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Modeling motional energy spectra and lattice light shifts in optical lattice clocks
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We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms
trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative
to the lattice axis. Our model respects the coupling between axial and radial degrees of freedom, as well as
other anharmonicities inherent in the confining potential. We further demonstrate how our model can be used
to characterize lattice light shifts in optical lattice clocks, including shifts due to higher-multipolar (magnetic
dipole and electric quadrupole) and higher-order (hyperpolarizability) coupling to the lattice field. We compare
results for our model with results from other lattice light shift models in the literature under similar conditions.
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I. INTRODUCTION

Since their inception less than two decades ago [1,2],
optical lattice clocks have been demonstrated for a number of
atomic species [3–8] in several laboratories across the world,
as well as in compact, transportable form [9,10]. State-of-
the-art performance has steadily improved, with key metrics
of accuracy, stability, and reproducibility now being realized
at or below the 10−18 fractional level [11–13]. The very
premise of optical lattice clocks implies a strong perturbation
to the atoms, as interaction with the lattice light serves as the
mechanism for atomic confinement. By operating the lattice
at or near the “magic” frequency, the confining potential is
largely independent of the clock state. As a consequence,
spectroscopy on the clock transition can be performed largely
free of effects of atomic motion. Additionally, the atomic
confinement permits long interrogation times [14,15] and the
implementation of well-controlled environments [11,16,17],
which will be especially important for the continued progress
of these clocks.

Lattice light shifts in optical lattice clocks can be inter-
preted as residual effects of atomic motion stemming from
small differences in the confining potentials of the clock
states. A difference in potentials can arise due to a deviation
from the magic frequency or from higher-order and higher-
multipolar [18] coupling to the lattice field. While the impor-
tance of lattice light shifts was certainly appreciated from the
beginning, the characterization of these shifts has remained an
active field of study throughout the evolution of optical lattice
clocks [19–28].

In this paper, we develop a model to describe the motional
energy spectra of atoms trapped in a one-dimensional opti-
cal lattice. We further demonstrate how this model can be
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extended to characterize lattice light shifts in optical lattice
clocks. While this work is motivated by our interest in optical
lattice clocks, it could prove beneficial for other applications
employing optical lattice-trapped atoms [29].

II. OPTICAL LATTICE POTENTIAL

To start, we restrict our attention to the dominant second-
order electric dipole (E1) coupling of the atoms to the optical
lattice field, encapsulated by the E1 polarizability αE1. In
terms of cylindrical coordinates (ρ, ϕ, z), we take the optical
lattice potential to be

U (ρ, z) = −
(E0

2

)2

αE1e−κ2ρ2
cos2 (kz), (1)

where E0 is the peak electric field amplitude in the lattice.
Here, κ = √

2/w and k = 2π/λ, where w is the 1/e2 power
radius of the lattice and λ is the lattice wavelength. αE1

implicitly depends on λ and is assumed to be positive. (Else-
where in this work, we refer to lattice frequency in favor of
lattice wavelength, with the understanding that they are simply
related by the speed of light.) In practice, tunneling between
lattice sites can be suppressed by working with sufficiently
deep potentials and sufficiently cold atomic samples, as well
as aligning the lattice along gravity [30]. We exclude tun-
neling in our analysis as described below. Lastly, we assume
κ/k � 1 and D � 10ER, where D = (E0/2)2αE1 is the poten-
tial depth and ER = h̄2k2/2m is the recoil energy associated
with absorption of a lattice photon. In the expression for
recoil energy, h̄ is the reduced Planck constant and m is the
atomic mass. As a quantitative example, the Yb optical lattice
clocks described in Ref. [12] operate with κ/k ≈ 10−3 and
D ≈ 50ER. As we are specifically interested in lattice-trapped
atoms in this work, we only concern ourselves with states
having energy less than zero.
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III. HARMONIC OSCILLATOR POTENTIAL AND
THE PERTURBATIVE TREATMENT

In the regime κρ, kz � 1, the potential can be approxi-
mated by a series expansion truncated at terms second order
in the coordinates U (ρ, z) ≈ U HO(ρ, z), where

U HO(ρ, z) = D(−1 + κ2ρ2 + k2z2). (2)

As this merely represents decoupled radial and axial har-
monic oscillator potentials (along with an energy offset),
the corresponding wave functions and energies are known.
Specifically, the energies read as

EHO
nρ lnz

= −D + 2
√

DER(κ/k)(2nρ + |l| + 1)

+ 2
√

DER
(
nz + 1

2

)
, (3)

where nρ and nz take on non-negative integer values and
l takes on integer values. The quantum number l specifies
the z component of angular momentum in units of h̄. The
corresponding wave functions are provided in Appendix A.

Given our assumptions, namely κ/k � 1, we see that the
spectrum EHO

nρ lnz
is dense in both nρ and l . Consequently, we

can express the spectrum as a density of states for a given nz.
From Eq. (3), we deduce this to be (see Appendix B)

GHO
nz

(E ) = (κ/k)−2

4DER

[
E + D − 2

√
DER

(
nz + 1

2

)]
, (4)

where the argument E denotes energy. Only non-negative
values are physical, with GHO

nz
(E ) understood to be zero when

the right-hand side of this expression returns negative values
(corresponding to an absence of states below a certain energy).

For the deepest bound states, the harmonic oscillator en-
ergies and wave functions may give an entirely adequate
description of the energies and wave functions of the full
potential. Moving higher into the spectrum, the wave func-
tions become less localized, and it may be necessary to
consider higher-order terms in the series expansion of the
potential. These terms include radial and axial anharmonic
corrections, as well as cross-dimensional terms coupling the
radial and axial degrees of freedom. If the effects of these
additional terms are sufficiently small, then they may be
treated as perturbations to the harmonic oscillator potential.
In this approach, one must choose which terms in the series
expansion of the potential are to be included through which
orders of perturbation theory. Given that there are simple
analytical expressions for the matrix elements of ρ2 and z2

between the harmonic oscillator states (see Appendix A),
as well as a simple analytical expression for the harmonic
oscillator energies [Eq. (3)], analytical expressions for the
energy corrections can, in principle, be obtained for arbitrary
choices. However, while the resulting expressions are simple
in the sense that they only involve elementary mathematical
operations, they quickly become cumbersome with increasing
number of expansion terms and perturbation orders. Thus,
the perturbative approach is only practical if convergence
with respect to the series expansion and perturbation order is
demonstrated to be sufficiently rapid.

To explore this quantitatively, we compute energy correc-
tions for select motional states assuming a depth D = 50ER

and the limit κ/k → 0. We consider the ground state (EHO
nρ lnz

=
−42.9ER), as well as states from the middle and upper regions
of the spectrum (two states with EHO

nρ lnz
= −21.7ER and two

states with EHO
nρ lnz

= −0.5ER). Figure 1 specifies the quantum
numbers nρ , l , and nz for the states considered. This figure
shows the progression of the energies with respect to expan-
sion order and perturbation order. Comparing the states, we
see that the perturbative corrections are larger, in absolute
terms, for states higher in the spectrum. Moreover, on the
scale of the individual plots, states higher in the spectrum
also exhibit slower convergence. Unfortunately, we cannot,
in general terms, declare a satisfactory expansion order or
perturbation order, as this depends on the specific problem and
the desired accuracy. In any case, Fig. 1 provides sufficient
impetus for pursuing an alternative means of describing the
motional energy spectrum of atoms trapped in an optical
lattice.

In the following two sections, we outline a nonperturbative
model that fully respects the anharmonicity and inseparability
inherent in the optical lattice potential, Eq. (1). Although our
model invokes its own approximations, when the harmonic
oscillator potential, Eq. (2), is substituted in place of the full
potential, the exact harmonic oscillator energy spectrum is
recovered. Relative to the perturbative approach discussed
above, our model is a more direct and complete approach
for accounting for the differences between these distinct
potentials.

