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Fig. 9. C-field effect on operating frequency.

the zero current point can be attributed to a permanent
field in the drift region of the tube and can be evaluated
from (8). By operating at a known point on the parabola
and varying externally applied fields along the two
orthogonal axis, the total field present in the drift region
could be determined by a similar technique.

CONCLUSION

Square-wave phase modulation has been shown to be
a superior technique for the precision control of cesium
atomic clocks since it causes the operating frequency to
be that of the true magnetically-offset cesium resonance.
Even when used for conventional single-loop operation
its simplicity and the ease with which it meets specified
tolerances makes it the logical modulation choice. The
method of determining precisely the magnetic offset by
observing the effect of magnetic field on frequency may
resolve the remaining barrier to true accuracy.

The Statistical Construction of a SingIe Standard

from Several Available Standards

EDWIN L. CROW

Abstract-In the case of physical quantities for which no inter-
national standards exist, such as microwave power and microwave
noise, it may be desirable to establish an international standard by
combination of the data from several laboratory standards. Even if
there is an international standard, it conceivably might be replaced
by a new composite standard, for example the mean of several
laboratory atomic-time standards. A weighted mean may be prefer-
able.

It is noted that the "best" combination of observations for esti-
mating a theoretical mean or median value depends on the theo-
retical frequency distribution from which the observations are
drawn. Since the theoretical distribution for observations from dif-
ferent laboratories would in general be unknown, two weighted
means are suggested which are reasonably good for many distribu-
tions, allowing for wild observations particularly, and in which the
weight of each observation depends only on its order when the
observations are ordered in size. The efficiencies of these and other
estimates are evaluated for each of four distributions.

I. INTRODUCTION
A PHYSICAL STANDARD may be defined in

terms of a prototype object, such as the meter
bar in the vault of the International Bureau of

Weights and Measures, or in terms of a specification for
determining a conceptual physical quantity, such as
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the present definition of the meter as a certain number of
wavelengths of the orange-red radiation of krypton 86.

In the former case the standard, although uniquely
defined, may vary in time due to environmental in-
fluences that are not quite constant despite all efforts to
make them so. In the latter case the standard will in
effect depend on the particular experimental instrumen-
tation through which the standard is made operational.
Thus, in either case a standard might be established
more accurately by averaging in some way over several
independent prototype objects or over several indepen-
dent instrumentations, with positive and negative errors
tending to cancel each other.

This conjecture can be put on a more rigorous basis
by the use of results from probability theory. In par-
ticular, it is well known that if the objects or instru-
mentations give rise to independent observations from
a common probability distribution possessing a stand-
ard deviation or, then the mean of n such observations
has a standard deviation O/j/n. Thus, if the goodness of
a standard is judged by the standard deviation of realiza-
tions of the standard, the combination standard using
the mean of n independent instrumentations is better
than any single instrumentation.

But is the mean the best combination of the observa-
tions for estimating the true value of the quantity under
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observation? No, in general, although it is if the common
probability distribution of the observations is normal,
i.e., Gaussian. It is the purpose of this paper to advocate
the use of composite standards, to show quantitatively
how far short of the optimum combination the mean
falls for several distributions, and to recommend a
weighted mean as a satisfactory alternative. This is
not to say that a simple mean (with equal weights) will
not be satisfactory in many cases, but a properly
weighted mean has the advantage of being less affected
by outlying observations.
A composite standard defined as a weighted mean

could be quite generally used but may be particularly
useful where no international standards now exist, for
example for microwave power. Even if there is an exist-
ing single international standard, it conceivably might
be replaced by a composite standard based on a new
principle; for example, the ephemeris second might be
replaced by the weighted mean of several laboratory
atomic-time standards. i\Iarkowitz has been forming
such a standard experimentally at the U. S. Naval Ob-
servatory [i].
How should weights for combining the data of several

laboratories be determined? Often they have been de-
termined from the number and internal variability of
the observations within each laboratory which are aver-
aged to provide the contributed values. However, it is
well known that systematic external errors often are far
more important in physical experiments than the ob-
served internal fluctuations [2]. Hence, internally de-
termined w-eights are not usually satisfactory by them-
selves. Another approach is the use of the external con-
sistencv of the several laboratory values, but the num-
ber of such values is often too small to contain sufficient
information for weighting.
An extreme weight, zero, is attained if a value is re-

