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Abstract: Point source atom interferometry (PSI) uses the velocity distribution in a cold atom
cloud to simultaneously measure one axis of acceleration and two axes of rotation from the
spatial distribution of interferometer phase in an expanded cloud of atoms. Previously, the
interferometer phase has been found from the phase, orientation, and period of the resulting
spatial atomic interference fringe images. For practical applications in inertial sensing and
precision measurement, it is important to be able to measure a wide range of system rotation
rates, corresponding to interferograms with far less than one full interference fringe to very many
fringes. Interferogram analysis techniques based on image processing used previously for PSI
are challenging to implement for low rotation rates that generate less than one full interference
fringe across the cloud. We introduce a new experimental method that is closely related to optical
phase-shifting interferometry that is effective in extracting rotation values from signals consisting
of fractional fringes as well as many fringes without prior knowledge of the rotation rate. The
method finds the interferometer phase for each pixel in the image from four interferograms, each
with a controlled Raman laser phase shift, to reconstruct the underlying atomic interferometer
phase map without image processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Rotation sensing with optical and matter wave interferometers has a long tradition [1–3].
Analogous to the Sagnac phase shift in a laser gyroscope, in a rotating frame, an atom
interferometer experiences a Sagnac phase shift proportional to the inner product of the rotation
vector and the Sagnac area [4]. For guided-wave atom interferometers, the matter-wave trajectories
follow the guide geometry, and the Sagnac area is fixed [5,6]. For free-space atom interferometers,
the Sagnac area depends on atoms’ initial velocity, and there are different approaches to handle
this degree of freedom. For instance, in beam atom interferometers, the atomic beam has a wide
velocity distribution in the longitudinal direction. At high rotation rates the signals from different
velocity classes average out, leading to vanishing fringe contrast, whereas at low rotation rate the
signals have high fringe contrast [7]. In launched atom interferometers, cold-atom sources are
used because they have a velocity distribution with reduced width, and the atoms are launched
with an initial velocity in a controllable fashion [8].

Contrary to the above-mentioned conventional atom interferometry techniques, point source
atom interferometry (PSI) uses the velocity distribution of an expanding cold-atom cloud to
simultaneously operate many Sagnac interferometers [9–11]. In the expanding cloud, different
velocity classes have different Sagnac areas, all of which contribute to the final interferometer
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signal. PSI maps the signal from each velocity class onto a unique point in the image plane,
using the position-velocity correlation of the expanded point source. Because of that parallel
operation, PSI measures one axis of acceleration and two axes of rotation from a single cold-atom
source and without interleaving measurements. PSI is also distinct from conventional atom
interferometer gyroscope techniques because a single rotation measurement with PSI yields a
unique reading for the system rotation rate.

In PSI, a π/2 − π − π/2 Raman laser pulse sequence is applied to an ensemble of cold atoms
as it expands. Assuming the Raman laser beams are counter-propagating along the z-axis, the
components of the rotation vector projected onto the xy-plane generate an interferometer phase
gradient with the following x and y components,

kx = −
2keffT2

R
Tex

Ωy and ky =
2keffT2

R
Tex

Ωx, (1)

where keff is the effective wave vector of the Raman laser, Ωx and Ωy are the components of
the rotation vector in the xy-plane, TR is the time between the Raman pulses, and Tex is the
total expansion time of the cold-atom cloud (Tex ≥ 2TR) [12]. This phase gradient results in a
sinusoidal fringe pattern in the population distribution across the final cloud. In principle, the
rotation rate can be extracted from a single fringe image, but clockwise and counter-clockwise
rotations remain indistinguishable. The rotation direction can be determined by taking a series of
fringe images while scanning the Raman laser phase and observing the direction that the fringes
travel. The acceleration along the Raman beam direction and the Raman laser phase determine
the phase of the fringes in the image.

Because PSI fringe images are essentially windowed pictures of monochromatic plane waves,
a host of methods from wave optics can be applied to analyze the images. It is intuitive to use
parametric fitting to extract the fringe contrast, orientation, frequency, and phase, where the latter
three parameters can be converted to rotation and acceleration readings. However, parametric
fitting to a fraction of a fringe period that has an unknown phase is challenging because, in
practice, the plane wave is usually damped with a Gaussian envelope due to the spatial variation
of the atomic distribution or contrast and there is other noise in the images. Since the phase
gradient (and thus the number of fringes) is proportional to the rotation rate, a lower rotation
rate that generates less than one fringe period can result in a measurement with significant error,
except when the signal-to-noise ratio is excellent.

