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Abstract
Wehave developed a universalmethod to form the reference signal for the stabilization of arbitrary
atomic clocks based onRamsey spectroscopy. Our approach uses an interrogation scheme of the
atomic systemwith two different Ramsey periods and a specially constructed combined error signal
(CES) computed by subtracting two error signals with the appropriate calibration factor. CES
spectroscopy allows for perfect elimination of probe-induced light shifts and does not suffer from the
effects of relaxation, time-dependent pulsefluctuations and phase-jumpmodulation errors and other
imperfections of the interrogation procedure. Themethod is simpler than recently developed auto-
balancedRamsey spectroscopy techniques (Sanner et al 2018Phys. Rev. Lett. 120 053602; Yudin et al
2018Phys. Rev. Appl. 9 054034), because it uses a single error signal that feeds back on the clock
frequency. The use of CES is a general technique that can be applied tomany applications of precision
spectroscopy.

1. Introduction

Atomic clocks based on high-precision spectroscopy of isolated quantum systems are currently themost precise
scientific instruments, with fractional frequency instabilities and accuracies at the 10−18 level [1–5]. Frequency
measurements at this level enable improved tests of fundamental physics, as well as new applications like
chronometric geodesy [6, 7].

Formany promising clock systems, probe-field-induced frequency shifts can limit the clock frequency
instabilities and accuracies. In the case ofmagnetically-induced spectroscopy [8, 9], ac-Stark shifts can limit the
achievable clock stability, and for ultranarrow electric octupole [10] and two-photon transitions [11, 12], the
large off-resonant ac-Stark shift can completely prevent high-accuracy clock performance. Similarly, the large
number of off-resonant lasermodes present in clocks based on direct frequency comb spectroscopy [13, 14]
induce large ac-Stark shifts. Probe-field-induced shifts also cause instability formicrowave atomic clocks based
on coherent population trapping (CPT) [15–20]. Compactmicrowave cold-atom clocks [21, 22] and hot-cell
devices like the pulsed optical pumping (POP) clock [23, 24] that are based on directmicrowave interrogation
can also be affected by probe-induced frequency shifts.

Probe-induced shifts can be suppressed through the use of Ramsey spectroscopy [25] in combinationwith
cleverly devisedmodifications. In contrast to continuous-wave spectroscopy, Ramsey spectroscopy has a large
number of extra degrees of freedom associatedwithmany parameters that can be precisely controlled: the
durations of Ramsey pulses 1t and 2t , the dark timeT, the phase composition of composite Ramsey pulses [26],
variations in Ramsey sequences including the use of three ormore Ramsey pulses, different error signal variants,
and so on. SomemodifiedRamsey schemes for the suppression of the probe-field-induced shifts in atomic
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clockswere theoretically described in [27], which proposed the use of pulses of differing durations ( 1 2t t¹ ) and
the use of composite pulses instead of the standard Ramsey sequence with two equalπ/2 pulses. This ‘hyper-
Ramsey’ scheme has been successfully realised in an ion clock based on an octupole transition in Yb+ [5, 28],
where a suppression of the light shift by four orders ofmagnitude and an immunity against itsfluctuationswere
demonstrated. Further developments in Ramsey spectroscopy resulted in additional suppression of probe-field-
induced frequency shifts. For example, the hyper-Ramsey approach uses newphase variants to construct error
signals [29–32] to significantly suppress the probe-field-induced shifts in atomic clocks.However, as was shown
in [33], all previous hyper-Ramseymethods [5, 27–29, 31, 34] are sensitive to decoherence and spontaneous
relaxation, which can prevent the achievement of state-of-the-art performance in some systems. To overcome
the effect of decoherence, amore complicated construction of the error signal was recently proposed in [35],
which requires fourmeasurements for each frequency point (instead of two) combinedwith the use of the
generalized hyper-Ramsey sequences presented in [31]. Nevertheless themethod in [35] is not free fromother
disadvantages related to technical issues such as time-dependent pulse area fluctuations and/or phase-jump
modulation errors during themeasurements.

The above approaches [5, 27–29, 31, 34, 35] are all one-loopmethods, since they use one feedback loop and
one error signal. However, frequency stabilization can also be realizedwith two feedback loops combinedwith
Ramsey sequences with different dark periodsT1 andT2 [33, 36, 37]. For example, the synthetic frequency
protocol [33] in combinationwith the original hyper-Ramsey sequence [27] allows for substantial reduction in
the sensitivity to decoherence and imperfections of the interrogation procedure. Auto-balanced Ramsey
spectroscopy (ABRS) is another effective approach that wasfirst experimentally demonstrated in a 171Yb+ ion
clock [37]. This intuitive approachwas rigorously substantiated and generalized theoretically in [38], and also
recently realized in aCPT atomic clock [39]. For ABRS, in addition to the stabilization of the clock frequencyω, a
second loop controls a variable second (concomitant) parameter ξ, which is an adjustable property of the first
and/or secondRamsey pulses.While both of these two-loopmethods [33, 37, 38] are robust and can perfectly
suppress probe-induced shifts of themeasurement of the clock frequency, their implementation can be complex
due to the two-loop architecture.

