
PHYSICAL REVIEW A 100, 033419 (2019)

Systematic uncertainty due to background-gas collisions in trapped-ion optical clocks
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We describe a framework for calculating the frequency shift and uncertainty of trapped-ion optical atomic
clocks caused by background-gas collisions, and apply this framework to an 27Al+ clock to enable a total
fractional systematic uncertainty below 10−18. For this clock, with 38(19) nPa of room-temperature H2

background gas, we find that collisional heating generates a non-thermal distribution of motional states with
a mean time-dilation shift of order 10−16 at the end of a 150 ms probe, which is not detected by sideband
thermometry energy measurements. However, the contribution of collisional heating to the spectroscopy signal
is highly suppressed and we calculate the BGC shift to be −0.6(2.4) × 10−19, where the shift is due to
collisional heating time dilation and the uncertainty is dominated by the worst case ±π/2 bound used for
collisional phase shift of the 27Al+ superposition state. We experimentally validate the framework and determine
the background-gas pressure in situ using measurements of the rate of collisions that cause reordering of
mixed-species ion pairs.

DOI: 10.1103/PhysRevA.100.033419

I. INTRODUCTION

Background-gas collisions (BGCs) are a leading source
of systematic frequency shifts and uncertainty in many of
the most accurate microwave fountain [1–3], optical lattice
[4–6], and trapped-ion [7–10] atomic clocks. Both lattice
and trapped-ion optical clocks, in particular, report fractional
uncertainties at the low 10−18 level with BGCs contributing at
the mid 10−19 level. Further improvements to the systematic
uncertainties of optical clocks will require either reduced
background-gas (BG) pressures or more accurate evaluations
of the BGC shift.

The frequency of atomic clocks is affected by BGCs in
two distinct ways: they change the motional state distribution,
which modifies the time dilation (i.e., second-order Doppler)
shift; and they change the phase of the atomic superposition
state due to interactions during the collision. Previous evalua-
tions of the systematic uncertainty due to BGCs in trapped-ion
optical clocks have focused on the collisional phase shift
[7–14] and implicitly assumed that the time-dilation shift
due to collisional heating is captured by measurements of
secular motion heating using sideband thermometry [15]. This
treatment might be adequate when there is continuous sympa-
thetic cooling of the clock ions during the spectroscopy pulses
[10], but here we show that collisions with BG molecules in
the absence of cooling generate a nonthermal distribution of
motional Fock states with a mean energy that can be signif-
icantly larger than the Doppler limit. Sideband thermometry
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is known to underestimate the mean energy of motional state
distributions with superthermal tails [16]. Thus, time dilation
due to collisional heating may not have been fully included in
previous clock evaluations.

At large separations R, the interaction potential between a
polarizable neutral molecule and an ion is given by V (R) =
−αQ2/(8πε0R4), independent of the internal state of the ion.
Here α is the static polarizability of the molecule [17], Q
is the charge of the ion, and ε0 is the vacuum permittivity
[18]. For small impact parameters, in the classical picture
this potential leads to Langevin collision trajectories in which
the molecule spirals in towards the ion. At small separations
R, the interaction potential is different for the ground and
excited states of the clock transition, leading to a phase shift
for Langevin collision events. For large impact parameter
events, the centrifugal barrier exceeds the kinetic energy
and the short-range potential is not sampled, so the phase
shift is negligible. However, for both Langevin and glancing
collisions the BG molecule trajectory is deflected leading to
heating of the ion.

In this paper, we present a theoretical calculation of the
motional-state distribution of trapped ions that experience
BGCs in an ultra-high-vacuum (UHV) environment, with
focus placed on 27Al+ quantum-logic clocks. Next, we exper-
imentally validate this calculation by measuring the reorder
rate of a mixed species 40Ca+-27Al+ ion pair as a function
of the potential barrier between the two orders. Our collision
kinematics model agrees with the measurements over the
range of experimentally accessible reorder energy barriers.
Finally, we evaluate the BGC shift for the 25Mg+-27Al+ clock
described by Brewer et al. [19] using a Monte Carlo simula-
tion of the clock interrogation including motional heating and
phase shifts of the 27Al+ ion due to BGCs.

2469-9926/2019/100(3)/033419(12) 033419-1 ©2019 American Physical Society

https://orcid.org/0000-0003-1452-4879
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.033419&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1103/PhysRevA.100.033419


A. M. HANKIN et al. PHYSICAL REVIEW A 100, 033419 (2019)

II. COLLISION KINEMATICS MODEL

In the following, we consider collisions of H2, the
dominant gas in room-temperature UHV systems, with
25Mg+-27Al+ or 40Ca+-27Al+ ion pairs confined in linear Paul
traps. We are interested in the non-equilibrium distribution of
ion motional states that occur when the motion is initially
prepared near the three-dimensional motional ground state
[16] and evolves due to BGCs without sympathetic cooling
during the clock interrogation time, which is short compared
to the mean time between collisions with H2. Because the
collision dynamics occur on a timescale (∼10−12 s) short
compared to the fastest timescale for ion motion (∼10−8 s), it
is sufficient to treat the collisions as leading to instantaneous
changes to the velocity of one of the ions. Furthermore, we
assume that in each collision event the BG molecule interacts
with only one of the two ions.

Here we summarize our calculation of the differential
BGC rate d�

dEion
(Eion ) for collisions that impart Eion kinetic

energy onto the ion in the laboratory frame. For details,
see Appendix A. To include motional heating due to glanc-
ing collision events, we calculate the differential cross sec-
tion semiclassically following the approach of Zipkes et al.
[20]. Integrating the laboratory-frame differential cross sec-
tion dσ

d�
(ϑ, v) with a three-dimensional Maxwell-Boltzmann

distribution of BG molecules P(�v) with temperature T and
number density n, we write the total scattering rate as

� =
∫

d3�v nvP(�v)
∫

2π sin ϑ dϑ
dσ

d�
(ϑ, v), (1)

where ϑ and v are the laboratory-frame scattering angle and
initial BG velocity. Finally, we substitute ϑ (Eion, v) based
on elastic collision kinematics into Eq. (1) and numerically
compute d�

dEion
(Eion ) via finite differences.