IV. BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer (BO) approximation is a ubiqui-
tous tool in molecular theory. It is motivated by a simple
principle: the electronic and nuclear dynamics in a molecule
evolve on much different timescales due to a large disparity
in masses. We identify an analogous principle in the present
problem: the axial and radial dynamics of the trapped atom
evolve on much different timescales due to a large disparity
in optical forces (recalling κ/k � 1). We are thus prompted
to invoke the BO approximation with the radial and axial
degrees of freedom taking the respective roles of the nuclear
and electronic degrees of freedom of the molecular problem
[31].

The first step of the BO approximation is to regard the
atom as fixed at a radial distance ρ and to solve for the
corresponding axial motion. That is, we solve the eigenvalue
equation

[
− h̄2

2m

∂2

∂z2
+ U (ρ, z)

]
Znz (ρ, z) = Unz (ρ)Znz (ρ, z), (5)

where both the eigenfunctions Znz (ρ, z) and the eigenvalues
Unz (ρ) depend on the radial distance ρ. The solutions are
enumerated by non-negative integer nz, and we take the
eigenfunctions to be normalized to unity (see Appendix C).
The eigenvalues Unz (ρ), mapped out over ρ, are analogous to
potential energy curves of the molecular problem.
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FIG. 1. Motional energies for D = 50ER and κ/k → 0 determined using the perturbative approach (Sec. III) and the BO + WKB model
(Secs. IV and V). Considered are the ground state (left panel), two states from the middle region of the spectrum (center panels), and two states
from the upper region of the spectrum (right panels). The states have definite values of (κ/k)nρ and (κ/k)l , with nz = 0 in all cases. For the
perturbative approach, full lines depict the progression with respect to perturbation order, where the perturbation is taken to include all terms
in the series expansion of U (ρ, z) − U HO(ρ, z) through fourth (blue), sixth (yellow), and eighth (green) order in the coordinates. Fourth order
in the coordinates, for example, refers to terms ∝ρ pzq with p + q = 4. The horizontal dashed line in each panel marks the energy according to
the BO + WKB model.

Next, we treat Unz (ρ) as a potential governing the radial
motion. That is, we solve the eigenvalue equation[

− h̄2

2m

d2

dρ2
+ Unz (ρ) + h̄2

2m

l2 − 1/4

ρ2

]
Rnρ lnz (ρ)

= Enρ lnz Rnρ lnz (ρ), (6)

where, as before, the integer l specifies the z component of
angular momentum in units of h̄. The last term in square
brackets is a centrifugal potential supplementing the radial
potential Unz (ρ). For a given nz and l , the solutions are
enumerated by non-negative integer nρ .

Finally, we introduce the wave functions

	nρ lnz (ρ, ϕ, z) = 1√
2πρ

Rnρ lnz (ρ)Znz (ρ, z)eilϕ. (7)

Anticipating

∂2

∂ρ2
Rnρ lnz (ρ)Znz (ρ, z) ≈ Znz (ρ, z)

d2

dρ2
Rnρ lnz (ρ),

which is the mathematical premise of our approximation, it
follows that[

− h̄2

2m
∇2 + U (ρ, z) − Enρ lnz

]
	nρ lnz (ρ, ϕ, z) ≈ 0.

That is, the Enρ lnz and 	nρ lnz (ρ, ϕ, z) obtained by the above
prescription represent approximate solutions to the time-
independent Schrödinger equation.

At this point, we must be more concrete regarding our
exclusion of tunneling. In the harmonic oscillator approxima-

tion, the atoms are effectively confined to the lattice site at
the origin (i.e., |z| < π/2k). For example, for D = 50ER and
states with EHO

nρ lnz
< 0, the harmonic oscillator wave functions

(Appendix A) give a probability of <3 × 10−5 for the atom to
be in the region |z| > π/2k. In similar spirit, here we confine
the atom to the lattice site at the origin by supplementing
U (ρ, z) in Eq. (1) with infinite potential barriers for |z| >

π/2k. In both cases, the lattice site at the origin is understood
to be representative of all lattice sites.

The axial eigenvalue equation (5) has analytical solutions
in terms of Mathieu functions and characteristic values of
the Mathieu functions, as presented in Appendix D. Figure 2
displays the eigenvalues Unz (ρ) versus ρ for a potential depth
D = 50ER. These radial potentials increase smoothly and
monotonically with ρ. The general picture of Fig. 2 holds
for other depths, but with generally more (less) curves in the
negative-energy region for deeper (shallower) traps.

Unlike the axial eigenvalue equation, an analytical solution
is not available for the subsequent radial eigenvalue equation
(6). Consequently, another layer of approximation is required
to describe the energy spectrum. We discuss our approach in
the following section.

V. WKB APPROXIMATION

Given our assumptions, namely κ/k � 1, the radial poten-
tials Unz (ρ) increase gradually with ρ, and the spectrum of
Eq. (6) will be dense in both nρ and l . This motivates a WKB
(semiclassical) approximation. The familiar one-dimensional
WKB approximation is applicable to two-dimensional
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FIG. 2. Radial potentials Unz (ρ ) for D = 50ER. The radial po-
tentials are presented as full curves in the negative-energy region
relevant to our analysis and as dotted curves otherwise. These are
analogous to potential energy curves of the molecular problem.

problems of radial symmetry, so long as the l2 − 1/4 appear-
ing in the centrifugal potential [refer to Eq. (6)] is replaced
with l2 to properly account for behavior of the wave function
at the origin [32].

For a given nz and l , we introduce the WKB phase as a
function of energy E < 0,

φlnz (E ) =
√

2m

h̄2

∫
R

√
E − Unz (ρ) − h̄2

2m

l2

ρ2
dρ. (8)

Here and in integrals to follow, the subscript R on the inte-
gration symbol denotes restriction to the region for which the
integrand is real. According to the WKB approximation, the
energies Enρ lnz are associated with the condition

φlnz (Enρ lnz ) = π
(
nρ + 1

2

)
. (9)

These energies can be numerically evaluated with negligible
error. Thus, we have outlined a means to approximate the
motional energy spectrum of atoms trapped in an optical
lattice.

As an example, we apply the BO + WKB procedure de-
scribed above to the states considered in Fig. 1. The resulting
energies are plotted as horizontal dashed lines in Fig. 1
and can be directly compared to results of the perturbative
approach. Generally speaking, we observe that as more per-
turbation and expansion orders are included in the perturbative
approach, the energies tend toward the BO + WKB results.

Since the energy spectrum is dense in both nρ and l , we
may express it as a density of states for a given nz. We start
with the density of states for a given nz and l , which we infer
from Eq. (9) to be equal to π−1φ′

lnz
(E ). Here and throughout,

primes are used to denote derivatives when attached to func-
tions with a single explicit variable. From Eq. (8),

φ′
lnz

(E ) = 1

2

√
2m

h̄2

∫
R

1√
E − Unz (ρ) − h̄2

2m
l2

ρ2

dρ. (10)
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FIG. 3. Density of states Gnz (E ) obtained from the BO + WKB
approximation for D = 50ER (full curves). Colors distinguishing
different nz are as in Fig. 2. The density of states for the harmonic
oscillator potential (4) is also shown for D = 50ER (dashed lines).

The density of states for a given nz (inclusive of all l) is
therefore

Gnz (E ) = 1

2π

√
2m

h̄2

∫∫
R

1√
E − Unz (ρ) − h̄2

2m
l2

ρ2

dρ dl,

where we exploit the fact that the spectrum is dense in l
to replace a summation over l with an integration over l .
Choosing to integrate with respect to l first (see Appendix E),
we obtain

Gnz (E ) = 1

2

2m

h̄2

∫ Rnz (E )

0
ρ dρ,

where explicit limits are given for the remaining integral.
Here, Rnz (E ) is the inverse function of Unz (ρ). That is,
Unz [Rnz (E )] = E and Rnz [Unz (ρ)] = ρ. The integral with re-
spect to ρ is trivial, yielding the expression

Gnz (E ) = 1

4

2m

h̄2 [Rnz (E )]2. (11)

In Fig. 3, we present the density of states Gnz (E ) resulting
from our BO + WKB approximation for the case D = 50ER.