Dickerson et al. have described this problem of measuring small rotations in the partial-fringe
regime (where there is less then one period fringe in the images) when they measured the Earth’s
rotation using PSI [9]. In their work, they applied a counter-rotation that nulls the phase gradient
and thereby yields the Earth rotation rate. Instead of parametric fitting the entire cold-atom image
to obtain the phase gradient as they scanned the counter-rotation, they detected the differential
phase between the left-half and right-half of a cold-atom cloud with an ellipse fitting procedure
[13].
Sugarbaker et al. have also addressed the problem of measuring small rotations in the

partial-fringe regime using another approach, enabling a gyrocompass measurement [10]. In that
study, an experimental phase shear, in the form of the Raman laser beam-tilt for the third Raman
pulse, is applied to the cold-atom cloud to increase the number of fringes across the cloud to
about 2.5 so that their parametric fitting procedure can be performed on multiple fringes.
We propose a different approach—instead of analyzing the fringe images, we convert the

fringes in the population distribution into an interferometric phase map [12], which allows a direct
analysis of the phase gradient and the acceleration phase, independent of the number of fringes.
This is accomplished by an experimental method that converts four fringe images into a phase
map, analogous to the phase shifting interferometry technique in optical interferometry [14–16].
We have termed the method “Simple, High dynamic range, and Efficient Extraction of Phase
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map”, or “SHEEP.” The SHEEP method does not lose sensitivity in the partial-fringe regime. As
we will discuss in detail in Sec. 2.1, the SHEEP method operates on every individual pixel in
the images. In the SHEEP method, the fringe contrast has no effect on determining the rotation
rate. Common-mode noise, e.g., due to the imperfections in the imaging system, is strongly
suppressed. Both effects would otherwise be hard to remove with normalized detection alone.
Although the SHEEP method takes more than one fringe image to yield a rotation measurement,
it dramatically improves the measurement’s robustness. A similar strategy has been demonstrated
for acceleration measurements [17].

As will be demonstrated in the following sections, the SHEEP method returns robust rotation
readings and is independent of the fringe phase or the number of fringes in the image because the
analysis is performed on a pixel-by-pixel basis. The SHEEP method does not require additional
experimental means, such as a compensation rotation or an additional Raman beam tilt, to
perform well at low rotations. Further, the SHEEP method does not require a calibration of the
fringe contrast. These features add up to unparalleled robustness and efficiency that makes the
SHEEP method simple and robust for real-time portable applications.

2. Theoretical background

2.1. Extraction of the phase map

Figure 1 describes the concept of the SHEEP method which is to convert four fringe images into
a phase map. This conversion is an inverse tangent function of a series of four fringe images,
in which the laser phase used to acquire each fringe image differs from the previous one by
π/2 [12,18]. Experimentally, this stepping of the fringe phase by π/2 is done by increasing the
Raman laser frequency chirp rate by 1/4T2

R each time a new image is taken. Prior knowledge of
fringe contrast, orientation, frequency, or phase is not needed to determine the phase map.

Fig. 1. Illustration of the SHEEP method. The SHEEP method takes a series of four images
and each fringe image’s phase differs from the previous one by π/2, where β is an unknown
fringe phase due to the acceleration phase and the Raman laser phase. Experimentally, the
π/2 phase stepping is achieved by stepping the Raman laser chirp rate. The SHEEP method
returns the phase map, which contains the values of β and the rotation phase gradient. The
operation is independent of the fringe contrast, fringe orientation, fringe frequency, and
fringe phase.

We label the four fringe images’ population ratios as P1, P2, P3, and P4. Under the assumption
that the rotation rate does not change substantially in one measurement sequence, the pixel value
in each image is nominally described by a sinusoidal function of the phase,

PL(xi, yj) =
1
2
[
1 − c(xi, yj) cos(φ(xi, yj) + 2π∆αLT2

R)
]
, (2)

where L = 1, 2, 3, or 4 is the image number, (xi, yj) labels the pixel in the ith column and jth row,
c(xi, yj) is the contrast of the pixel (xi, yj) and is not assumed to be constant over the range of the
cold-atom cloud, φ(xi, yj) = φΩ(xi, yj) + φa + φl is the phase map that contains the rotation phase
φΩ(xi, yj), acceleration phase φa, and the Raman laser phase φl, and ∆αL is the difference in the
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Raman laser chirp rate from α0 in image L. α0 is the Raman laser chirp rate that compensates for
the Doppler shift due to the free fall of the atoms. Without loss of generality, we assume ∆α1 = 0.