A principal question remains: does a one-loopmethod exist that has comparable (or better) efficiency to
ABRS? In this paper, we present a positive answer to this question.We have found a universal protocol to
construct a combined error signal (CES), which allows for perfect suppression of probe-induced shifts with the
use of only one feedback loop. TheCES technique has exceptional robustness, in that it is independent of
arbitrary relaxation processes and different non-idealities of themeasurement procedure. Thismethod can be
considered as a preferred alternative to ABRS spectroscopy. Indeed, CES is technically simpler (because of one
feedback loop) and can bemore efficient when a hyper-Ramsey pulse sequence [27] is used. TheCES protocol is
applicable to optical atomic clocks aswell as tomicrowave atomic clocks based onCPTRamsey spectroscopy
and POP clocks.

2. Theoreticalmodel

In this section, we follow the analysis developed in [38], whichwe repeat here for completeness.We consider a
two-level atomwith unperturbed frequencyω0 of the clock transition g eñ « ñ∣ ∣ (see figure 1), which interacts
with a Ramsey sequence of two completely arbitrary pulses (with durations 1t and 2t ) of the resonant probefield
with frequencyω:

E t tRe e e . 1t ti i= j w- -( ) { ( ) } ( )( )

The pulses are separated by a free evolution interval (dark time)T, duringwhich the atom-field interaction is
absent (see figure 1).We emphasise that the Ramsey pulses with arbitrary durations 1t and 2t do not depend on
the dark timeT and can have an arbitrary shape and amplitude (i.e. during 1t and 2t an amplitude t( ) can be an
arbitrary real function), and an arbitrary phase functionj(t) (e.g. the Ramsey pulses can be composite pulses,
chirped pulses, and so on). In a given sequence of Ramseymeasurements, the pulse shape and amplitudemust be
consistent fromonemeasurement to another.We assume only one restriction: aside fromphase jumps applied
to generate the error signal (discussed below), the phase function should be constant during the dark timeT,

t constj =( ) , as is typical for Ramsey spectroscopy.
Ourmain goal is to develop a universal one-loopmethod, which allows us to stabilize the probefield

frequencyω at the unperturbed frequency of the clock transition,ω=ω0, in the presence of decoherence,
arbitrary relaxation and light shifts. For this purpose, wewill use the formalismof the densitymatrix r̂, which
has the following form
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in the basis of states gñ∣ and eñ∣ . In the resonance approximation, the densitymatrix components tjkr ( ) satisfy
the following differential equations:
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Here the time dependenciesΩ(t) and td̃( ) are determined by the following: t d t e tiW = á ñ j-( ) ( ) ( ) and
t tshd d= - D˜( ) ( ) during the action of the Ramsey pulses 1t and 2t , butΩ(t)=0 and td d=˜( ) during the dark

timeT. dá ñ is amatrix element of the atomic dipolemoment, δ=ω−ω0 is the detuning of the probefield
from the unperturbed atomic frequencyω0, and tshD ( ) is an actual probe-field-induced shift (see figure 1) of the
clock transition during the Ramsey pulses [e.g. it can be the ac-Stark shift, which is proportional to the t 2∣ ( )∣
and does not depend on the phasej (t)]. Also equation (3) contains five relaxation constants, {

eg , e gg  , gg ,

g eg  ,Γ}:
eg is a decay rate (e.g. spontaneous) of the exited state e ;ñ∣ e gg  is a transition rate (e.g. spontaneous)

to the ground state g ;ñ∣ gg is a decay rate of the ground state gñ∣ (e.g. due to black-body radiation and/or
collisions); g eg  is a transition rate from the ground state gñ∣ to the exited state eñ∣ . Note that e g eg g= and

g e gg g= in the case of closed two-level system,while e g eg g< and/or g e gg g< in the case of open

system. The constant 2e gg gG = + + G( ) describes the total rate of decoherence: spontaneous aswell as all

other processes, which are included in the parameter G (e.g. an influence of the nonzero spectral width of the
probefield).

