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We study the stochastic dynamics of a particle in a periodically driven potential. For atomic ions trapped
in radio-frequency Paul traps, noise heating and laser cooling typically act slowly in comparison with the
unperturbed motion. These stochastic processes can be accounted for in terms of a probability distribution
defined over the action variables, which would otherwise be conserved within the regular regions of the
Hamiltonian phase space. We present a semiclassical theory of low-saturation laser cooling applicable from
the limit of low-amplitude motion to large-amplitude motion, accounting fully for the time-dependent and
anharmonic trap. We employ our approach to a detailed study of the stochastic dynamics of a single ion, drawing
general conclusions regarding the nonequilibrium dynamics of laser-cooled trapped ions. We predict a regime of
anharmonic motion in which laser cooling becomes diffusive (i.e., it is equally likely to cool the ion as it is to
heat it), and can also turn into effective heating. This implies that a high-energy ion could be easily lost from the
trap despite being laser cooled; however, we find that this loss can be counteracted using a laser detuning much
larger than Doppler detuning.
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I. INTRODUCTION

In the past 50 years, Paul traps have become a major tool
for confining charged particles [1]. Certain atomic ion species
can be cooled with laser light over more than six orders of
magnitude in temperature to the millikelvin regime [2], and
with suitable methods further to their quantum ground state,
making Paul traps a prominent tool in experiments demon-
strating quantum control [3,4]. However, the nonequilibrium
dynamics leading ions from the high energies at creation or
after a collision with background gas to the near-equilibrium
“Doppler cooling limit” remain poorly understood. Partly,
the reason is that Paul traps are based on radio-frequency
(rf) electric fields whose interplay with additional external
fields that act on the ions poses a theoretical and experimental
challenge.

The rapidly oscillating fields of the Paul trap lead to an
averaged effective trapping potential with (slower) motion
at the characteristic “secular” frequencies. Superimposed on
the secular motion is a smaller-amplitude motion at the rf-
drive frequency called “micromotion.” Additional, periodic
rf-driven motion that is independent of the secular motion
amplitude, known as “excess micromotion”, can often be
carefully reduced, and we assume here that it can be ne-
glected. The interplay of rf-driven motion and stochastic noise
forms a basic example of a system driven far from equilib-
rium, and has been a concern since the early experiments
with trapped ions. The potential in the early Paul traps was
typically quadrupolar near the effective potential minimum,
leading to linear equations of motion. In [5] a model for a
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one-dimensional (1D) periodically driven Mathieu oscillator
subject to dissipation and white noise generalized previous
works on Brownian motion. The Fokker-Planck (FP) equation
for the probability distribution of the particle in phase space
(of position and momentum) admits a Gaussian solution that
is periodic with the trap frequency [6–8]. The interplay of
the periodic driving with laser cooling was elaborated for a
quadrupole trap in some parameter regimes [9], mostly in the
final stage of the cooling when the ion settles around the ef-
fective potential minimum, and also with excess micromotion
[10].

However, above a certain distance from the potential mini-
mum that depends on the trap geometry, the anharmonicity of
the potential may start to play an important role. In general,
in the absence of stochastic perturbations, the Hamiltonian
phase space for motion in rf Paul traps contains one or
more approximately regular (integrable) regions. Within a
regular region the motion of the ion is characterized by
conserved quantities (the Hamiltonian actions, I j), whose
number is equal to the spatial dimension. Each trajectory
is then restricted to rotations in phase space on a manifold
determined by the conserved actions, with the topology of a
torus. The time evolution is described by the angle variables
θ j (t ) = θ j (0) + ν jt with an angular frequency ν j that is only
a function of the actions (and is time-independent) and the
initial condition. Due to the micromotion, the invariant tori
are periodically modulated in time within the phase space, at
the rf-drive frequency.

Beyond the integrable motion, some phase-space regions
may become chaotic, and from some chaotic regions the ion
can escape the trap on a very fast timescale [11]. Even for
chaotic motion that is bounded, the ion explores a nonzero
volume in phase space whose dimension is not reduced by
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conservation laws, and typically does so in an apparently
random manner. Thus we can expect that a weak stochastic
perturbation within an already chaotic region does not change
the evolution qualitatively. In the originally regular region,
however, a stochastic perturbation breaks the conserved quan-
tities, changing the nature of the motion.

In this work, we consider stochastic heating and laser-
cooling processes in situations in which the ion is initially
far from the cooling limit, but within the regular phase-space
parts. We strive to answer three main questions: First, due to
the widespread use of a time-independent approximation of
the rf trap potential (known as the pseudopotential), where can
it be employed to obtain a good description of the stochas-
tic dynamics, and where does it fail? Second, how do the
stochastic dynamics vary with the amplitude of motion, and
does the trap’s anharmonicity introduce qualitative changes in
comparison with harmonic motion? If it is possible to answer
these two questions in a broad way, we can seek answers to the
third and final question about the most advantageous values of
laser-cooling parameters such as detuning and intensity and
also trap parameters such as electrode potentials, to efficiently
load ions and to recover the ion to near the cooling limit from
collisions with background gas that may put the ion in a state
of high kinetic and potential energy.

In Sec. II we approach the task by first transforming the
Hamiltonian description of dynamics without stochastic and
dissipative events to action-angle variables. We describe the
effects of noise and cooling under the assumption that the
actions change slowly due to such stochastic perturbations,
as compared to the characteristic frequencies ν j . In this case,
one can capture the dynamics by a Fokker-Planck equation in
which the actions alone suffice to describe the slow stochastic
dynamics [12], while the much faster rates of change of
θ j can be eliminated by averaging over these coordinates.
The stochastic processes can then be characterized by action-
dependent drift and diffusion rates that dynamically reshape a
probability distribution over the actions as time goes on. Due
to the linearity of the FP equation, different stochastic pro-
cesses can be accounted for just by adding their coefficients.

In order to approximate the photon scattering during laser
cooling, we employ well-established semiclassical simpli-
fying assumptions [2,9,13–23]. In Sec. III we treat photon
scattering in two approximations: The coarser assumption
posits that the excited state of the electron has a lifetime
that is negligible on all timescales of the ion dynamics. In
this case, each photon is assumed to be absorbed and then
spontaneously emitted at the same point in time. We call this
the “zero lifetime” limit and it is the limit that Javanainen and
Stenholm called the “heavy particle” limit in their seminal
work on laser cooling [14]. The conditions of the zero-lifetime
limit are violated when the ion’s amplitude of motion grows
[15], or when the driven micromotion oscillations are too
fast. We remove these restrictions by treating absorption and
emission as two events separated in time by intervals that are
randomly picked based on the excited-state lifetime. We call
this the “finite lifetime” limit, and we restrict our treatment to
a low saturation of the transition (when the ion spends most of
the time in its electronic ground state). This derivation consis-
tently reduces to the zero-lifetime limit when the lifetime of

the excited state approaches zero, and our findings agree with
previous results in the limits of their scope.

In the remainder of the paper, we apply this framework to
study white-noise heating and laser cooling with a concrete
trap model. In Sec. IV we review the relevant aspects of
Hamiltonian motion within Paul traps. In many trap variants
[19] there is a region around the effective trap minimum
in which the potential is approximately a quadrupole, with
a symmetry axis along which the motion corresponds to a
(time-independent) harmonic oscillator, and in the transverse
directions it is described by decoupled Mathieu oscillators.
Within a quadrupole potential, the heating and cooling coef-
ficients can be approximated in closed form in some limits
(Sec. V). To go beyond harmonic motion, we focus on a model
surface-electrode trap with a five-wire configuration, where it
is possible to separate the motion perpendicular to the elec-
trode surface from the other motional degrees of freedom. We
restrict our attention to this 1D motion for which the potential
is also strongly anharmonic in a large region, with a detailed
characterization of the ranges of validity of the various ap-
proximations as a function of the action given in Sec. VI.

A self-contained summary of our results and a discussion
of general conclusions is presented in Sec. VII, with Fig. 7
depicting schematically the different regimes of laser cooling.
An outlook for possible applications and generalizations is
laid out in Sec. VIII. To answer briefly the questions at the out-
set, for white-noise heating we find that the pseudopotential
can be safely used, which presents a significant simplification
for future studies, while for laser-cooling dynamics it turns out
to give quantitatively and qualitatively wrong results in most
scenarios far from equilibrium. In addition, we find that within
a quadrupole potential, the efficiency of laser cooling remains
independent of the amplitude of motion in the high-action re-
gion, while for the strongly anharmonic potential of a surface-
electrode trap we find that cooling may become heating, and
also change its nature to diffusive at large-amplitude motion.
This result would be completely lacking in an approximation
of the potential as a quadrupole, and even in an approximation
using an anharmonic pseudopotential, serving to emphasize
the importance of the interplay of nonlinearity, micromotion,
and stochastic dynamics in Paul traps. We also present a
simple characterization of heating and cooling dynamics at
different noise, laser, and trap parameters, and answer the
third question posed above, for the studied model five-wire
trap. The framework that we provide allows to answer further
related questions quantitatively, such as the probability or
the time required for the ion to safely arrive at the cooling
limit. Moreover, we find that far-from-equilibrium regions are
governed by complex dynamics that hold much intrigue by
themselves. The presented theory gives a quantitative tool for
studying such dynamics and gaining better understanding of
the underlying nonequilibrium mechanisms.

II. GENERAL MODEL

A. The Hamiltonian motion

We consider an ion of mass m and charge e trapped
in a general Paul trap, with �r and �v ≡ �̇r being its vector
coordinate and velocity in D = 3 dimensions, and �p the
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canonical momentum. We assume that the Hamiltonian de-
pends quadratically on the momenta, with a potential energy
that is a function of the coordinates and is driven periodically
in time at rf-drive frequency �, so our starting point is the
Hamiltonian

H0(�r, �p, t ) = 1
2 ( �p)2 + V (�r, t ), V (�r, t ) = V (�r, t + T ), (1)

with the potential having period T = 2π/� (which can in-
clude the particular case in which it is time-independent). We
also assume that the Hamiltonian H0 can be approximated
as integrable (regular) in some region of phase space, i.e.,
that D conserved actions exist, and the canonical action-angle
coordinates (�I,�θ ) can be defined and calculated explicitly, at
least numerically [11]. A canonical transformation from the
real-space coordinates is then defined by

I j = � j (�r, �p, t ), θ j = � j (�r, �p, t ), (2)

with the transformation functions � j and � j depending
explicitly on time (and being T -periodic), if V (�r, t ) is. In
action-angle coordinates, the Hamiltonian H0 transforms into
a Hamiltonian of �I alone, and the corresponding equations of
motion (with an overdot denoting the time derivative) are

İ j = 0, θ̇ j = ν j (�I ), (3)

ν j (�I ) being the fundamental frequencies of the motion on the
torus defined by fixed actions �I , which are conserved and thus
time-independent.