We step the chirp rate such that (∆αL+1 − ∆αL) × 2πT2
R = π/2 and calculate the phase map as

φ(xi, yj) = tan−1
[
P2(xi, yj) − P4(xi, yj)

P3(xi, yj) − P1(xi, yj)

]
+ nπ, (3)

where n is an integer that removes discontinuities in the phase map. The mathematical form in
Eq. (3) is similar to that of phase-shifting interferometry in optical interferometry [14–16].
The contrast of each pixel c(xi, yj) is a common factor of the numerator and denominator in

the argument of the inverse tangent and cancels out in the calculation. Thus, the phase map is
separated from the spatial distribution of atoms and the spatially-dependent Raman laser Rabi
frequency. In other words, the phase of each pixel in the phase map is computed from the pixel’s
own amplitudes as it steps through a full 2π oscillation. This operation is independent of the
values of neighboring pixels, and thus robust against any background structure of the image.

By definition, the output range of the inverse tangent is between −π/2 and π/2, resulting in
discontinuities in the phase map when the rotation rate is high enough that multiple fringes are
created across the cloud. Unwrapping the inverse tangent output, i.e., determining the value
of n in Eq. (3), does not change the phase gradient. We note that the value of n changes the
global offset of the entire phase map in steps of π, arising from the fact that the acceleration
measurement in PSI is fundamentally ambiguous over phase multiples of 2π, as in conventional
atom interferometers. Additional techniques can be implemented to resolve the ambiguity
problem, which is especially important for portable applications [19–22].

2.2. Phase map analysis versus fringe image analysis

The experimentally-obtained phase map f (x, y) can be described by a simple linear model with
only three fitting parameters,

f (x, y) = kxx + kyy + φ0, (4)

where φ0 is the sum of the acceleration phase and the Raman laser phase, kx is the rotation phase
gradient in the x-axis, and ky is the rotation phase gradient in the y-axis. All three parameters are
useful in inertial sensing. The rotation components are recovered from the phase gradients via
the relations in Eq. (1). The acceleration along the z-axis, az, can be recovered by the relation
az = φ0/(keffT2

R), but this is not emphasized in the present work.
The experimentally-obtained fringe images can be modeled as a plane wave that has five fitting

parameters,
g(x, y) = c cos(kxx + kyy + φ0) + g0, (5)

where the additional fitting parameters are c, the contrast of the fringes (assumed to be constant
over the range of the cold-atom cloud), and g0, the overall background. If the Gaussian envelope
cannot be removed by a normalized detection scheme, the fringe images may be modeled by
including an additional Gaussian envelope, though at the cost of requiring more fitting parameters.
The phase gradients, the contrast, and the fringe phase are all fitting parameters in the

sinusoidal function. In principle, the fitting procedure should not require prior knowledge to
return reasonable values of the parameters. However, experimentally, parametric fitting of the
fringe images with sinusoidal functions is not as robust as linear fitting of phase maps, as will
be shown in Section 4. The simplification from sinusoidal fitting with five parameters (fringe
analysis) to linear fitting with three parameters (phase map analysis) contributes to the robustness
of the SHEEP method. However, since the same image data is used in each method, the effects of
quantum projection noise should be the same for both methods and their effects on the Allan
deviation are calculated and shown in [23].
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3. Experimental setup and methods