The collision-rate distribution predicted by our model for
27Al+ in 51.9 nPa of room temperature H2 is shown in
Fig. 1(a). The total collision rate of 0.16 s−1 can be contrasted
with a 0.020 s−1 total collision rate predicted by the Langevin
cross section [18]. The effect of BGCs on the clock ion’s
kinetic energy after 150 ms of collisional heating is shown
in Fig. 1(b), indicating a highly nonthermal distribution for
Eion with ≈1 % of the population distributed between 10−2

and 102 K (energies throughout are are given in temperature
units). We calculate the collisional heating rate to be of order
1 K/s, which is significantly higher than the total heating
rate inferred by sideband thermometry measurements for the
ion traps considered here [16]. This discrepancy arises since
typical sideband thermometry assumes a thermal distribution
and is more sensitive to population near the motional ground
state [21]. We have calculated the heating rate inferred by
sideband thermometry for collisional heating to be of order
100 μK/s, or 0.1 quanta/s for each motional mode, for typical
experimental parameters.

For experiments using two-ion mixed-species crystals, it is
possible to measure the rate of collisions that cause the order
of the crystal to change. This measurement can be used to
infer the pressure of the BG at the position of the trapped
ions, which can be significantly different from the pressure in
other locations of the UHV chamber, such as the position of
a pressure gauge or vacuum pump. We calculate the reorder
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FIG. 1. (a) Differential rate of collisions between 27Al+ at rest
and 51.9 nPa of H2 BG at 295 K resulting in final ion kinetic
energy Eion. The cross section for Langevin spiraling collisions
underestimates the collision rate for low energies when compared
with the semiclassical calculation, which includes both glancing
and spiraling collisions. (b) Cumulative energy distribution (PE ion)
for all E > Eion. We compare the Maxwell-Boltzmann distribution
for a three-dimensional harmonic oscillator at a typical Doppler
cooling limit of 0.5 mK (light gray) with the distribution after
150 ms of collisions. (c) Example of a Monte Carlo calculation of
the Ca+-Al+ reorder probability (Preorder) after 27Al+ receives Eion

energy due to a BGC. The potential energy barrier for reordering,
Ereorder , is shown as a vertical gray dashed line. The green (dark gray)
shaded region marks the experimentally accessible range of Ereorder

in this work. The blue (light gray) shaded region indicates the range
of 87Rb-172Yb+ collision energies explored by Zipkes et al. [20],
mapped onto the resulting ion energy for H2-27Al+ collisions.

rate �reorder by integrating the collision rate with the reorder
probability and summing over the two ions:

�reorder =
2∑

i=1

∫ ∞

0
Pi,reorder(Eion )

d�i

dEion
(Eion ) dEion, (2)

where Pi,reorder(Eion ) is the reorder probability and d�i
dEion

(Eion )
is the differential collision rate for ion i. While an accurate
evaluation of Pi,reorder(Eion ) requires detailed knowledge of the
ion trajectories following a collision, a simpler expression
can be obtained with the assumption that Pi,reorder(Eion ) =
0.5 for Eion > Ereorder. Here Ereorder is the potential-energy
barrier between a ground-state axial configuration and a two-
ion radial crystal, which depends on the trapping conditions
(Appendix B 1). This reduces Eq. (2) to an integral over all
collision energies that are greater than Ereorder similar to the
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FIG. 2. Reorder rate as a function of reorder energy barrier for
a 40Ca+-27Al+ two-ion crystal in H2 background gas at 295 K.
Blue points: experimental data. Solid blue line: single-parameter
fit calculated using Eq. (2) together with trajectory simulations for
Pi,reorder (Eion ). The estimated background gas pressure is 51.9 nPa,
with a 1σ statistical uncertainty of ±0.8 nPa and a χ 2

red of 2.4 (see
Appendix D for a discussion of the systematic uncertainty). Dashed
green line: predicted upper bound on the reorder rate [Eq. (3)]
at a pressure of 51.9 nPa. Dotted green line: reorder rate for the
same pressure when assuming 50% of Langevin collisions cause the
crystal to reorder, as was used in previous clock evaluations.

cumulative distribution shown in Fig. 1(b) and approximately
given by

�reorder �
1

2

( p

902 nPa s

)(
Ereorder

1 K × kB

)−0.278

(3)

for 40Ca+-27Al+ in 295 K H2 background gas and 0.1 K <

Ereorder < 10 K, where p is the H2 pressure. The constants
given in Eq. (3) are specific to the background-gas temper-
ature as well as the masses of the two ions.

III. ION REORDER RATE MEASUREMENTS

In order to verify the nonthermal energy distribution pre-
dicted by our model for d�i

dEion
(Eion ), we measure two-ion

reorder rates for experimentally accessible values of Ereorder in
a 40Ca+-27Al+ clock. The setup is similar to the 25Mg+-27Al+

clock described in Refs. [16,19,22] with the sympathetic
cooling and quantum-logic readout ion 25Mg+ replaced by
40Ca+. Two-ion reorder events are detected by monitoring the
position of the 40Ca+ ion with respect to the 27Al+ ion. The
logic ion is detected and cooled with a 397-nm laser tuned
near resonance with the |S1/2〉 → |P1/2〉 cycling transition.
Using a matched pair of aspherical lenses with a numerical
aperture of 0.38, Ca+ fluorescence is collected and relayed
onto a knife-edge spatial filter aligned to the center of the
image of the two-ion crystal. The spatially filtered image is
then relayed onto a photomultiplier tube using a microscope
objective, resulting in two discrete fluorescence levels for
the two crystal orders (Appendix C). The reorder barrier is
adjusted by changing the dc voltage applied to the rf-Paul trap
end caps (Appendix B 1).