B. The Fokker-Planck equation

A trapped ion is subject to different sources of noise and
random perturbations [24–27]. In the absence of laser cooling,
these typically include collisions of the ion with molecules of
the background gas present in the trap, fluctuations of the trap
parameters (e.g., Johnson noise on voltages), and fluctuations
of ambient electric fields. Stochastic dynamics resulting from
such noise can be studied using a probability distribution in
phase space, P(�r, �p, t ), that evolves under stochastic terms
in addition to the motion generated by the trap Hamiltonian,
and we follow here the presentation of van Kampen [28].
Noise heating and laser cooling with experimentally relevant
parameters (discussed in more detail later) can be modeled
by additive, stationary Gaussian white noise (approximating
the noise as having no correlation after an infinitesimal time
interval) with a nonzero mean. Then the evolution of P(�r, �p, t )
is described by momentum drift and diffusion coefficients,
Bα (�r, �p, t ) and Dαβ (�r, �p, t ), respectively, with α, β ∈ {x, y, z},
using the FP equation

∂P(�r, �p, t )

∂t
= L0P −

∑
α

∂[BαP]

∂ pα

+ 1

2

∑
α,β

∂2[DαβP]

∂ pα∂ pβ

, (4)

where the Liouvillian L0 generates the Hamiltonian flow due
to H0 in phase space, and is defined by

L0(�r, �p, t ) = −
∑

α

pα

m

∂

∂rα

+
∑

α

∂V (�r, t )

∂rα

∂

∂ pα

. (5)

We now transform to the canonical action-angle coordi-
nates (�I,�θ ) defined in Eq. (2). In these variables the Liouvil-
lian of Eq. (5) reduces to L0(�I,�θ ) = −∑

j ν j (�I )∂/∂θ j . Using

the formulas of Appendix D, Eq. (4) will transform to an
equation in the new canonical variables. Since the Jacobian
of a canonical transformation is equal to 1, the measure of
P is unchanged. When the timescale for change in �I is much
longer than the quasiperiods of rotation on the invariant torus,
it is possible to approximate P(�I,�θ, t ) by its average over the
angles, P(�I, t ). In the transformed FP equation (see in general
Appendix D), all terms with derivatives with respect to the
angles �θ drop out when averaged over the angle. In the case of
the rf potential, the averaging is over the entire motion at fixed
action, and hence includes also an averaging over the short
timescale of the rf potential. This timescale enters through the
transformation functions defined in Eq. (2). For any function
�(�I,�θ, t ) of the phase space that is periodic with the rf-drive
frequency,

�(�I,�θ, t + T ) = �(�I,�θ, t ), (6)

we define the torus average denoted with an overbar,

�(�I ) ≡ 1

T

∫ T

0
dt

1

(2π )D

∫
�(�I,�θ, t )dD�θ. (7)

After averaging, we obtain the final form of the FP equation in
action and time, which can be written in compact form using
the probability flux vector �S whose components are given by

S j (�I, t ) ≡ � jP − 1

2

∑
k

∂

∂Ik
[� jkP], (8)

with the FP equation taking the form

∂P(�I, t )

∂t
= −

∑
j

∂S j (�I, t )

∂I j

= −
∑

j

∂

∂I j
[� jP] + 1

2

∑
j,k

∂2

∂I j∂Ik
[� jkP], (9)

and the action drift and diffusion coefficients are, respectively,

� j (�I ) =
∑

α

Bα

∂� j

∂ pα

+ 1

2

∑
α,β

Dαβ

∂2� j

∂ pα∂ pβ

, (10)

� jk (�I ) =
∑
α,β

Dαβ

∂� j

∂ pα

∂�k

∂ pβ

. (11)

A minimal criterion for the validity of this approximation
would be a small relative change in action due to both drift
and diffusion, during a cycle of the motion, i.e.,

� j (�I )/ν j (�I ) � I j, � jk (�I )/
√

ν j (�I )νk (�I ) � I jIk . (12)

It is clear that this adiabatic approximation breaks for ν j (�I ) →
0, i.e., close enough to a separatrix (a trajectory passing
through a saddle point in the potential energy). We return to
this point later, where we calculate the stochastic coefficients
in the high-action regime of a surface trap.

The FP equation can be defined for I j > 0, and is com-
pletely posed when boundary and initial conditions are spec-
ified. We have a reflecting boundary condition at the origin
S[(I j = 0, t ) = 0], and an absorbing boundary condition (P
itself equals 0) could be enforced at some maximal boundary
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of �I (corresponding to the ion escaping the trap). For an
initial-value problem, a typical initial condition would be, e.g.,
that the ion starts at t = 0 with some given distribution (e.g.,
thermal if it is cooled or arriving from an oven, or power law
after a background-gas collision [29,30]), or more simply, that
it is approximately localized at some action value �I .

In the following section we consider laser cooling, which
allows to counteract the effects of heating in the trap and cool
the ion.

III. LASER COOLING

In this section we derive the FP equation describing the
process of laser cooling in two different semiclassical ap-
proximations. In Sec. III A we review the well-established
derivation of the FP equation in the limit that the motion of the
ion can be considered as frozen during a photon absorption-
emission cycle, stating detailed conditions for the validity of
this limit. In Sec. III B we derive the action drift and diffusion
coefficients for cooling beyond this limit, by considering the
variation of the action due to photon scattering directly.

A. The zero-lifetime limit

The ion’s valence electron couples the ion’s center-of-mass
motion to the electromagnetic field, while making transitions
between its ground state and an excited level. We consider the
internal states of the ion in a two-level approximation and a
monochromatic laser beam in a traveling-wave configuration
with the following parameters: a laser wave vector �k and wave
number k = |�k|, an on-resonance Rabi frequency �R (with
its squared magnitude proportional to the laser intensity),
and a laser frequency ωL detuned by � from the resonant
electronic transition, whose linewidth (inverse lifetime) is �.
For each absorption or emission process, the atom suffers
a recoil of magnitude pr = h̄k that is parallel (antiparallel)
to the momentum of the absorbed (emitted) photon, and
ensures conservation of the total momentum (h̄ being Planck’s
constant).

For optical transitions and nonrelativistic ion velocities �v
(much smaller than the speed of light c), the same parameter
k can be used for photons resonant with the internal electronic
transition, for the detuned laser photons, and for Doppler-
shifted photons, i.e.,

k = ωL

c
≈ ωL + �

c
≈ ωL − �k · �v

c
. (13)

A stochastic laser-cooling process can be described in a
semiclassical approximation by using the FP equation for the
probability distribution P(�r, �p, t ) of the ion’s center-of-mass
coordinates alone. When the requirements of the derivation
are fulfilled (with the exact conditions discussed below),
which can be qualified schematically as the limit of slow
enough motion at low amplitude within the pseudopotential
approximation, the ion motion can be assumed as frozen
during the lifetime of the excited level (in [14] this was called
the heavy-particle limit). The FP equation in this limit takes
the form of Eq. (4), with two functions that we denote by
Bz

α ( �p) and Dz
αβ ( �p).

The vector function Bz
α ( �p) gives the mean momentum

transfer rate due to the radiation pressure force, which acts on
the ion as a function of its momentum. The mean momentum
gain per cycle is just pr of the absorbed photon, since the prob-
ability to emit a photon in a certain direction is invariant under
inversion of the coordinates. The rate of absorption-emission
cycles is given by � times the occupation probability of the
electron in the excited level, for an ion having momentum �p
in phase space:

ρs( �p) = s/2

1 + s + (2�eff/�)2
. (14)

Here the saturation parameter s is defined by

s = 2(|�R|/�)2, (15)

and using the relation of the phase-space momentum to the
velocity,

�v = �p/m, (16)

we have that due to the Doppler shift, the detuning of the laser
relative to the ion resonance at rest, in the frame of reference
of the ion, is

�eff = � − �k · �v. (17)

Thus ρs( �p) describes a Lorentzian with velocity center and
velocity half-width given respectively (along the direction of
�k) by

v0 = �/k, δv = �/k. (18)

We note that ρs( �p) < 1/2, which expresses the saturation of
the two-level system for large values of s. With k̂α = �kα/k to
specify the direction of the laser wave vector, the momentum
change rate is given by

Bz
α ( �p) = pr k̂α�ρs( �p). (19)

The tensor function Dz
αβ ( �p) describes diffusion in momentum

due to two sources: the variance in photon absorption and
the spontaneous emission. The second moment of the angular
distribution of emitted photons, assumed to be a dipolar
transition [13], is for a linearly polarized beam,

μαβ = 2
5δαβ − 1

5 êα êβ, (20)

(with ê the polarization unit vector). The assumed linear
polarization can be replaced by circular polarization with just
the values of μαβ changing appropriately. This tensor enters as
a prefactor in the mean diffusion per cycle due to spontaneous
emission, with the cycles proceeding at the rate �ρs( �p). In
addition, since the photon absorption events are discrete, there
is an independent contribution proportional to the variance
of their number per unit time [17]. Assuming uncorrelated
Poissonian photon statistics, the variance in the number of
absorptions is equal to their mean number, multiplied by a
term proportional to k̂α k̂β accounting for the well-defined di-
rection of momentum transfer, for a total momentum diffusion
coefficient

Dz
αβ ( �p) = p2

r (k̂α k̂β + μαβ )�ρs( �p). (21)

Plugging Bz
α of Eq. (19) and Dz

αβ of Eq. (21) into Eqs. (10) and
(11) gives the coefficients for the angle-averaged FP equation
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[Eq. (9)] of cooling in the zero-lifetime limit,

�z
j (�I ) =

∑
α

Bz
α

∂� j

∂ pα

+ 1

2

∑
α,β

Dz
αβ

∂2� j

∂ pα∂ pβ

, (22)

�z
jk (�I ) =

∑
α,β

Dz
αβ

∂� j

∂ pα

∂�k

∂ pβ

. (23)

The derivation of the FP equation [14] assumes an expan-
sion in the following small parameter,

kpr/(m�) � 1 ⇐⇒ Erecoil = p2
r /(2m) � h̄�, (24)

implying that the relative change of P(�r, �p, t ) in each cycle
is small, due to the smallness of the recoil momentum and
the associated kinetic energy (Erecoil), with respect to the scale
determined by the Lorentzian due to the width of the excited
level. In addition, the ion’s internal (electronic) degrees of
freedom have to be adiabatically eliminated. The rate of decay
of the excited state (�) must be faster than the unperturbed
evolution of P(�r, �p, t ) due to the Liouvillian of Eq. (5); i.e.,
we require ∣∣∣∣pα

∂P

∂rα

∣∣∣∣ � �P,

∣∣∣∣ ∂V

∂rα

∂P

∂ pα

∣∣∣∣ � �P. (25)

For motion within a 3D harmonic potential, assuming a single
length scale of variation for P with rα , determined by the am-
plitude of the motion in the harmonic limit, the first condition
in Eq. (25) amounts to

ν j � �, (26)

known as the unresolved sideband limit. The second condition
in Eq. (25) can be written as

max{�̇v · �k} � �2, (27)

by using the fact that the largest variation of P with mo-
mentum results from absorption at the velocity range δv

(around v0), defined in Eq. (18). Thus the condition in Eq. (27)
limits the validity of the treatment to low-amplitude and low-
velocity motion in a harmonic oscillator.