The experimental setup has been described in our previous work [23]; however, in the present
work, we use a different experimental timing sequence to acquire the four fringe images for
demonstrating the SHEEP method (without changing the hardware).
The experiment uses 87Rb atoms laser-cooled in a glass vacuum cell with a 1 cm2 cross-

sectional area. At the beginning of each experimental sequence, the atoms are loaded into a
six-beam magneto-optical trap (MOT). The cloud of atoms is made smaller and colder with
compressed-MOT and molasses stages, resulting in an initial atomic cloud with a diameter of 0.4
mm and a temperature lower than 10 µK. The loading and cooling of the atoms into the MOT
takes 138 ms. Typically, there are 6 × 106 atoms in the cloud. The freely-expanding cloud of
atoms is then transferred to the F = 1, mF = 0 sublevel of the ground state by optical pumping
with an efficiency of at least 85%. The Raman π/2 − π − π/2 laser pulses are applied in the
direction of the local gravitational field. The π-pulse duration is 5 µs and the time between pulses
is TR = 7.8 ms. After the pulse sequence, the cloud is imaged in the plane transverse to the
Raman laser beams with state-selective absorption imaging. At the time of imaging, Tex = 25.9
ms, the cloud has expanded by a factor of 4 and fallen by 3 mm. We perform normalized detection
by taking an image of the atoms in the F = 2 state, repumping all atoms to F = 2, and then taking
a second image of the atoms in the F = 2 state. The fringe image is obtained by taking the ratio
of the first image to the second image and plotting the population ratio of the atoms in F = 2
state. The total experimental cycle time is 166.7 ms. Due to our camera frame rate, it takes one
second to acquire the four population ratio images to establish one phase map.
The laser beams that drive the two-photon Raman transitions between the 87Rb F = 1 and

F = 2 states are spatially superimposed with orthogonal circular polarizations. A bias magnetic
field is applied in the direction parallel to the laser beams. The laser beam driving the transition
from the F = 1 state to an intermediate state is denoted as the “F1 beam,” and the other laser beam
driving the transition from the F = 2 to the intermediate state is denoted as the “F2 beam.” The
F1 beam is retro-reflected back to the atoms after passing through the cell, and the polarization
is reversed from σ−-polarization to σ+-polarization. The counter-propagating pair of the F1
beam and the F2 beam is used to transfer photon momenta to the atoms. The co-propagating pair
of the F1 beam and the F2 beam drives magnetically-sensitive transitions, which are tuned off
resonance by the bias magnetic field.

During the Raman interrogation, the frequency of the F1 beam is chirped with a direct digital
synthesizer at α0 = −25.1 kHz/ms to compensate for the Doppler shift due to the free fall of the
atoms. Varying the chirp rate around α0 also scans the overall interferometer phase and translates
the spatial fringes across the image plane.
Rotation of the lab frame causes the direction of both Raman beams to rotate about the free-

falling atoms. We simulate rotation by piezoelectrically sweeping the angle of the retro-reflection
mirror of the Raman F1 beam, which causes a phase shift that is equivalent to the shift caused by
the rotation of the lab frame for small mirror rotation angles [24]. The simulated rotation rate is
constant during the acquisition of the four fringe images.

4. Experimental results

Our objective is to compare the phase map analysis with the more typical fringe analysis by
parametric fitting. For the phase map analysis, we extract the phase map with the SHEEP method,
then apply a 2D linear fit to the phase map with Eq. (4). For the fringe analysis, we process
all four images and then take the average of the results since we convert a series of four fringe
images into one phase map. The full cycle period for the measurements with the two techniques
are equal. We first perform principal component analysis (PCA) on the set of four images to
remove some background noise, and then apply a 2D curve fit to the four cleaned fringe images
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with the plane wave function in Eq. (5). We refer to this approach as the “PCA method,” which
has been used in previous PSI works [9,10,23]. PCA is model-free, and has been used in different
atomic systems to remove noise in the images before analyzing the data with a physical model
[25,26]. We note that there are other widely-used model-free noise-removal techniques, such
as the one demonstrated in [27]. However, considering the overall laser excitation and probing
scheme used in our work (that the background noise does not just come from one probe laser
beam), and the moving nature of the interferometric fringe patterns, PCA is more appropriate for
our application. It should be noted that the comparison is between one phase map and four fringe
images. A sample of the phase map and the fringe images can be found in the Appendix.
The determination of rotation rates using PSI in the partial fringe regime was investigated

previously by Dickerson et al. [9]. In their experiment, ground vibrations caused noise on the
interferometer such that the fringe phase varied by more than 2π from shot to shot. By splitting
the atom cloud spatially into two halves, a parametric analysis could be carried out in which the
relative phase of the two resulting interferometers was established and the effects of vibrations
could be removed. The presence of the vibrations allowed the full 2π range of fringe phases to be
measured, albeit randomly, and the relative phase to be measured precisely. The SHEEP method
is therefore related to the work in [9], but uses four images with well-defined fringe phases to
extract the rotation rate in the absence of vibrational noise.
The ellipse fitting procedure in [9] typically uses a minimum of six images to allow for

extraction of the phase map in the presence of vibration phase noise that randomizes the offset
phase in the images. Since our experiment has a much shorter interrogation period, the phase
noise from vibration is significantly smaller than 2π, and rotation information can be extracted
without employing techniques like ellipse fitting.

