28–31, and the formation of novel phases of matter32,33.

Achieving high fidelity generally requires that the effective inter-
action strength must dominate the characteristic rates of decoher-
ence in the system. Recent theoretical proposals14–24 offer a way to 
increase the boson-mediated interaction strength through para-
metric modulation. When decoherence of the quantum objects to 
be coupled—including decoherence due to control fields used to 
implement the coupling34—is the primary source of infidelity, this 
technique can reduce that infidelity by decreasing the required 
interaction duration. Stronger interactions could also increase 
speed and reduce control signal power requirements in large-scale 
quantum processors.

The physics of amplified boson-mediated interactions can be 
modelled by considering a set of quantum objects with associated 
operators ŝi and a collective degree of freedom Ŝ ≡

∑
iβiŝi, with suit-

able coefficients βi. This collective degree of freedom is coupled to a 
harmonic oscillator mode with annihilation and creation operators 
â and â† and frequency ω, which can be parametrically modulated 
with characteristic strength g at 2ω + 2δ (δ is a system-dependent 
frequency offset). In a suitable interaction picture, the correspond-
ing Hamiltonian takes the form21 (see Methods):

ĤM =
h̄Ω0
2 (Ŝ†â+ Ŝâ†)− h̄δâ†â

+
h̄g
2 (â

2eiθ + â†2e−iθ
),

(1)

where the first two terms describe the unamplified boson-mediated 
interactions, with coupling strength Ω0 and detuning δ, and the 
third term describes the parametric modulation of the boson chan-
nel. Here θ is the relative phase between the parametric drive and 
the coupling interaction in the first term. This general Hamiltonian 
can be realized in many physical systems including trapped ions21,22, 
cavity optomechanics15 and superconducting circuit quantum elec-
trodynamics or atom–cavity systems17,18.

For interactions between trapped-ion qubits, the â and â† opera-
tors typically correspond to a normal mode of ion motion in the 
trap (whose excitations are phonons) and ŝi = σ̂i

j, where σ̂i
j is a Pauli 

operator for the ith ion with j ∈ {x, y, z}11,12,35,36. Here δ is the detuning 
of the spin-motion coupling drive from the frequency ω of the pho-
non mode used to implement the interaction, and βi describes the 
participation of the ith ion in the phonon mode. As another exam-
ple, one could also use equation (1) to describe atoms or supercon-
ducting qubits coupled to a single electromagnetic field mode in a 
cavity. There â and â† are the cavity mode operators, while ŝi = σ̂i

+, 
where σ̂i

+ is the effective spin-1/2 raising operator for the ith atom 
in the cavity. The βi then describes the relative atom–cavity cou-
pling strengths, and δ is the atom–cavity detuning. When g = 0, ĤM 
is equivalent to the Tavis–Cummings Hamiltonian37.

As a representative case, we examine the dynamics in a 
trapped-ion system without parametric modulation (g = 0). We 
consider two trapped-ion qubits (with single-qubit σ̂z eigen-
states |↑⟩ and |↓⟩) coupled through a shared out-of-phase mode 
of motion such that Ŝ = σ̂1

x − σ̂2
x (note Ŝ = Ŝ†). Applying ĤM will 

result in spin-dependent displacements in the phase space of the 
motional mode12,36. The two-qubit spin states |++⟩ and |−−⟩, 
where |±⟩ ≡

1
√

2 (|↑⟩ ± |↓⟩), are not displaced, whereas states |+−⟩ 
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and |−+⟩ will traverse circular trajectories in phase space (Fig. 1a),  
each acquiring a state-dependent geometric phase Φ equal to the 
area enclosed by its trajectory12,36. Applying ĤM for a duration 
τ = 2π/δ returns the harmonic oscillator to its initial state after a sin-
gle phase-space loop and disentangles it from the spin states. This 
results in the propagator38

Û = exp
(

iΦ4 Ŝ
2
)

, (2)

which generates an effective spin–spin interaction, where 
Φ = 2π(Ω0/δ)2. When δ = 2Ω0 and Φ = π/2 this results in the maxi-
mally entangled state: Û |↓↓⟩ =

1
√

2 (|↓↓⟩+ i |↑↑⟩). If we include para-
metric modulation (g ≠ 0), the dynamics can be elucidated by making 
the normal mode transformation39 b̂ ≡ â cosh r− â†eiθ sinh r, 
where r = 1

4 ln [(δ + g)/(δ − g)]. When θ = 0, this gives

ĤM =
h̄GΩ0
2 (Ŝ†b̂+ Ŝb̂

†
)− h̄δ

′b̂
†
b̂, (3)

where G = [(δ + g)/(δ − g)]1/4 = er and δ′

=

√
δ2 − g2 , with the 

requirement that ∣δ∣ > ∣g∣. The values of δ and τ depend on Ω0 and g,  
and are determined by numerically solving a system of nonlinear 
equations (see Methods). The transformed Hamiltonian has the 
mathematical form of a boson-mediated interaction without para-
metric driving, but the interaction strength has been increased by a 
factor of G. Similarly, we can derive the propagator as in equation (2),  
with the duration to acquire a given geometric phase Φ reduced 
by the same factor of G. The choice of θ = 0 gives the maximum 
amplification of the interaction strength; other values of θ provide 
less amplification, or even de-amplification (see Methods). The 
parametric modulation causes the |+−⟩ and |−+⟩ states to traverse 
elliptical, rather than circular, trajectories in phase space (Fig. 1b). 
Physically, the parametric modulation alternately squeezes and 
anti-squeezes the oscillator wave packets as they follow their ellip-
tical trajectories, resulting in amplification of the spin-dependent 
displacements22,40. For the case where Ŝ ̸= Ŝ†, the result of paramet-
ric modulation depends on the details of Ŝ. For example, in cav-
ity or circuit quantum electrodynamics, the increase in interaction 
strength is given by cosh(r), and the amplification is independent  
of θ, as shown in ref. 17.