jected completely as being too outlying. Statistical
methods for rejection of outlying values may be invoked
and lead to some surprising conclusions. For example,
even if one is sampling from a normal distribution, if
he has only three observations, the longer of the two
nonoverlapping intervals formed will be 16 or more times
as long as the shorter interval in ten per cent of such
samples in the long run and 32 or more times as long in
five per cent of such samples [3]. This suggests that a
person proceeding intuitively may tend to reject an
observation when in fact it is a valid observation from
the intended distribution. However, Dixon has analyzed
processing of data for outlying values further and given
rules by which one may either end up with the median
of the original data or the mean of data with outlying
observations removed as the better estimate, depending
on the expected proportion of "contaminating" values,
i.e., values from a distribution other than the intended
one [4]. In contrast, the present paper seeks to avoid
complete rejection of data by assigning smaller weights
to the more extreme observations and the largest weight
to the median.

In order to compare the behavior of various estimates
of the true value of a physical quantity, we must con-
sider the observations as random variables with a com-
mon "parent" probability distribution, of which the true
value is then the mean or median. The estimates, such
as the observed (or sample) mean or median, then have
probability distributions also, generated by hypothetical
repetition of taking samples of the ipecified size. By the
behavior of an estimate we then mean simply its proba-
bility distribution, in particular its, spread as measured
by its standard deviation. It is fa rly evident that the
distribution of an estimate of the nean or median of the
parent distribution depends on -xvhat that parent dis-
tribution is, on its shape in particular. Hence, in Section
II the mathematical expressions are given for the four
parent probability distributions to be considered in de-
tail.
The particular estimates to be con-sidered, all weighted

means, are listed in Section III. Seition IV and the ac-
companying Figs. 2-4 give the quiantitative results of
this paper, the percentage efficiencies of the various
estimates of the parent mnean or median. The results are
applicable not only to the construction of composite
standards but to data analysis in general.

II. DISTRIBUTIONS OF OBSERVATIONS

It is assumed that each observation is a real number
drawn independently fromn the saine probability distribu-
tion, called the parent distributioi. It is assumed that
the parent distribution is symmetrical in any case. Thus,
although mre may not in practice b- now the shape of the
distribution, we are assuming that negative errors of
any given size are just as likely as positive errors of the
same size. It follows that a parent rnean is identical with
the parent median.
A parent distribution will be defined in terms of its

probability density function (pdf f(X). Since we shall
always be comparing estimates of the parent mean for
the samie parent distribution, it tuirns out that the par-
ent distributions may be expressed in the simplest pos-
sible form, in particular centered at X = 0.

Normal Distribittion:

1
f(X) =27r--./2 r

-X-2/2 -- x < x < x

Rectangular Distribution:

f(x) -
l < 2

D b-pex >I
Double-Exponential Distribution:

f(X) = 'e IXI,

Cauchy Distribution:

a 1

f(x) = - oo < X <cc
wr a2+X2
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For all essential purposes we may set the constant a in
the Cauchy distribution equal to 1, but in Fig. 1 the
Cauchy pdf is shown with a=0.6745 along with the
above normal pdf. This value of a produces the same
central 50 per cent interval as the normal pdf shown.
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Fig. 1. Probability density functions of normal and Cauchy
distributions, the latter drawn for a=0.6745.

The mean of each of the above distributions is zero
except for the Cauchy, for which the mean, according
to the definition as an integral, does not exist. However,
the median exists for any distribution and, for sym-
metrical pdf's, equals the mean when the mean does
exist; for this reason we consider in general the estima-
tion of the median. The standard deviation (root-mean-
square deviation from the mean) exists for the first
three distributions also but not for the Cauchy. This
nonexistence results from the very slowly decreasing
tails of the Cauchy pdf. The double-exponential pdf
has tails decreasing more slowly than the normal tails
but much more rapidly than the Cauchy tails.
The four distributions above can be considered simply

as arbitrary mathematical assumptions. However, there
are good reasons for their selection. The normal dis-
tribution is often a good approximation to distributions
of physical measurements. The lack of tails in the rec-
tangular distribution provides an effect on estimates of
the mean in great contrast to that of thick-tailed dis-
tributions, and its simplicity enables complete analyti-
cal results to be obtained. The double-exponential and
the Cauchy may be considered as rough models for tak-
ing observations from a normal distribution subject to
contamination by outlying observations from some
other distribution when there is no information to sug-
gest whether the outliers are too large or too small, i.e.,
when the composite distribution including contamina-
tion is symmetrical and has thicker tails than the nor-
mal distribution does [5 ].'1 More realistic models of
contamination have been considered by Dixon [4] and
Tukey [6] providing explicitly for contamination from
another distribution, but such models appear to be sus-
ceptible only to Monte Carlo or asymptotic investiga-
tion.