4.1. Azimuthal scans of fixed-magnitude rotation vectors

We apply a rotation vector in the plane perpendicular to the Raman laser beams with a fixed
rotation rate while stepping the direction of the rotation from 0 to 360 degrees in two-degree
steps. In each rotation step, we record a series of four fringe images with fringe phases of 0, π/2,
π, and 3π/2 to the unknown acceleration phase and the Raman laser phase. We process the sets
of four images with the SHEEP method and the PCA method separately and plot the measured
rotation phase gradients versus the azimuthal angle of the applied rotation vector.

The traces obtained by the SHEEP method and the PCA method are shown in Fig. 2 for three
different rotation rates. Because the rotation vector precesses about the direction of the Raman
laser beams, the x-component of the phase gradient follows a sine curve while the y-component
of the phase gradient follows a cosine curve, via the relation in Eq. (1).

Qualitatively, the SHEEP method resolves the sinusoidal variation in all three cases, while the
PCA method loses sensitivity as the rotation rate becomes smaller.
In Fig. 2 the traces of the PCA method are plotted as the absolute value of the rotation phase

gradient because the sign of the phase gradients kx and ky returned by the plane wave fitting is not
computed (since it is not needed for the sensitivity comparison). In the PCA method, an extended
experimental procedure and additional analysis would be needed to use the phase information
and to determine the direction of the fringe travel, and thus the sign of the phase gradient. It is
noted that SHEEP method distinguishes between a counter-rotation and a rotation without any
additional analysis needed, which amounts to a practical advantage.
We note that there is a non-zero phase gradient offset even when there is no applied rotation.

This phase gradient offset did not noticeably change during the acquisition time of each data set.
An example of this phase gradient offset is visible in Fig. 2(a), where both sinusoidal curves are
centered at a non-zero value in the vertical direction. The non-zero, slow-varying phase gradient
offset in the experimental data may arise from technical sources, such as the Raman laser beam
wavefront not being uniform.
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Fig. 2. Azimuthal scans of fixed-magnitude rotation vectors, with the experimental data
processed with the SHEEP method and the PCA method, for the indicated rates. The half
length of the error bar attached to each point is the value of the 2D fit error. In (a), the dashed
lines are sine and cosine fits to the time traces. In (e), the dashed lines are magnitude-sine
and cosine fits. An example of the fringe images for the case of 5.1 deg/s rotation ((c) and
(f)) can be found in the Appendix. TR = 7.8 ms for all three scans.

4.2. Statistical error of single rotation measurement

Figure 3 shows the results of a single rotation measurement (of a set of four images) returned
from the PCA method (pink circles) and the SHEEP method (green squares and purple triangles)
at different rotation rates. Both the measured rotation value and the error in Fig. 3 are normalized
to the applied rotation rate. The two methods return similar normalized values and errors when
the images have more than one fringe; however, the PCA method worsens immediately when the
number of the fringes in the image is less than one, while the normalized value and the error
of the SHEEP method remains low down to the lowest rotation rates studied. In other words,
the two methods are similar in the multiple-fringe regime; however, in the partial-fringe regime,
the PCA method gradually loses sensitivity. Contrary to the PCA method, the SHEEP method
remains robust without any correction and the dynamic range is at least 10 dB better than that of
the PCA method. The dynamic range of the SHEEP method is further improved when the phase
gradient offset (at zero applied rotation rate) is removed (purple triangles).

For a perfect point source, the normalized rotation should be one, i.e., with a scale factor that
equals one. However, the scale factor is expected to be around 0.9 in this work because the
cold-atom cloud expands by a factor of about four and is therefore not an ideal point source.
Avinadav and Yankelev et al. have demonstrated methods to correct this effect [28].