For motion in the time-dependent rf potential, the aver-
aging over the torus takes care of the rf-modulated velocity
along the trajectory due to the micromotion, which modifies
the instantaneous Doppler shift. Equation (25) still gives
conditions for the validity of the current treatment, which must
be amended with

�/2π � �. (28)

The conditions that limit the treatment to a small amplitude
of motion, and the limitation to the unresolved sideband limit
and a small rf frequency in Eq. (28), are very restricting, in
particular with state-of-the-art-traps. In the next subsection we
develop the semiclassical laser-cooling theory in the limit of
finite lifetime of the excited electronic state.

B. Laser cooling in the finite-lifetime limit

When either of the conditions Eq. (26), Eq. (27), or Eq. (28)
does not hold, the ion motion can no longer be considered
to be frozen during the absorption-emission cycle, and within
the lifetime of the excited level (1/�), the ion’s velocity and

position may change significantly. A Fokker-Planck equation
in energy space has been derived for the large-amplitude
motion of an ion in a 1D harmonic oscillator potential [15], by
making explicit use of harmonic oscillator wave functions. We
now develop a semiclassical derivation [2,20,23] that allows
to generalize the results of the previous subsection to the
motion in any trap potential, including micromotion, at any
amplitude.

The basic principle of this semiclassical derivation is to
assume conservation of energy and momentum at each ab-
sorption and at each emission event separately, accounting for
the ion’s center of mass and internal coordinates together with
the photon. Between the absorption and emission, we assume
that the ion moves completely classically and is decoupled
from the electromagnetic field. It is worth noting that this
treatment only alters the description of the emission events,
while absorption events are effectively equivalent to their
zero-lifetime description. As we will see below, the validity
of this treatment requires a low laser intensity, i.e.,

s � 1. (29)

With that condition, the probability of an ion to absorb a
photon at a given point in phase space in a small time interval
dt equals �ρdt , with ρ obtained from ρs of Eq. (14) by
expansion in s,

ρ( �p) = s/2

1 + (2�eff/�)2
, �eff = � − �k · �v, (30)

and �v = �p/m [Eq. (16)]. The resulting absorption and emis-
sion rates are equal on average, even if there are finite delays
between these events. A more detailed derivation of the pho-
ton absorption probability from the optical Bloch equations
will be presented separately in [31] using a Floquet approach,
which allows one to improve the accuracy of accounting for
the micromotion drive.

Let us consider an ion moving in the trap, and at some
arbitrary time ta when it is at position �ra with momentum �pa

(velocity �va), it absorbs a laser photon of energy h̄(ωL + �).
Due to the absorption, the ion’s momentum changes by prk̂,
and the electron is excited by the Doppler-shifted photon, con-
sistent with the level width � and the Lorentzian of Eq. (14),
and the condition in Eq. (13). To simplify the notation below,
we define the phase-space point

Za ≡ {�ra, �pa, ta}. (31)

The change in each action I j due to the absorption is then, to
second order in the recoil momentum,

δI (a)
j = I j (�ra, �pa + pr k̂, ta) − I j (�ra, �pa, ta)

≈ pr

∑
α

k̂α

∂� j (Za)

∂ pα

+ 1

2
p2

r

∑
α,β

k̂α k̂β

∂2� j (Za)

∂ pα∂ pβ

. (32)

In Eq. (32), δI (a)
j is a random variable that is conditioned on

the absorption taking place at Za.
Continuing, the ion moves under the influence of the trap

and at time te reaches the phase-space point {�re, �pe}. We take
this point to be just the position and momentum that the ion
would have reached if it had not absorbed a photon, due to
the Hamiltonian evolution from ta to te on the torus of fixed
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�I . Hence we neglect the small change for the initial condition
at ta due the ion having made a step pr k̂, which is just the
approximation at the basis of the FP approach, that a lot of
stochastic events are required to cause a significant change in
the action distribution. Now at time te the ion spontaneously
emits a photon with momentum h̄�κ ≈ prκ̂ , where the condi-
tion of Eq. (13) has been used. The change in action due to
emission occurring at Ze of a photon propagating along κ̂ and
conditioned on absorption at Za is

δI (e)
j = I j (�re, �pe − prκ̂, te) − I j (�re, �pe, te)

≈ −pr

∑
α

κ̂α

∂� j (Ze)

∂ pα

+ 1

2
p2

r

∑
α,β

κ̂ακ̂β

∂2� j (Ze)

∂ pα∂ pβ

. (33)

Summing Eqs. (32) and (33), the total change to the action,
given that the absorption occurred at Za and the emission at Ze

with the photon going along κ̂ , is

δI j = δI (a)
j + δI (e)

j . (34)

To recap, the ion drift and diffusion in action is due to three
sources of randomness: the time and phase-space point of the
absorption event, the time and phase-space point of the emis-
sion event through decay from the excited level with finite
lifetime of 1/�, and the direction κ̂ of the emitted photon.
We assume that when coarse-grained over many absorption-
emission cycles, the action evolves in small deviations δ�I [as
in Eq. (34)] about the given torus �I , due to the accumulation
of many small-action kicks. The mean action drift and dif-
fusion rates have to be calculated by averaging over multiple
emission-absorption cycles using the distribution of the action
increments. To a good approximation, the distribution of the
sum of many such small-action kicks may be taken to be
Gaussian due to the central limit theorem. Here we can invoke
Eq. (29) and neglect any correlation between the absorption
and emission coming from the fact that absorption is impos-
sible while the ion is in the excited level, which can only
contribute at order s2, and similarly for stimulated emission
processes that can be neglected to lowest order in s. In the
following we calculate the first and second moments of the
distribution of action kicks, on the torus �I of the motion.

We start with the random variables of the emission. The
mean change in action due to emission is obtained by taking
the expectation value of Eq. (33) over the two random vari-
ables of emission: the direction of the emitted photons and
the phase-space point they are emitted at. The mean over the
spherical distribution of κ̂ is denoted by 〈·〉κ̂ , and we have

〈κα〉κ̂ = 0, 〈κακβ〉κ̂ = μαβ, (35)

in which the term linear in κ̂ components vanishes since
it is reflection-invariant, and the second moment is defined
by the tensor μαβ in Eq. (20). The emission time is also a
random variable with an exponential distribution for decay
from the excited level. Given an absorption that occurred at
Za, the mean value of any function of phase space at the time
of emission, averaged over the random times of emission,
denoted by 〈·〉� , is

〈�(Za)〉� ≡
∫ ∞

0
�e−�t ′

�(Z (ta + t ′; Z (ta) = Za))dt ′. (36)

The time integral is to be performed along the trajectory
Z (ta + t ′) in the notation of Eq. (31). Therefore we get for
the emission〈

δI (e)
j

〉
κ̂,�

= 1

2
p2

r

∑
α,β

μαβ

〈
∂2� j (Za)

∂ pα∂ pβ

〉
�

. (37)

We consider now the effect of the randomness of the
absorption event, conditioned so far to occur at the phase-
space point and time given by Za. As discussed above, the
probability of the ion to absorb a photon at a given point in
phase space in a time interval dt equals �ρdt [Eq. (30)]. The
mean of any random process that depends on absorption at
Za, calculated for motion during a time interval δt , can be
obtained from

〈�〉δt ≡
∫ δt

0
�(Za(ta))�ρ(Za(ta))dta, (38)

where δt is the intermediate timescale over which many
absorption-emission cycles occur during a large number of
rotations on the torus, while the action variation remains
small. We assume ergodicity for motion on the torus, i.e.,
that the average over many photon scattering events during
many rotations on the torus is equal to the average over the
torus angles (and the relative micromotion phase), defined in
Eq. (7). This ergodicity assumption, over a timescale given by
δt , is given by writing for the rate of any random process

1

δt
〈�〉δt = �ρ�, (39)

with the torus average operation

�ρ� ≡ 1

π

∫ π

0
dt

1

(2π )D

∫
�ρ(Za)�(Za)dD�θ. (40)

Averaging over the absorption events allows us to obtain
the FP equation [Eq. (9)] for P(�I, t ), evolving adiabatically at
a timescale longer than that for multiple emission-absorption
cycles. The first two moments of the action deviations deter-
mine the FP equation coefficients [32],

�f
j (�I ) = 〈δI j〉/δt, �f

jk (�I ) = 〈δI jδIk〉/δt, (41)

where 〈·〉 denotes the ensemble average to first order in δt , i.e.,
〈·〉 = 〈·〉κ̂,�,δt . Hence we get the FP coefficients

�f
j (�I ) = �ρ(Za)〈δI j〉κ̂,� (42)

and

�f
jk (�I ) = �ρ(Za)〈δI jδIk〉κ̂,�, (43)

where we find using Eqs. (34)–(37),

〈δI j〉κ̂,� = pr

∑
α

k̂α

∂� j (Za)

∂ pα

+ 1

2
p2

r

∑
α,β

[
k̂α k̂β

∂2� j (Za)

∂ pα∂ pβ

+ μαβ

〈
∂2� j (Za)

∂ pα∂ pβ

〉
�

]
,

(44)

and to order p2
r and s,

〈δI jδIk〉κ̂,�

= p2
r

∑
α,β

[
k̂α k̂β

∂� j

∂ pα

∂�k

∂ pβ

+ μαβ

〈
∂� j

∂ pα

∂�k

∂ pβ

〉
�

]
, (45)
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in which, as in Eq. (44), all terms are functions of Za, the
phase-space time and point where the absorption occurred, on
a given torus with actions �I .