VI. HARMONIC OSCILLATOR POTENTIAL REVISITED

As briefly mentioned at the end of Sec. III, if the har-
monic oscillator potential (2) is substituted in place of the
full potential (1), the BO + WKB approximation recovers the
exact harmonic oscillator energies (3). This is because the BO
approximation is exact if the potential U (ρ, z) is separable in
ρ and z, with the radial potentials Unz (ρ) subsequently being
equal to the radial part of U (ρ, z) plus an nz-dependent offset,
while the WKB approximation is exact if the radial potentials
Unz (ρ) are radial harmonic oscillator potentials with arbitrary
offsets.

Since the BO + WKB approximation is exact for the har-
monic oscillator potential, we can exploit this potential to
check our expression for the density of states, Eq. (11). For
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U (ρ, z) → U HO(ρ, z) we readily find

Unz (ρ) → −D + Dκ2ρ2 + 2
√

DER

(
nz + 1

2

)
.

From this it follows that

[
Rnz (E )

]2 → 1

Dκ2

[
E + D − 2

√
DER

(
nz + 1

2

)]
.

Inserting this into the right-hand side of Eq. (11), we recover
the density of states GHO

nz
(E ) given in Eq. (4), which was

derived directly from the spectrum EHO
nρ lnz

.
In Fig. 3, we compare the density of states for the full

potential, given by the BO + WKB model, with the density
of states for the harmonic oscillator potential for the case
D = 50ER. We see that the two cases agree well for the
most deeply bound nz = 0 states but are largely discrepant
otherwise. With the expectation that the BO + WKB model
provides a better representation of the density of states of the
full potential, this picture gives further reason to be skeptical
of the harmonic oscillator energies and wave functions as a
zeroth-order representation for all but the most deeply bound
states.

VII. LATTICE LIGHT SHIFTS IN OPTICAL
LATTICE CLOCKS

In an optical lattice clock, the lattice lasers are nominally
operated at the magic frequency, defined such that the E1
polarizability αE1 of the ground (g) and excited (e) clock
states are identical. Consequently, the optical lattice potential
is independent of the clock state, and all “carrier” transitions
|g; nρ lnz〉 → |e; nρ lnz〉 contributing to the spectroscopic sig-
nal have a transition frequency equal to the bare atomic transi-
tion frequency |g〉 → |e〉. For high accuracy, however, various
“nonmagic” effects must be considered. These include (i)
deviation from the magic frequency, leading to a small differ-
ence in E1 polarizabilities, (ii) second-order magnetic dipole
(M1) and electric quadrupole (E2) coupling to the lattice
field, encapsulated by the M1 + E2 polarizability αM1+E2,
and (iii) fourth-order electric dipole coupling to the lattice
field, encapsulated by the hyperpolarizability β. Accounting
for these nonmagic effects, the potentials for the two clock
states generally differ, and the carrier transitions |g; nρ lnz〉 →
|e; nρ lnz〉 subsequently include a change in motional energy of
the atom �Enρ lnz , in addition to the change in the atom’s in-
ternal energy. We assume the corresponding clock frequency
shift is given by �E/h, where h is Planck’s constant and �E
is the ensemble average of the motional energy differences.

The nonmagic effects lead to small corrections to the
potential of each clock state, which can be satisfactorily
accounted for with first-order perturbation theory. For a Yb
optical lattice clock operating within 10 MHz of the magic
frequency and at depths below 1000ER, for example, the
corrections to the potential of each clock state remain below
10−6D [26]. We take the residual difference in potentials

between the clock states to be

�U (ρ, z) = −
(E0

2

)2

�αE1 e−κ2ρ2
cos2(kz)

−
(E0

2

)2

�αM1+E2 e−κ2ρ2
sin2(kz)

−
(E0

2

)4

�β e−2κ2ρ2
cos4(kz),

where �αE1, �αM1+E2, and �β are differential atomic pa-
rameters between the clock states. In the vicinity of the magic
frequency, �αM1+E2 and �β have negligible dependence on
the lattice frequency, while �αE1 can be decomposed in terms
of a slope and a zero crossing with respect to the lattice
frequency. By definition, the zero crossing corresponds to the
magic frequency. We take this decomposition of �αE1 to be
implicit throughout.

In terms of the depth, the residual difference in potentials
is

�U (ρ, z) = − D
�αE1

αE1
e−κ2ρ2

cos2(kz)

− D
�αM1+E2

αE1
e−κ2ρ2

sin2(kz)

− D2 �β

α2
E1

e−2κ2ρ2
cos4(kz). (12)

In the context of our BO + WKB approximation, �U (ρ, z)
leads to a residual difference in the radial potentials given by

�Unz (ρ) =
∫ +π/2k

−π/2k

∣∣Znz (ρ, z)
∣∣2

�U (ρ, z)dz. (13)

This in turn leads to a residual difference in the WKB phases
given by

�φlnz (E ) = −1

2

√
2m

h̄2

∫
R

�Unz (ρ)√
E − Unz (ρ) − h̄2

2m
l2

ρ2

dρ, (14)

which leads to a residual difference in motional energies given
by

�Enρ lnz = −�φlnz

(
Enρ lnz

)
φ′

lnz

(
Enρ lnz

) . (15)

We choose to express �Enρ lnz in the form

�Enρ lnz = − D
�αE1

αE1
Xnρ lnz − D

�αM1+E2

αE1
Ynρ lnz

− D2 �β

α2
E1

Znρ lnz . (16)

By comparison with Eq. (12), it is evident that the dimension-
less factors Xnρ lnz , Ynρ lnz , and Znρ lnz are restricted to the range
[0,1]. For an atom residing precisely at the origin (i.e., at the
center of the lattice site), these factors would be Xnρ lnz = 1,
Ynρ lnz = 0, and Znρ lnz = 1. The spread of the motional state
wave function beyond the origin leads to a deviation from
these “nominal” values. Finally, we write

�E = −D
�αE1

αE1
X − D

�αM1+E2

αE1
Y − D2 �β

α2
E1

Z, (17)
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with dimensionless factors X , Y , and Z being the ensemble
averages of Xnρ lnz , Ynρ lnz , and Znρ lnz . These factors are likewise
restricted to the range [0,1].

From Eqs. (12) through (16) and Eq. (10), we find the
following expression for Xnρ lnz :

Xnρ lnz =

∫
R

xnz (ρ)√
Enρ lnz −Unz (ρ)− h̄2

2m
l2

ρ2

dρ

∫
R

1√
Enρ lnz −Unz (ρ)− h̄2

2m
l2

ρ2

dρ
,

where the dimensionless function xnz (ρ) reads as

xnz (ρ) = e−κ2ρ2
∫ +π/2k

−π/2k

∣∣Znz (ρ, z)
∣∣2

cos2(kz)dz.

Analogous expressions hold for Ynρ lnz and Znρ lnz , with xnz (ρ)
being replaced with

ynz (ρ) = e−κ2ρ2
∫ +π/2k

−π/2k

∣∣Znz (ρ, z)
∣∣2

sin2(kz)dz,

znz (ρ) = e−2κ2ρ2
∫ +π/2k

−π/2k

∣∣Znz (ρ, z)
∣∣2

cos4(kz)dz.

We note the relation xnz (ρ) + ynz (ρ) = e−κ2ρ2
. These expres-

sions can be used to numerically evaluate Xnρ lnz , Ynρ lnz , and
Znρ lnz for specific motional states.