Tukey and McLaughlin [51 state on p. 332:
"The typical distribution of errors and fluctuations has a shape

whose tails are longer than that of a Gaussian distribution ....
It is the Gaussian distribution that has to be regarded as somewhat
pathological from the standpoint of practice. And distributions
with shorter tails, while they do occur, are rather more pathologi-
cal. Thus, frequency of occurrence directs our attention to longer-
tailed distributions."

III. SOME ESTIMATES OF THE M1EAN OR MEDIAN

We assume that N independent observations from a
distribution having a symmetric pdf are available. We
consider the observations in order of size and so label
them:

Since optimum estimates of the mean are often linear
in the observations and since nonlinear estimates would
be difficult to treat, we restrict attention to estimates
that are linear combinations of the ordered observations
with symmetric coefficients, that is, to the weighted
means
N N

E aiX E ai, aN-i+l =ai= 1a2,*1 , X (1)
i=1 i=l

We shall consider the following weighted means in
which the weights are prescribed:

Mean:

I N
X= --E x

N j=1

Median:

X = X, if N = 2n-1
= (Xn + Xn+,) if N = 2n

Midrange:

XMR = 2(X1 + XN)

(2)

(3)

(4)

Linearly weighted mean:

I n-1

[ : i(Xi+ X2.-i) +nXn ifN= 2n- 1
n =1

1 n
- i(Xi + X2.+l_i) if N = 2n

n(n + 1) j=j

Square-weighted mean:

3 n-1

A (22 +=1) E Pi2(Xi + X2n_i) + n2Xn
n(2n2 ± 1) _=

if N = 2n - 1

3 n

nZE i2(X + X24.,l-i) if N = 2n
n(n + 1)(2n + 1) 1~

(5)

(6)

These weighted means have been listed in the order of
their frequency of use, the last two apparently being
new. In the order of decreasing weights for the nmore
extreme observations they are:

XMR, XA),u, Xu

Thus the midrange would be most affected by con-
taminating outlying observations, and the median least.
On the other hand, there has been much investiga-

tion of determining weights from the sample itself. The
rejection of observations is equivalent to assigning zero

- -
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weight [4]. Tukey has advocated replacing outlying ob-
servations by their nearest neighbors ("Winsorizing")
[7]. Earlier Jeffreys had given an iterative method for
determining continuously varying weights from the
sample [8]. Recently Huber published a rigorous foun-
dation for an iterative method which is asymptotically
(for large sample size) equivalent to Winsorizing [9].
However, determining weights from the sample itself
usually requires a substantial number of observations,
some assumptions, and a substantial amount of work.
One particular method of determining weights from

the data may be noted: First calculate X; weight each
observation (or individual standard) inversely as its
absolute deviation from X, and calculate the weighted
mean; repeat, using the deviation from the weighted
mean, and so on until there is no change in the weighted
mean. Joan Rosenblatt has shown that this sequence
converges to the median unless the mean or some iterate
coincides exactly with an individual observation [10].
Hence one should simply use the median to begin with.
(In the exceptional case of coincidence the sequence
stops at the coincident observation.)

IV. EFFICIENCIES OF ESTIMATES

Since the parent distributions and estimates of the
median considered are both symmetrical, the estimates
are unbiased, and the goodness of estimates may be
judged by their standard deviations. The eficiency of
an estimate is defined as the square of the ratio of the
minimum standard deviation possible with any weighted
mean to the standard deviation for the estimate. An
efficiency of 0.64, or 64 per cent (as in the case of the
sample median and a normal distribution) means that
the best possible estimate based on 64 observations is as
good as the estimate considered based on 100 observa-
tions. The percentage efficiencies of the estimates (2)-
(6) were either given by Sarhan and Greenberg [11] or
can be calculated from their results.

Normal Distribution
The percentage efficiencies of the median X, linearly

weighted mean ju, and square-weighted mean ,u' (rela-
tive to the mean X) for observations from a normal dis-
tribution are shown as a function of sample size in Fig.
2. The midrange is less efficient than the median for
N> 6 and is not shown. The rapid approach of the
median's efficiency to its asymptotic value of 63.7 per
cent is shown. The most interesting feature of Fig. 2 is
the fairly high efficiencies of ,- and ,' for all sample sizes.
Only the indicated points were calculated, but the excel-
lent fit by rectangular hyperbolas suggests that the
fitted asymptotic efficiencies of 85 per cent for ,' and
92 per cent for , are essentially correct.2

2 Added in proof: These values have been confirmed by asymp-
totic theory developed by M. M. Siddiqui which is part of a joint
paper with the present author. The paper has been submitted to a
statistical journal.