The measured reorder rates for Ereorder ranging from 0.2
to 6 K are shown in Fig. 2. While Eq. (3) predicts the overall

trend, a more accurate estimate of �reorder can be calculated by
considering the operating parameters of the ion trap and the
details of the laser cooling after a collision. To include these
effects, we have calculated Pi,reorder(Eion ) for the experimental
values of Ereorder using Monte Carlo simulations of the
ion trajectories after a collision in the full time-dependent
potential [Fig. 1(c), Appendix B 2]. A single-parameter fit
of this model for pressure gives 51.9(8) nPa, where the error
bar indicates the 1σ statistical uncertainty, with χ2

red = 2.4.
In the following, we include a 50% systematic uncertainty in
addition to the statistical error in our estimate of the pressure
uncertainty, to account for inelastic collision processes
and the unknown short-range interaction potential (see
Appendix D). The measured ion pump current indicated a
pressure of 20(10) nPa when the UHV chamber was first
built and 100(20) nPa during the reorder measurements.
Fitting Eq. (3) to the data results in a pressure of 38.9(6)
nPa with χ2

red = 10, indicating that ion trajectory calculations
are necessary for accurate pressure determination. Both
approaches improve upon the model used in past 27Al+

clock uncertainty evaluations that did not consider glancing
collisions and assumed all Langevin collisions cause the ions
to reorder with 50% probability [12] (Fig. 2, dotted green
line). If this model is fit to the reorder data, it demonstrates
poor agreement with a χ2

red of 31.
Our measurements are in agreement with the collision

kinematics model described above over the experimentally
accessible energy range 0.2 K < Eion < 6 K indicated by the
green (dark gray) shaded region in Fig. 1, which roughly
corresponds to a verification of our semiclassically calculated
differential cross section over a range of laboratory-frame
scattering angles between 0.09 and 0.5 rad, for collisions
between 27Al+ at rest and room-temperature H2 gas. Zipkes
et al. [20] have studied the collision kinematics of a single
172Yb+ ion immersed in a cloud of ultracold 87Rb atoms. They
find that Langevin collisions alone are insufficient to explain
the observed collisional heating and loss of the neutral atoms,
and that it is necessary to calculate the differential cross
section semiclassically including both Langevin and glancing
collisions. By measuring the collisional heating and loss of
87Rb as a function of the initial kinetic energy of 172Yb+,
they verify the same collision kinematics model that we use,
but over a different energy range indicated by the blue (light
gray) shaded region in Fig. 1. Together, these two experiments
verify the collision kinematics model over nearly the entire
range of resulting ion energies that contribute to the BGC shift
of trapped-ion clocks.

IV. BACKGROUND-GAS COLLISION FREQUENCY SHIFT

An upper bound on the time-dilation component of the
BGC shift can be obtained based on the collisional heating
rate discussed above. For the 27Al+ clocks considered here,
operated without sympathetic cooling during a 150 ms probe,
the time-averaged fractional time-dilation shift is of order
10−16. It is important to recognize, however, that this is
dominated by a very low population tail of the motional state
distribution at very high energy. In practice, the contribution
of population at very high energy to the spectroscopy signal is
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suppressed both because the transition is shifted completely
off-resonance by the time-dilation effect, and because the
Rabi frequency is suppressed by motional Debye-Waller fac-
tors [16,18].

To take this suppression into account, we calculate the
BGC shift using Monte Carlo simulations of the spectroscopy
sequence including the ion motion. We assume that for each
probe the two ions begin in the three-dimensional motional
ground state, and there is no additional cooling or heating
during the spectroscopy pulse [16]. Note that this is not
applicable to previous 27Al+ clocks which operated with
continuous sympathetic cooling during the spectroscopy pulse
[10,12]. Following DeVoe [23], for each of the typically 108

Monte Carlo trials, we analytically propagate the classical
motion of the ions between collisions to first order in the
Mathieu q parameter. For each ion, we randomly generate
collision times from an exponential distribution with a mean
given by the reciprocal of the total elastic collision rate �. For
each collision, we randomly choose Eion from a distribution
obtained by normalizing d�i

dEion
(Eion ). From the amplitudes and

phases of the motional modes before the collision we calculate
the instantaneous velocity of the colliding ion, add 
v =√

2Eion/mion with a randomly selected direction, and calculate
the amplitudes and phases of the motional modes after the
collision. Here mion is the mass of the colliding ion. For each
time interval between collisions during the probe, the classical
oscillation amplitudes are mapped onto a six-dimensional
coherent state, and Fock states are randomly selected from the
corresponding distributions. Using these time-dependent Fock
states for each motional mode, we analytically propagate the
internal quantum superposition of the clock ion under a Rabi
spectroscopy Hamiltonian for a grid of values of the laser fre-
quency covering the atomic transition, including the second-
order time dilation shift of the atomic transition frequency and
the Debye-Waller suppression of the Rabi frequency.

For each collision involving the clock ion, we randomly de-
cide if the event is a Langevin spiraling collision based on the
ratio of the differential Langevin collision rate (Appendix A 1)
to d�i

dEion
(Eion ), and for Langevin spiraling collisions that pen-

etrate the angular momentum barrier we add a worst case
±π/2 phase shift to the atomic superposition state [12] with
an unknown sign that is fixed for each set of trials. In general,
there is also a phase shift for glancing collisions because the
ion polarizes the molecule, and the resulting dipole electric
field Stark shifts the ion. However, for 27Al+, because of the
small differential polarizibility of the clock transition [19,24],
the frequency shift caused by glancing collision phase shifts
is negligible compared with the frequency shift caused by
Langevin collision phase shifts. At the end of the Rabi probe
time, we calculate the transition line shape as the population
in the excited state for each laser frequency, and we average
this line shape over all of the Monte Carlo trials. Finally,
we calculate the fractional BGC shift of the clock, νc/ν, by
finding the center frequency of the line shape νc defined as the
average of the two frequencies where the transition probability
is equal to half of the maximum transition probability.

For the 25Mg+-27Al+ quantum-logic clock presented in
Ref. [19], with 38(19) nPa of H2 BG (measured in situ as de-
scribed above for the 40Ca+-27Al+ clock) at 294.15(2.70) K,

TABLE I. Frequency shift and uncertainty of the 25Mg+-27Al+

optical atomic clock presented in [19] due to background-gas col-
lisions. In the column labels, “suppression” refers to the combined
effect of Debye-Waller reduction of Rabi frequencies and the shift
of the transition frequency of high energy population outside of
the Fourier-limited line shape. Past 27Al+ optical clock evaluations
have only considered the phase shift part of the BGC shift without
suppression [12].