To evaluate the ensemble-average factors X , Y , and Z , a
distribution over motional states must be specified. To demon-
strate such an evaluation, we initially suppose a Boltzmann
distribution. It follows that X is given by

X =
∑

nρ lnz
Xnρ lnz e

−Enρ lnz /kBT∑
nρ lnz

e−Enρ lnz /kBT
, (18)

where kB is Boltzmann’s constant, T is the temperature, and
the summations run over all states Enρ lnz < 0. We exploit the
fact that the spectrum is dense in nρ and l to replace the
summations over nρ and l in Eq. (18) with integrals. For
the integration over nρ , we subsequently make a change of
variable from nρ to energy E , with Enρ lnz → E . This change of
variable must also incorporate the density of states for a given
nz and l , such that dnρ → π−1φ′

lnz
(E )dE . It follows that

X =

∑
nz

∫∫∫
R

xnz (ρ) e−E/kBT√
E−Unz (ρ)− h̄2

2m
l2

ρ2

dρ dl dE

∑
nz

∫∫∫
R

e−E/kBT√
E−Unz (ρ)− h̄2

2m
l2

ρ2

dρ dl dE
.

Performing the integrals with respect to l first (Appendix E),
this becomes

X =
∑

nz

∫ Rnz (0)
0

∫ 0
Unz (ρ) xnz (ρ) ρ e−E/kBT dE dρ∑

nz

∫ Rnz (0)
0

∫ 0
Unz (ρ) ρ e−E/kBT dE dρ

,

where we have chosen an order for the remaining integrals
and provided explicit limits. Subsequently performing the
integrals with respect to E , we get

X =
∑

nz

∫ Rnz (0)
0 xnz (ρ) ρ

(
e−Unz (ρ)/kBT − 1

)
dρ∑

nz

∫ Rnz (0)
0 ρ

(
e−Unz (ρ)/kBT − 1

)
dρ

. (19)

The remaining integrals with respect to ρ can be performed
numerically. In the case of the numerator, an analytical solu-
tion is available, as demonstrated in Appendix F. Expressions
analogous to Eq. (19) hold for Y and Z .

Figure 4 presents X , Y , and Z evaluated over a range of
depths and temperatures. We observe that greater depths and
lower temperatures yield results closer to the “nominal” val-
ues (unity for X and Z , zero for Y ). This is the expected behav-
ior, as greater depths and lower temperatures imply a higher
degree of atomic localization near the center of the lattice site.
Figure 4 also presents X , Y , and Z versus depth assuming that
the temperature is either (i) proportional to the depth or (ii)
independent of the depth. Results are shown for a number
of different proportionality constants and fixed temperatures.
The diversity of these curves elucidates an important fact: how
the clock shift varies with depth is inescapably linked to how
the motional state distribution varies with depth. This is of
relevance for optical lattice clocks because lattice light shifts
are typically characterized experimentally by modulating the
depth. However, only recently has this fact been shown its due
appreciation [26–28].

VIII. COMPARISON OF LATTICE LIGHT SHIFT MODELS

In this section, we compare lattice light shift models re-
cently employed in Refs. [26,27] with the BO + WKB model
developed in this work. To this end, some consideration is
given to the experimental conditions in Refs. [26,27]. We
emphasize, however, that the goal here is not to precisely
capture details of these experiments, but rather to provide
meaningful comparisons of the lattice light shift models under
like conditions.

We start by writing X as

X =
∑
nρ lnz

pnρ lnz Xnρ lnz ,

with pnρ lnz being the fractional population for the specific
motional state. Next, we partition X into contributions for
each nz as

X =
∑

nz

Pnz Xnz ,

where Pnz and Xnz are the fractional population and average
value of Xnρ lnz for the specific nz. Namely,

Pnz =
∑
nρ l

pnρ lnz ,

Xnz =
∑

nρ l pnρ lnz Xnρ lnz∑
nρ l pnρ lnz

.

For each nz, we assume the distribution over states is described
by a Boltzmann distribution with radial temperature Tρ . That
is,

Xnz =
∑

nρ l Xnρ lnz e
−Enρ lnz /kBTρ∑

nρ l e−Enρ lnz /kBTρ
, (20)

where, as before, the summations run over states Enρ lnz < 0.
For the BO + WKB model, an expression for Xnz is given by
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FIG. 4. Factors X , Y , and Z evaluated with the BO + WKB approximation. A Boltzmann distribution over motional states is assumed.
Upper panels: results for X , Y , and Z are plotted over a range of depths and temperatures. Maximum and minimum values are given in
the corresponding corners of the plots. Lower panels: results for X , Y , and Z are plotted versus depth assuming that the temperature is either
proportional to depth (full curves) or independent of depth (dashed curves). The minimum depth plotted in all cases is D = 20ER. For reference,
ER/kB equals 0.096 μK for Yb and 0.17 μK for Sr.

the right-hand side of Eq. (19) with T → Tρ and the specific
nz term isolated from each summation. Namely,

Xnz =
∫ Rnz (0)

0 xnz (ρ) ρ
(
e−Unz (ρ)/kBTρ − 1

)
dρ∫ Rnz (0)

0 ρ
(
e−Unz (ρ)/kBTρ − 1

)
dρ

. (21)

Analogous expressions hold for Y and Z . The factors Xnz , Ynz ,
and Znz are restricted to the range [0,1].

The light shift models employed in Brown et al. [26] and
Ushijima et al. [27] both have their roots in the harmonic
oscillator approximation. Brown et al. employed a perturba-
tive approach similar to that described in Sec. III, but with
nonmagic effects incorporated in the potential from the start.
Terms fourth order in the series expansion of the coordinates
were evaluated at first order in perturbation theory. Taking
a difference between the clock states and only retaining

contributions first order in the nonmagic effects results in a
clock shift expression for a specific motional state [Eq. (2) of
Ref. [26]]. For averaging over the motional states of a given
nz, the cross-dimensional correction is excluded from energies
in the Boltzmann weighting factor, as are the small nonmagic
effects. Given κ/k � 1, we infer results for Xnz , Ynz , and Znz

in this approach to be

Xnz =
[

1 −
(

kBTρ

D

)
η(1)

nz

]
−

(
nz + 1

2

)(
D

ER

)−1/2

,

Ynz =
(

nz + 1

2

)[
1 − 1

2

(
kBTρ

D

)
η(1)

nz

](
D

ER

)−1/2

,

Znz =
[

1 − 2

(
kBTρ

D

)
η(1)

nz
+ 2

(
kBTρ

D

)2

η(2)
nz

]
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− 2

(
nz + 1

2

)[
1 −

(
kBTρ

D

)
η(1)

nz

](
D

ER

)−1/2

+ 3

2

(
n2

z + nz + 1

2

)(
D

ER

)−1

.

The factors η
(p)
nz arise from the averaging procedure; they are

attributed to (i) radial and axial anharmonic corrections to the
energies in the Boltzmann weighting factor and (ii) a restric-
tion to states with energies less than zero (being representative
of trapped motional states). In the limit kBTρ/D → 0, these
two considerations are inconsequential, with η

(p)
nz → 1. More

details are provided in Appendix G, where an expression for
η

(p)
nz can be found.

Conceptually, Ushijima et al. take a different approach.
They incorporate nonmagic effects in the potential from the
start, though initially neglect the radial degrees of freedom
(effectively setting ρ = 0). For the resulting one-dimensional
potential, they invoke a familiar clock shift expression for
a specific nz [Eq. (1) of Ref. [27]]. This expression is de-
rived in the same manner as the clock shift expression from
Brown et al., but limited to just the axial degree of freedom
[24]. Independently, the radial degrees of freedom are treated
classically. The Boltzmann distribution is translated into a
probability distribution for the radial coordinate ρ. This step
requires assuming a potential for the radial confinement.
For this purpose, the radial part of the harmonic oscillator
potential, Eq. (2), is taken. The radial and axial degrees of
freedom are then merged by making the substitution D →
De−κ2ρ2

in the one-dimensional clock shift expression and
averaging over the probability distribution for ρ. The effects
of this radial averaging are encapsulated by dimensionless
“reduction factors” ζ j . We infer results for Xnz , Ynz , and Znz

in this approach to be

Xnz = ζ1 −
(

nz + 1

2

)
ζ1/2

(
D

ER

)−1/2

,

Ynz =
(

nz + 1

2

)
ζ1/2

(
D

ER

)−1/2

,

Znz = ζ2 − 2

(
nz + 1

2

)
ζ3/2

(
D

ER

)−1/2

+ 3

2

(
n2

z + nz + 1

2

)
ζ1

(
D

ER

)−1

.