Rectangular Distribution

For observations from a rectangalar distribution the
best linear unbiased estimate is the midrange [II]. Its
variance is of order 1/N2, whereas all the other esti-
mates (2), (3), (5), and (6) have variances of order 1/N
and hence their efficiencies approach zero as N becomes
infinite. The numerical results are given in Fig. 3. The
sample mean is more efficient than the median, ,a', and
g,, but none of these four is satisfactory for N> 4.

Double-Exponential Distribution
Efficiencies for the double-exponential distribution

for N<5, based on the work in Sarhan and Greenberg
[11] and Sarhan [12], are graphed in Fig. 4. Fig. 4 shows
that,' has efficiency at least 98.6 per cent for N<5,
that the median and p are quite efficient also, and that
X rapidly decreases in efficiency, down to 79 per cent
for N=5. The midrange is less eflicient than X and is
not considered in Fig. 4.

Cauchy Distribution

Corresponding results for the Cauchy distribution
cannot be shown because the standard deviations of the
estimates (2)-(6) may be infinite except for that of the
median. In fact the distribution of X for samples from a
Cauchy distribution is exactly the same Cauchy distri-
bution and thus has neither mean nor standard devia-
tion. Even the standard (leviation of the sample median
is infinite for N=1 2, 3, and per]haps N1=4 [131. The
best linear unbiased estimate of the parent median is not
known, but an estimate about nine per cent more effi-
cient than the sample median is obitained for large sam-
ples by averaging the middle quarter of the ordered ob-
servations, and no substantial improvement is possible
[14].

An Even Thicker-Tailed Distribution
It might be thought that the Cauchy distribution is

a rather pathological example, not experienced in prac-
tice. However, from a finite numbter of observations on
an unknown distribution it is impossible to estimate the
extreme tails of the pdf and thus to be sure how thick the
tails are. Furthermnore, the Cauclhy distribution is but
a middling case of a family of distributions, the stable
distributions, depending on a constant a between 0 and
2 (as well as another constant 3 not relevant here). The
normal distribution corresponds to a = 2, the Cauchy to
a = 1. The pdf of another stable dli3tribution, for a = 1/2,
is given by [15]

f(X) = (27rX)-12e--l /(2X) X>0 (7)
The pdf of the means of samples of two observations
from the distribution is

g(X) = (7rX)-l12e-11X, x>O (8)

Thus g(X) is the same curve as f(,X) plotted to a differ-
ent scale; in fact each percentage point of X, such as
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00 t\EAN I I I culate 100 values of X from successive pairs, and form
\\MEAN =two histograms. For this distribution (which is not

g---- symmetrical) we conclude simply that X is not as good
90

an estimate as any single observation and that the
median has good estimating properties based on general

80\ theory [17].
It should be noted that if all observations on a dis-

7 MEDIAN: tribution beyond a fixed finite value of X are rejected,
700 -____2then the standard deviation of the resulting distribution

is finite, the Central Limit Theorem applies, and the
60_ above type of result is excluded.

5 10 1 V. US1 5 10 15 20 25 V. CONCLUSION
SAMPLE SIZE, N

Fig. 2. Percentage efficiencies of estimates of ,u for
samples from a normal distribution.
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Fig. 3. Percentage efficiencies of estimates of ,u for
samples from a rectangular distribution.
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Fig. 4. Percentage efficiencies of estimates of g for
samples from a double-exponential distribution.

its median, is twice the corresponding percentage point
of X. Thus X is twice as dispersed as X, in complete con-
trast to the usual situation where X for N= 2 is 1/V/2
as dispersed as X. (The usual situation is that in which
the parent distribution possesses a finite standard devi-
ation and hence the Central Limit Theorem holds.) This
remarkable fact can be easily checked because (7) is the
distribution of the reciprocal of t-he square of a stand-
ard normal variable; hence one need only take, say, 200
random normal numbers [16], square and invert, cal-

The results of Section IV and Figs. 2-4 are examples
of a general law for the variation of efficiency of an
estimate of the median of a symmetrical distribution
with the weights of the coefficients and the thickness of
the tails of the distribution [11]. For short-tailed dis-
tributions like the rectangular it is most efficient to
weight the extreme observations heavily and the middle
ones zero (or even negative for U-shaped distributions);
for the normal distribution, to weight all observations
equally; and for thick-tailed distributions like the
double-exponential and Cauchy, to weight the more ex-
treme observations zero and the middle ones heavily.
While the sample mean X thus loses its popular position
as the best of all estimates of parent mean or median, it
is a simple estimate and reasonably good over a wide
range of distributions.