In our experiment, we amplify boson-mediated interactions 
between two trapped 25Mg+ ion hyperfine qubits. The ions are held 
~30 μm above a linear surface-electrode radio-frequency trap40–42 
operated at 15 K. The harmonic oscillator mode is an out-of-phase 
radial motional mode with frequency ω ≃ 2π × 5.9 MHz. We use 
qubit states |↓⟩ ≡ |F = 3, mF = 1⟩ and |↑⟩ ≡ |F = 2, mF = 1⟩ 
within the 2S1/2 electronic ground state hyperfine manifold, where 
F is the total angular momentum and mF is its projection along 
the quantization axis defined by a 21.3 mT magnetic field. At this 
field strength, the qubit transition frequency ω0 ≃ 2π × 1.686 GHz is 
insensitive to magnetic field fluctuations to first order, resulting in a 
qubit coherence time longer than 200 ms. Global qubit rotations and 
coherent population transfer between hyperfine states as required 
for state preparation and readout are performed by applying reso-
nant microwave pulses to trap electrodes.

In each experiment, the ions are initialized in the electronic 
ground state |↓↓⟩, and close to the motional ground state (mean 
occuption n̄ ≈ 0.3 in the phonon mode used to mediate interac-
tions), with optical pumping, resolved-sideband laser cooling43 
and microwave pulses. Qubit readout is accomplished by transfer-
ring the population in |↓⟩ to 2S1/2 |F = 3, mF = 3⟩, applying a laser 
resonant with the 2S1/2 |F = 3, mF = 3⟩ ↔

2P3/2 |F = 4, mF = 4⟩ 
cycling transition, and detecting state-dependent ion fluorescence. 
Coupling between qubits and phonons associated with the shared 
motional mode is implemented using the Mølmer–Sørensen (MS) 

interaction11,38. We implement the MS interaction using oscillat-
ing near-field magnetic field gradients at ω0 ± (ω + δ), generated 
by currents in the trap electrodes (see Methods)44,45. We measure 
Ω0/2π = 1.46(1) kHz, corresponding to a nominal single-loop MS 
gate duration (τ = π/Ω0) of 342(3) μs. Generating the MS interaction 
in this way enables straightforward phase synchronization with the 
parametric modulation at 2ω + 2δ, which is implemented by apply-
ing an oscillating potential directly to the radio-frequency trapping 
electrodes as described in ref. 40.

To quantify the enhancement in the interaction strength due to 
parametric amplification, we find, for a given parametric coupling 
strength g, the optimum interaction duration for preparing the Bell 
state |ψB⟩ =

1
√

2 (|↓↓⟩+ i |↑↑⟩) from the initial state |↓↓⟩. In the 
absence of decoherence, this corresponds to acquiring a geometric 
phase of Φ = π/2, using a single phase-space loop. To determine the 
optimal interaction duration we perform measurements for differ-
ent values of the interaction duration tI and detuning δ′ at each g, 
and use the fidelity F(g, tI, δ′

) = ⟨ψB| ρ̂(g, tI, δ′

) |ψB⟩ of the prepared 
state as a success metric, where ρ̂ is the density matrix of the pre-
pared state46. For each g, we perform a two-dimensional (2D) qua-
dratic fit to the measured fidelity values versus tI and δ′ and use the 
tI value of the fit function maximum as the estimated optimal inter-
action duration t̃I,est (see Methods and Extended Data Fig. 1). With 
t0 ≡ t̃I,est(g = 0) = 331(1) μs denoting the estimated optimal inter-
action duration without parametric amplification, we plot the mea-
sured gate speed-up t0 /̃tI,est versus g in Fig. 2a. The values of ̃tI,est tend 
to be shorter than predicted by analytical theory without decoher-
ence. This effect arises from a trade-off between fidelity reductions 
from amplified motional decoherence (which penalize longer tI)  
and fidelity reductions from incorrect geometric phase acquisition 
or failure to close the phase-space loop (which penalize tI either 
shorter or longer than the optimal duration without decoherence). 
The measured ̃tI,est values agree quantitatively with numerical simu-
lations incorporating motional heating and dephasing mechanisms. 

∣+ –〉

∣+ –〉

∣– +〉

∣– +〉
Im(α) Parametric

modulation

a b

Im(α)

Re(α)

Geometric
phase, Φ  

Re(α)

Fig. 1 | Phase-space illustration of boson-mediated interactions. We 
show the dimensionless complex harmonic oscillator amplitude α and 
corresponding schematic quasi-probability distributions7 (shown in dark 
blue, with past positions outlined in grey) for two qubits (Ŝ = σ̂1

x − σ̂2
x) 

assumed to be initialized at the origin of phase space. In both panels, 
the interaction duration is the same. a, Without parametric modulation 
(g = 0), the wave packets associated with the |+−⟩ and |−+⟩ spin states 
follow circular trajectories in a frame rotating at ω + δ. The enclosed area 
(shown in light blue) is equal to the acquired geometric phase Φ. b, With 
parametric modulation of the trap potential at 2ω + 2δ, the trajectories 
(again viewed in a frame rotating at ω + δ) become elliptical and the 
motional wave packets are alternately squeezed and anti-squeezed. The 
parametric modulation results in increased geometric phase being acquired 
per unit time.
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For the strongest parametric coupling of g = 2π × 49.7(6) kHz, we 
experimentally measure a speed-up factor of 3.74+0.16

−0.04. With this 
g and the independently calibrated Ω0, we calculate a theoreti-
cal enhancement in the phonon-mediated interaction strength of 
G = 3.25(1) (see Methods).

The amplified motional decoherence also causes the interac-
tion fidelity to diminish as g is increased. We define the maximum 
experimentally measured fidelity F̃exp(g) for a given g (scanning 
over δ′ and tI, see Methods) and plot F̃exp for each g in Fig. 2b. For 
a parametric coupling strength of g = 2π × 49.7(6) kHz, we measure 
F̃exp = 0.860(8) for tI = 90 μs, compared with F̃exp = 0.974(4) with-
out parametric amplification at tI = 350 μs.

In our experiment, decoherence of the shared boson mode (ion 
motion) is the dominant source of gate infidelity. However, deco-
herence mechanisms not arising from the shared boson mode 
(for example, off-resonant photon scattering from laser control 

fields34,47) are not amplified; in cases where these are the domi-
nant source of infidelity, parametric amplification may improve 
the interaction fidelity by reducing the interaction duration21. As 
a proof-of-principle demonstration of operation in this regime, 
we introduce excess qubit dephasing by applying a current oscil-
lating near ω0 to one of the trap electrodes. The detuned current 
gives rise to an ac Zeeman shift of the qubit frequency. The ampli-
tude of the current is randomly changed every millisecond to give 
a Gaussian distribution (standard deviation of 2π × 0.47(2) kHz, 
see Methods) of qubit frequency shifts in time. In the presence of 
this dephasing, the maximum F̃exp without parametric modula-
tion is 0.777(6), at tI = 310 μs, whereas with parametric modulation 
(g = 2π × 12.1(1) kHz) we measure a maximum F̃exp of 0.912(7) at 
tI = 160 μs (Fig. 2b red points). Further increases in g reduce the 
fidelity, due to amplified motional decoherence.