The expressions in Eqs. (42) and (43) hold for an arbitrary
rf potential, with the conditions in Eqs. (24) and (29) assumed
in the derivation, in addition to the adiabaticity conditions of
Eq. (12). Assuming that the timescale separation (expressed
by these adiabaticity conditions) is justified, the only foresee-
able case where the ergodicity assumption of Eq. (39) may
fail to hold is the case of one or two decoupled degrees of
freedom of the motion that are directed transversally to the
laser �k-vector. Close to such a degenerate case, e.g., when
there are two nearly degenerate modes of oscillation, the
dynamics have to be treated in more detail (such as in [13],
for the case of time-independent harmonic oscillators). The
absorption probability taken in Eq. (30) can be improved as
in [31] or generalized to a more complicated setup or level
structure.

The difference of the derived action drift and diffusion co-
efficients to their expressions within the zero-lifetime limit [in
Eqs. (22) and (23)] lies in the integration over the waiting-time
distribution for spontaneous emission from the excited elec-
tronic state. As a basic consistency check, we see that when-
ever we can assume an instantaneous absorption-emission
cycle and write �e−�t ′ ≈ δ(t ′) in 〈·〉� of Eq. (36), the drift
and diffusion coefficients reduce in form to those calculated
for the zero-lifetime limit (and under the assumption s � 1),
whence �f

j → �z
j and �f

jk → �z
jk . The cooling coefficients

can be further simplified in some limits, and in some cases
even integrated in closed form, as we show in the following.

IV. HAMILTONIAN MOTION IN 1D

A. Anharmonic trap potential

For a general anharmonic and time-dependent rf potential
V (�r, t ), the motion has to be solved numerically. In [11]
the Hamiltonian motion of an ion in the 3D potential of a
model surface-electrode trap has been treated for a broad
range of parameters, and a range of parameters has been
identified wherein the Hamiltonian motion within the full
time-dependent rf potential is well described by the (time-
independent) pseudopotential approximation, with a phase
space that is to a high degree regular. To clearly illustrate
the main results that we derive here, we present numerical
calculations for motion in one spatial dimension, orthogo-
nal to the electrode surface, along the z axis (see Fig. 1).
In the five-wire trap in a symmetric configuration (without
DC coupling of the radial yz motion), the z motion (which
is both time-dependent and nonlinear) decouples exactly
for the initial conditions y = ẏ = 0, for which y(t ) = 0 at
all times. The canonical momentum is pz = mvz, with the
velocity vz = ż.

From this point on we use nondimensional units, obtained
by rescaling the time t by half the micromotion frequency (we
choose � = 2π × 100 MHz) and measuring distances using
a natural length scale of the problem, the width of each of the
two rf electrodes (we take w = 50 μm):

z → z/w, t → �t/2. (46)

FIG. 1. Layout and rf potential of the five-wire surface trap. All
electrodes lie in the z = 0 plane, with the two electrodes connected
to the rf drive shown in red. They are of width w in the y direction
with their center offset by ±w from y = 0. Along the x direction they
are approximated as having an infinite extent. The remainder of the
z = 0 plane is filled by grounded surfaces, shown in gold. Setting
the rf electrodes to 1 V produces the equipotential lines in the plane
x = 0 shown as a contour plot in the back of the figure, with the bar
legend showing the potential in units of V. The thick solid black line
shows the potential minimum line (z = zs) and the thick dashed line
shows the saddle line of the potential.

The details of this rescaling (which makes all physical quan-
tities and parameters nondimensional), including the values
of the parameters chosen for the numerical calculations, are
summarized in Appendix A. With this rescaling, the rf-drive
frequency becomes � = 2 and its period T = π . We also
set the ion’s mass and charge m = 1 and e = 1, absorbing
their values in the parameters of the nondimensional 1D rf
potential, given by

V 1D
rf (z, t ) = V0(z) + V2(z) cos 2t, (47)

with

V0(z) = 1

2
az(z − zs)2, (48)

V2(z) = − 4

π
q5

[
arctan

(
1

2z

)
− arctan

(
3

2z

)]
. (49)

The nondimensional parameters az and q5 are determined by
the electrode voltages and geometry (and the ion’s charge-
to-mass ratio); see Eq. (A6). The potential V2 of Eq. (49)
vanishes at the saddle point z = √

3/2, and hence setting
zs = √

3/2 ≈ 0.866 in V0 of Eq. (48) makes V 1D
rf (z, t ) vanish

for any value of t at zs, which then forms the center of
the trapping region (see below). The action-angle coordi-
nates (I, θ ), in the integrable approximation of the motion,
can be calculated using a stroboscopic map of the motion
taken at times t (mod π ), where the action is then related
to the phase-space area J bounded within an invariant curve
[11], by

I = J/2π. (50)

The pseudopotential approximation to Eq. (47) can be
obtained by a time-dependent canonical transformation from
the phase-space variables {z, pz, t}, to new canonical variables
that we denote as ζ for the coordinate and πζ for the mo-
mentum. The transformation is a perturbative expansion to
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FIG. 2. (a) The phase space of 1D motion perpendicular to the
electrodes plane of a five-wire trap, in the pseudopotential approxi-
mation [Eq. (51)], with ζ and πζ being the coordinate and conjugate
momentum in nondimensional units [see Eq. (46) and Appendix A].
The stable fixed point ζs ≈ 0.866 forms the center of the island, and
the unstable fixed point ζu ≈ 1.48 sits at the “tip” of the bounded
part of phase space, with the curve passing through it forming the
separatrix. (b) The frequency ν(I ) of rotation around the invariant
curves of the phase space, as a function of the action I . We see
that ν(I = 0) = νz ≈ 0.112, and a close examination shows that only
very close to the maximal action, which corresponds to the separatrix
going through the unstable fixed point, the frequency sharply goes
to 0, i.e., ν(I ) → 0 (this happens within a segment of width δI �
0.01 × 10−3, about Imax ≈ 3.67 × 10−3).

second order in ν, the ratio of the secular frequency to the
rf frequency, assuming that V0 ∼ ν2 and V2 ∼ ν, and results
in a time-independent Hamiltonian, with the time-averaged
pseudopotential given by [11]

V 1D
ps (ζ ) = az

(ζ − ζs)2

2
+ q2

5
16(3 − 4ζ 2)2

π2(9 + 40ζ 2 + 16ζ 4)2
. (51)

The pseudopotential has two fixed points, where the field
vanishes. The first point, ζs = zs = √

3/2 ≈ 0.866, is the
stable fixed point at the center of the trap, whose value is
independent of the parameters az and q5, within the pseudopo-
tential (as well as the rf potential). The second point, ζu, is an
unstable fixed point, a local maximum of the pseudopotential,
beyond which the ion escapes the trap (see Fig. 2). The canon-
ical transformation relating the pseudopotential coordinates
{ζ , πζ } to the original coordinates {z, pz} at every point of
phase space is, to the leading order in the expansion,

ζ = z, πζ = pz + 1
2 sin(2t )V ′

2 (z). (52)

For our numerical study, although obtaining the transfor-
mation functions of Eq. (2) to the action-angle coordinates
within the 1D rf potential is numerically accessible (as demon-
strated in [11]), obtaining smooth partial derivatives [required
in Eqs. (10) and (11)] is numerically more demanding. Hence
we approximate the 1D transformation I = �(z, pz, t ) us-
ing the pseudopotential approximation. Introducing explicit
subscripts to denote the form of the potential within which
� is calculated, we derive in Appendix C the approximate

relations

∂�rf (z, pz, t )

∂ pz
≈ ∂�ps(ζ , πζ )

∂πζ

= πζ

ν(I )
,

∂2�rf (z, pz, t )

∂ p2
z

≈ ∂2�ps(ζ , πζ )

∂π2
ζ

= 1

ν(I )
− π2

ζ

ν(I )3

dν(I )

dI
. (53)

The corrections to Eq. (53) for the case of the rf potential
will be of a higher (at least second) order in ν, and hence are
expected to be quantitatively small.

B. Quadrupole trap potential

As discussed in the introduction, in many cases the Paul
trap potential can be approximated as a quadrupole potential
around an effective minimum of the trap. Often the motion
along a certain direction is nearly decoupled from the other
directions due to the symmetry of the trap electrodes. De-
pending on the nature of the potential in this direction, it
can be described by a time-dependent Mathieu oscillator if
the potential is periodically modulated in time, or a har-
monic oscillator if the potential is static (time-independent).
For concreteness, we consider the idealized five-wire surface
electrode trap introduced in Sec. IV A in the following. This
geometry naturally implements the harmonic oscillator along
the trap axis of symmetry (x, not considered here), and
Mathieu oscillators in the transverse plane. For simplicity we
here consider motion along one direction (denoted by z) and
compare a Mathieu oscillator and a harmonic oscillator with
identical secular frequencies.

The leading order expansion of V 1D
rf of Eq. (47) about zs

gives the Mathieu oscillator potential

V 1D
rf → V 1D

M.o. ≡ 1
2 (az − 2qz cos 2t )z2, (54)

which results in a linear equation of motion, with the Math-
ieu parameter qz = 2q5/(

√
3π ). The nondimensional secular

frequency of oscillation in the trap (also called the character-
istic exponent), νz(az, qz ), can be approximated in the limit
az, q2

z � 1 by

νz ≈
√

az + q2
z /2. (55)

The transformation functions between real-space coordinates
and action-angle variables for Mathieu oscillators can be
obtained exactly as presented separately [31]. Here we use a
leading order approximation, obtained using Eq. (52), which
for the Mathieu oscillator reduces to

ζ → z, πζ → pz − qz sin(2t )z. (56)

The expansion of V 1D
ps of Eq. (51) about ζs gives the harmonic

oscillator potential,

V 1D
h.o. ≡ 1

2ν2
z ζ 2, (57)

whose frequency coincides with νz appearing in Eq. (55). The
action is related to the energy E by I → E/νz and the (inverse)

043421-8



FAR-FROM-EQUILIBRIUM NOISE-HEATING AND … PHYSICAL REVIEW A 99, 043421 (2019)

action-angle transformation is

ζ →
√

2I

νz
cos θ, πζ → −

√
2Iνz sin θ, (58)

where the angle is defined by

θ = νzt + φ, (59)

with φ determined by the initial conditions. The motion lies
on an ellipse in phase space with area J = 2π I , evolving
clockwise in the (ζ , πζ ) plane. The approximation of Eq. (53)
then reduces to

∂�M.o.

∂ pz
≈ ∂�h.o.

∂ pz
,

∂2�M.o.

∂ p2
z

≈ ∂2�h.o.

∂ p2
z

, (60)

with the simple formulas for the harmonic oscillator,

∂�h.o.

∂ pz
= πζ

νz
,

∂2�h.o.