Equations (3) can be rewritten in the vector form

t L t t , 4tr r¶ = ( ) ˆ ( ) ( ) ( )

where tr ( ) is a vector formed by thematrix components tjkr ( )
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and operator (Liouvillian) L tˆ ( ) is 4×4matrix determined by the coefficients of equation (3):
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Figure 1. Left part: schematic illustration of a sequence of two arbitrary Ramsey pulses (with durations 1t and 2t ) separated by the
dark timeT, duringwhich the phase jumps a are applied to create an error signal (10). Aside fromphase jumps a, the phasej (t)
(see in equation (1)) should not be changed during the dark timeT (i.e.j (t)=const), while during the Ramsey pulses 1t and 2t the
functionj (t) can have an arbitrary behavior. Right part: scheme of the clock transition g eñ « ñ∣ ∣ (with unperturbed frequencyω0)
interacting with the probe field at the frequencyω, where tshD ( ) is an actual probe-field-induced shift during Ramsey pulses 1t and

2t .
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In this case, a spectroscopic Ramsey signal can be presented in the following general form,which describes
Ramsey fringes (as a function of δ)

A W G W, , 7T Tobs in2 1
d r r= t t

 ( ) ( ˆ ˆ ˆ ) ( )

where the scalar product is determined in the ordinary way: x y x y, m m m
*= å

 ( ) . OperatorsW
1t

ˆ andW
2t

ˆ describe

the evolution of an atomduring the first ( 1t ) and second ( 2t )Ramsey pulses, respectively, and the operator GT
ˆ

describes free evolution during the dark timeT. Vectors inr and obsr are initial and observed states, respectively.
For example, if an atombefore the Ramsey sequencewas in the ground state gñ∣ , and after the Ramsey sequence
we detect the atom in the exited state eñ∣ , then vectors inr and obsr are determined, in accordance with definition
(5),as

0
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For stabilization of the frequencyωwe need to form an error signal, which is obtained by using data from two
Ramsey sequences, onewith phase jump a+ between the two pulses and onewith phase jump a- (seefigure 1),
as was proposed in [40]. Note that the phase jumps of the laser field can be easily realized in experiments by the
use of an acousto-opticalmodulator (AOM).Wemathematically describe these phase jumps a+ and a- (their
precise timing does notmatter) by the operators Fa+

ˆ and Fa-
ˆ , respectively. In this case, let us introduce the

expression of the Ramsey signal in the presence of the phase jumpα, described by the operator Fa
ˆ

A W G W, , . 9T Tobs in2 1
d a r r= Ft a t

 ( ) ( ˆ ˆ ˆ ˆ ) ( )

As a result, the error signal can be presented as a difference

S A A W D G W, , , , 10T T T T
err
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with D = F - Fa aF + -
ˆ ˆ ˆ . Tomaximise this error signal, 2a p=  is typically used.However, in real

experiments, we can have a a¹+ -∣ ∣ ∣ ∣due to various technical reasons (e.g. electronics)whichwill lead to a shift
of the stabilised frequencyω in the case of standard Ramsey spectroscopy. Therefore, herewewill consider the
general case of arbitrary a+ and a- to demonstrate the robustness of CES technique, where the condition
a a¹+ -∣ ∣ ∣ ∣does not lead to an additional frequency shift.

Next we consider the structure of the following operators: GT
ˆ , Fa+

ˆ , Fa-
ˆ , and DF

ˆ . The operator for the free

evolution, GT
ˆ , has the following generalmatrix form
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which corresponds to equation (4), ifΩ(t)=0 and td d=˜( ) in the Liouvillian (6). Thematrix elementsG11(T),
G14(T),G41(T), andG44(T)depend on four relaxation rates: { eg , e gg  , gg , g eg  }. In particular, for purely
spontaneous relaxation of the exited state eñ∣ , when 0g g eg g= = , we obtain

G

e 0 0 0
0 e 0 0
0 0 e 0

1 e 0 0 1

. 12T

T

T

T

e g

e

T

i

i

e

e

g

g

=

-

g

d

d

g

-

- G-

- G+

 -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
ˆ

( )

( )
( )

( )

Operators for the phase jumps Fa+
ˆ and Fa-

ˆ have the forms

1 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

, 13
i

i
F =a

a

a-





⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ˆ ( )

which lead to the following expression for DF
ˆ

D

0 0 0 0
0 e e 0 0

0 0 e e 0
0 0 0 0

. 14
i i

i i
= F - F =

-
-a a

a a

a aF - -+ -

+ -

+ -

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ˆ ˆ ˆ ( )

( )
( )

4

New J. Phys. 20 (2018) 123016 V I Yudin et al



As a result, taking into account equation (11), we obtain a formula for thematrix product D GTF( ˆ ˆ )
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Note that
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According to equation (15), the error signal (10) can be rewritten in the following form:
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Note that this result is the same if we apply phase jumpsα±at any arbitrary point during the dark intervalT. It is
interesting to note that the expression of the error signal in the presence of relaxation is formally different from
the error signal in the absence of relaxation only due to the scalarmultiplier e T-G , which primarily affects the
amplitude, but not the overall shape of the error signal. This is one of themain specific properties of the phase
jump technique for Ramsey spectroscopy thatmakes it robust against relaxation. Indeed, for other well-known
methods of frequency stabilization, which use a frequency jump technique between alternating total periods of
Ramsey interrogation T1 2t t+ +( ), relationship (10) does not exist. Thus, the phase jump technique has a
fundamental advantage over the frequency jump technique in that it is less sensitive to relaxation. In addition, in
the ideal case of a a a= - =+ - , the error signal (10) can be expressed as
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depends only on δT.