In the experiments described above, the phase θ of the paramet-
ric drive with respect to the MS fields was set to give maximum 

a

b

4.0

3.5

3.0

2.5

S
pe

ed
-u

p
B

el
l-s

ta
te

 fi
de

lit
y

2.0

1.5

1.0

0 10 20

Parametric coupling strength, g/2π (kHz)

30 40 50

0 10 20

Parametric coupling strength, g/2π (kHz)

30 40 50

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Experiment

Experiment

Analytical theory (no decoherence)

Numerics (including motional decoherence)

Numerics (including motional decoherence)

Numerics (including motional and qubit decoherence)

Experiment (qubit decoherence added)

Fig. 2 | Bell-state fidelities and speed-up. a, Speed-up t0/̃tI,est as a 
function of g. The dashed line is the prediction from analytical theory 
without motional decoherence. The small points are the results of 
numerical simulations including motional decoherence, with the coloured 
bands representing the corresponding 68% confidence intervals, linearly 
interpolated between simulated points21. b, Bell-state fidelities with and 
without added qubit dephasing. We plot F̃exp, the maximum measured 
fidelity for each value of g, determined by scanning over a 2D grid of 
interaction times tI and detunings δ′. Red circles (blue circles) indicate data 
taken with (without) added qubit dephasing noise (see text and Methods). 
Small points show numerical simulations of the maximum fidelity (varying 
tI and δ′) as a function of g, including motional decoherence, and either 
with (red) or without (blue) added qubit decoherence. The coloured bands 
represent 68% confidence intervals on the numerically simulated values, 
linearly interpolated between simulated points. In a and b, experimental 
error bars indicate 68% confidence intervals.

a

b

B
el

l-s
ta

te
 fi

de
lit

y

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

In
te

ra
ct

io
n 

du
ra

tio
n 

(m
s)

0.3

0.4

0.5

Parametric drive phase, θ/2π

Parametric drive phase, θ/2π

1.0

0.9

0.8

0.5
–0.50 –0.375 –0.25 –0.125 0.125 0.25 0.375 0.500

0.7

0.6

Experiment

Experiment

Analytical theory (no decoherence)

Numerics (including motional decoherence)

Numerics (including
motional decoherence)

Numerics
(no decoherence)

Fig. 3 | Phase dependence of amplification. a, Interaction duration t̃I,est 
as a function of the parametric drive phase θ for g = 2π × 12.4(2) kHz. The 
dotted red line indicates the duration t0 without parametric amplification. 
The dashed black line is from analytical theory, without considering 
decoherence. b, Fidelity as a function of θ for fixed g, tI and δ, with tI and δ 
chosen to maximize fidelity at θ = 0 for g = 2π × 12.4(2) kHz. The dashed 
black line is from numerical simulation, without considering decoherence. 
In a and b, the small points are the result of numerical simulations 
including motional decoherence (see Methods), with the coloured bands 
representing the 68% confidence intervals, linearly interpolated between 
simulated points, and the error bars on experimental data indicate 68% 
confidence intervals.

NATURe PHySiCS | VOL 17 | AUgUST 2021 | 898–902 | www.nature.com/naturephysics900

http://www.nature.com/naturephysics


LettersNATurE PHySIcS

 10. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions.  
Phys. Rev. Lett. 74, 4091–4094 (1995).

 11. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal 
motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

 12. Milburn, G. J., Schneider, S. & James, D. F. V. Ion trap quantum computing 
with warm ions. Fortschr. Phys. 48, 801–810 (2000).

 13. Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient 
mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

 14. Lü, X.-Y. et al. Squeezed optomechanics with phase-matched amplification 
and dissipation. Phys. Rev. Lett. 114, 093602 (2015).

 15. Lemonde, M.-A., Didier, N. & Clerk, A. A. Enhanced nonlinear interactions 
in quantum optomechanics via mechanical amplification. Nat. Commun. 7, 
11338 (2016).

 16. Zeytinoğlu, S., İmamoğlu, A. & Huber, S. Engineering matter interactions 
using squeezed vacuum. Phys. Rev. X 7, 021041 (2017).

 17. Qin, W. et al. Exponentially enhanced light-matter interaction, cooperativities, 
and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 
120, 093601 (2018).

 18. Chen, Y.-H., Qin, W. & Nori, F. Fast and high-fidelity generation of 
steady-state entanglement using pulse modulation and parametric 
amplification. Phys. Rev. A 100, 012339 (2019).

 19. Leroux, C., Govia, L. C. G. & Clerk, A. A. Enhancing cavity quantum 
electrodynamics via antisqueezing: synthetic ultrastrong coupling. Phys. Rev. 
Lett. 120, 093602 (2018).

 20. Arenz, C., Bondar, D. I., Burgarth, D., Cormick, C. & Rabitz, H. 
Amplification of quadratic Hamiltonians. Quantum 4, 271 (2020).

 21. Ge, W. et al. Trapped ion quantum information processing with squeezed 
phonons. Phys. Rev. Lett. 122, 030501 (2019).

 22. Ge, W. et al. Stroboscopic approach to trapped-ion quantum  
information processing with squeezed phonons. Phys. Rev. A 100,  
043417 (2019).

 23. Groszkowski, P., Lau, H.-K., Leroux, C., Govia, L. C. G. & Clerk, A. A. 
Heisenberg-limited spin squeezing via bosonic parametric driving. Phys. Rev. 
Lett. 125, 203601 (2020).

 24. Li, P.-B., Zhou, Y., Gao, W.-B. & Nori, F. Enhancing spin-phonon and 
spin-spin interactions using linear resources in a hybrid quantum system. 
Phys. Rev. Lett. 125, 153602 (2020).

 25. Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. 
High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. 
Rev. Lett. 117, 060504 (2016).

 26. Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. 
Rev. Lett. 117, 060505 (2016).

 27. McKay, D. C., Sheldon, S., Smolin, J. A., Chow, J. M. & Gambetta, J. M. 
Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019).