Ushijima et al. give an approximate expression for the reduc-
tion factors

ζ j ≈ 1 − j

(
kBTρ

D

)
. (22)

Following their procedure, however, a simple analytical solu-
tion is available,

ζ j =
[

1 + j

(
kBTρ

D

)]−1

, (23)

with Eq. (22) being correct to first order in kBTρ/D. Below we
consider both cases, with “modified” being used to designate
the use of Eq. (23) in place of Eq. (22). In either case, no en-

ergy restriction is imposed to exclude states not representative
of trapped motional states.

The Yb optical lattice clock of Brown et al. operated at
depths in the range 50ER � D � 1400ER. Sideband fitting
[33] suggests an approximate relationship kBTρ ≈ 0.6D over
this range. The Sr optical lattice clock of Ushijima et al. oper-
ated by loading the atoms into a lattice at a reference depth of
272ER, then adiabatically ramping to a final depth in the range
150ER � D � 1150ER. Adiabiticity implies an approximate
proportionality Tρ ∝ √

D, while the radial temperature at the
reference depth was inferred from time-of-flight thermometry
to be Tρ ≈ 2 μK. This implies an approximate relationship
kBTρ ≈ 0.7

√
DER. Figures 5 and 6 compare results for Xnz ,

Ynz , and Znz for the different models assuming these two
distinct relationships for Tρ versus D. The lowest-nz cases of
nz = 0, 1, and 2 are displayed.

In Fig. 5, we see that the Brown et al., Ushijima et al.,
and modified Ushijima et al. models are all in fair agreement
with the BO + WKB model for Ynz . This, however, is not
the case for Xnz and Znz . In particular, the Ushijima et al.
model differs substantially from the BO + WKB model and
even yields unphysical negative results for Znz . The Brown
et al. and modified Ushijima et al. models exhibit more
reasonable agreement with the BO + WKB model. While
the modified Ushijima et al. model produces curves numer-
ically closer to the BO + WKB model, the Brown et al.
model produces curves with functional behavior closer to
the BO + WKB model. In Fig. 6, we see that the overall
agreement between the models is much better. In fact, curves
for the different models are largely indistinguishable from
one another on the displayed scale, especially for Ynz . We at-
tribute the better agreement to the lower radial temperature (in
units of ER/kB), implying less population in the higher-lying
motional states.

While the overall agreement in Fig. 6 appears very good, it
is interesting to see how the small differences in these curves
translate into a difference for the clock shift. To make this
translation, we must assume a distribution for Pnz , as well as
values for the atomic parameters appearing in Eq. (17). Using
quenched sideband cooling and subsequent rapid adiabatic
passage excitation, Ushijima et al. prepared atomic ensembles
with either Pnz ≈ δnz,0 or Pnz ≈ δnz,1. Using their (unmodified)
model to interpret lattice light shift measurements, they ex-
tracted atomic parameters for Sr. Taking kBTρ = 0.7

√
DER,

Pnz = δnz,0 or Pnz = δnz,1, and atomic parameters reported by
Ushijima et al., we evaluate the fractional clock shift for Sr
over a range of depths for three different lattice frequency
detunings relative to the magic frequency. Figure 7 presents
results for the Brown et al., Ushijima et al., and modified
Ushijima et al. models, plotted as a difference relative to the
BO + WKB model. We observe that the differences relative
to the BO + WKB model, as well as the differences between
the models, are on the order of 10−18. That is, assuming that
the BO + WKB model gives the best representation of the
clock shift for the assumed conditions, this suggests that the
other three models do not support accuracy at the low-10−18

level. However, we emphasize that this only concerns absolute
accuracy of the models, in which they are used to directly
evaluate the clock shift given well-defined conditions and
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FIG. 5. Factors Xnz , Ynz , and Znz versus D assuming a radial temperature given by kBTρ = 0.6D. Top, middle, and bottom rows correspond
to nz = 0, 1, and 2, respectively. The Brown et al. model (red), Ushijima et al. model (green), and modified Ushijima et al. model (yellow) are
compared to the BO + WKB model (blue). The lowest depth plotted in each case is D = 50ER.

atomic parameters. In the following section, we see that the
absolute accuracy of a model can be relaxed if the model is
invoked in a different manner, as in Ref. [26].

Before concluding this section, we note that the atomic
parameter �αM1+E2/αE1 reported by Ushijima et al. differs
by tens of σ , where σ represents combined standard deviation,
from consistent theoretical values for this parameter [34–36].
While Fig. 7 may suggest some degree of error in the Ushijima
et al. model used to extract this and other Sr parameters
from measurement, it does not appear to suggest model error
significant enough to account for a discrepancy of this size.
Thus, more theoretical or experimental investigation will be
required to resolve this issue.

IX. REPARAMETRIZATION OF THE LATTICE LIGHT
SHIFT BASED ON EXPERIMENTAL CONDITIONS

The BO + WKB model outlined in this paper was devel-
oped in conjunction with the experimental work of Brown
et al., as potential shortcomings in the pedagogically simpler
Brown et al. model were recognized early. For the Yb optical
lattice clock of Brown et al., sideband spectra are consistent
with a distribution over motional states characterized by a
radial temperature Tρ and an axial temperature Tz [33]. If
the radial and axial degrees of freedom were perfectly de-
coupled, then distinct radial and axial temperatures would
have unambiguous meaning. However, as our BO + WKB
treatment appreciates coupling between the radial and axial
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FIG. 6. Factors Xnz , Ynz , and Znz versus D assuming a radial temperature given by kBTρ = 0.7
√

DER. Top, middle, and bottom rows
correspond to nz = 0, 1, and 2, respectively. The Brown et al. model (red), Ushijima et al. model (green), and modified Ushijima et al.
model (yellow) are compared to the BO + WKB model (blue). The lowest depth plotted in each case is D = 50ER.

degrees of freedom inherent in the potential, clarification of
these quantities is necessary. Here, we let Tρ and Tz determine
the distribution according to

pnρ lnz = Ne−(Enρ lnz −E00nz )/kBTρ e−E00nz /kBTz , (24)

together with the restriction Enρ lnz < 0. Here, N is a nor-
malization factor, ensuring that the pnρ lnz sum to unity. The
distribution given by Eq. (24) has three noteworthy charac-
teristics. (i) The distribution over states of a given nz fol-
lows a Boltzmann distribution with temperature Tρ . This is
consistent with the assumption of the previous section. (ii)
In the limit that Tρ and Tz are equal, the distribution over

all states follows a Boltzmann distribution with temperature
T , where T = Tρ = Tz is the singular temperature. This re-
covers the scenario assumed in the second half of Sec. VII.
(iii) In the limit that the radial and axial degrees of freedom
are decoupled, Tρ and Tz connect with the expected meanings
of radial and axial temperature. This is the case, for example,
if we substitute the harmonic oscillator potential in place of
the full potential U (ρ, z) → U HO(ρ, z) (and, consequently,
Enρ lnz → EHO

nρ lnz
). While the distribution of Eq. (24) is con-

trived to some extent, it nevertheless is expected to provide
a reasonable approximation to the experimental conditions in
Brown et al. For the BO + WKB model, Eq. (19) for X is
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FIG. 7. Difference in the evaluated fractional clock shift of Sr relative to the BO + WKB model, assuming a radial temperature kBTρ =
0.7

√
DER, Pnz = δnz ,0 or Pnz = δnz ,1 (labeled “nz = 0” and “nz = 1,” respectively), lattice frequency detunings −30 MHz, 0 MHz, or +30 MHz

relative to the magic frequency (as labeled), and atomic parameters reported in Ref. [27]. The Brown et al. model (red), Ushijima et al. model
(green), and modified Ushijima et al. model (yellow) are plotted as differences relative to the BO + WKB model. The lowest depth plotted in
each case is D = 50ER.

modified to

X =
∑

nz
Qnz

∫ Rnz (0)
0 xnz (ρ) ρ(e−Unz (ρ)/kBTρ − 1)dρ∑

nz
Qnz

∫ Rnz (0)
0 ρ(e−Unz (ρ)/kBTρ − 1)dρ

, (25)

where

Qnz = eUnz (0)(1/kBTρ−1/kBTz ).