∂ p2
z

= 1

νz
. (61)

Throughout the numerical simulations in this work we have
compared the results obtained by using the approximation
given in Eq. (60) to the exact value of ∂�M.o./∂ pz (obtained
using [33] and presented separately [31]), and the difference
is quantitatively very small (given by approximately q2

z ).

V. ANALYTIC LIMITS OF STOCHASTIC MOTION IN 1D

In this section we consider the form of the action drift and
diffusion coefficients that enter the FP equation describing
different heating and cooling processes in 1D. We summarize
here all of the analytic results that apply to 1D motion, with
a simplified notation. In some of the cases, the averaging of
the FP coefficients can be carried out explicitly and closed-
form expressions are presented in the following. We postpone
however a detailed discussion of the results to the following
sections (to Sec. VI, where all figures are presented together
and the different dynamics compared, and to Sec. VIII, which
contains a summary and an outlook). For the 1D motion the
general FP equation in action [Eq. (9)] takes the simplified
form

∂P(I, t )

∂t
= −∂S(I, t )

∂I
= − ∂

∂I
[�I P] + 1

2

∂2

∂I2 [�IIP]. (62)

We can gain insight into the cooling dynamics by using
the drift and diffusion rates at any value of I to define (re-
spectively) a drift timescale τdrift (I ) and a diffusion timescale
τdiffuse(I ), and form a nondimensional coefficient that mea-
sures the cooling efficiency,

ε(I ) ≡ �I I

�II
∝ τdiffuse(I )

τdrift (I )
. (63)

The sign of ε depends on the sign of the drift coefficient, and is
negative when the laser is cooling the ion (in the mean), while
if it is positive, the laser effectively heats the ion. A large value
of |ε| signifies that the drift time is much shorter than the time
it takes to diffuse a similar range of action, so that for ε � −1
the cooling is efficient. In contrast, for −1 � ε � 1 the width
of the ion’s distribution in I grows faster than its mean drifts.
Diffusive motion has no directionality, and may equally well
lead the ion down or up in action.

For completeness we note that a steady state of Eq. (62)
(assuming one exists) can be obtained in terms of the FP
coefficients, with a distribution that can be thermal-like (ex-
ponential) or very different, as will be discussed in a future
publication.

A. White-noise heating in 1D

For an ion subject to position-independent Gaussian white
noise, the 1D action drift and diffusion coefficients are

�w
I (I ) = D

∂2�

∂ p2
z

, �w
II (I ) = 2D

(
∂�

∂ pz

)2

, (64)

with D being the nondimensional diffusion coefficient. White
noise can be thought of as being produced by a reservoir at
infinite temperature and causes only heating. In this case there
is no steady-state distribution.

For the harmonic oscillator V 1D
h.o. of Eq. (57), we have

�w
I → D/νz, �w

II → 2DI/νz, (65)

and for the quadrupole potential V 1D
M.o., the Mathieu oscillator

of Eq. (54), within the approximation of Eqs. (52) and (53),
the result is identical to the harmonic oscillator, neglecting,
as discussed above, a small correction of approximately q2

z .
In addition, as we confirm by numerical simulations, due to
the form of Eq. (64) and by using Eq. (53) explicitly, also for
motion within an anharmonic Paul trap potential, the effect of
the micromotion is averaged out and can be neglected.

In the case of heating within a quadrupole potential, a
solution by separation of variables, with a reflecting boundary
condition at I = 0, and the initial condition P(I, t = 0) = δ(I )
(the ion starting at the origin) can be integrated in closed form.
As can be verified directly by substitution it results in the
time-dependent distribution

P(I, t ) = νz

Dt
exp

{
− νz

Dt
I
}
, (66)

with the expected mean torus drift

〈I (t )〉 = Dt/νz. (67)

For the harmonic oscillator (for which energy is conserved),
this is equivalent to the mean heating rate in energy 〈Ė〉 =
〈νzİ〉 = D.

In the following section we study quantitatively the laser-
cooling process in the trap, and we will compare the heating-
rate values calculated for white noise with the laser-induced
cooling rates.

B. Laser cooling in a general 1D potential

For motion in 1D, the FP coefficients of Eqs. (22) and (23)
for cooling in the zero-lifetime limit with the decay occurring
at the phase-space point of the absorption are

�z
I = �ρs

[
pr

∂�

∂ pz
+ 1

2
p2

r (1 + μ)
∂2�

∂ p2
z

]
, (68)

�z
II = �p2

r (1 + μ)ρs

(
∂�

∂ pz

)2

, (69)
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with μ ≡ μzz of Eq. (20). All terms on the right-hand side
of the equations above are functions of Za = {z, pz, t}, the
phase position, momentum, and time at which the absorption
occurred, which is averaged on a given torus by the definition
in Eq. (7).

For the finite-lifetime case, Eqs. (42) and (43) become

�f
I = �ρ

[
pr

∂�

∂ pz
+ 1

2
p2

r

(
∂2�

∂ p2
z

+ μ

〈
∂2�

∂ p2
z

〉
�

)]
, (70)

�f
II = �p2

rρ

[(
∂�

∂ pz

)2

+ μ

〈(
∂�

∂ pz

)2
〉

�

]
, (71)

with the emission point Ze averaged by the integration of the
waiting-time distribution 〈·〉� defined in Eq. (36).

The dynamics of the laser cooling around a given torus
are determined both by the form of the potential (which
depends on the displacement of the ion) and by the velocity,
as compared to a relevant scale determined by the laser
parameters. The limits of low velocity and of high velocity
lend themselves to expansion in a suitable, distinct small
parameter. For motion in a quadrupole potential this allows a
simplification of the FP coefficients, explored in the following
two subsections for 1D motion.

C. The linear limit of laser cooling

In a Paul trap whose potential reduces to a quadrupole
at its center (as in linear Paul traps and surface-electrode
traps, but not in higher multipole traps), and in the absence
of excess micromotion, the ion velocities can be assumed
to be small at the center of the trap. These two conditions
define a specific limit of the cooling, which can be analyzed
analytically. The Lorentzian can be linearized in the velocity,
with the coefficients written in a well-known form [13,19], for
s � 1,

pr�ρ(pz ) ≈ Fr + γ vz, (72)

with

Fr = pr�s/2

1 + (2�/�)2
, γ = 4kprs�/�

[1 + (2�/�)2]2
. (73)

Here Fr gives a mean radiation force (for pz = 0), and γ /m
(with m = 1 in the rescaled units) is the damping rate. This
linearization is valid if

kvz � [�2 + 4�2]/(8|�|), (74)

which can be rewritten in terms of the action,

I � Ilinear =
(

�2 + 4�2

8k�

)2 1

2νz
. (75)

In this approximation, since the Lorentzian is linear in the
momentum, and the partial derivatives of the action are (at
most) linear in the momentum (for a quadrupole potential), the
resulting cooling coefficients are at most linear in the actions.
For the harmonic oscillator the integration in closed form of
the action drift and diffusion coefficients is straightforward
and we can write

�l
I = γ I + hz/2, �l

II = hzI, (76)

with

hz = prFr (1 + μ)/νz. (77)

Then the linear limit of the cooling is characterized by a
thermal-equilibrium-like distribution (for � < 0), determined
by the balance of momentum dissipation and diffusive heat-
ing. The mean value and standard deviation of the action,
〈I〉 =

√
〈(I − 〈I〉)2〉 = Ilimit, reads

Ilimit ≡ h̄
�

8νz
(1 + μ)

[
�

2|�| + 2|�|
�

]
. (78)

The expression above is identical to the known results for
the thermal distribution of an ion cooled within a 1D harmonic
oscillator [19], in the limit of s � 1. Remarkably we find
in the numerical simulations presented in Sec. VI A that the
results for the Mathieu oscillator are nearly identical [up to the
accuracy of Eq. (60), neglecting a correction of approximately
q2

z ]. Analytic expressions for the coefficients can be obtained
for general 3D motion in a Mathieu oscillator potential, which
is beyond the scope of the current work and will be presented
separately.

D. The (quadrupole) fast-particle limit of laser cooling

A second regime of motion that allows a simplification of
the expressions of the action coefficients of laser cooling is
the (quadrupole) fast-particle limit, where the motion is of a
large enough amplitude, within a quadrupole potential. In this
case, the ion velocity creates a large Doppler shift that tunes
the cooling light out of the resonance with the ion for most of
the time. In a harmonic motion the measure on the invariant
torus in which the light field is resonant with the ion, bounded
within the strip �k · �v = v0 ± δv [the resonance has width δv

around v0, defined in Eq. (18)], is independent of the action,
and its fraction of the total torus measure decreases with I .
Within the tori averages, the contribution from the resonance
region decreases accordingly, while the contribution from the
rest of the torus increases with I due to the tails of the
Lorentzian distribution, which eventually dominate the torus
averages.

The cooling and diffusion terms within the fast-particle
limit are derived in Appendix B on the basis of an expansion
for the Lorentzian expression of the excited-state occupation.
For the case that the laser propagates along one of the prin-
cipal axes of the motion (here, �k = kẑ), and if in addition the
motion is described by a harmonic oscillator [Eq. (58)], the
fast-particle limit expressed in terms of the action is

I � Ifast ≡ max{4�2, �2/4}
νzk2/2

. (79)

We have integrated the drift and diffusion coefficients in
closed form [Eqs. (B3) and (B4)], and a basic property of the
coefficients in this limit is their action dependence [15],

�
f.p.

I ∝ −1/
√

I, �
f.p.

I ∝
√

I. (80)

We note that the zero-lifetime treatment for a harmonic os-
cillator gives the same cooling rate in terms of the energy
(which has been used, e.g., in [20,23]), but results in a
constant (independent of I) diffusion term [Eq. (B5)], which
is incorrect since Eq. (80) shows a scaling ∝ √

I .
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TABLE I. The four different types of trap potentials, summarized
with their acronyms used in the figures to follow and in the equations.
Depending on the Paul trap type, along each of its spatial dimensions
the potential can be quadrupole or anharmonic, and either static or
periodically driven.

Potential is Time-independent Time-dependent

Quadrupole Harmonic oscillator Mathieu oscillator
(h.o.) (M.o.)

Anharmonic Pseudopotential Rf potential
(ps) (rf)

As discussed in Sec. VI B, for motion within a Mathieu
oscillator potential we find by numerical integration that the
action dependence is identical in form [obeying Eq. (80)],
with the prefactors depending on the Mathieu oscillator pa-
rameters. The implications of these functional relations are
discussed in Sec. VI B, and the deviations from them for
motion in the anharmonic rf potential, in Sec. VI C.