 28. Meyer, V. et al. Experimental demonstration of entanglement-enhanced 
rotation angle estimation using trapped ions. Phys. Rev. Lett. 86,  
5870–5873 (2001).

 29. Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic 
squeezed states with collective measurements and feedback. Phys. Rev. Lett. 
116, 093602 (2016).

 30. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. 
Measurement noise 100 times lower than the quantum-projection limit using 
entangled atoms. Nature 529, 505–508 (2016).

 31. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation 
with hundreds of trapped ions. Science 352, 1297–1301 (2016).

 32. Mottl, R. et al. Roton-type mode softening in a quantum gas with 
cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

 33. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid 
formation in a quantum gas breaking a continuous translational symmetry. 
Nature 543, 87–90 (2017).

 34. Ozeri, R. et al. Errors in trapped-ion quantum gates due to spontaneous 
photon scattering. Phys. Rev. A 75, 042329 (2007).

 35. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 
256–259 (2000).

 36. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity 
geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

 37. Tavis, M. & Cummings, F. W. Exact solution for an n-molecule—
radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

 38. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. 
Phys. Rev. Lett. 82, 1835–1838 (1999).

 39. Bogoljubov, N. N. On a new method in the theory of superconductivity. 
Nuovo Cimento 7, 794–805 (1958).

 40. Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. 
Science 364, 1163–1165 (2019).

 41. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable 
quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

 42. Srinivas, R. et al. Trapped-ion spin-motion coupling with microwaves  
and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett. 122, 
163201 (2019).

amplification (θ = 0). We can also vary θ to study the phase sensi-
tivity of the amplification protocol. In Fig. 3a, we determine t̃I,est 
for different θ values and a fixed g = 2π × 12.4(2) kHz by scanning 
over multiple (tI, δ′

) pairs for each data point, as described above. 
Theoretically, the parametric amplification process is third-order 
insensitive to small errors in the parametric drive phase21, and we 
measure no substantial increase in t̃I,est up to at least θ/2π ≈ 0.14. 
Increasing θ further results in a longer t̃I,est, in accordance with 
theoretical predictions. The increased t̃I,est is accompanied by a 
reduction in the maximum value of F̃exp over tI for each phase value, 
going from 0.945(6) to 0.738(8) as θ/2π changes from 0 to 0.39. 
Simulations show that this fidelity loss is due to parametric ampli-
fication of motional decoherence. In Fig. 3b, we show the effect of 
varying θ for the same fixed g, this time without reoptimizing the 
gate parameters δ′ and tI for each θ. Although in our system the con-
trol fields used to induce boson-mediated interactions are at micro-
wave frequencies and can therefore be readily phase-stabilized with 
respect to the parametric drive, applications with laser-based con-
trol fields may require stabilization of the laser optical phase at the 
ion positions relative to the parametric drive phase. The fact that the 
interaction duration and fidelity are not first-order sensitive to this 
phase difference eases the requirements for the laser phase stability.

In summary, we have demonstrated parametric amplification of 
boson-mediated interactions between two trapped-ion qubits. Our 
method should increase entangling-gate fidelities in systems where 
the dominant sources of error result from qubit decoherence or from 
qubit errors induced by control fields, rather than decoherence of the 
bosonic degree of freedom that couples the qubits. The loss of fidel-
ity due to amplified decoherence of the boson mode could poten-
tially be mitigated by using multiple phase-space loops48, or using 
multi-tone or amplitude-modulated schemes49–53. Furthermore, the 
enhanced interaction strength afforded by parametric amplification 
could enable a reduction in the amount of laser or microwave power 
required in larger-scale quantum information processors.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-021-01237-9.

Received: 13 October 2020; Accepted: 1 April 2021;  
Published online: 13 May 2021

References
 1. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion 

quantum computing: progress and challenges. Appl. Phys. Rev. 6,  
021314 (2019).

 2. Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and 
quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 
247–256 (2020).

 3. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 
86, 153–185 (2014).

 4. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 
89, 035002 (2017).

 5. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum 
metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 
035005 (2018).

 6. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. 
Rev. Mod. Phys. 80, 885–964 (2008).

 7. Gerry, C. C. & Knight, P. L. Introductory Quantum Optics (Cambridge Univ. 
Press, 2005).

 8. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity 
quantum electrodynamics for superconducting electrical circuits: an 
architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

 9. Evans, R. E. et al. Photon-mediated interactions between quantum emitters in 
a diamond nanocavity. Science 362, 662–665 (2018).

NATURe PHySiCS | VOL 17 | AUgUST 2021 | 898–902 | www.nature.com/naturephysics 901

https://doi.org/10.1038/s41567-021-01237-9
https://doi.org/10.1038/s41567-021-01237-9
http://www.nature.com/naturephysics


Letters NATurE PHySIcS

 50. Webb, A. E. et al. Resilient entangling gates for trapped ions. Phys. Rev. Lett. 
121, 180501 (2018).

 51. Shapira, Y., Shaniv, R., Manovitz, T., Akerman, N. & Ozeri, R. Robust 
entanglement gates for trapped-ion qubits. Phys. Rev. Lett. 121,  
180502 (2018).

 52. Zarantonello, G. et al. Robust and resource-efficient microwave near-field 
entangling 9Be+ gate. Phys. Rev. Lett. 123, 260503 (2019).

 53. Sutherland, R. T. et al. Laser-free trapped-ion entangling gates with 
simultaneous insensitivity to qubit and motional decoherence. Phys. Rev. A 
101, 042334 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

 43. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 
3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

 44. Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating 
magnetic fields. Phys. Rev. Lett. 101, 090502 (2008).

 45. Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 
476, 181–184 (2011).

 46. Keith, A. C., Baldwin, C. H., Glancy, S. & Knill, E. Joint quantum-state and 
measurement tomography with incomplete measurements. Phys. Rev. A 98, 
042318 (2018).

 47. Uys, H. et al. Decoherence due to elastic Rayleigh scattering. Phys. Rev. Lett. 
105, 200401 (2010).

 48. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with 
ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

 49. Haddadfarshi, F. & Mintert, F. High fidelity quantum gates of trapped ions in 
the presence of motional heating. New J. Phys. 18, 123007 (2016).