Fractional frequency shift [10−19]

Contribution Without suppression With suppression

Time dilation −2200 ± 1100 −0.6+0.6
−0.3

Phase shift 0 ± 42 0 ± 2.3
Total −2200 ± 1100 −0.6 ± 2.4

for a 150 ms probe duration the Monte Carlo simulations
constrain the collisional frequency shift to be −0.6(2.4) ×
10−19 (Appendix D). Table I shows the time dilation and the
collisional phase shift components separately. As noted ear-
lier, without the suppression of the contribution of high energy
population to the spectroscopy signal, the collisional heating
time-dilation shift is of order 10−16, but this is shown to be
suppressed by more than three orders of magnitude by the
Monte Carlo simulations. The atomic phase shift associated
with the worst case ±π/2 bound is smaller but features less
suppression due to forward scattering Langevin collisions, and
dominates the final uncertainty. The 2.4 × 10−19 uncertainty
of the BGC shift calculation described here is substantially
smaller than would be obtained by applying the analysis
method previously used by Rosenband et al. [12], which
yields an uncertainty of 4 × 10−18 for this clock. Inclusion of
calculated potential energy surfaces for an AlH+

2 molecule in
our model would further reduce the BGC uncertainty without
the need for an improvement to the vacuum pressure [7],
although the effect of small amounts of BG species other than
H2 would have to be considered.

The time-dilation component of the BGC shift will grow
with the probe duration as is shown in Fig. 3. The time-
dilation component scales linearly with the clock interroga-
tion time when this probe time is much less than the collision
period, then begins to flatten out as it becomes more likely
to have multiple collisions in a single probe. The phase shift
component is approximately constant due to a balance of
the increasing probability of having a Langevin spiraling
collision during each probe and the decreasing spectroscopy
line width (and hence maximum frequency shift due to a
phase shift) as the probe time increases. For seconds-long
probe times, which are attainable using more stable clock
lasers [25] or correlation spectroscopy techniques [26,27],
the calculated collision shift would dominate the systematic
uncertainty of the clock described in Ref. [19] under these
conditions.

V. CONCLUSION

In summary, we have developed a framework for cal-
culating the BGC shift for trapped-ion optical clocks that
includes both the time-dilation shift due to the kinetic energy
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FIG. 3. Fractional BGC shift and uncertainty of the 27Al+ clock
presented in Ref. [19] as a function of the spectroscopy probe
time. (top panel) The red (dark gray) curves show the time-dilation
component of the frequency shift and the green (light gray) curves
show the uncertainty due to the phase shift component, with (solid
lines) and without (dashed lines) including suppression due to the
combined effect of Debye-Waller reduction of Rabi frequencies and
the time-dilation shift of the transition center frequency outside of
the Fourier-limited line shape in the Monte Carlo model. (bottom
panels) The red, green, and blue lines and shaded regions show the
shift and uncertainty of the time-dilation component, the phase shift
component, and the total BGC shift.

received during a BGC as well as the phase shift of the atomic
superposition state. Using the semiclassical differential scat-
tering cross section, we show that the inclusion of glancing
collisions is important for accurately describing the frequency
of collisions that deposit kinetic energies of <10 K to the ions
and therefore necessary for accurately evaluating the clock
ion’s kinetic energy. We have verified the predicted collisional
energy distribution by measuring the rate of two-ion reorder
events in a 40Ca+-27Al+ experiment due to BGCs over the
experimentally accessible range of reorder barriers ranging
from 0.2 to 6 K. Finally, we performed a Monte Carlo sim-
ulation of spectroscopy of the 267 nm 27Al+ 1S0 ↔ 3P0 clock
transition for the 25Mg+-27Al+ quantum-logic clock presented
in Ref. [19] to calculate the BGC shift, −0.6(2.4) × 10−19,
enabling total clock uncertainty below 10−18 despite a BG
pressure that is a factor of two to three higher than previous
27Al+ clocks.

The suppression of the BGC shift and uncertainty due to
Debye-Waller factors will be smaller for clocks with visible
or infrared optical clock transitions because of their smaller
Lamb-Dicke parameters, and is negligible in trapped-ion
microwave clocks. We have estimated the BGC uncertainty
using our framework to be near 10−18 for 40Ca+, 88Sr+,
and 171Yb+ clocks with typical experimental parameters (see
Table II). We thus expect the BGC uncertainty modeled
here to be significant in most room-temperature trapped-ion
clocks as their systematic uncertainties reach the 10−18 level
or below.

The BGC heating of trapped ions considered here and
the pressure measurement technique we use (similar to that
described by Pagano et al. [32]) may be relevant to many
precision measurement, quantum information [18,32–34], and
ultracold atom-ion mixture [20,35–37] experiments. By in-
corporating fully quantum scattering calculations, it may be
possible to use this pressure measurement technique as the
basis of a primary pressure standard. Due to the months long
trapping times possible with trapped ions, such a standard may
have a significantly lower measurement floor than those based
on neutral atoms [38].

TABLE II. Operating parameters and calculated collisional frequency shifts for 27Al+, 40Ca+, 88Sr+, and 171Yb+ clocks. For 27Al+, we
use the parameters of and calculate the BGC shift and uncertainty specifically for the clock described in Ref. [19]. For the 40Ca+, 88Sr+, and
171Yb+ clocks, we use parameters similar to experimental implementations at WIPM [28,29], NRC [9,30], and PTB [8], but we do not perform
a rigorous analysis of the uncertainty of the BGC shift. For all clocks, we simulate Rabi interrogation. Current 171Yb+ clocks based on the
467 nm electric-octupole (E3) transition use hyper-Ramsey [8] or autobalanced Ramsey [31] interrogation, so this calculated collision shift for
171Yb+ should be taken as a rough estimate.