3. CES protocol

In this sectionwe demonstrate the universality and robustness of the CES technique.We use the Ramsey
interrogation of the clock transition for two different, fixed intervals of free evolutionT1 andT2, wherewe have
two error signals ST

err
1

d( )( ) and ST
err
2

d( )( ) described by equation (18). However, for frequency stabilizationwe
introduce theCES as the following superposition,

S S S , 21T TCES
err err
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err

1 2
d d b d= -( ) ( ) ( ) ( )( ) ( ) ( )

where a calibration coefficient calb is to account for decay of the Ramsey fringe amplitude andwill be defined
below. Thus, the shift of the stabilized frequency clockd̄ is determined as a solution of the equation S 0CES

err d =( )( )

in relation to the unknown δ.
In accordance with equation (18), the expression (21) can bewritten in the form
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If we assume that
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If we apply δ=0 for operators T1
¡d
ˆ and T2

¡d
ˆ , then due to equation (17)we have DT T0 01 2

¡ = ¡ =d d= = F
ˆ ˆ ˆ . In this

case, we obtain from equation (24):

S 0 0, 25CES
err =( ) ( )( )
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since the two terms inside of the square brackets cancel in equation (24). Thus, we have analytically shown that
theCESmethod always leads to zero field-induced shift of the stabilized frequencyω in an atomic
clock, 0clockd =¯ .

From a practical viewpoint, it ismost important that the calibration coefficient calb (equation (23)) does not
depend on the values of the phase jumps a used for error signals, or other parameters (such as: amplitude,
shape, duration, phase structurej (t), shift tshD ( ), etc) of the twoRamsey pulses 1t and 2t . Thus, calb can be
considered as a phenomenological parameter, which isfixed for given setup (via the relaxation constantΓ) and
for givenT1,2 (via the differenceT1−T2). In the ideal case with no relaxation (Γ=0), we obtain 1calb = for
arbitraryT1,2. However, in the general case, the value of calb should be empirically determined before long-term
frequency stabilization.

Aswe see from equation (24), tomaximize the slope of SCES
err d( )( ) it is necessary to use the conditionT2=T1.

Formally we can even useT2=0 (with the phase jumpsα± in the virtual point between pulses 1t and 2t ).
However, due to technical transient regimes (i.e. in acousto-opticmodulators) under switching-off/on of
Ramsey pulses in real experiments, we believe that it is necessary to keep some nonzero dark time,T 02 ¹ , which
significantly exceeds any various transient times. For example, in the case ofmagnetically-induced spectroscopy
[8, 9], the transient processes, associatedwith switching-off/on ofmagnetic field, can be relatively slow.

Infigure 1, we use some abstract shapes of the Ramsey pulses to stress that our exact analytical result (25) is
valid for arbitrary Ramsey pulses, and, therefore, the CESmethod is very robust to different technical non-
idealities, which can exist in real experiments. Indeed, in real clock experiments, the Ramsey pulses have
rectangular shapes (e.g. seefigure 2), which, however, can be deformed due to various technical reasons (e.g. the
transient regime in anAOMduring switching off/on of the Ramsey pulses, some phase chirping, and so on). In
the case of usual Ramsey spectroscopy and hyper-Ramseymethods [5, 27–29, 31, 34, 35], these technical causes
can lead to an additional (technical) shift of the stabilized clock frequencyω, while the CESmethod is insensitive
to these non-idealities.

Note that the CES approach has some formal similarity to the two-loopmethods in [33, 37, 38], because of
the use of two different dark timesT1 andT2. However, the CES technique requires only one feedback loop for
frequency stabilization.

4. CES for different Ramsey sequences

Weassume that themain reason for the shift of the stabilized frequencyω arises from the probe-induced shift
Δsh during Ramsey pulses. All calculations are done for the ideal case of the phase jumps: 2a a p= - =+ - , to
maximize the error signal. Also for simplicity, we take into account (for presented calculations) only one
relaxation constantΓ (rate of decoherence), while all other relaxation constants are negligible:

0e e g g g eg g g g= = = =  , as is typical for high-precisionmodern atomic clocks based on strongly

forbidden optical transition 1S03P0 in neutral atoms (such asMg, Ca, Sr, Yb,Hg) and ions (e.g. Al+, In+), or
for the octupole transition in the ionYb+.