VI. A STUDY OF HEATING AND COOLING IN 1D

In this section we present a detailed numerical study of
heating and cooling processes for ion motion in 1D. We
compare the results for motion within the four realizations of
a trap potential described in Sec. IV. For reference, these are
summarized in Table I, together with their acronyms (used in
the figures and equations). In Table II we summarize the no-
tation indicating the action drift and diffusion coefficients that
correspond to the different physical processes and parameter
regimes, presented in the figures that follow in this section and
the equations used to calculate them.

For most of the calculations in the following (except where
explicitly stated otherwise), we set the laser detuning to the
Doppler detuning, with a low saturation parameter,

� = −�/2, s = 0.01. (81)

For the chosen 9Be+ ion and in the nondimensional units
introduced in Eq. (46), we have � = 0.38; see Appendix A
for details of the laser (and trap) parameters. Motional heating
is represented by a white-noise rate, and we choose a rep-
resentative value of the nondimensional diffusion coefficient

TABLE II. The different types of action drift and diffusion
coefficients, used in figures to follow and in the equations.

Notation Definition

�w
I , �w

II Position-independent additive white noise
Eq. (64)

�z
I , �z

II Laser cooling in the zero lifetime
(heavy particle) limit Eqs. (68) and (69)

�f
I , �f

II Laser cooling in the finite-lifetime limit
Eqs. (70) and (71)

�
f.p.

I , �
f.p.

II Laser cooling in the fast-particle limit
Eq. (80)

�l
I , �l

II Laser cooling in the linear limit
Eq. (76)

FIG. 3. The action drift coefficients for laser cooling [�f
I ,

Eq. (70)], and for white-noise heating [�w
I , Eq. (64)] in nondimen-

sional units, for low-amplitude motion. In this regime the rf potential
is accurately approximated by its Mathieu oscillator limit. The trap
parameters, laser parameters, and heating-rate parameters are given
in Appendix A. For this figure only, we have set the saturation
parameter to s = 0.001, and the heating rate, in terms of quanta per
unit time, to ˙̃n = 1 ms−1. The vertical lines show Ilinear , the border of
validity of the linear limit of the cooling [Eq. (75)], and the action
at the Doppler-cooling limit, Ilimit [Eq. (78)]. It can be seen how the
Mathieu oscillator (M.o.) and the harmonic oscillator (h.o.) (of the
same secular frequency) converge for I � Ilinear to the same curve,
and for both curves the drift vanishes as I = Ilimit . See the text for a
discussion of the competing effects of heating �w

I ∝ D and cooling
�f

I ∝ s.

D that corresponds to a heating rate in units of motional
quanta per second near the effective potential minimum (see
Appendix A), of

˙̃n = 0.1 ms−1, (82)

except in Fig. 3.

A. Cooling in the low-velocity regime

Although ions are cooled from high-amplitude motion
towards low amplitude, we present our detailed study of
laser cooling starting with low-amplitude motion with I �
Ilinear [defined in Eq. (75)]. The action drift coefficient �f

I is
composed of the sum of the absorption term (linear in pr) and
the emission term (∝ p2

r ). The dynamics are determined by
the competition of the two terms, since the first is negative
(for � < 0) and the second is positive, resulting from the
diffusion in phase space. The action value for which �f

I = 0
(and has a negative slope) is where the mean drift balances,
with the ion being heated (by momentum diffusion) for lower
values of I , and cooled back from higher I . Figure 3 shows
that for I � Ilinear, both the Mathieu and harmonic oscillator
drift rates converge to the same curve, reducing in this limit to
the expression of Eq. (76). The numerically calculated zero
crossing for both the harmonic oscillator and the Mathieu
oscillator coincide very closely with the (thermal-equilibrium-
like) limit of Eq. (78). The crossing points are independent
of s (in the limit s � 1) but the slope is proportional to s,
which is important if heating of a comparable rate is present.
The action drift rate resulting from white-noise heating at a
rate of 1 quantum per millisecond (10 times more than in the
following figures, a value that can be considered as high but
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FIG. 4. (a) The action drift and (b) diffusion coefficients in the
large-amplitude regime within a quadrupole potential, calculated
using the expressions of the zero-lifetime limit (�z

I , �
z
II ) and the

finite-lifetime treatment (�f
I , �

f
II ), with trap and laser parameters

given in Appendix A and Eq. (81). (a) The drift curves calculated
(for the harmonic oscillator and separately for the Mathieu oscillator)
using the zero-lifetime expressions very closely coincide with their
values within the finite-lifetime treatment. (b) For the harmonic
oscillator, the diffusion rate in the zero-lifetime limit saturates at a
constant value, which quantitatively and qualitatively differs from
the results of the finite-lifetime treatment. For the Mathieu oscillator
the diffusion coefficient calculated using the zero-lifetime expression
(�z

II ) nearly coincides with the curve for the finite lifetime (�f
II ). See

the text for a detailed discussion.

not excessive in current state-of-the-art traps) is shown for
comparison. Such a high heating rate will shift the cooling
limit to an action value at which the sum �w

I + �f
I crosses 0

and will increase the final mean value of the action (with these
parameters to ∼2Ilimit). However, the saturation parameter
in this figure is taken to be s = 0.001, much lower than
what is typically used in experiments. Since the heating drift
rate scales linearly with D ∝ ṅ, and the cooling rate scales
linearly with the intensity ∝s (for s � 1), the cooling limit
is quite insensitive to heating at this order of magnitude. For
I � 0.5 × 10−7, i.e., where the condition I � Ilinear no longer
holds, the Mathieu and harmonic oscillator cooling rates begin
to deviate (with the former being smaller).

B. Cooling in the high-velocity regime of a quadrupole potential

The Mathieu and harmonic oscillator cooling rates, al-
though deviating from each other for I � Ilinear, both show an
asymptotic slow approach towards zero at high action. The
numerically calculated values of the FP coefficients are shown
in Fig. 4 for motion within a purely quadrupole potential up
to a large amplitude. Although the zero-lifetime treatment
does not apply to the parameters of our study, we find it
instructive to compare the coefficients calculated by using the
expressions for zero lifetime with the finite-lifetime treatment.
For harmonic oscillator motion, the action drift (cooling)
rates �z

I and �f
I nearly coincide in this limit and are given

by �
f.p.

I ∝ −1/
√

I of Eq. (B3), since the correction to the
drift coefficient that comes from the spontaneous emission
term ∝μ in Eq. (70), at which the zero-lifetime and finite-
lifetime expressions differ, is negligible for these parameters.

The diffusion coefficient calculated by �z
II for a harmonic

oscillator can be seen to saturate [Eq. (B5)], while it in fact
grows as the amplitude of the motion gets larger [�f.p.

II ∝ √
I;

Eq. (B4)].
For the time-dependent Mathieu oscillator, the action drift

rates again nearly coincide within the zero- and finite-lifetime
limits. The diffusion coefficients show a more distinct behav-
ior. The Mathieu oscillator diffusion is much larger than the
harmonic oscillator diffusion. In addition, in contrast to the
harmonic oscillator case, the large diffusion is predicted by
the zero-lifetime expressions. This is because the emission
occurring at some later time after the absorption [as expressed
by the averaging over the decay process, 〈·〉� in Eq. (71)] is
no longer the main cause for the large diffusion. Rather, due to
the fast micromotion, the absorption and following emission
occur at various phase-space points along the trajectory, where
the kick to the action (determined by ∂�/∂ pz ∝ πζ ) can be
both positive and negative. Although the average of all kicks
remains negative, their variance is much bigger.

As Fig. 4 suggests, although the dynamics within the
time-independent potential are simpler than within the time-
dependent one, laser cooling with the latter can in some
cases be well described using the simpler zero-lifetime limit.
Formulating a criterion that explicitly states under which
circumstances the tori averages of the drift and (in particular)
the diffusion coefficients for the finite-lifetime limit can be
approximated by the zero-lifetime limit appears to be difficult.
However, since the zero-lifetime expressions are simpler and
faster to calculate numerically, it is worth having this possible
shortcut in mind when performing a numerical study of laser
cooling based on concrete trap and laser parameters.

Our results allow us to derive a further important con-
clusion regarding the nature of the cooling. The numerically
calculated coefficients show that in the fast-particle limit, the
asymptotic behavior within the Mathieu oscillator has the
same functional dependence as that within a harmonic os-
cillator, �

f.p.

I ∝ −1/
√

I and �
f.p.

II ∝ √
I , which immediately

implies that in the fast-particle limit, the efficiency coefficient
of Eq. (63) is independent of the amplitude, since

εf.p.(I ) ≡ �
f.p.

I I

�
f.p.

II

= const. < 0. (83)

We note that in this ratio, the saturation parameter drops out
(in our low-saturation limit). As long as an appropriate choice
of the laser parameters guarantees that |εf.p.(I )| � 1, the
cooling process is efficient (and nondiffusive), independent of
the action.

C. Cooling in an anharmonic Paul trap potential

Comparing the cooling coefficients for motion within the
surface-electrode trap potential, Fig. 5(a) shows that a cal-
culation using the pseudopotential results in a laser-induced
drift rate very different from the rf potential. Cooling within
the rf potential is well described by the Mathieu oscillator
approximation throughout most of the trap. However, beyond
a certain amplitude of motion, the cooling turns into heat-
ing as evidenced by the drift coefficient becoming positive.
In this region, the corrections to the cooling rate coming
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FIG. 5. (a) The action drift and (b) diffusion coefficients for
white-noise heating and laser cooling within different types of Paul
trap potentials. The laser-cooling coefficients (�f

I for the drift and
�f

II for the diffusion) are compared for motion within a Mathieu
oscillator, the surface trap full rf potential, and its pseudopotential
approximation. The coefficients of white-noise heating (�w

I and
�w

II , within the rf potential) are shown as well. The trap and laser
parameters are as in Fig. 4, and the heating rate is given in Eq. (82).
We note that the I axis here extends to I = 3.65 × 10−3 [where
ν(I ) ≈ 0.03] at the border, where the rf potential motion becomes
chaotic for the presented parameters. See text for details and a
discussion.

from the two terms at order p2
r dominate the drift rate. The

heating from white noise corresponding to a heating rate of
0.1 ms−1 [Eq. (82)] is shown for comparison, calculated for
the motion in the anharmonic potential. Both can be seen to
start diverging in the region of motion that approaches the
separatrix. This results from the term ∝ν−3dI/dν that enters
�f

I through ∂2�/∂ p2
z [Eq. (53)], and becomes important only

close enough to the separatrix, although it should be noted that
ν(I ) at the maximal value of I in Fig. 5 is still ∼1/4 of its value
at the trap center, so our adiabatic approximation still holds.
The action axis extends up to the maximal value for which
a simulation of the full rf potential shows that the ion is still
bounded (by the last unbroken torus [11]). For the presented
parameters the voltage on the rf electrodes is within the border
of validity of the pseudopotential, and the chaotic region close
to the separatrix is very small.