27Al+ 40Ca+ 88Sr+ 171Yb+ E3

Trap drive frequency [MHz] 40.7 24.7 14.4 15
Secular frequencies [MHz], x direction 2.85, 3.31 1.01 1.13 0.7

y direction 3.54, 3.95 1.07 1.15 0.7
z direction (axial) 1.47, 2.55 2.31 2.25 1.4

Interrogation time [ms] 150 80 100 150
Clock laser direction, k̂ (1/2, 1/2, 1/

√
2) (1, 0, 1)/

√
2 (1, 1, 0)/

√
2 (1, 1, 0)/

√
2

BG temperature [K] 294.15 ± 2.70 300 300 300
BG pressure [nPa] 38 ± 19 30 16 6

Fractional frequency shift, Time dilation [10−19] −0.6+0.6
−0.3 −0.9 −0.2 0.0

Phase shift [10−19] ±2.3 ±13.3 ±11.9 ±2.5
Total [10−19] −0.6 ± 2.4 −0.9 ± 13.3 −0.2 ± 11.9 0.0 ± 2.5
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Note added. Recently, we became aware of the work by
Davis et al. [39] in which the state-dependent potential energy
surfaces and partial wave scattering phase shifts for Al+-H2

collisions are calculated.
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APPENDIX A: BACKGROUND-GAS COLLISIONS

In the following subsections, we calculate the scattering
differential cross section using the semiclassical partial-wave
expansion [40] and the resulting kinetic-energy distribution of
the ion including both glancing and spiraling collisions.

1. Differential cross section

At large separations R, the interaction potential between a
neutral BG molecule and an ion is given by

V (R) = −C4

R4
, (A1)

where C4 = αQ2/(8πε0), α is the polarizability of the BG
molecule, Q is the charge of the ion, and ε0 is the vacuum
permittivity [18]. For H2, the orientation-averaged static po-
larizability α = 0.8 × 10−30 m3 [41–43]. At small separations
the interaction potential becomes repulsive and state depen-
dent, but the exact form depends on the collision species
and is not well known for the species considered here.
Impact parameters smaller than the Langevin radius bcrit =
(αQ2/πε0μv2)1/4 result in Langevin collision trajectories in
which the molecule spirals in towards the ion. Here μ =
mbgmion/(mbg + mion) is the reduced mass, mbg is the mass
of the BG molecule, mion is the mass of the ion, and v is
the relative velocity. For H2 at a temperature T = 300 K, the

critical impact parameter for the mean speed 〈v〉 =
√

8kBT
πmbg

=
1.8 km/s where kB is the Boltzmann constant is 0.5 nm.

Following Zipkes et al. [20], the differential cross section
in the center-of-mass coordinate system is calculated semi-
classically as a sum over partial waves,

dσ ′

d�′ (θ ) = 1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1)eiηl sin(ηl )Pl (cos θ )

∣∣∣∣∣
2

, (A2)

where the angular and linear momentum of a partial wave are
h̄l and h̄k = √

2μEc, Ec = μv2/2 is the collision energy, ηl

is the scattering phase, Pl (cos θ ) is the lth order Legendre
polynomial, and θ is the scattering angle in the center-of-mass
inertial frame. Partial waves with l < lcrit =

√
2μ

√
4C4Ec

have kinetic energy larger than the centrifugal potential barrier
and sample the repulsive short-range potential, resulting in
rapidly oscillating scattering phases [44]. Without detailed
knowledge of the short-range potential for the collision part-
ners considered here, we assume that ηl are uniformly dis-
tributed random numbers over the range 0 to 2π for l < lcrit,
and we average the resulting differential cross section over
many instances of the random scattering phases. For l > lcrit ,
we use the semiclassical approximation for the phase shift

ηl = − μ

h̄2

∫ ∞

Rcrit

V (R)√
k2 − (l + 1/2)2/R2

dR ≈ πμ2C4Ec

2h̄4l3
,

(A3)
where Rcrit = (l + 1/2)/k is the classical turning point. The
resulting differential cross section is consistent with the alter-
native treatment of Dalgarno et al. [43], has been shown to
describe the kinematics of 87Rb-172Yb+ collisions [20], and
is further supported by the experiments presented in the main
text.

We transform from the center-of-mass frame differential
cross section dσ ′

d�′ (θ ) to the laboratory frame differential cross
section dσ

d�
(ϑ ) using [45]

ϑ = arccos

(
cos θ + ρ√

1 + 2ρ cos θ + ρ2

)
(A4)

and

dσ

d�
(ϑ ) = dσ ′

d�′ (θ )
(1 + 2ρ cos θ + ρ2)3/2

1 + ρ cos θ
, (A5)

where ρ = mbg/mion. For the experiments considered here, we
perform laser cooling on a timescale much faster than the total
elastic collision rate, so the ion can be assumed to be at rest in
the laboratory frame before the collision. The kinetic energy
of the ion in the laboratory frame after the collision is given
by

Eion = mbgv
2

2

2ρ

(1 + ρ)2
(1 − cos θ ). (A6)

Figure 4 shows the differential cross section and final ion
energy for collisions between 27Al+ at rest and H2 with 300 K
of kinetic energy.

For the BGC shift Monte Carlo simulations described in
the main text, we also require the differential cross section
for Langevin spiraling collisions (i.e., not including glancing
collisions). We calculate this semiclassically using the method
described above with ηl set to zero for l > lcrit , with the result
shown in Fig. 4. For the small scattering angles which have
the largest contribution to the BGC shift (Appendix D 3), this
reproduces the semiclassical differential cross section for a
hard sphere with radius bcrit [40]. Figure 4 also shows the
classical differential cross section for Langevin spiraling col-
lisions under the assumption that they scatter uniformly into
4π with a total cross section of πb2

crit [46]. For small scattering
angles, the classical differential cross section is more than
two orders of magnitude smaller than the semiclassical one,
indicating that our differential cross section for Langevin
spiraling collisions is a more conservative estimation of the
resulting phase shift component of the BGC shift.
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FIG. 4. (Top panel) Lab-frame differential cross section for col-
lisions between 27Al+ at rest and H2 with 300 K of kinetic energy
as a function of scattering angle. Blue (dark gray): semiclassical
differential cross section including both glancing and spiraling col-
lisions. Red (medium gray): semiclassical differential cross section
including only spiraling collisions, calculated by setting ηl = 0 for
l > lcrit . Green (light gray): classical Langevin differential cross
section assuming uniform scattering in the center-of-mass frame
and that the total cross section is given by πb2

crit . (Bottom panel)
Lab-frame kinetic energy of the 27Al+ ion after the collision as a
function of scattering angle.