In this section, we compareCES spectroscopy for two different pulse sequences: the usual Ramsey sequence
with two equal rectangularπ/2-pulses (see figure 2(a)), and the hyper-Ramsey sequence proposed in [27] (see
figure 2(b)). If we use the exact calibration coefficient (23), then both sequences have the identical ideal result,

0clockd =¯ . However, in real experiments, we can know the value of calb with only limited accuracy. In this case,
any deviation from the ideal value (23)will lead to some residual shift of the stabilized frequency, 0clockd ¹¯ ,

Figure 2.Two different Ramsey sequences: (a) standardRamsey sequence [25]with two equal pulses; (b) original hyper-Ramsey
sequence [27] using the composite pulse with aπ phase jump.
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which depends on the type of Ramsey sequence. Thus, there is a problem for the optimal Ramsey sequencewith
minimal sensitivity to the deviations of calb in equation (21) from the ideal value (23).

Therefore, in our calculations wewill use the following expression for the calibration coefficient

e , 26T T
cal

1 2b c= -G - ( )( )

where the parameterχ determines the deviation of calb from the ideal value (23). In this case, instead of
equation (24)we obtain another formula for theCES

S W W W We , , , 27T
T TCES

err
obs in obs in

1
2 1 1 2 2 1

d r r c r r= ¡ - ¡t d t t d t
-G    ( ) [( ˆ ˆ ˆ ) ( ˆ ˆ ˆ )] ( )( )

where the solution of the equation S 0CES
err d =( )( ) (in relation to the unknown δ) determines the residual shift

clockd̄ for the stabilized frequencyω.
Infigure 3we present a comparison of theCESmethod for two different pulse sequences: a standard Ramsey

sequencewith two equal pulses (see figure 2(a)) and the original hyper-Ramsey sequence [27] using a composite
pulse (see figure 2(b)). These graphs show the shift of the clock frequency clock shd D¯ ( ) versus the probe-induced
shiftΔsh during theRamsey pulses. In the calculations, we have assumed afive-percent deviation of calb from
the ideal value (23), i.e. 0.95 1.05 c in equation (27). Aswe see, the hyper-Ramsey sequence ismore robust
and persistent, because the use of this scheme leads to a significant reduction of the residual shift clockd̄ in
comparisonwith the usual Ramsey scheme.

In addition, figure 4 shows that the combination of theCES techniquewith a hyper-Ramsey sequence
significantly exceeds the possibilities of standard hyper-Ramsey spectroscopy [27], even for imperfect
determination of the calibration coefficient calb . For example, typical experimental conditions used in current
lattice optical clocks areT1∼1s, τ∼20ms andπ/2 excitation pulse (Ω0τ=π/2). Figure 4(a) shows that if
imperfect CES is used and calb is offset from its optimal value by 5%, a light shift of 2 2.5 Hzsh pD ~ ´ during
the interrogation period (Δsh/Ω0=0.2) results in a total clock frequency shift of only 2 200clockd p~ ´¯ μHz
that corresponds to a fractional clock uncertainty for optical range at the level of clock 0d w ~∣¯ ∣ 10−18. This is
about 20 times smaller thanwhat would be obtained using simple hyper-Ramsey spectroscopy (at the same

Figure 3.Comparison of a non-ideal CESmethod for two different pulse sequences: the dashed lines are for a standard Ramsey
sequence with two equal pulses (seefigure 2(a)), the solid lines are for a hyper-Ramsey sequence using the composite pulse (see
figure 2(b)). These graphs show the shift of the clock frequency clock shd D¯ ( ) versus the probe-induced shiftΔsh during the Ramsey
pulses. In the calculations, we assumed in equation (27) a five-percent deviation of calb from the ideal value (23):χ=0.95 (red
colored lines) andχ=1.05 (green colored lines), for two different values of τ: T 501 t = (leftfigure) and T 101 t = (right figure).
All calculations are donewith the following values:Ω0τ=π/2, T0.5 1G = , and T T 201 2 = .

Figure 4.Comparison between the usual hyper-RamseymethodwithoutCES [27] (black dashed lines, T T1= ) and non-ideal CES
using a hyper-Ramsey sequence (see figure 2(b)) for twodifferent values of τ: T 501 t = (left figure) and T 101 t = (rightfigure).
These graphs show the shift of the clock frequency clock shd D¯ ( ) versus the probe-induced shiftΔsh during the Ramsey pulses. In the
calculations, we assumed in equation (27) afive-percent deviation of calb from the ideal value (23):χ=0.95 (red solid lines) and
χ=1.05 (green solid lines). All calculations are donewith the following values:Ω0τ=π/2, T0.5 1G = , and T T 201 2 = .
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interrogation light shift level) that corresponds to the level of clock 0d w ~∣¯ ∣ 10−17. Of course, for the perfect CES
spectroscopy (23), this clock shift will be reduced to zero, 0clockd =¯ .