The trap anharmonicity plays a bigger role in the diffusion
coefficients [Fig. 5(b)]. Here again, the pseudopotential curve
is quantitatively very different. Also the approximation of
the rf potential by a Mathieu oscillator results in an under-
estimate of the action diffusion for nonlinear motion. Turning
to the cooling efficiency

εf (I ) = �f
I I

�f
II

, (84)

for low detuning as in Fig. 5 (where � = −�/2) we find
that εf (I ) � −1 throughout most of the trap (beyond the
very low amplitude motion of thermal equilibrium), and it
increases only for very high amplitude motion [ε(I ) > −1 for
I � 3.5 × 10−3]. This border is close to (but still lower than)
the point at which the laser would start heating the ion [ε(I ) >

0]. The reason that |ε(I )| becomes of order 1 is inherent to

FIG. 6. The cooling-efficiency coefficient εw+f (I ) of Eq. (85), in
the large-amplitude regime of a surface-electrode trap. Four values of
the detuning � are shown, with the rest of the parameters as in Fig. 5.
The vertical axis is truncated at ε = 0, beyond which the combined
effect of the noise and laser is a mean positive drift. However, already
in the range ε � −1, the cooling is inefficient, with the diffusion
(due to the noise and laser together) dominating the drift, which can
quickly lead the ion above the trap’s barrier.

the anharmonic rf potential. As can be seen in Fig. 5, the
diffusion grows more steeply than in a quadrupole depen-
dence (for which �

f.p.

II ∝ √
I), already at values of I at which

the drift is still close to its quadrupole behavior. We can
conclude that due to the nonlinearity the cooling efficiency
strongly decreases with the amplitude, and beyond a certain
threshold action, the ion motion under cooling becomes diffu-
sive in nature.

Nonetheless, this threshold can be pushed up by varying
other parameters of the cooling [though not the intensity,
which cancels out in Eq. (84)]. We find that for a larger
detuning the cooling efficiency can be increased. This is
clear from, e.g., Eq. (B3), for a quadrupole potential. The
action value above which ε(I ) � −1 (where the motion under
cooling becomes diffusive) depends on other parameters of
the trap and laser, and on their combined effect together
with the white noise. The white-noise diffusion coefficient is
plotted in Fig. 5(b), for comparison with the laser-induced
diffusion. For the chosen parameters we see that the laser
diffusion is comparable to the noise diffusion for high-
amplitude motion. The linearity of the FP equation allows
us to examine the cooling efficiency in the presence of white
noise,

εw+f (I ) =
(
�w

I + �f
I

)
I

�w
II + �f

II

, (85)

presented in Fig. 6. For the lowest value of the detuning,
the cooling becomes inefficient already at I � 3.36 × 10−3,
due to the white noise (however increasing the laser intensity
reduces the relative importance of the noise contribution). For
increased detuning, the limits of this region can be pushed no-
ticeably up. A detailed study of this regime of high-amplitude
motion could prove important for optimizing ion loading, and
we will examine some aspects of ion dynamics subject to a
large laser detuning in [34].

043421-13



MAITRA, LEIBFRIED, ULLMO, AND LANDA PHYSICAL REVIEW A 99, 043421 (2019)

VII. SUMMARY

The main purpose of the current paper has been to lay
down a framework for treating stochastic processes in rf traps,
throughout the regular parts of the unperturbed Hamiltonian
phase space. In general this requires accounting for the trap’s
periodic drive and its anharmonicity. This can be achieved
by employing action-angle coordinates, which also permit
significant simplification of the treatment of slow stochastic
processes by integrating over the angles. We have kept the
derivations of the theory completely general for 3D motion
within these assumptions, which should allow extending our
detailed analytic and numerical study for 1D motion to more
spatial dimensions and even to more ions. We begin this
section with a summary of the main results.

In Sec. V A we study heating by additive, position-
independent Gaussian white noise (modeling fluctuating elec-
tric fields). The simplest case is that of a quadrupole potential,
where the ion is heated up at a constant rate, which is approxi-
mately equal for both the harmonic and the Mathieu oscillator.
Studying an anharmonic potential, we find that the drift and
diffusion rates significantly increase on the high-action tori
of the trap and, depending on the parameters, may become
comparable with the effects of laser cooling.

For laser-cooling dynamics, in addition to the degree of
the anharmonicity of the potential (which varies with the
ion’s displacement from the trap center), a velocity scale
determined by the laser parameters is important. When
the ion’s velocity is small enough the Lorentzian describing
the absorption probability can be linearized in the velocity,
while when the ion’s velocity is large enough the ion spends
most of its time on the torus within the tails of the Lorentzian.
The different regimes of laser cooling are depicted schemat-
ically in Fig. 7. For low velocity the cooling coefficients
become linear in the action and we find (in Sec. V C and in
Sec. VI A) that they nearly coincide for a Mathieu oscillator in
this limit with those of the corresponding harmonic oscillator.

For a quantitative measure of the cooling efficiency we
define a nondimensional coefficient ε(I ) [in Eq. (63)] propor-
tional to the diffusion timescale divided by the drift timescale.
A large negative value of ε(I ) indicates that the ion drifts
towards lower action at a rate that overcomes the spread of
its probability distribution. For high-velocity motion within
a quadrupole potential we find (Sec. VI B) that the cooling-
efficiency parameter is independent of the action, ε(I ) =
constant, so the cooling remains effective for any amplitude,
if the parameters are chosen to guarantee ε � −1.

This simple picture breaks down, however, when the an-
harmonicity of the potential can no longer be neglected. We
find (Sec. VI C) that for a typical low detuning value (optimal
for reaching the lowest cooling limit around the trap center),
the trap’s anharmonicity in combination with the micromotion
leads to diffusive dynamics (dominated by nondirectional
diffusion), with ε(I ) � −1 as the motion amplitude increases
within a surface-electrode trap. Moreover, in the very highly
anharmonic region close to a separatrix, the drift rate may
become positive, with the laser effectively heating the ion past
the trap’s boundaries. We also find that a laser detuning much
larger than the Doppler detuning allows cooling of the ion
from much higher action values.

FIG. 7. A schematic depiction of the drift and diffusion rates of
the action I , for an ion being laser-cooled in the different regimes of
motion within a realistic surface-electrode Paul trap with substantial
anharmonicity far away from the effective potential minimum. The
axes are not to scale, and the two plotted quantities have different
dimensions; see the legend. In the linear limit of the cooling (in the
limit of low velocity without “excess micromotion”), the cooling
drift and diffusion are linear in the action, and converge to those
found for a time-independent trap, with the drift coefficient crossing
zero at the action corresponding to the Doppler-cooling limit. For
high velocity and still within an approximately quadrupole potential,
the cooling rate drops as ∝1/

√
I and the diffusion rate grows as

∝√
I . For a very high amplitude of motion within the anharmonic, rf

potential, the diffusion grows more sharply and may dominate the
drift (so the distribution broadens faster than its mean is cooling
down), and the drift itself may become positive (turning into effective
heating). In this region the ion is likely to escape the trap; however
both effects can be partly remedied by using a large detuning of the
cooling beam.

We can draw general conclusions about the usefulness
of the time-independent pseudopotential approximation. As
discussed in [11], there exists a regime of parameters in which
an ion’s motion in a Paul trap is nearly integrable, whence the
structure of the phase space can be well approximated by the
pseudopotential, which is simpler to tackle theoretically and
to simulate numerically. As we find here, the pseudopotential
is also sufficient for a quantitative calculation of white-noise
heating, where micromotion can be neglected. In contrast,
except in its linear limit, laser cooling requires that the mi-
cromotion be accounted for even for a quadrupole potential.
Moreover, neglecting the micromotion in anharmonic regions
within a surface-electrode trap leads to incorrect descriptions
of the dynamics. With the (realistic) values of qz and νz stated
in Eqs. (A7) and (A8), the pseudopotential approximation
fails even for a small micromotion amplitude.

Finally, we note that as discussed in Sec. II A, we have
used an approximate canonical transformation to obtain the
rf potential phase-space variables from the pseudopotential
ones, simplifying the numerical analysis significantly in the
1D case. This approach neglects corrections of order ν(I )2,
and, as we have verified with a Mathieu oscillator (for which
exact analytic expressions are available [33]), amounts to
roughly a few percent for our parameters. The frequency ν(I )
and with it the expected inaccuracy only decrease with the
amplitude of motion due to anharmonicity in the potential
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studied here [see Fig. 2(b)], provided that the motion remains
nearly integrable. Close enough to a separatrix of the pseu-
dopotential the micromotion introduces chaotic dynamics,
posing a natural boundary to the applicability of the presented
theory. For the presented parameters the chaos is limited to a
very small region of action near the separatrix.

VIII. OUTLOOK

For a study of the stochastic processes of a single ion, the
theory can be directly applied in regions of regular motion
in those cases in which the actions can be calculated. For a
quadrupole potential there is no chaotic motion and moreover
analytic expressions can be used. If the potential attains a
weak anharmonic component, it may be treated perturbatively
starting from a quadrupole potential up to some amplitude
scale, which makes the calculation feasible [35]. Even for
potentials for which the anharmonicity is relatively strong
(requiring a nonperturbative treatment), there are important
cases with a symmetry axis along which the motion nearly
decouples from the radial plane [11,36]. The pseudopoten-
tial phase space for motion in the two radial coordinates is
4D and amenable to an analysis using 2D planar Poincaré
surfaces of section, which allow one to calculate the actions.
The drift and diffusion coefficients become functions of two
variables, which can be readily visualized and analyzed, and
the micromotion can be accounted for using the canonical
transformation employed here. Numerically, one complication
in such a study (beyond the tools that have been used in this
work and in [11]) could arise from the need to obtain smooth
enough maps of phase space allowing one to take partial
derivatives of the actions.

In this work we have focused on a study of the drift
and diffusion coefficients and the information that can be
extracted directly from them. With different initial conditions,
the drift and diffusion coefficients can be used to obtain time-
dependent solutions of the FP equation, or to obtain some
partial statistics such as the mean time to escape the trap in the
absence of cooling, or in contrast, to be cooled to the cooling
limit from high amplitude. Our theory can be directly applied
to the analysis of Doppler-cooling thermometry [20,23,37,38]
and related methods [39]. A complex setup can be treated
by adding the drift and diffusion coefficients calculated sep-
arately for each stochastic process. To account for a spatially
inhomogeneous laser profile, the saturation parameter can be
generalized to be a function of the coordinates, and the laser
parameters can also be modulated in time.