2. Scattering rate distribution

We calculate the total elastic collision rate by integrating
the differential cross section with a Maxwell Boltzmann dis-
tribution of BG velocities:

� =
∫

�v
d3�v n

(
mbg

2πkBT

)3/2

e− mbgv2

2kBT v

∫
�

d�
dσ

d�
(ϑ, v), (A7)

where n and T are the number density and temperature of the
BG. For 27Al+ in 51.9 nPa of room-temperature H2, the total
elastic collision rate is 0.16 s−1. This can be contrasted with
the classical rate of spiraling Langevin collisions nπb2

critv =
0.020 s−1. The differential BGC rate d�

dEion
(Eion ) for collisions

that impart Eion kinetic energy onto the ion in the laboratory
frame is given by

d�

dEion
(Eion ) =

∫
�v

d3�v n

(
mbg

2πkBT

)3/2

e− mbgv2

2kBT

× v
2π sin [ϑ (Eion, v)]

dEion
dϑ

∣∣
ϑ (Eion,v)

dσ

d�
[ϑ (Eion, v), v],

(A8)

where dEion
dϑ

and ϑ (Eion, v) are the derivative and the inverse
of Eq. (A6) when written as a function of the laboratory
frame scattering angle ϑ . In practice, we calculate d�

dEion
(Eion )

numerically as the value of Eq. (A7) with the range of the
inner integral restricted to [ϑ (Eion − dEion/2, v), ϑ (Eion +
dEion/2, v)] divided by dEion.

APPENDIX B: TWO-ION MIXED-SPECIES CRYSTAL
COLLISIONAL REORDERING RATE

In the following, we discuss the kinematics of a two-ion
crystal undergoing a collision event and describe Monte Carlo
trajectory simulations used to calculate the two-ion reorder
probability, Preorder(Eion ).

1. Two-ion reorder energy barrier

The reorder probability depends on the operating parame-
ters of the ion trap and the details of the laser cooling during
the measurement. Following Wübbena et al. [47], we write the
total trap electric potential as

�T = V0

2
cos(�t )

x2 − y2

R2
+ U0

z2 − αx2 − (1 − α)y2

d2
, (B1)

where V0/2 and � are the amplitude and angular frequency
of the voltage applied to the rf electrodes, U0 is the voltage
applied to the endcap electrodes, R and d are characteristic ra-
dial and axial dimensions of the trap, and α parameterizes the
radial asymmetry of the static field. The secular frequencies
of a single ion are

ωz =
√

2QU0

md2
, ωx =

√
ω2

p − αω2
z , and

ωy =
√

ω2
p − (1 − α)ω2

z , (B2)

where m is the mass of the ion and

ωp = QV0√
2�mR2

. (B3)

We define the potential energy barrier, Ereorder, as the energy
difference between the ground-state axial crystal and the
minimum energy configuration of two ions confined to the
radial plane. Assuming that the coordinate system is defined
such that ωx > ωy, the potential energy barrier for changing
the order of a two-ion crystal is

Ereorder = 3

4

(√
mωzQ2

2πε0

)2/3

×
({

2(ε2 + α − 1)[ε2 + μ(α − 1)]

ε2(μ + 1) + 2μ(α − 1)

}1/3

− 1

)
,

(B4)

where μ = m2/m1 is the ratio of the two ion masses,
ε = ωp/ωz, and ωz is the axial secular frequency of a single
ion of mass m = m1 in the trap.

In the absence of cooling, and assuming that the six
secular frequencies are not rationally related, all collisions
that deposit a kinetic energy greater than the reorder energy
barrier will eventually cause the order of the two ion crystal
to repeatedly change. The order changes will continue until
cooling is applied, at which time the order is fixed. Assum-
ing that neither the cooling process nor the trap potential
introduces an order bias, the probability that the order after
cooling is different from the order before the collision is 50%.
Experimentally, however, it is more convenient to measure the
reorder rate while applying continuous laser cooling. In this
case, collisions that deposit a kinetic energy slightly greater
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FIG. 5. (Top panel) Differential collision rate for each ion of a
40Ca+-27Al+ two-ion crystal in 51.9 nPa of H2 BG at 295 K. (Other
panels) Reorder probability calculated using the Monte Carlo ion
trajectory simulations. Each panel is for different trap parameters.
The reorder barrier for each set of trap parameters is specified on the
left side of the panel and is shown as a dashed vertical line. The laser
cooling parameters used are a saturation parameter of s = 300 and a
detuning of 80 MHz.

than the reorder energy barrier cause reordering with proba-
bility less than 50%, with the exact probability depending on
the operating parameters of the ion trap and the details of the
laser cooling.

2. Ion trajectory simulations

We have calculated the reorder probability as a function of
the ion energy after the collision for several experimentally
accessible reorder energy barriers using Monte Carlo simula-
tions of the ion trajectories. We calculate the ion trajectories
in the full time-dependent potential [Eq. (B1)] using a custom
sixth-order symplectic integrator [48]. The integrator includes
the nonlinear Coulomb interaction between the two ions and
a classical, linear drag force to approximate Doppler laser
cooling. For each value of the energy transferred to an ion
by a collision, and for collisions with each of the two ions, we
run the integrator for 256 randomly selected initial velocity
directions. We have checked the sensitivity of the results to
our treatment of the laser cooling by repeating the calculation
for saturation parameters that are a factor of 2 lower and

FIG. 6. PMT counts observed during a typical reorder-rate mea-
surement. A knife edge placed at the center of an optical image of the
two-ion crystal causes a reduction in the measured count rate for the
order in which Ca+ is partially blocked. For this example, two-ion
crystal order changes (black dots) are observed as sudden changes
between 60 and 35 counts measured during a 800 μs measurement
window. Fluorescence dropouts below 35 PMT counts arise due to
energetic collisions that cause the two-ion crystal to dissolve (red
crosses).

higher than the nominal value, and verified that the calculated
BG pressure changes by less than 1%. The calculated reorder
probabilities for the nominal saturation parameter are shown
in Fig. 5.

APPENDIX C: TWO-ION CRYSTAL ORDER DETECTION

The ion order is detected by spatially resolving the posi-
tions in the two-ion crystal. A matched pair of aspheric lenses
(NA = 0.38, 50 mm diameter) produce an image of the ions
at an intermediate focus outside of the vacuum chamber. A
knife edge positioned close to the center of the two ions in
this image plane blocks the Ca+ ion fluorescence in one order
while transmitting it in the other. The intermediate image is
relayed onto a PMT such that there are two well resolved
fluorescence levels. As an example, Fig. 6 shows a time series
with an average of 60 counts in the bright order and 35 counts
in the dark order for an 800 μs measurement window.