Analogous expressions hold for Y and Z .
In this section, we also consider the Brown et al. model

for a distribution characterized by distinct radial and axial
temperatures. The corresponding expression for Pnz can be
found in Appendix G, which supplements the expressions for
Xnz , Ynz , and Znz given in the previous section. The Ushijima
et al. models are not considered here, as this would require
making assumptions about how Pnz should be determined for
those models in the present case.

In Brown et al., sideband fitting suggests an approximate
relationship kBTz ≈ 0.3D over the range of depths considered.
This supplements the approximate relationship kBTρ ≈ 0.6D
noted in the previous section. Figure 8 presents the resulting
X , Y , and Z versus depth. Consistent with the observation for
Xnz , Ynz , and Znz in the previous section, the BO + WKB model
and the Brown et al. model exhibit similar functional behavior
for each of the factors (in the case of Y , the curves are largely

indistinguishable on the displayed scale). In particular, for the
assumed conditions, both models yield factors X , Y , and Z
that are approximately constant over a large range of depths.
In Brown et al., this motivated reparametrization of Eq. (17)
into the simple form

�E = a D + b D2, (26)

with coefficients a and b being independent of depth. We
temporarily suppose that X , Y , and Z are precisely constant.
In this case, the reparametrization is exact, with a and b given
by

a = −�αE1

αE1
X − �αM1+E2

αE1
Y,

b = −�β

α2
E1

Z.

Due to the presence of �αE1, the coefficient a is dependent
on the lattice frequency. As with �αE1, it can be decomposed
in terms of a slope and a zero crossing with respect to the
lattice frequency. Given this decomposition, �αM1+E2 merely
manifests itself as a displacement of the zero crossing away
from the magic frequency. Meanwhile, the coefficient b is
independent of the lattice frequency.
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FIG. 8. Factors X , Y , Z assuming a radial temperature kBTρ = 0.6D and an axial temperature kBTz = 0.3D. Results from the BO + WKB
model (blue) and the Brown et al. model (red) are both displayed. The lowest depth plotted in each case is D = 50ER.

In Brown et al., Eq. (26) was used to characterize the
lattice light shifts in a Yb optical lattice clock. Individual
measurements involved interleaving between a test depth and
a reference depth, with the lattice frequency held fixed, while
recording the difference in the clock frequency. A common
reference depth (≈180ER) was used for all measurements,
while several test depths and lattice frequencies were ex-
plored. The coefficients a (slope and zero crossing) and b of
Eq. (26) were determined by a least-squares fitting with the
experimental data. For a given operational depth and lattice
frequency, the lattice light shift is then evaluated from Eq. (26)
using the experimentally determined coefficients. In applying
this procedure, however, it is necessary to appreciate that X ,
Y , and Z are not precisely constant over the range of depths
considered. Consequently, the parametrization of Eq. (26) is
inexact, and this may lead to error in the evaluated lattice light
shift.

To estimate the size of this error, we generate mock data
from the BO + WKB model. The mock data set is intended
to imitate the experimentally obtained data. It encompasses
a similar range of test depths and lattice frequencies, while
using the same reference depth. With this mock data set, we
apply the above procedure [i.e., determining the coefficients
of Eq. (26) through least-squares fitting] to evaluate the lattice
light shift for the operational depth and lattice frequency.
Separately, the lattice light shift for this depth and lattice
frequency is evaluated directly with the BO + WKB model.
The two results are compared, with the difference being
indicative of the error associated with the reparametrization
[37]. To perform this assessment, we must assume values
for the atomic parameters of Yb. The atomic parameters can
be estimated from the experimentally obtained coefficients a
and b, together with the (nearly constant) theoretical values
of X , Y , and Z . However, since we do not possess an in-
dependent measure of the magic frequency to compare with
the experimental zero crossing of a, we cannot extract the
parameter �αM1+E2/αE1 in this way. Instead, we take the
theoretical value of �αM1+E2/αE1 given in Brown et al. For an
operational depth of 50ER and an operational lattice frequency
chosen to give a stable lattice light shift with respect to
fluctuations in the depth (corresponding to the “operational

magic wavelength” discussed in Brown et al.), we find the
resulting error to be below 10−19.

We note that the reparametrization above is motivated
entirely by the functional form of X , Y , and Z versus depth
(namely, being approximately constant) and not by the precise
values of these factors. This relaxes the need to be quantita-
tively precise about the distribution over motional states. For
example, the near constancy of X , Y , and Z observed in Fig. 8
is more a consequence of the proportionality relation Tρ, Tz ∝
D than it is of the specific proportionality factors connecting
the temperatures to depth. Thus, so long as important qualita-
tive features of the distribution and its dependence on depth
are captured, reparametrized forms of the lattice light shift
can have broad applicability, while also relaxing the need for
precise knowledge of the atomic parameters. On the flip side,
this makes it challenging to compare or translate parameters
between experiments. For example, the coefficients a (slope
and zero crossing) and b in Eq. (26) are not universal. Despite
the extra leeway that can be afforded by reparametrization, it
is still important to account for uncertainty in the distribution.
For example, in the present case we consider a “spread” of
possible distributions by introducing nonlinear (offset and
quadratic) terms into the relationship for Tρ and Tz versus
D. Different coefficients are explored for these relationships,
with the spread guided by the sideband fitting. Following the
procedure outlined in the previous paragraph, we find that
reparametrization error at the low-10−18 level can result in
some cases when using Eq. (26). If higher accuracy is sought,
the error can be reduced by introducing additional terms into
Eq. (26), which comes at the cost of an increased number
of fitting parameters. Further discussion (in the context of
the Brown et al. model) can be found in the main text and
Supplemental Material of Ref. [26].

Following the discussion above, it is clear that if less-
sophisticated models are to be used to motivate reparametriza-
tion of the lattice light shift and to assess the corresponding
error, an emphasis should be put on accurate representation
of the functional form of X , Y , and Z versus D rather than
the absolute accuracy of these factors. We find that as we
vary the distribution, the functional behavior exhibited by the
Brown et al. model closely matches that of the BO + WKB
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model (largely differing by a scale factor for X , Y , and Z).
Thus, while the Brown et al. model is not expected to support
high accuracy in absolute terms, it is nevertheless capable of
supporting high accuracy for the purposes of reparametrizing
the lattice light shift. Here, we have essentially used the more-
sophisticated BO + WKB model to validate the Brown et al.
model in a specific context.

Before concluding this section, we note that there also
exists a discrepancy for the atomic parameter �αM1+E2/αE1

in Yb. Nemitz et al. [28] recently reported a value that differs
by a few σ , where σ represents combined standard deviation,
from the theoretical value given in Brown et al. To extract
this parameter from experimental measurements, Nemitz et al.
employed a model that is closely related to the Ushijima
et al. model, but also incorporates aspects of the sideband
fitting model of Ref. [33]. Using the value for �αM1+E2/αE1

given by Nemitz et al., which is larger in absolute value, we
note that the reparametrization errors tend to get worse. More
theoretical or experimental investigation will be required to
resolve this issue.