Beyond a single ion, the extension to a crystal of many
ions whose motions are linearized about their (periodically
driven) equilibrium positions would be immediate using an-
alytic expressions for a coupled Mathieu oscillators system
[33,40], with applications ranging from the cooling of 1D
chains of ions [41–48], to planar, 2D, and 3D crystals in Paul
and also Penning traps [49–55], and applications in quantum
information processing [33,40,56–73]. The extension of the
theory to account for more than two electronic levels could be
relevant for different types of ions [23,74].

In this work we have focused on adiabatic noise heating,
typically applicable to electric field fluctuations in vacuum-
operated traps. Collisions of background gas molecules with

atomic ions typically induce a nonadiabatic energy change
[29,30,75], and their separation in time is much larger than
the cooling timescale. However, recently objects ranging
from large biomolecules, through graphene nanoplatelets, to
micrometer- and nanometer-scale spheres and diamonds are
being trapped [76–88], and their dynamics, depending on the
pressure in the experiment, can be modeled as Brownian mo-
tion. The extension to nonisotropic noise [89] is immediate.
Beyond the noise that is inherent to the trap [24,25,90–93],
it is also possible to introduce forces with differently tai-
lored noise spectra [27,94] and study the ion’s dynamics
or its probability distribution. Such questions stand at the
heart of nonequilibrium formulations of reaction-rate theory
(the Kramers escape problem [95]) and stochastic resonances
[96]. In combination with laser cooling, a single ion may
be captured in a complicated motion [97,98], and nonequi-
librium models of interacting particles coupled to different
baths [99–102] could be tested with trapped ions [103], along
with various ideas of stochastic, nonequilibrium, and active
systems.
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APPENDIX A: TRANSFORMATION TO
NONDIMENSIONAL VARIABLES AND TRAP

PARAMETERS

For the numerical calculations presented in this work we
use nondimensional units, obtained by rescaling the time t
by half the micromotion frequency, �/2, and measuring dis-
tances using a natural length scale of the problem, w, which,
for our case, is the electrode width in a five-wire surface-
electrode Paul trap [11]. The rescaling introduced in Eq. (46)
is

z → z/w, t → �t/2, vz → vz/(w�/2). (A1)

This rescaling allows us also to use the ion mass m in order
to define a nondimensional momentum, and its charge e to
define a nondimensional potential energy V that depends on
an electrostatic voltage U ,

pz → pz/(mw�/2), U → U/[mw2�2/(4e)]. (A2)

The full potential of the trap can be composed of a sum of a
few similar potential terms. The laser parameters are similarly
rescaled,

pr → pr

mw�/2
, � → �

�/2
, � → �

�/2
, k → kw,

(A3)
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in addition to ωL → ωL/(�/2) and �R → �R/(�/2), to-
gether with the rescaled Planck’s constant,

h̄ → h̄/(mw2�/2). (A4)

For the numerical calculations, we assume throughout this
work a 9Be+ ion, and the parameters of Eq. (A1) are

w = 50 μm, � = 2π × 100 MHz. (A5)

The other trap parameters are defined by

az = 4eUDC/Cz

mw2�2
, q5 = 2eUrf

mw2�2
, (A6)

where UDC is a voltage on electrodes providing confinement
along the trap’s symmetry axis, Cz is a nondimensional pa-
rameter that characterizes the geometric properties of this
harmonic potential, and Urf is the voltage on the rf electrodes.
The nondimensional parameter values that we choose are

q5 ≈ 0.43, az = −0.0002, qz ≈ 0.16, (A7)

which correspond to Urf = 20 V, and this gives

νz ≈ 0.112, ωz ≈ 2π × 5.60 MHz, (A8)

with ωz the dimensional secular frequency. For the 9Be+ ion,
the laser parameters in dimensional units are

k̃ ≈ 2π/313 nm−1, �̃ ≈ 120 × 106 s−1, (A9)

and we take �k = kẑ, with a transverse laser polarization,
giving a spontaneous emission coefficient [using Eq. (20)],

μ ≡ μzz = 2/5, (A10)

(where μ is often denoted by α or ξ in the literature). The
nondimensional diffusion coefficient D [after the rescaling of
Eq. (46)] is given by

D = 8D̃

m2w2�3
, (A11)

where D̃/m is the dimensional diffusion coefficient with units
of energy increase rate (energy per unit time). Typical mea-
sured values are reported as the heating rate ˙̃n in quanta per
second (obtained at center of the trap, where the motion can
be quantized in terms of a harmonic oscillator). Hence if the
oscillator is heated at a rate in dimensional units of ˙̃E = ˜̄hωz ˙̃n,
it corresponds to the nondimensional diffusion coefficient,

D = Ė =
˜̄h

mw2(�/2)

ωz

(�/2)

˙̃n

(�/2)
. (A12)

APPENDIX B: THE FAST-PARTICLE EXPANSION

Expanding the Lorentzian of Eq. (30) in � we get

ρ ≈ s

2

[
�2

4(�k · �v)2 + �2
+ 8�k · �v �2�

(4(�k · �v)2 + �2)2

]
, (B1)

where this expansion is valid for

|�k · �v| � �/2, |�k · �v| � 2|�|. (B2)

Under the conditions described in Sec. V D [that the laser
propagates along �k = kẑ, and if in addition the z motion

is described by the harmonic oscillator of Eq. (58)], the
conditions in Eq. (B2) are equivalent to Eq. (79), and we can
use Eq. (58) to perform the integrals in Eqs. (70) and (71), to
get the harmonic oscillator fast-particle limit,

�
f.p.

I ≈ h̄
�

νz

s�2/4

k
√

2Iνz
+ h̄2k

s�2/4

2νz
√

2Iνz
(1 + μ), (B3)

�
f.p.

II ≈ h̄2 2(s�2/4)

4ν2
z + �2

(
�3(1 + μ) + 4ν2

z �

4ν2
z

+ μk
√

2Iνz

)
.

(B4)

The first term in Eq. (B3) for �
f.p.

I gives cooling
(for � < 0), and coincides with the result derived for the
fast-particle limit, using quantum harmonic oscillator wave
functions, in [15] (where the second term has been neglected).
The second term in Eq. (B3) is positive, heating-like, and may
counteract the cooling in this asymptotic region of harmonic
oscillator motion. Both terms scale with 1/

√
I , and the ratio

of the second term to the first term of the drift coefficient �
f.p.

I
equals (1 + μ)kpr/(2�), and for typical parameters (with
|�| � �/2) this ratio is small by Eq. (24), implying that the
positive drift term can be neglected (but not, however, too
close to resonance).

The value of �
f.p.

II is again the sum of two terms, but
these have different asymptotics: the first is constant while the
second term scales with

√
I and gives the dominant functional

dependence in the fast-particle limit. The latter has the same
scaling as that derived in [15] using the quantum harmonic
oscillator wave functions, however with a different prefactor,
consistent with our model of a classical ion [104]. We note
for comparison that the zero-lifetime treatment results in the
same cooling rate in terms of the energy, but gives a constant
diffusion term instead of a term ∝√

I , which is an incorrect
result,

�z
II → h̄2 2(s�2/4)�(1 + μ)

4ν2
z

, (h.o.). (B5)

This diffusion coefficient can be obtained in the limit of both
� � νz and I → 0 from Eq. (B4), which gives a simple
consistency check of the fast-particle limit.

APPENDIX C: DERIVATIVES OF THE CANONICAL
TRANSFORMATION

Using the pseudopotential Hamiltonian,

Hps(ζ , πζ ) = 1
2π2

ζ + Vps(ζ ), (C1)

and the fact that the Hamiltonian becomes angle-independent
in the action-angle coordinates, we can write

∂Hps(ζ , πζ )

∂πζ

= ∂Hps(I, θ )

∂I

∂�ps(ζ , πζ )

∂πζ

. (C2)

By rearranging and using the definition of the frequency
ν(I ) = ∂H/∂I , we get

∂�ps(ζ , πζ )

∂πζ

= πζ

ν(I )
. (C3)
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Similarly,

∂ (πζ /ν)

∂πζ

= ∂2�ps(ζ , πζ )

∂π2
ζ

= 1

ν
+ πζ

∂ (1/ν)

∂πζ

, (C4)

and again,

∂ (1/ν)

∂πζ

= ∂ (1/ν)

∂I

∂�ps

∂πζ

= − 1

ν2

dν

dI

∂�ps

∂πζ

, (C5)

which together with Eqs. (C3) and (C4) allows us to obtain
Eq. (53) by using Eq. (52) to substitute ∂/∂ pz ≈ ∂/∂πζ .

APPENDIX D: TRANSFORMATIONS OF THE
FOKKER-PLANCK EQUATION

We consider a general from of the Fokker-Planck equation
for the distribution ρ(R, P, t ), written here for the 1D case for
simplicity, with canonical coordinates {R, P},

∂ρ(R, P, t )

∂t
= L0(R, P, t )ρ −

∑
i∈{R,P}

∂

∂i
Ai(R, P, t )ρ

+ 1

2

∑
i, j∈{R,P}

∂2

∂i∂ j
Bi j (R, P, t )ρ, (D1)

where L0(R, P, t ) is the Liouvillian. For a canonical
transformation {r, p} = {φr (R, P, t ), φp(R, P, t )}, Eq. (D1)

transforms to

∂ρ(r, p, t )

∂t
= L0(r, p, t )ρ −

∑
k∈{r,p}

∂

∂k
Ãk (r, p, t )ρ

+ 1

2

∑
k,l∈{r,p}

∂2

∂k∂l
B̃kl (r, p, t )ρ, (D2)

where the coefficients Ãk and B̃kl with k, l ∈ {r, p} are given
by [105]

Ãk =
∑

i∈{R,P}
Ai

∂φk

∂i
+ 1

2

∑
i, j∈{R,P}

Bi j
∂2φk

∂i∂ j
,

B̃kl =
∑

i, j∈{R,P}
Bi j

∂φk

∂i

∂φl

∂ j
, (D3)

and we note that the Liouvillian in the new coordinates has
to be constructed using the Hamiltonian in the transformed
coordinates, K (r, p, t ) = H (r, p, t ) + ∂F/∂t , with F the gen-
erating function of the canonical transformation. More gen-
eral, time-dependent but noncanonical transformations, and
an averaging treatment, are presented in [35].
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