NATURe PHySiCS | VOL 17 | AUgUST 2021 | 898–902 | www.nature.com/naturephysics902

http://www.nature.com/naturephysics


LettersNATurE PHySIcS

where f(r, θ) = cosh r + eiθ sinh r. The interaction strength Ω0 is modified  
by a factor ∣f(r,θ)∣ (the phase of f can be absorbed into the b̂ operator), which is 
given by

|f(r, θ)| =
√

cosh 2r + cos θ sinh 2r. (13)

Maximum amplification occurs when θ = 0, when ∣f(r,0)∣ = er and the 
interaction strength becomes Ω0er. If θ = π, the interaction strength is maximally 
suppressed, with ∣f(r,π)∣ = e−r and Ω0 → Ω0e−r. Equation (13) can be reparameterized 
in terms of δ and g to give:

|f(δ, g, θ)| =
∣

∣

∣

∣

∣

δ + g cos(θ)
√

δ2 − g2

∣

∣

∣

∣

∣

1/2

, (14)

for δ > 0. The above analysis also holds if δ < 0 (we always presume g ≥ 0), provided 
that a phase shift of π is added to θ as well.

Calculation of the gate time and detuning for parametrically amplified gates 
without decoherence. The preparation of the Bell state |ψB⟩ = 1

√

2 (|↓↓⟩ + i |↑↑⟩) 
from the initial state |↓↓⟩ requires the closure of an integer number of phase-space 
loops and the accumulation of a geometric phase of Φ = π/2. The closure of a single 
loop occurs when τ is given by:

τ =
2π

δ′
=

2π
√

δ2 − g2
. (15)

The geometric phase acquired in that loop, Φ, is:

Φ = 2π

(

Ω0|f(g, δ, θ)|
δ′

)2
= 2π

(

Ω0|f(g, δ, θ)|
√

δ2 − g2

)2

. (16)

Given g, θ and Ω0, we can determine the correct values of τ and δ by 
numerically solving equations (15) and (16) simultaneously. All values of τ from 
analytical theory shown in the text are calculated in this manner.

Calibration of the parametric drive strength g. The electronics used to generate 
the parametric drive are described in detail in ref. 40 and consist of a direct digital 
synthesizer driving a resonant tank circuit coupled to the trap radio-frequency 
electrodes. Since a resonant circuit is used to couple the parametric drive to 
the trap electrodes, the parametric drive strength g depends on the frequency 
ωP. During entangling-gate experiments there are both slow drifts of the ion 
mode frequency ω and deliberate changes to the detuning δ. These result in 
small changes in g, since ωP = 2ω + 2δ. Since we measured ω at the beginning of 
every gate experiment, we can infer the value of g for that experiment using an 
independently measured calibration function.

For given settings of the mode frequency ω and parametric drive amplitude, 
we measured g using a similar method to that described in ref. 40. First, we 
prepared the two-ion state |↑↑⟩, with the motion cooled near the ground state 
(n̄ ≈ 0.3). Next, we squeezed the motional state by applying the parametric drive 
on-resonance (with ωP = 2ω) for a duration t. Parametric modulation ideally 
implements a squeezing operation40,55,56, and transforms the motional density 
matrix ρ̂i according to

ρ̂s = Q̂(ξ)ρ̂iQ̂
†
(ξ), (17)

where ρ̂s is the squeezed motional density matrix and 
Q̂(ξ) = exp

( 1
2
(

ξ∗â2 − ξâ†2
))

 is the squeezing operator with complex  
squeezing parameter ξ = gteiθ. The initial density matrix ρ̂i is assumed to  
be in a thermal mixed state characterized by the mean thermal occupation n̄.  
The oscillator number state populations of the shared two-ion motional  
state can be inferred from the ions’ qubit populations after applying a 
motion-adding sideband pulse of a variable duration and detecting the two-ion 
qubit populations. We can extract the value of ∣ξ∣, and hence g, by fitting a 
numerical model to the measured two-ion populations as a function of the 
duration of the sideband pulse, with only ∣ξ∣ as a free parameter. Additional 
parameters used in the model are the sideband Rabi frequency for each ion, 
the ac Zeeman shift on each ion due to off-resonant magnetic fields associated 
with the sideband drive, and n̄, which are calibrated by fitting the model to data 
from a control experiment with the parametric drive amplitude set to zero. We 
repeated this experiment for various values of ω and fit a quadratic polynomial 
to the resulting data, obtaining a calibration function for g as a function of ω. All 
reported uncertainty values for g are 68% functional prediction intervals57 based 
on this calibration function fit. The prediction interval reflects our uncertainty in 
determining the underlying value of g, but not fluctuations of g in time for a given 
ω, which are substantially smaller.

Determination of t̃I,est. For a given setting of the parametric drive amplitude g, 
we estimated the interaction duration required to maximize the two-qubit gate 
fidelity by fitting a 2D quadratic polynomial to the data. Specifically, we fit to a 

Methods
Derivation of equation (1) for combined MS interaction and parametric 
modulation. Here we show explicitly that the combined MS and parametric 
interactions can be described by equation (1). We consider two co-trapped atomic 
ions with internal qubit states |↓⟩ and |↑⟩ with energy separation ℏω0. Interactions 
between the qubits are mediated by a shared out-of-phase motional mode with 
frequency ω. Without driving fields, the lab-frame Hamiltonian for the system is 
given by54

Ĥ0 = h̄ωâ†â +
h̄ω0

2
(σ̂

1
z + σ̂

2
z), (4)

where σ̂i
z = |↑⟩ ⟨↑| − |↓⟩ ⟨↓| is a Pauli operator for ion i and â (â†) is the 

annihilation (creation) operator for the phonon mode. The MS interaction is 
implemented by simultaneously applying red sideband (RSB) and blue sideband 
(BSB) interactions11

ĤMS = ĤBSB + ĤRSB

= h̄Ω0(σ̂1
+ − σ̂2

+)â† cos(ωBSBt)

+h̄Ω0(σ̂1
+ − σ̂2

+)â cos(ωRSBt) + h.c. ,

(5)

where h.c. is the Hermitian conjugate, Ω0 characterizes the qubit-motion coupling 
strength, and ωBSB and ωRSB are the frequencies of the sideband drives. If the 
sideband drives are symmetrically detuned from ω0 such that ωBSB = ω0 + ω + δ, and 
ωRSB = ω0 − ω − δ, we can transform into an interaction picture with respect to Ĥ0 
to obtain11

ĤMSI = eiĤ0 t/h̄ĤMSe−iĤ0 t/h̄

= h̄Ω0
2 (âe+iδt + â†e−iδt)(σ̂1

x − σ̂2
x),

(6)

where we have made a rotating wave approximation and dropped terms oscillating 
near 2ω0. The minus sign between the Pauli operators arises because the shared 
motional mode is an out-of-phase mode (β1 = −β2 = 1, recalling the definition 
Ŝ ≡

∑

iβi ŝi, where here ŝi = σ̂i
x).