X. CONCLUSION

Here we have developed a nonperturbative model to de-
scribe the motional energy levels in a one-dimensional opti-
cal lattice, accounting for both axial and radial confinement
relative to the lattice axis. The model combines established
tools of quantum mechanics: the Born-Oppenheimer approx-
imation and the WKB approximation. We extend our model
to describe lattice light shifts in optical lattice clocks. To eval-
uate the lattice light shift, a distribution over motional states
needs to be specified for the atomic ensemble. We consider
distributions that are expected to approximate experimental
conditions, with corresponding expressions being presented.
Comparisons are provided between our BO + WKB model
and other lattice light shift models from the literature. We
believe our BO + WKB model can be a valuable tool for
evaluating lattice light shifts or for assessing the validity of
simpler models under certain conditions.

Like other lattice light shift models in the literature, our
BO + WKB model is built upon some idealizations. As dis-
cussed in the text, tunneling between lattice sites is neglected.
While it is noted that gravity can help suppress tunneling in
practice, we do not formally account for gravity. A component
of gravity perpendicular to the lattice axis can introduce
gravitational sag, with the atoms effectively being pulled away
from the lattice axis. Also, some degree of imperfection will
inevitably be present in the optical lattice. This may include a
misbalance of intensity or a misalignment of the axes or po-
larization vectors of the counterpropagating waves that form
the optical lattice. We also neglect site-to-site variations in
the optical lattice due, for example, to focusing. In principle,
sideband (noncarrier) transitions may lead to line pulling.
While transitions connecting motional states with different
quantum number nρ are nominally forbidden when the clock
laser is aligned with the lattice axis, this is not strictly true
due to motional coupling between the radial and axial degrees
of freedom. In optical lattice clocks seeking high accuracy,
effects such as these warrant additional consideration.

Finally, while our BO + WKB model provides a means
to evaluate lattice light shifts when the motional state dis-
tribution is known, it does not address how this distribution
should be determined. Techniques such as sideband fitting
[28,33] and time-of-flight thermometry [27] have proven use-
ful for this purpose, though the integrity of these methods
has not been well assessed. For example, the sideband fitting
protocols are based on a perturbative approach starting from
the harmonic oscillator approximation, for which we have
expressed skepticism in this work. In the previous section, a
strategy for characterizing lattice light shifts is outlined that
relies on qualitative aspects of the sideband fitting, but not
on precise results. Nevertheless, with the goal of reducing
lattice light shift uncertainty further, there is strong motiva-
tion for developing methods for accurately characterizing the
motional state distribution in the optical lattice. Alternatively,
optical lattice clocks based on three-dimensional optical lat-
tices [15,38] can circumvent this issue altogether, allowing the
atoms to be unambiguously prepared in the ground motional
state. While three-dimensional optical lattice clocks certainly
come with their own set of metrological challenges, it is an
outstanding question whether these challenges prove to be less
of an impedance than the need to characterize the motional
state distribution in one-dimensional lattices.
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APPENDIX A: HARMONIC OSCILLATOR ENERGIES
AND WAVE FUNCTIONS

The harmonic oscillator potential (2) can be written in the
form

U HO(ρ, z) = −D + 1
2 m�2

ρρ
2 + 1

2 m�2
z z2.

The energies and wave functions for this potential are

EHO
nρ lnz

= −D + h̄�ρ (2nρ+|l| + 1)+h̄�z

(
nz + 1

2

)
,

	HO
nρ lnz

(ρ, ϕ, z) = bρ

√
bz

π3/4

√
nρ!

(nρ + |l|)!nz!2nz
(bρρ)|l|

× exp

(
−b2

ρρ
2

2

)
L|l|

nρ

(
b2

ρρ
2
)
eilϕ

× exp

(
−b2

z z2

2

)
Hnz (bzz),

where bρ ≡ √
m�ρ/h̄ and bz ≡ √

m�z/h̄. The functions
Lk

n (x) and Hn(x) are associated Laguerre polynomials and
Hermite polynomials, respectively. These wave functions
satisfy∫ +∞

−∞

∫ 2π

0

∫ ∞

0
	HO∗

nρ lnz
(ρ, ϕ, z)	HO

n′
ρ l ′n′

z
(ρ, ϕ, z)ρ dρ dϕ dz

= δnρn′
ρ
δll ′δnzn′

z
.
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The perturbative approach described in Sec. III re-
quires evaluation of the matrix elements 〈	HO

nρ lnz
|ρ pzq|	HO

n′
ρ l ′n′

z
〉,

where p and q are even, non-negative integers. Here,
〈	HO

nρ lnz
|ρ pzq|	HO

n′
ρ l ′n′

z
〉 denotes the integral above, but with the

inclusion of ρ pzq in the integrand. The matrix elements of ρ2

and z2 read as〈
	HO

nρ lnz

∣∣ρ2
∣∣	HO

n′
ρ l ′n′

z

〉 = δll ′δnzn′
z

h̄

m�ρ

× [δnρn′
ρ
(2nρ + |l| + 1)

− δnρ ,n′
ρ+1

√
nρ (nρ + |l|)

− δnρ+1,n′
ρ

√
n′

ρ (n′
ρ + |l|)],

〈
	HO

nρ lnz

∣∣z2
∣∣	HO

n′
ρ l ′n′

z

〉 = δnρn′
ρ
δll ′

h̄

2m�z
[δnzn′

z
(2nz + 1)

+ δnz,n′
z+2

√
nz(nz − 1)

+ δnz+2,n′
z

√
n′

z(n′
z − 1)].

The matrix element for z2 is readily obtained with raising and
lowering operators for a one-dimensional harmonic oscillator.
The matrix element for ρ2 was derived from orthogonality and
recurrence relations of the associated Laguerre polynomials.
Exploiting completeness of the harmonic oscillator states,
expressions for the matrix elements 〈	HO

nρ lnz
|ρ pzq|	HO

n′
ρ l ′n′

z
〉 with

p + q > 2 can further be obtained from these expressions.

APPENDIX B: DENSITY OF STATES FOR THE
HARMONIC OSCILLATOR POTENTIAL

For γ � 1, there are ≈γ 2/2 combinations of nρ and l that
satisfy 2nρ + |l| + 1 < γ . We introduce the function

γnz (E ) = E + D − 2
√

DER
(
nz + 1

2

)
2
√

DER(κ/k)
,

which satisfies γnz (E
HO
nρ lnz

) = 2nρ + |l| + 1. We subsequently
introduce

Nnz (E ) = 1
2 [γnz (E )]2,

which represents the total number of harmonic oscillator
states for a given nz that have an energy below E . The density
of states is then taken as GHO

nz
(E ) = N ′

nz
(E ), which results in

Eq. (4) of the main text.

APPENDIX C: ORTHOGONALITY AND
NORMALIZATION OF THE BO WAVE FUNCTIONS

Eigenfunctions of the axial BO equation (5) are orthogonal,
and we take them to be normalized to unity. That is, the
eigenfunctions satisfy∫ +π/2k

−π/2k
Z∗

nz
(ρ, z)Zn′

z
(ρ, z)dz = δnzn′

z
.

The integration limits are taken as ±π/2k due to the assump-
tion of infinite potential barriers for |z| > π/2k (see Sec. IV).
It is noted in Sec. VI that the BO approach is exact for the
harmonic oscillator potential (2). In that case, it is understood

that the integration limits extend to ±∞. For a given nz and l ,
eigenfunctions of the radial BO equation (6) are orthogonal,
and we can likewise take them to be normalized to unity,∫ ∞

0
R∗

nρ lnz
(ρ)Rn′

ρ lnz (ρ)dρ = δnρn′
ρ
.

The BO wave functions (7) subsequently satisfy∫ +π/2k

−π/2k

∫ 2π

0

∫ ∞

0
	∗

nρ lnz
(ρ, ϕ, z)	n′

ρ l ′n′
z
(ρ, ϕ, z)ρ dρ dϕ dz

= δnρn′
ρ
δll ′δnzn′

z
.