5.GeneralizedCES and the procedure for frequency stabilization

The calibration coefficient calb can be estimated as a ratio of the amplitudes of the central Ramsey fringes related
to the interrogation procedures withT1 andT2 dark times.However, in this sectionwe describe amore precise
method to determine calb . For this purpose, wewill consider a generalized combined error signal (GCES)

S S S , 28T TGCES
err err err

1 2
d d b d d= -( ) ( ) ˜ ( ) ( ) ( )( ) ( ) ( )

where the generalized calibration coefficient b d˜ ( ) is a function of δ, which satisfies the following condition

0 e . 29T T
cal

1 2b b= = -G -˜ ( ) ( )( )

In this case, the stabilized frequency (with the use ofGCES (28))will also always be unshifted, 0clockd =¯ .
There aremany different variants of the function b d˜ ( ). For example, b d˜ ( ) can be constructed as following

functions

A A

A A

A A

A A

, , 0

, , 0
;

, , 0

, , 0
, 30

T T

T T

T T

T T

1 1

2 2

1 1

2 2

b d
d a d a
d a d a

b d
d a d a
d a d a

=
- =
- =

=
- =
- =

+

+

-

-

˜ ( ) ( ) ( )
( ) ( )

˜ ( ) ( ) ( )
( ) ( )

( )

wherewe use an additionalmeasurement in the absence of a phase jump (α=0) before the secondRamsey
pulse, A W G W, 0 ,T Tobs in2 1

d a r r= = t t
 ( ) ( ˆ ˆ ˆ ). However, another definition

A A A

A A A

, , 2 , 0

, , 2 , 0
, 31T T T

T T T

1 1 1

2 2 2

b d
d a d a d a
d a d a d a

=
+ - =
+ - =

+ -

+ -

˜ ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

is preferable because of ‘symmetry’ in relation to the phase jumps a.
Infigure 5, we compare signals of CES (21) andGCES (28) for two different pulse sequences (see figure 2) in

the presence of thefield-induced shiftΔsh (during Ramsey pulses). As we see fromfigure 5(a), asΔsh increases
the lineshape SCES

err d( )( ) becomes significantly non-antisymmetrical, while the lineshape SGCES
err d( )( ) (see figure 5(b))

maintains its antisymmetry (especially for the hyper-Ramsey scheme, see the right panel infigure 5(b)).
Figure 5(c) shows the dependencies of b d˜ ( ) calculated by the use of equation (31).

The procedure of frequency stabilization can be organized in conformitywith several scenarios. First, we can
continually applyGCES (28) togetherwith equation (31) using sixmeasurements for each frequency point
(three different phase jumps,α=±π/2, 0, and two different dark times,T1,2). However, the use of six
measurements can reduce the efficiency of the frequency stabilization, because it increases the length of the
interrogation procedure. Fromour viewpoint,more optimal scenario is the following. In the initial period of
frequency stabilization, we useGCESwith equation (31). It allows us to determine the calibration coefficient calb
(see equation (29))with satisfactory accuracy, because duringmeasurements wewill have the information about
the value b d˜ ( ) under δ≈0. Then the procedure of long-term frequency stabilization can be donewith theCES
technique (21), using only fourmeasurements for each frequency point (two phase jumps,α=±π/2, and two
dark times,T1,2).Moreover, we can regularly (but rarely) useGCES again. Indeed, on the one hand, it allows us to
do a regular adjustment of the coefficient calb (to eliminate, for example, an influence of possible slow variations
of the parameterΓ in equation (23)). On the other hand, such intermittent application ofGCESwill not lead to
the significant slowing-down of the process of long-term frequency stabilization.

In addition, as we see fromfigures 3–5, theCES orGCES techniqueworks better if the ratio sh 0D W∣ ∣
becomes smaller. Distortions in the error signals arising from this problem can be largely reduced by the use of
an additional andwell-controllable frequency stepΔstep only during the Ramsey pulses 1t and 2t [27, 41]. In
this case, all dependencies presented infigures 4 and 5will be the same if wewill replace sh effD  D
=(Δsh−Δstep). Thus, we can always apply a frequency step step shD » D (e.g. with an acousto-optic
modulator) during excitation to achieve the condition 1eff 0D W ∣ ∣ for an effective shiftΔeff, as it was used in
experiments [5, 28, 29, 37], where the required value ofΔstep was determined empirically.