The rotation phase gradient, and thus the number of fringes, scales with the rotation rate and
the time between the Raman laser pulses (assuming Tex ≈ 2TR; see Eq. (1)). In this work, TR
is 7.8 ms due to the small size of our experimental setup. We also plot the calculated number
of fringes of an ideal point source in Fig. 3 in order to highlight the fact that the measurement
covers both the multiple-fringe regime and partial fringe regime. Due to the reduced scale factor,
the actual number of fringes is slightly lower [12].
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Fig. 3. Fit results of single rotation measurement, in both the SHEEP method and the PCA
method, versus the applied rotation rate. The left vertical axis is the measured value returned
from the fitting procedure and is plotted as normalized values. The half length of the error
bar is the normalized 2D-fit standard error. The error bars become longer at lower rotation
rates because they are normalized to the applied rotation rates. The top horizontal axis shows
the calculated number of fringes along the diagonal of an image versus the rotation rate
for an ideal point source, (2keffT2

R)/(Tex) × Ω × (d/2π), with d = 2.6 mm the length of the
diagonal, TR = 7.8 ms, and Tex = 25.9 ms. We note that in the partial fringe regime, around
0.2 to 0.4 degrees/s, two data points for the PCA method have error bars that appear to
extend to negative values (because we use symmetric error bars). However, the normalized
rotation rate as defined is intrinsically positive.

4.3. Allan deviation of the rotation measurement

We also record a time series of images where the applied rotation rate and the rotation direction
are fixed. We repeat the measurement at a few different applied rotation rates, including zero
applied rotation rate. Figures 4(a) and (b) show two samples of Allan deviation plots at an applied
rotation rate of 3.2 deg/s and zero applied rotation rate, respectively. The Allan deviation curves
from the SHEEP method and the PCA method are not significantly different from each other
in (a). However, in the case of zero applied rotation rate, shown in (b), the curve for the PCA
method is at least a factor of ten higher while the curve for the SHEEP method remains at about
the same level as in Fig. 4(a).

Figure 4(c) shows the mean value of the measured rotation rate. The half-lengths of the error
bar attached to each point are the value of the Allan deviation at one second. To guide to eye, in
Fig. 4(c) we also show the applied rotation rate itself with a dot-dashed line. In the multiple-fringe
regime, both the SHEEP and PCA methods return similar mean values and Allan deviations at
one second. In the partial-fringe regime, the mean values of the PCA method deviate from the
dot-dashed line and have larger Allan deviations. At zero applied rotation rate, the mean value of
the SHEEP method is not exactly zero, due to the non-zero phase gradient offset discussed in
Sec. 4.1.
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Fig. 4. Allan deviation plots of rotation measurements and measured values versus applied
rotation rates. (a) and (b) are plots of the Allan deviation curves of rotation measurements at
an applied rotation rate of 3.2 deg/s and zero applied rotation rate, respectively. We fit the
curves from 1 to 10 seconds with the function A/

√
τ, where the fit parameter A is an estimate

of the Allan deviation at one second. We plotted the measured rotation rates versus the
applied rotation rate in (c). The half-lengths of the error bars equal the respective coefficients
A. Note that the rightmost data points (squares and circles) are overlapped. The dot-dashed
line equals the applied rate (for a scale factor of one). The top horizontal axis shows the
number of fringes in the image (calculated in the same manner as described in the caption of
Fig. 3). The error bars look longer at lower rotation rates because the vertical axis is on a log
scale.

5. Discussion

5.1. Measurable range of rotation rates

In light-pulse atom interferometry, the rotation of the laboratory frame causes ®keff to rotate such
that atoms receive momentum kicks in slightly different directions from the sequential laser
pulses, with the result that atomic spatial wavefunctions at the output of the interferometer do
not completely overlap. This walk-off reduces the interferometer contrast at high rotation rates
and sets a fundamental upper limit for the maximum rotation rate that can be measured. In our
compact instrument, the finite-sized initial cloud and the small expansion factor also reduce
the contrast of the spatial fringe pattern as the rotation rate increases [12], which also sets an
upper limit on the measurable rotation rate. In Fig. 2, the highest rotation rate of 5.1 deg/s is not
limited by the walk-off or reduced fringe contrast but simply by the upper limit of our ability to
simulate rotation through the angular motion of the retroreflecting mirror. The lowest rotation
rate of 0.045 deg/s is limited by the electronic noise of the piezoelectric actuator electronics in
the retroreflecting mirror.
The upper and lower limits on the measurable rotation rate also depend on technical factors

such as the resolution of the analog-to-digital converter in the camera, the pixel size, the camera
noise, and the system vibration noise. The SHEEP method only works when phase noise from
vibrations is significantly less than 2π. Our experimental setup is built on a floating optical table
without active vibration isolation. The phase instability due to vibration is about 62 mrad at one
second when TR = 8 ms [23]. We use a relatively short Raman interrogation time TR = 7.8 ms to
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avoid the effects of vibration. This short TR is also compatible with the dimensions of the glass
cell used in the experimental setup.