We now consider the parametric drive. In the lab frame, modulation of the 
confining potential of a trapped-ion mechanical oscillator at frequency ωP results 
in the Hamiltonian55

ĤP = h̄g(â + â†)2 cos(ωPt + θ), (7)

where g is the parametric coupling strength and θ is the phase of the parametric 
drive relative to the MS interaction fields. If ωP = 2ω + 2δ, then the parametric 
drive Hamiltonian, in the interaction picture with respect to Ĥ0 and after making a 
rotating wave approximation, becomes

ĤPI =
h̄g
2
(â2e2iδt+iθ

+ â†2e−2iδt−iθ
). (8)

Applying the MS fields and parametric drive simultaneously yields:

ĤI = ĤMSI + ĤPI

= h̄Ω0
2 (âeiδt + â†e−iδt)(σ̂1

x − σ̂2
x)

+
h̄g
2 (â

2e2iδt+iθ + â†2e−2iδt−iθ).

(9)

If we transform equation (9) into the interaction picture with respect to 
Ĥ1 = h̄δâ†â, the time dependence can be eliminated, giving

ei
Ĥ1 t
h̄ ĤIe−i Ĥ1 t

h̄ = h̄Ω0
2 (â + â†)(σ̂1

x − σ̂2
x)

+
h̄g
2 (â

2eiθ + â†2e−iθ) − h̄δâ†â,
(10)

which is equivalent to equation (1) with Ŝ = σ̂1
x − σ̂2

x, using the fact that Ŝ = Ŝ† by 
this definition.

Phase dependence of parametric amplification. Applying the normal mode 
(Bogoliubov) transformation39 b̂ ≡ â cosh r − â†eiθ sinh r to equation (1) gives the 
expression

ĤM = h̄Ω0
2

(

Ŝ†
[

b̂ cosh r + b̂† eiθ sinh r
]

+Ŝ
[

b̂† cosh r + b̂ e−iθ sinh r
])

− h̄δ′b̂†b̂,
(11)

where r = 1
4 ln [(δ + g)/(δ − g)] and δ′ =

√

δ2 − g2 , with the requirement that 
∣δ∣ > ∣g∣ and δ,g ≥ 0. For cases where Ŝ = Ŝ†, we have

ĤM =
h̄Ω0

2
Ŝ
(

b̂f(r, θ) + b̂†f∗(r, θ)
)

− h̄δ
′b̂†b̂, (12)
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mode, which has a relatively small effect on the gate fidelity. Heating is included 
phenomenologically using a method similar to the treatment of photon scattering34.

Quadratic Hamiltonian interaction picture. We performed the numerical 
simulations for the data in Figs. 2 and 3 in the interaction picture of the quadratic 
Hamiltonian ĤQ(t) = ĤP − Ĥ1, where ĤP is the parametric drive Hamiltonian 
without the rotating wave approximation in equation (7) and Ĥ1 = h̄δâ†â.  
Since ĤQ(t) is quadratic in â and â†, the interaction-picture creation operator â†I  
is given by

â†I = Û†
Q(t)â

†ÛQ(t) = u(t)â† + v∗(t)â , (21)

where ÛQ(t) = T̂ exp
(

−i
∫ t

0 ĤQ(τ)dτ
)

 and T̂  is the time-ordering operator. The 
equations to determine u(t) and v(t) are given by

u̇ =
[

−

γ

2 − i
(

δ +
√

γη(t)
)]

u + ig
(

eiθ + e−i2ωP t−iθ) v,

v̇ =
[

−

γ

2 + i
(

δ +
√

γη(t)
)]

v − ig
(

e−iθ + ei2ωP t+iθ) u.
(22)

In the interaction picture of ĤQ(t), the boson-mediated interaction term of 
equation (1) becomes

V̂(t) = Û†
Q(t)

h̄Ω0
2 (Ŝ†â + Ŝâ†)ÛQ(t)

= h̄Ω0
2

(

Ŝ†h∗(t)â + Ŝh(t)â†
)

,
(23)

where h(t) = u(t) + v(t) and Ŝ = σ̂1
x − σ̂2

x. For example, without the parametric 
drive and the motional dephasing, h(t) = e−iδt. As the interaction Hamiltonian V̂(t) 
is only linear in â and â†, the qubit-motion system can be written as

|Ψ(t)⟩ = c++(t) |++⟩ |α++(t)⟩

+ c+−(t) |+−⟩ |α+−(t)⟩

+ c−+(t) |−+⟩ |α−+(t)⟩

+ c−−(t) |−−⟩ |α−−(t)⟩ ,

(24)

where c±±(t) are time-dependent coefficients for the qubit states |±±⟩ and the 
|α±±(t)⟩ are coherent states of motion defined by |α±±(t)⟩ = D̂(α±±(t)) |0⟩, 
where D̂(α) = exp

(

αâ† − α∗â
)

 is the displacement operator7. In the eigenbasis 
of Ŝ, we find α++(t) = α−−(t) = 0 and α+−(t) = −α−+(t) = −i

∫ t
0 Ω0h(t′)dt′. 

With the initial qubit state |↓↓⟩ and the target state |ψB⟩ = 1
√

2 (|↓↓⟩ + i |↑↑⟩), the 
fidelity at the gate time τ can be evaluated as

F(τ) =

∣

∣

∣

∣

1
2
− ic+−(τ) exp

(

−|α+−(τ)|
2/2

)

∣

∣

∣

∣

2
. (25)

We can then find the optimal fidelity with respect to the gate time τ for fixed δ 
and g. In the simulations of Figs. 2 and 3, we averaged the optimal fidelity over 600 
simulations for each value of g. In each simulation, we drew a random motional 
frequency shift from a zero-mean Gaussian distribution with the standard 
deviation σδ = 2π × 100 Hz. Every simulation had the same value of the motional 
dephasing rate γ. We determined γ ≈ 2π × 5.2 Hz by fitting the fidelity simulations 
to the data.