Note that the above results [including exact analytical result, 0clockd = , for ideal calibration coefficient (23)]
are obtained for the phase jumps technique to form an error signal. If wewill use the conventional technique of
the frequency jumps T2p / (in sec-1 units), thenwe can say, in the general case, only about the approximate
equality, 0clockd » . Nevertheless, this suppression of the probe-induced shifts is also significant and can be
quite enough for atomic clocks, from ametrological point of view.
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6. CES technique for CPTRamsey spectroscopy

In this section, we describe theCES technique for Ramsey spectroscopy of the resonances based onCPT. As a
model, we consider rf CPT resonances that are formed in a three-levelΛ systemunder interactionwith a
resonant bichromaticfield

E t E Ee e c.c. 32t t
1

i
2

i1 2= + +w w- -( ) ( )

TheCPT resonance is formedwhen the difference between optical frequencies ( 1 2w w- ) is varied near the low-
frequency rf transition between lower energy levels 1ñ∣ and 2ñ∣ : 2 1 hfsw w- » D (see figure 6(a)). For example,
these energy levels can correspond to the hyper-fine structure of alkali atoms (Rb, Cs, etc) In this case, the
stabilized rf frequency difference 2 1w w-( ) is the operating frequency for CPTbased clocks, where the hyper-
fine splitting hfsD plays role of the unperturbed frequency 0w fromprevious sections.

The dynamics of theΛ system in the rotatingwave approximation are described by the differential equation
system for the densitymatrix components

Figure 5.Comparison of CES andGCES spectroscopies for two different pulse sequences: left panels are for standard Ramsey
sequence with two equal pulses (seefigure 2(a)), right panels are for hyper-Ramsey sequence (seefigure 2(b)). Graphics are presented
in the presence of a shiftΔsh during the Ramsey pulses 1t and 2t : 0shD = (blue solid lines), 0.3sh 0D W = (red dashed lines),
Δsh/Ω0=0.5 (green dashed lines). All calculations are donewith the following values: T 501 t = , 20t pW = , T0.25 1G = , and
T T 201 2 = . (a) Signals SCES

err d( )( ) calculated by the use of equation (21) for ideal value of calb (see equation (23)); (b) signals SGCES
err d( )( )

calculated by the use of equations (28) and (31) for ;b d˜ ( ) (c)dependencies b d˜ ( ) calculated by the use of equation (31).

Figure 6. (a)Atomic three-levelΛ system. (b) Schematic time dependencies of the Rabi frequenciesΩ1,2(t) and probe-induced shift
Δsh(t), where td is the beginning of the second (detecting)Ramsey pulse andαdenotes the value of the phase jump (see equation (35))
during the dark timeT.
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Here 1phd is the one-photon detuning of frequency components 1w and 2w from the optical transitions (see
figure 6); tR 2 1 hfs shd w w= - - D - D ( ) is the two-photon (Raman) detuning;Ω1(t)=d31E1(t)/ÿand
Ω2(t)=d32E2(t)/ÿare the Rabi frequencies for the transitions 1ñ∣ ↔ 3ñ∣ and 2ñ∣ ↔ 3ñ∣ (d31 and d32 are reduced
matrix elements of dipolemoment for these transitions); γ is the spontaneous decay rate of upper level 3 ;ñ∣ optg
is rate of decoherence (spontaneous, collisional, etc) of the optical transitions 1ñ∣ ↔ 3ñ∣ and 2ñ∣ « 3ñ∣ (in the
case of pure spontaneous relaxation 2optg g= ); 1g and 2g are corresponding spontaneous decay rates for
different channels ( 1 2g g g+ = in the case of closedΛ system); 12G is the relatively slow ( ,12 optg gG  ) rate of
relaxation to the equilibrium isotropic ground state: 1 1 2 2 20r = ñá + ñáˆ (∣ ∣ ∣ ∣) . Note thatΔsh(t) is an additional
actual shift (ACStark shift) between levels 1ñ∣ and 2ñ∣ during the pulses, which results fromoff-resonant
interactions of components of the laser fieldwith different hyperfine states (e.g. see [42]).

In the case of Ramsey excitation, the scheme of the time dependenciesΩ1(t) andΩ2(t) is shown infigure 6(b),
where thefirst pulse (with duration 1t ) prepares an atomic coherence between lower levels 1ñ∣ and 2ñ∣ ,T is the
free evolution interval, and the second pulse (with duration 2t ) is the detecting pulse, which forms a
spectroscopic Ramsey signal. The time dependenceΔsh(t) is also shown. If τ1 ismuch longer than the time for
the atoms to enter the dark state, then at the end offirst pulse (before the free evolution interval)wehave a
steady-state condition. In this case, the transient frequency shift, described in [15], becomes equal to zero. As a
result, the residual shift of the central Ramsey fringe clock 2 1 hfsd w w= - - D¯ results from the off-resonant shift
Δsh, which is present only during Ramsey pulses ( 1t and 2t ) (see figure 6(b)).Δsh is thewell knownACStark
shift, which is proportional to the total lightfield intensity.