5.2. Unambiguous rotation measurement

In conventional atom interferometers, the rotation is measured from the rotation phase, which
is typically derived from the population ratio via an inverse sinusoidal function. However, the
inverse sine is ambiguous to an integer multiple of 2π, and therefore the measurement does not
provide a unique value of the underlying rotation.

In contrast, PSI gives a unique value of the rotation. The interferometer rotation phase depends
linearly on the atom velocity v as φΩ = 2®keff · ( ®Ω×®v)T2

R, so the magnitude of the rotation depends
on the quantity dφΩ/dv = 2keffT2

RΩ. The quantity dφΩ/dv is inherently measured in PSI as a
spatial phase gradient across the cold-atom cloud because of the position-velocity correlation of
an expanding cloud. The spatial phase gradient is a one-to-one function of the rotation vector
projected onto the image plane.

5.3. Bandwidth

Fundamentally, the phase map can be extracted from three images [18]. The use of four images
here allows for Eq. (3) to be symmetric, which reduces some systematics related to the data
collection. Because N>1 images are required, the bandwidth of the sensor is reduced by a factor
N over single-image approaches. The SHEEP method is compatible with a queue operation,
in which for every new reading, the oldest image in the queue is deleted and a new image is
appended at the end of the queue. While this does not increase the sensor bandwidth, it does
provide a more continuous readout of the rotation rate, which may be advantageous for some
applications.

6. Applications

In light of the rotation dynamic range, unambiguity, and robustness provided by the SHEEP
method, a PSI instrument may be operated in a free-running mode that returns rotation readings for
inertial navigation applications. A PSI instrument may also be operated in a zero-fringe locking,
closed-loop [29–31] mode that provides a rotation-free environment for another instrument. In
the closed-loop mode, real-time phase maps generated by the SHEEP method are used as a servo
input to an actuator that cancels the platform’s rotation. In high-precision atom interferometer
gravimeters, sources that generate spatial variation in the population distribution in the final
cloud, such as the Earth’s rotation [24], the rotation of a moving platform, or the Raman laser
wavefront [32,33], can cause systematic errors in the acceleration measurement. The SHEEP
method, combined with additional tools, may be used to characterize those spatially-dependent
systematic effects in situ [11].
We believe the SHEEP method is advantageous for portable applications, especially in the

case of short TR combined with high bandwidth [9]. The rotation phase gradient has a linear
dependence on TR. The vibration phase grows like a quadratic function of TR. Reducing TR
not only increases the bandwidth but also reduces the vibration phase in a way that favors the
rotation measurement. As a consequence of lowering TR, there will be fewer fringes in the
images; however, the SHEEP method works for images with any number of fringes, including a
fraction of a fringe.

7. Conclusions

We have demonstrated a new method that we termed “Simple, High dynamic range, and Efficient
Extraction of Phase map", or “SHEEP”. The SHEEP method extracts the phase map of a
point-source atom interferometer from four fringe images with a pixel-by-pixel analysis. We have
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compared the SHEEP method to an established fringe-analysis approach, in which images are
processed with principal component analysis and subsequently fitted with parametric functions.
We have demonstrated that the two methods are generally equivalent in the multiple-fringe
regime (moderate and fast rotations); however, we have found SHEEP to be more robust in the
partial-fringe regime (slow rotations) than our implementation of the PCA analysis approach.
We do not rule out that extensions of the PCA approach could improve the robustness of the PCA
approach for partial fringes. The possibility of such extensions would require further study.
The SHEEP method does not require prior knowledge of the fringe phase, fringe contrast, or

the range of the rotation rate. These advantages benefit the experimental design, data acquisition,
and analysis procedures in fieldable applications, as they considerably simplify the decision tree
in instruments.