Amplified motional dephasing. Parametric modulation amplifies decoherence of 
the bosonic mode resulting in the loss of fidelity of boson-mediated interactions. 
Here we derive expressions for the impact on the fidelity of amplified motional 
dephasing due to coupling to a phase-damping reservoir.

In the absence of parametric amplification, the contribution to the system 
Hamiltonian from dephasing is given by

Ĥd = h̄√γη(t)â†â (26)

where ⟨η(t + t′)η(t) =⟩δD(t′). For a dephasing rate of γ = 2π × 5.2 Hz, and a gate 
duration of 342 μs without parametric amplification, the variance of the phase 
fluctuation is 〈Δϕ2〉 = γt = 0.0112 rad2 or 

√

⟨Δϕ2
⟩ = 6.06 degrees. Thus, the loss 

in fidelity for a MS gate using our experimental parameters is determined through 
the phase fluctuation variance to be ~0.7%61. To estimate the effect on the fidelity 
of a two-qubit gate in the presence of parametric amplification, we applied the 
Bogoliubov transformation â = b̂ cosh r + b̂† sinh r at θ = 0 so that

Ĥd → h̄√γη(t)
[

cosh(2r)b̂†b̂ + cosh r sinh r(b̂2 + b̂†2)
]

, (27)

dropping a constant term. The term proportional to (b̂2 + b̂†2) produces a random 
squeezing that is neglibibly weak in the regime δ′

≫ γ where we operate, and can 
be ignored. The remaining term shows that the dephasing rate is amplified by a 
factor of [cosh(2r)]2 =

(

G2 + G−2)2/4, which is approximately G4/4 for large G. 
The variance of the dephasing angle is amplified by G4/4 × G−1 = G3/4, where the 
factor of G−1 results from the reduction in gate time. Since the loss of fidelity is 

grid of experimentally measured fidelities at various (tI,δ) values to determine the 
quadratic constants ai in the function

F(x, y) = a0 + a1(x − a4)2 + a2(y − a5)2

+a3(x − a4)(y − a5),
(18)

with x ≡ tI, and y ≡ δ′. This requires converting the experimentally measured δ 
values into δ′ values, which requires knowledge of g. Any calibration uncertainty 
in g will propagate to the values of δ′. The fitted value of the coefficient a4 gives 
t̃I,est. Data and slices of the 2D fit for the point at g = 2π × 49.7(6) kHz in Fig. 2a are 
shown in Extended Data Fig. 1. From the fit, t̃I,est = 88+1

−3 μs.
To determine the effect of the calibration uncertainty in g on t̃I,est (arising from 

the propagation of this uncertainty into the δ′ values), as well as the uncertainty in 
the estimated fidelities, we used bootstrapping. For each setting of the parametric 
coupling strength, we generated 5,000 synthetic data sets, each with the same 
number of (tI, δ′) data points as in the original data set. Each point in a new set 
has the original duration tI, but has a detuning given by δ′ =

√

δ2 − (g + Δg)2 , 
where Δg is randomly selected from a zero-mean Gaussian distribution with 
standard deviation given by the calibration uncertainty in g (~2π × 600 Hz for the 
data shown in Extended Data Fig. 1). Similarly, the fidelity values F are given by 
F + ΔF, where ΔF is randomly selected from a zero-mean Gaussian distribution 
with standard deviation given by the standard deviation of estimated fidelities from 
non-parametric bootstrapping of the raw gate data46. For each synthetic data set 
we fit F(x,y) to the data to determine t̃I,est, and used the central 68% interval of the 
distribution of fitted values to determine the uncertainty in t̃I,est.

Excess qubit dephasing noise. The |↓⟩ ↔ |↑⟩ transition frequency is first-order 
insensitive to magnetic field fluctuations (a so-called clock transition). We 
therefore induced excess qubit frequency fluctuations, and thus dephasing, by 
applying a time-varying ac Zeeman shift δac. We generated the ac Zeeman shift 
by applying a current oscillating near ω0 to generate an off-resonant oscillating 
magnetic field at the ion. The magnitude of δac is proportional to the square of 
the applied current amplitude Iac, which we verified experimentally by measuring 
the qubit frequency for different Iac values. We changed Iac between different 
randomly chosen amplitude values once every millisecond with a switching 
time of ~1 μs. The time of this change was not synchronized with the rest of the 
experiment, such that over many experimental trials, the changes will occur at 
uniformly distributed random times with respect to the start of each trial. The 
random current amplitudes were chosen to give qubit frequency fluctuations 
(which cause qubit dephasing) according to a Gaussian distribution with mean 
value δ̄ac = 2π × 4.59(1) kHz and standard deviation σac = 2π × 0.47(2) kHz. The 
random currents were only applied during the entangling gate.

We characterized the effect of the applied qubit dephasing noise by performing 
Ramsey experiments as follows. First, the qubits were initialized in the state |↓↓⟩. 
A global carrier π/2 pulse was then applied to the qubits. Next, the fluctuating ac 
Zeeman shift was applied for duration tR. A second carrier π/2 pulse completed 
the Ramsey sequence and the two-ion populations were measured. For a given 
distribution of applied ac Zeeman shift fluctuations, we measured the populations 
for various values of tR. We fit these data to a numerical model of the expected 
populations, computed from an ensemble of simulated trials with random static 
qubit frequency shifts drawn from a Gaussian distribution. This fit enabled us to 
determine the mean and standard deviation of the qubit frequency shifts due to the 
applied ac Zeeman shift noise. We cross-calibrated by measuring δac as a function 
of Iac and calculating the mean and standard deviation of δac based on the known 
distribution of Iac values applied. These two calibrations agreed quantitatively.