In pulsedCPT spectroscopy, the error signal is usually determined from the absorption of theCPT light by
the atoms during the secondCPTpulse, which is proportional to the integral value

A t t, d , 34T
t

t
CPT

33
d

d 2

òd a r= ¢ ¢
t+

( ) ( ) ( )( )

where the time integration interval is over the second (detecting) pulse τ2, which starts at the time td (see
figure 6(b)). The valueα corresponds to the phase jumpduring the dark timeT (see figure 6(b)). In the case of
CPT spectroscopy, this phase jump describes a phase difference of the product E E1 2 1

* t( ) during the first Ramsey
pulse 1t and the product E E1 2 2

* t( ) during the second pulse 2t (e.g. see in [43]):

E E E Ee . 351 2
i

1 22 1
* *=t

a
t

-( ) ( ) ( )

Using the replacement A A, ,T T
CPTd a d a( ) ( )( ) in the formulas (10) and (21)–(31) from the previous sections,

we describe a realization of theCES/GCES techniques for CPTRamsey spectroscopy. However, in this case, it is

Figure 7.These graphs show the shift of the clock frequency clock shd D¯ ( ) versus the probe-induced shiftΔsh during theCPTRamsey
pulses. The case of ideal CES (horizontal black solid line)when the calibration coefficient cal

CPTb ( ) corresponds to equation (36). Alsowe
shownon-ideal CESwith a five-percent deviation of cal

CPTb ( ) from the ideal value (36):χ=0.95 (red colored dashed lines) and
χ=1.05 (green colored dashed lines). For comparison, we show clock shd D¯ ( ) for usual Ramsey spectroscopy (T T1= , see blue dashed
line). All calculations are donewith the following values:

1 2 optg g g= = , 0.11
0

2
0

optgW = W =( ) ( ) , 1t = ¥, 2002 opt
1t g= - ,

T 101
4

opt
1g= - , T T 201 2 = , and T0.512 1G = .
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necessary to use 12G (instead ofΓ in equation (23)) to determine the calibration coefficient

e . 36T T
cal
CPT 12 1 2b = -G - ( )( ) ( )

Alsowe assume thatT1,2 1 2
1g g+ - ( ) , i.e. the dark time betweenRamsey pulses should significantly exceed

the lifetime of the exited state 3ñ∣ .
Calculations presented infigure 7 clearly demonstrate that the CES/GCES technique can be very effective for

an rf clock based onCPTRamsey spectroscopy. Indeed, for an ideal calibration coefficient (36)we see a total
absence of the clock shift, 0clockd =¯ (see horizontal line infigure 7). But even for non-ideal calibration
coefficient cal

CPTb ( ), the residual shift for theCESmethod (see green and red colored dashed lines infigure 7) is
much less than for usual Ramsey spectroscopy (see blue colored dashed line infigure 7).

7. Conclusion

Wehave developed a universal one-loopmethod to form the reference signal for stabilization of arbitrary atomic
clocks based onRamsey spectroscopy. Thismethod uses the interrogation of an atomic system for two different
Ramsey periods and a specially constructedCES (see equation (21)). TheCES technique requires four
measurements for each frequency point aswell as a preliminarymeasurement (or estimation) of the calibration
coefficient calb . It was shown that the highest robustness is achievedwith the combination of theCES protocol
and a hyper-Ramsey pulse sequence (see in [27]). Also amethod ofGCESwas developed (see equation (28)),
which requires sixmeasurements for each frequency point and has an exceptional robustness. TheCES/GCES
spectroscopy allows for perfect elimination of probe-induced light shifts and does not suffer from the effects of
relaxation, time-dependent pulsefluctuations and phase-jumpmodulation errors and other non-idealities of
the interrogation procedure. A variant of the frequency stabilization usingCESwith intermittent GCES
protocols has been proposed. In addition, the applicability of CES/GCES techniques for CPT atomic clocks has
been described. The implementation of this approach can lead to significant improvement of the accuracy and
long-term stability for a variety of types of atomic clocks.

Also, it will be interesting to experimentally compare the one-loopCES/GCESmethodwith the two-loop
ABRS [37–39].We believe that bothmethods have comparable efficiency for frequency stabilization, but CES/
GCES is technically simpler because only one feedback loop is required.Moreover, in the case of optical
transitions, the CES/GCES protocol with the use of hyper-Ramsey pulse sequence (see in [27]) can be evenmore
efficient in comparisonwith ABRS.
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