In practice the experimenter or arbiter of standards
may not know what form of distribution he is observing,
or if he does, he cannot guard completely against wild
observations or against the gradual drift of one or more
standards from the norm set by the group as a whole.
Distributions of errors in the physical sciences very
often are close to normal but may have wild observa-
tions, so that thick-tailed distributions seem a reason-
able model while short-tailed distributions are unreal-
istic (unless observations have been rejected, perhaps
too readily). Hence it is reasonable to recommend
tapered estimates like ,u or ,', (5) or (6), if there is apt
to be contamination of observations not immediately or
obviously noticeable. It seems particularly appropriate
in constructing a composite standard, in which one

might be tempted to weight a highly-regarded indi-
vidual standard heavily but find that in time this in-
dividual standard is in the outskirts of the group; the
impartial weights based on order, as in , and ,', prevent
the outlying observation from affecting the composite
standard greatly but yield good efficiency if the process
is after all abiding by the normal distribution.
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Exchange CoIlisions, Wall Interactions, and

Resettability of the Hydrogen Maser

J. VANIER, H. E. PETERS, MEMBER, IEEE, AND R. F. C. VESSOT

Abstract-Experiments were performed in order to verify the
resettability of the hydrogen maser. The method consisted of meas-
uring the output frequency of one maser against the hydrogen pres-

sure. It was found that at a given tuning of the cavity no shift larger
than 2.1 parts in 1013 was observed for a change of 4 to 1 in pressure.

This experiment also showed that the pressure shift due to exchange
collisions, predicted by Bender, could not be observed for the field-
independent transition in the hydrogen maser. Two masers, having
the same storage bulb design and the same wall coating, were

tuned by this technique and were found to have a frequency differ-
ence of 7.6 parts in 1013. Experiments on the wall coating of the
hydrogen maser storage bulb were made. Relaxation and decorre-
lation times of various materials were measured. The hyperfine
splitting of the ground state of hydrogen measured against cesium is
also given.

I. INTRODUCTION

FEATURE of the storage box technique [1], [2]
used in the hydrogen maser is the presence of ex-

change collisions which depend on the hydrogen
pressure. The resultant broadening of the emission line
provides a means of tuning the cavity of the maser and
making resettability measurements [10].
The storage box technique, however, relies on the use

of a wall coating which does no appreciably perturb the
energy state of the hydrogen atoms. The basic require-
ments are that the substance used as a coating must
have low adsorption energy, must not react chemically
with atomic hydrogen, and must not encourage H-H
recombination. In the first type of interaction the atom
may either make a transition to another level of the
ground state (T1 type of relaxation) or experience a
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phase shift which is reflected by an average frequency
shift of the maser output frequency. Dispersion in ad-
sorption times causes a loss of coherence which may be
associated with a T2 type of relaxation, where T1 and
T2 relaxation times are used in analogy to nuclear mag-

netic relaxation. In the two other processes the atom as

such is lost, which is essentially a 1- type of relaxation.
Various substances have been found in the past which
meet the basic requirements to some degree; these are

dichlorodimethylsilane, teflon, and long chain waxes

[2], [4], [5].
The research reported here was conducted to investi-

gate the properties of these materials and to search for
new materials that could be used as wall coating. In
this paper, resettability measurements made on two
masers with the exchange collision tuning technique are

reported. Results of the investigation of the properties
of various wall coatings are given in Section IV. Finally,
with the help of these results the free-space hyperfine
splitting of the hydrogen ground state was determined,
and the result is reported in Section V.

II. APPARATUS

Four hydrogen masers were used in the experiments
described here. Two of these masers incorporated a cav-

ity thermal control; the design of these instruments has
been described in another article [6]. Their relative
stability measured for a period of several months is
shown in Fig. 1. The other two masers used in the pres-

ent research did not have a thermally controlled cavity
and consequently did not have this degree of long-term
stability.
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