Appendix

Figure 5 shows a set of four experimental fringe images with an applied rotation rate of 5.1 deg/s,
which is the highest rotation rate studied in this work. We use commercial math software and its
built-in functions to perform the 2D fit. The fit function uses a trust-region-reflective algorithm.

Fig. 5. Fringe images, plotted as the population ratio of the F = 2 state. The imaging plane
is perpendicular to the direction of the Raman laser beams. The fringe phases are 0, π/2,
π, and 3π/2 relative to the unknown acceleration and Raman laser phase. All images have
36 × 36 pixels and a physical size of 1.9 × 1.9 mm2. There are clearly structures in the
normalized population ratio image from imperfections in the imaging process. However, the
SHEEP method returns a phase map that is free from most of the structure in the normalized
population ratio images through common mode noise cancellation expected from Eq. (3).

7.1. SHEEP

For the SHEEP method, we do not perform any pre-processing on the fringe images. We convert
a set of four fringe images into a phase map with Eq. (3) and then unwrap the inverse tangent
output. We compute a set of initial fitting parameters and corresponding parameter boundaries
from a basic initial statistical analysis of the phase map, and then apply a 2D linear fit using the
model in Eqs. (4) to the phase map. The phase map converted from the data in Fig. 5 and the 2D
linear fit are shown in Fig. 6. We convert the fit parameters kx and ky and corresponding fit errors
from each phase map into a measured rotation rate and the corresponding uncertainty.
The fringe-like structure in the fit residual most likely stems from vibration noise. Vibration

causes the phase separation between the images to deviate from π/2 by random amounts, and
thus the conversion from fringe images to the phase map is not perfect. In our experimental setup,
the vibration has no significant effect on the rotation measurement results because in the multiple
fringe regime we generally find that the SHEEP method (which is vibration sensitive) and the
PCA method (which is not vibration sensitive) have similar sensitivities and uncertainties. This
is seen, for instance, in Fig. 3 and Fig. 4
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Fig. 6. Sample images for the SHEEP method. Left: phase map derived from the fringe
images in Fig. 5, with the inverse tangent function output unwrapped. Middle: 2D linear
fitting to the phase map with the function in Eq. (4). Right: fit residual. All images have
36 × 36 pixels and a physical size of 1.9 × 1.9 mm2.

7.2. PCA

For the PCA method, we first process the same set of four fringe images with PCA [23]. A
mean image is generated as the average of all four images. Each image is centered on this mean
image by subtracting the mean image. The principal components of the four centered images
are calculated. We use the leading two principal components to reconstruct the images without
adding the mean image back to the reconstructed images. The reconstructed images for the data
in Fig. 5 are plotted in the top row of Fig. 7. The background noise is mostly removed in those
processed images and the images are ready for 2D sinusoidal fitting.

Fig. 7. Sample images for the PCA method. Top row: fringe images reconstructed by PCA.
Middle row: 2D fitting to the reconstructed images with the plane wave function in Eq. (5).
Bottom row: fit residual. All images have 36 × 36 pixels and a physical size of 1.9 × 1.9
mm2.



Research Article Vol. 28, No. 23 / 9 November 2020 / Optics Express 34528

A 2D sinusoidal fitting function repeatedly fits the same fringe image 50 times using the
model in Eq. (5), with newly generated initial fit parameters each time. A uniform random
number generator generates initial fit parameters between the upper and lower limits in Table 1.
We use the optimized fit parameters from the trial that minimizes the residual. In this way we
approximate a global search of parameters. We convert the fit parameters kx and ky and fit errors
from each fringe image into a measured rotation rate and its uncertainty. We take the average of
the rotation rates from the four fringe images and calculate the uncertainty in the typical way of
the individual uncertainty divided by the square root of four.

Table 1. Parameter limits for Eq. (5) for the PCA method.

kx (rad/m) ky (rad/m) φ0 (rad) c g0
lower -7000 -7000 -3.14 0.01 -0.5

upper 7000 7000 3.14 0.99 0.5

There are some limitations regarding the PCA method used in this work. The PCA method
does not return the rotation direction unless additional computation methods are developed for
this purpose. The 50 trials of the 2D fitting present only a small sample set of the parameter space;
however, further computation effort would be counter-productive for real-time applications.
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