APPENDIX D: SOLUTIONS TO THE AXIAL BO EQUATION

The axial BO equation (5), taken together with the potential
(1), amounts to Mathieu’s differential equation. Insisting that
the eigenfunctions vanish at |z| = π/2k, the solutions are

Znz (ρ, z) =
√

2k

π
×

{
cenz+1

(
kz,−D(ρ)

4

)
senz+1

(
kz,−D(ρ)

4

) ,

Unz (ρ) = ER ×
{

anz+1
(−D(ρ)

4

) − D(ρ)
2

bnz+1
(−D(ρ)

4

) − D(ρ)
2

, (D1)

where the top (bottom) lines apply for even (odd) nz and
where we introduced D(ρ) = (D/ER)e−κ2ρ2

for brevity. Here,
cer (z, q) and ser (z, q) are even and odd Mathieu functions,
respectively, with ar (q) and br (q) being their respective char-
acteristic values [39].

We can exploit properties of the Mathieu functions and
their characteristic values to instead express the eigenfunc-
tions and eigenvalues as

Znz (ρ, z) =
√

2k

π
senz+1

(
kz + π

2
,
D(ρ)

4

)
,

Unz (ρ) = ER

[
bnz+1

(D(ρ)

4

)
− D(ρ)

2

]
, (D2)

which is applicable for both even and odd nz. In going from
expression (D1) to expression (D2) for the eigenfunctions, we
have dropped an nz-dependent sign.

APPENDIX E: INTEGRATIONS WITH RESPECT TO l

Here, we consider the integral

I =
∫
R

1√
E − Unz (ρ) − h̄2

2m
l2

ρ2

dl.

For this integral to return a nonzero value, we must have E >

Unz (ρ). When this criterion is satisfied, we may introduce a
variable u given by

u = l

ρ

√
2m
h̄2 [E − Unz (ρ)]

.

In terms of u, the integral becomes

I = ρ

√
2m

h̄2

∫ +1

−1

1√
1 − u2

du,
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where the integration limits are easily deduced. The definite
integral here equates to π . It follows that

I = π

√
2m

h̄2 ρ,

if E > Unz (ρ) and I = 0 otherwise.

APPENDIX F: ANALYTICAL EXPRESSION FOR
THE NUMERATOR OF EQ. (19)

Here, we derive an analytical expression for the integral

I = 2κ2D

kBT

∫ Rnz (0)

0
xnz (ρ) ρ

[
exp

(
−Unz (ρ)

kBT

)
− 1

]
dρ,

which appears (without prefactor) in the numerator of
Eqs. (19), (21), and (25). As a first step, we note the equality

U ′
nz

(ρ) =
∫ +π/2k

−π/2k

∣∣Znz (ρ, z)
∣∣2 ∂U (ρ, z)

∂ρ
dz,

which follows from the Hellmann-Feynman theorem. Given
the form of U (ρ, z) and the form of xnz (ρ), this implies

xnz (ρ) = U ′
nz

(ρ)

2κ2Dρ
.

Thus, we can write

I =
∫ Rnz (0)

0

[
exp

(
−Unz (ρ)

kBT

)
− 1

]
U ′

nz
(ρ)

kBT
dρ.

Making the substitution u = Unz (ρ)/kBT , this integral be-
comes

I =
∫ 0

u0

(e−u − 1)du,

where u0 = Unz (0)/kBT . This integral is readily evaluated,
giving

I = e−u0 + u0 − 1.

APPENDIX G: SUPPLEMENTAL INFORMATION FOR
THE BROWN ET AL. MODEL

Here, we provide supplemental information for the Brown
et al. model, as not all details were explicit in that work.
As noted in Sec. VIII, an expression is provided in Brown
et al. for the clock shift of a specific motional state. This
expression is in terms of quantum numbers nr and nz, where
nr ≡ 2nρ + |l| (in Brown et al., nr is written as nρ , but we have
a different meaning for nρ in this work). To completely define
the Brown et al. model, we must further specify the energies
used to determine the populations [e.g., Eqs. (20) and (24)].
For this purpose, the following energies are used:

EBrown
nr nz

= − D + 2
√

DER(κ/k)(nr + 1)

− 2

3
ER(κ/k)2

(
n2

r + 2nr + 3

2

)

+ 2
√

DER

(
nz + 1

2

)

− 1

2
ER

(
n2

z + nz + 1

2

)
. (G1)

These energies are derived using the perturbative approach
described in Sec. III. Specifically, terms proportional to ρ4

and z4 in the series expansion of the potential are evaluated at
first order in perturbation theory. For the radial anharmonic
correction, an average is further taken over all states of a
given nr to arrive at the above expression (this step was
also performed in arriving at the clock shift expression in
Brown et al.). No cross-dimensional corrections are included
in Eq. (G1). Given that the radial and axial degrees of freedom
remain decoupled in this picture, Tρ and Tz of the main text
connect with the conventional meaning of radial and axial
temperature.

In the clock shift expression of Brown et al., nr appears
as np

r , with the exponent p equal to one or two. In deducing
expressions for Xnz , Ynz , and Znz , we must evaluate the average
value of np

r for a given nz. We write this as 〈np
r 〉nz

, and it is
taken as

〈
np

r

〉
nz

=
∑

nr
np

r (nr + 1)e−EBrown
nr nz /kBTρ∑

nr
(nr + 1)e−EBrown

nr nz /kBTρ
. (G2)

The factor (nr + 1) appearing in the numerator and denomi-
nator on the right-hand side is a degeneracy factor accounting
for all states of a given nr (i.e., all combinations of nρ and l
compatible with the given nr). While nz does appear explicitly
on the right-hand side, we note that this does not contribute to
an nz dependence since the axial contribution to EBrown

nr nz
simply

cancels out of the numerator and denominator. Rather, the nz

dependence arises from the implicit restriction EBrown
nr nz

< 0 on
the summations, limiting the included states to those repre-
sentative of trapped motional states. Starting from the ground
state, nr = nz = 0, the energies increase monotonically with
nr and nz until they exceed zero. According to Eq. (G1), as
nr and nz are further increased, the energies return to the
negative-energy region and continue on to negative infinity.
These additional negative-energy states do not correspond to
physical states of the potential, and it is understood that they
are also excluded from the summations.

Given κ/k � 1, we replace the summations in Eq. (G2)
with integrals. In doing so, we arrive at the expression

〈
np

r

〉
nz

= (p + 1)!

2p

(κ

k

)−p
(

kBTρ

D

)p( D

ER

)p/2

η(p)
nz

, (G3)

where η
(p)
nz = �

(p+1)
nz /�(1)

nz
is the factor appearing in Sec. VIII.

Here, �
(q)
nz is given by

�(q)
nz

= 1

q!

∫ χnz

0
χq exp

[
−χ + 1

6

(
kBTρ

D

)
χ2

]
dχ,

with the upper limit on this integral being

χnz = 3

(
kBTρ

D

)−1{
1 −

[
1

3
+ 4

3

(
D

ER

)−1/2(
nz + 1

2

)

− 1

3

(
D

ER

)−1(
n2

z + nz + 1

2

)]1/2}
.
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In the limit kBTρ/D → 0, �(q)
nz → 1 and η

(p)
nz → 1. If we had omitted the anharmonic corrections altogether (i.e., EBrown

nr nz
→ EHO

nr nz
)

and allowed nr to sum freely to infinity in Eq. (G2), we would have arrived at Eq. (G3) without the factor η
(p)
nz . Thus, η

(p)
nz may

be regarded as a correction factor relative to this case.
For the distribution given by Eq. (24), an expression for Pnz can be obtained with similar considerations. In particular, we find

Pnz = N�(1)
nz

exp

[
− 2

√
DER

kBTz

(
nz + 1

2

)
− 1

2

ER

kBTz

(
n2

z + nz + 1

2

)]
.

Here, N is a normalization factor, ensuring that the Pnz sum to unity. Note that even though the radial and axial degrees of freedom
are decoupled according to Eq. (G1), the Pnz still depend on the radial temperature Tρ via the factor �(1)

nz
. This dependence is a

result of the restriction EBrown
nr nz

< 0.
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