Numerical simulations. For numerical simulations of the data obtained in the 
experiment, we included three types of motional decoherence process: (1) motional 
dephasing due to the coupling to a phase-damping reservoir58, (2) shot-to-shot 
fluctuations of the trap frequency, and (3) motional heating59. Dephasing (type 1) 
can be modelled by the master equation for the system density matrix written as58

˙̂ρ =
γ

2

[

2â†âρ̂â†â −

(

â†â
)2

ρ̂ − ρ̂

(

â†â
)2

]

, (19)

where γ is the dephasing rate. In our simulations, we took γ to be a free parameter 
to fit the experimental data. The motional dephasing terms can be converted into a 
quantum stochastic equation using the Ito calculus60 for â given by

˙̂a = −

γ

2
â − i√γη(t)â, (20)

where η(t) describes white noise with the correlation ⟨η(t + t′)η(t) =⟩δD(t′). Here 
δD is the Dirac delta function. Shot-to-shot motional frequency fluctuations (type 
2) are included by running the simulation many times, each time with a randomly 
chosen motional frequency. The motional frequency values were chosen from a 
Gaussian distribution with standard deviation of σδ = 2π × 100 Hz, consistent with 
the shot-to-shot variation in motional frequency observed experimentally. As 
we used an out-of-phase motional mode, motional heating (type 3) was strongly 
suppressed. We measured a heating rate of ˙̄n ≈ 1 quanta per second on this 
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Second, in the presence of an ac Zeeman shift (δac ≠ 0), there can be residual 
spin-motion entanglement due to the coupling between spin states |ψ1⟩ and |ψ2⟩, 
even at the ideal gate time. With parametric amplification, this coupling rate 
δac is effectively suppressed since the value of ∣h∣ is increased from 1 to a value 
greater than 1 in equation (29). This suppression works for any motional state 
in the thermal excitation according to our analysis. Therefore, the parametric 
amplification would help reduce the effects of qubit dephasing on fidelity even 
with an initial thermal state of the motional mode. This was demonstrated in our 
experiments (Fig. 2b).

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The simulation and analysis codes are available from the corresponding authors 
upon reasonable request.
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proportional to the phase fluctuation variance61, for G = 3.25 at g = 2π × 50 kHz, 
the fidelity loss is estimated to be ~6%, a factor of G3/4 ≈ 8.6 higher than without 
amplification.

ac Zeeman shift fluctuations. To show the robustness of the parametric 
amplification against fluctuations of the qubit frequency as shown in Fig. 2b  
(red data points and shaded band), we introduced artificial qubit frequency 
fluctuations by applying a detuned oscillating current to one of the trap 
electrodes, as described above. The detuned current induces an ac Zeeman shift, 
whose magnitude is randomly varied by changing the current amplitude every 
millisecond to give a Gaussian distribution of qubit frequencies. Effectively, we 
add an additional term Ĥz = h̄ δac

2 (σ̂1
z + σ̂2

z) to the system Hamiltonian, where δac 
is drawn from a Gaussian distribution with mean δ̄ac = 2π × 4.59(1) kHz and 
standard deviation σac = 2π × 0.47 kHz. In this case, the state cannot be written in 
the form of equation (24) due to the fact that 

[

Ĥz, Ŝ
]

̸= 0 for Ŝ = σ̂1
x − σ̂2

x. Instead, 
we write the state of the whole system as

|Ψ(t)⟩ =

3
∑

j=1

s
∑

k=0

Cj,k(t)
∣

∣

∣
ψ j

〉

|k⟩ , (28)

where |k⟩ is the kth Fock state of motion, |ψ1⟩ = 1
√

2 (|++⟩ + |−−⟩), 
|ψ2⟩ = 1

√

2 (|+−⟩ + |−+⟩), |ψ3⟩ = 1
√

2 (|+−⟩ − |−+⟩) and 
|Ψ(0)⟩ = 1

√

2 (|ψ1⟩ − |ψ2⟩) |0⟩. The other eigenstate |ψ0⟩ = 1
√

2 (|++⟩ − |−−⟩) 
of the two-qubit system is not involved because it is a dark state of the operators Ĥz 
and Ŝ and it is orthogonal to the initial state |↓↓⟩. The set of equations is truncated 
at a certain motional Fock state |s⟩ depending on the maximum displacement of the 
motional state |αmax| ≡

∣

∣

∣

∫

τ/2
0 Ω0h(t′)dt′

∣

∣

∣. According to the Schrödinger equation 
under the Hamiltonian Ĥz + V̂(t), the differential equations of the coefficients are 
obtained as

Ċ1,k = −iδacC2,k,

Ċ2,k = −iδacC1,k − iΩ0
(

C3,k+1h∗
√

k + 1 + C3,k−1h
√

k
)

,

Ċ3,k = −iΩ0
(

C2,k+1h∗
√

k + 1 + C2,k−1h
√

k
)

.

(29)

The fidelity at the gate time is then given by

F(τ) =
1
2
|C1,0(τ) − iC2,0(τ)|

2. (30)

For example, at the maximum g ~ 2π × 50 kHz, the maximum displacement is 
|αmax| ≈ 3, and we verified that the truncation number s = 23 is sufficient. For Fig. 
2b, we averaged the optimal fidelity over 600 runs of simulations for each value 
of g, where both the motional frequency and the ac Zeeman shift were randomly 
chosen in each simulation.

The above analysis can be extended to an initial thermal state of the mechanical 
mode, where ρ̂m(0) =

∑

∞

n=0 pn |n⟩ ⟨n| and pn = n̄n/(n̄ + 1)n+1. The density 
matrix of the whole system is written as

ρ̂(t) =

∞
∑

n=0
pn |Ψn(t)⟩ ⟨Ψn(t)| , (31)

where

|Ψn(t)⟩ =

3
∑

j=1

s
∑

k=0

Cj,k,n(t)
∣

∣

∣
ψ j

〉

|k⟩ (32)

and the coefficients Cj,k,n follow the same differential equations as Cj,k in equation 
(29) with the initial conditions C1,k,n(0) = −C2,k,n(0) = δk,n. Here δk,n is the Kronecker 
delta. The fidelity for the target state after tracing over the motional mode is then 
generalized to

F(τ) =
1
2

∞
∑

n=0
pn

∞
∑

k=0

|C1,k,n(τ) − iC2,k,n(τ)|
2. (33)

The role of thermal excitation in affecting the fidelity in this case can be 
understood in the following way. First, without ac Zeeman shift fluctuations, the 
thermal excitation does not affect the fidelity at the ideal gate time. This is also true 
with parametric amplification thanks to the mapped Hamiltonian equation (3).  
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Extended Data Fig. 1 | Data and fitting to determine t̃I,est. Fidelity as a function of δ′/2π for various values of tI for a calibrated value of the parametric 
coupling strength of g/2π = 49.7(6) kHz. Data points are fidelities obtained using the method described in ref. 46. Vertical error bars indicate 68% 
confidence intervals for the fidelity. Horizontal error bars indicate 68% confidence intervals for δ′/2π calculated from error propagation of the measured 
uncertainties in δ and g within a given experiment. Red curves are slices of the 2D quadratic fitting function at the corresponding interaction times.
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