A reorder event causes a discrete jump in the observed
fluorescence between the dark and bright levels, which we
identify using a threshold. Ideally, the number of reorder
events, Nreorder, observed during a total observation time, T ,
gives the reorder rate R = Nreorder/T . However, in the data,
we also observe decrystallization events in which the collected
fluorescence drops below the dark level and the ions cannot be
efficiently laser cooled. These events are detected in real time,
triggering the control system to lower the radial confinement,
which allows efficient laser cooling and recrystallization of
the ions. A bias in the ion order after recrystallization can give
a bias in the inferred reorder rate. To account for this, we also
record the total number of decrystallization events, Ndecryst.
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FIG. 7. Rabi spectroscopy line shape of a 25Mg+-27Al+ optical
atomic clock operated with a 150 ms probe time. Blue dotted line:
spectroscopy line shape for 27Al+ at rest and without any BGCs. Blue
dashed line: Monte Carlo spectroscopy line shape including the time-
dilation shift and phase shift due to collisions with 1.5 μPa of H2 BG
at 294.15 K, but not including the Debye-Waller factors that suppress
participation of high energy population. This pressure is much higher
than is achieved in experiments to exaggerate the asymmetry of the
line shape. Blue solid line: Monte Carlo spectroscopy line shape
including BGCs and Debye-Waller factors. Red circles: frequencies
that are probed during normal clock operation. Green square: center
frequency to which the optical clock output frequency is steered.

The unbiased reorder rate is then given by

R = Nreorder + Ndecryst

2

T
. (C1)

Here Nreorder includes only reorder events that are not associ-
ated with decrystallization. The factor of 1/2 in the second
term of Eq. (C1) ensures that any collision event that imparts
enough kinetic energy to decrystallize the ions contributes
with a probability of 1/2 to reorder them.

In addition to the recrystallization bias, we have observed a
non-negligible probability of recording false decrystallization
events when the ions are in the dark order. For this reason,
we estimate Ndecryst by extrapolating from the number of de-
crystallization events beginning in the bright order, Ndecryst,B,
which has substantially less overlap with the count histogram
for the decrystallized state. We use Ndecryst = Ndecryst,B(T/TB),
where TB is the total time the ions spent in the bright order. We
assume Poisson statistics for Nreorder and Ndecryst,B to propagate
the error for the error bars in Fig. 2.

APPENDIX D: OPTICAL ATOMIC CLOCK COLLISIONAL
FREQUENCY SHIFT AND UNCERTAINTY

We calculate the background gas collision (BGC) shift
for 27Al+, 40Ca+, 88Sr+, and 171Yb+ clocks using the Monte
Carlo model described in the main text. The Monte Carlo
model input parameters and results for the four clocks are
displayed in Table II. To illustrate the asymmetry of the
clock transition line shape due to collisions, Fig. 7 shows

the line shape calculated by the Monte Carlo model for input
parameters selected to exaggerate the asymmetry.

In the following subsections, we present the details of the
BGC shift and uncertainty calculation for the optical atomic
clock described in Ref. [19]. This clock is based on quantum-
logic Rabi spectroscopy of the 1S0 ↔ 3P0 transition in 27Al+

using 25Mg+ as the logic ion. Unlike previous 27Al+ clocks,
this clock does not use any sympathetic cooling during the
interrogation. Furthermore, our Monte Carlo model does not
include sympathetic cooling during the interrogation, so it
cannot be used to improve the collision uncertainty bound
for the previous 27Al+ clocks. All of the calculations below
assume a 150 ms probe time unless otherwise noted.

1. BG temperature

The temperature of the BG is evaluated using seven ther-
mocouple sensors located on the trap wafer, in-vacuum sup-
port structure, and surrounding vacuum chamber. We use the
lowest and highest measured temperatures minus and plus the
sensor uncertainty as the lower and upper bounds of the BG
temperature to arrive at 294.15(2.70) K [19].

2. BG pressure

The BG pressure is evaluated to be 38 nPa by measuring
the rate of collisions that cause the two ions to swap positions.
Note that unlike the 40Ca+-27Al+ experiment, decrystalliza-
tion is not observed in the 25Mg+-27Al+ experiment, so the
analysis of this measurement is more straightforward. There
are several sources of uncertainty. The 6% statistical uncer-
tainty is limited by the 12 h duration of the measurement.
We estimate the systematic uncertainty by considering the
following approximations made in the model:

(1) We calculate the differential cross section semiclassi-
cally based on the H2 polarizibility and neglecting inelastic
collisions. For laser cooled 27Al+ and 25Mg+, the hyperfine
and fine structure is energetically accessible in collisions with
room-temperature BG molecules. For H2 with a 1.8 THz
rotational constant and 132 THz vibrational constant [49],
the hyperfine and rotational structure is accessible but not the
vibrational structure. The contribution of resonant processes
to momentum transfer from the BG to the ions is expected
to be small, since the electric dipole matrix elements for
these transitions are small. Furthermore, we assume random
scattering phases for l < lcrit as described in Sec. A 1. We
assign a 50% systematic uncertainty to the BG pressure to
account for these approximations, which we believe to be
conservative.

(2) We use the (experimentally measured) dc molecular
orientation averaged H2 polarizibility α = 0.80 × 10−30 m3

[41] to calculate the differential cross section. The timescale
for collisions is of order bcrit/v. For the 1.8 km/s mean
speed of H2 at room temperature, bcrit = 0.5 nm and the
collision timescale is 1/(4 THz). We estimate the systematic
uncertainty associated with this approximation to be 10% by
calculating the pressure using the minimum and maximum
of the parallel and perpendicular polarizibility at DC and
1 PHz (0.68 × 10−30 m3 and 1.04 × 10−30 m3, calculated by
Akindinova et al. [42]).
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TABLE III. Pressure and collision shift of the 27Al+ clock described in Ref. [19] calculated assuming that 100% of the BG is the species
listed in the left column.

Fractional frequency shift [10−19]

BG species Polarizibility [10−30 m3] Pressure [nPa] Time dilation Phase shift Total

H2 0.80 [41] 38 ± 19 −0.6+0.6
−0.3 ±2.3 −0.6 ± 2.4

He 0.21 [51] 88 ± 45 −0.4+0.4
−0.2 ±1.1 −0.4 ± 1.2

CH4 2.43 [52] 36 ± 18 −0.8+0.8
−0.4 ±3.0 −0.8 ± 3.1

CO 1.97 [53] 45 ± 23 −0.8+0.8
−0.4 ±3.0 −0.8 ± 3.1

N2 1.76 [53] 48 ± 25 −0.8+0.8
−0.4 ±2.8 −0.8 ± 2.9

O2 1.59 [53] 52 ± 27 −0.8+0.8
−0.4 ±2.8 −0.8 ± 2.9

CO2 2.63 [53] 44 ± 23 −0.8+0.8
−0.4 ±3.8 −0.8 ± 3.9

(3) The Monte Carlo trajectory simulations use a linear
drag model of laser cooling which overestimates the cooling
force for high ion temperatures. We estimate the uncertainty
associated with this approximation to be 1.0% by running the
trajectory simulations for cooling laser saturation parameters
a factor of 2 higher and lower than the experimental value
and calculating the pressure. This estimate also captures the
convergence uncertainty of the trajectory simulations.

Finally, there is a 2.1% convergence uncertainty associ-
ated with the calculation of d�

dEion
(Eion ) and a 0.7% uncer-

tainty due to the temperature uncertainty. Adding all of these
uncertainties in quadrature, we arrive at a total uncertainty of
51% and a pressure of 38(19) nPa. The uncertainty of this
measurement could be significantly reduced by performing
more accurate quantum scattering calculations and increasing
the measurement time.

3. Background gas collision shift

We calculate the BGC shift using the Monte Carlo model
described in the main text with 108 trials. The time dilation
component of the shift is −0.60 × 10−19 and the phase shift
component is ±2.32 × 10−19. At 108 trials, the Monte Carlo
convergence uncertainty is approximately 10−21. The conver-
gence uncertainty associated with the calculation of d�

dEion
(Eion )

is also approximately 10−21. As the phase shift component is
conservatively bounded by using the worst case ±π/2 values
for the collisional phase shift, we do not add any systematic
uncertainty to this component. Note that any resonant colli-
sional phase shift processes are covered by this worst case
bound, and that calculations of the collisional phase shift for
other collision partners suggest that the phase shift component
of the collisional frequency shift is likely much smaller [7].
We estimate the systematic uncertainty of the time-dilation
component by considering the following approximations:

(1) Approximations 1 and 2 for the BG pressure evalu-
ation described above affect the momentum transfer to the
ions, and thus the suppression of the BGC shift due to the
low contribution of collision events to the spectroscopy signal.
We assume that the uncertainty due to these approximations
is captured by propagating the pressure uncertainty through
the collision shift model, which yields an uncertainty on the
time-dilation component of ±0.32 × 10−19.

(2) While the reduction of the carrier Rabi frequency due
to secular motion is calculated to arbitrary order in the Lamb-

Dicke parameter following Wineland et al. [18], we do not
include any reduction of the carrier Rabi frequency due to
micromotion. The reduction in Rabi frequency due to excess
micromotion is compensated experimentally by increasing the
laser intensity to produce a π pulse. The reduction in Rabi
frequency due to intrinsic micromotion is a factor of q/8
smaller than that due to secular motion, where q is the Math-
ieu parameter. While this approximation results in a small
change in the total Rabi frequency reduction, it may cause
us to underestimate the large suppression of the time-dilation
component due to the Debye-Waller effect. Thus we expand
the uncertainty range of the time-dilation shift to include zero,
resulting in a bound of −0.60+0.60

−0.32 × 10−19

(3) Our calculation of the spectroscopy line shape does
not include any decoherence other than that due to collisions.
As the experimentally measured spectroscopy line shape has
�70% contrast and a Fourier-limited width [19], we do not
believe this approximation has a significant effect on the
calculated BGC shift.

Adding the uncertainty of the time-dilation and phase shift
components in quadrature, we arrive at a total BGC shift of
−0.60+2.40

−2.34 × 10−19 for a probe duration of 150 ms. In the
main text, we take the maximum of the upper and lower
uncertainties to arrive at −0.6(2.4) × 10−19. The uncertainty
of this calculation could be reduced by performing more
accurate quantum scattering and frequency shift calculations
[7,50], although a significant reduction would require accurate
knowledge of the partial pressures of each BG species.

4. Other considerations

In all of the above, we have assumed that the back-
ground gas is dominantly H2, which is typically the case
for room-temperature UHV systems that have undergone a
high-temperature bake. The stainless steel vacuum parts used
for this clock (excluding the windows and feedthroughs)
were prebaked under vacuum at 400 ◦C for 7 days, and the
assembled chamber was baked at 145 ◦C for 7 days. To
gauge whether small amounts of other BG species have a
significant impact on the pressure and BGC shift results, we
have calculated the pressure and BGC shift for a variety of
other background gases common in UHV chambers, with the
results shown in Table III. The calculated BGC shifts under
the assumption that 100% of the BG is a species other than
H2 are not drastically different than that for H2, and the
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partial pressures of other BG species in our vacuum chamber
are expected to be much lower than that of H2, so we do
not increase the BGC shift uncertainty to account for small
amounts of other BG species which may be present.

We do not include an atomic phase shift due to glancing
collisions in our simulations. We have estimated the magni-
tude of the contribution of glancing collision atomic phase
shifts to the BGC shift using the following calculation. For a
given BG velocity and impact parameter, the classical trajec-

tory of the BG and the electric field produced at the position
of 27Al+ by the polarized H2 molecule is calculated. Using
the experimentally measured differential polarizibility of the
27Al+ clock transition [19], the time-dependent Stark shift is
integrated to obtain the phase shift of 27Al+ resulting from
the collision. This phase shift is averaged over a Boltzmann
distribution of BG speeds and impact parameters and divided
by the collision rate to obtain a frequency shift of order 10−22,
which is negligible.
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