
Metrologia
     

PAPER

Comparison of Open and Solid Falling Retroreflector Gravimeters*

To cite this article: Neil Ashby and Derek van Westrum 2020 Metrologia 57 035012

 

View the article online for updates and enhancements.

This content was downloaded from IP address 132.163.136.61 on 03/07/2020 at 04:53

https://doi.org/10.1088/1681-7575/ab7d12


Metrologia

Metrologia 57 (2020) 035012 (8pp) https://doi.org/10.1088/1681-7575/ab7d12

Comparison of Open and Solid Falling
Retroreflector Gravimeters

Neil Ashby1,2 and Derek van Westrum3

1 Associate, Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder,
CO 80305, United States of America
2 Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
3 National Geodetic Survey, Boulder, CO, United States of America

E-mail: ashby@boulder.nist.gov

Received 2 January 2020, revised 3 March 2020 
Accepted for publication 5 March 2020 
Published 29 May 2020

Abstract
We study whether the optical properties of a solid glass retroreflector influence the value of the
acceleration of gravity g determined by dropping both solid and open retroreflectors in an
absolute ballistic gravimeter. The retroreflectors have equivalent optical centers and are dropped
from the same height, at a fixed location, in the same gravimeter while recording time data
corresponding to fixed fringe separation intervals of 400 fringes. The data for both types of
retroreflectors are processed with commercial software, as well as with independently
developed software based on a relativistic treatment of the phase difference between reference
beam and test beams, and a realistic treatment of the effect of frequency modulation, with
modulation index β≫ 1, on the interference signal. After applying corrections for polar motion,
barometric admittance, tides, and ocean loading we find agreement between the values of g
determined with both types of retroreflectors, whether processed with commercial software or
with our independently developed software. We suggest two procedures for computing
relativistic corrections; the two methods agree to better than 0.01 µGal.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In an absolute falling retroreflector gravimeter, a reference

laser beam is partially reflected upwards from a stationary

beamsplitter and then back down from a falling retroreflector

(a ‘cube’). Counting interference fringes between the refer-

ence and test beams may then be used to measure the local

acceleration of gravity, g. In a previous work [1], the beams

were assumed to combine at the beamsplitter; relativistic con-

siderations led to the following expression for the interference

signal at Z= 0 ([1], equation (33)):

4 This paper is a contribution of the U. S. government and is not subject to
copyright. The use of commercial products does not imply endorsement by
NOAA or NIST.
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where c is the speed of light, Ω is angular frequency of the
light, D is the face-to-corner distance of the retroreflector (the
“cube”), d is the distance from face to center of mass, n is the
index of refraction, Z0 and V0 are the position and velocity
of the cube at the initial time T = 0, g is the acceleration of
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gravity at the beamsplitter and γ is the gravity gradient. The
origin of coordinates is at the beamsplitter and the coordinate
Z is positive upwards.

This expression is the basis for the present study. The
apparently large effect on g arising from dimensions and
refractive index of the cube resulted in several critical com-
ments [2–4], and replies [5–7], without throwing light on the
real issues. D’Agostino [8] simulated dropping of glass and
open retroreflectors using only the difference ϕ(t)−ϕ(0) for
the interference observations. This subtraction removes non-
relativistic terms responsible for the predicted change [1] in
g, as well as some relativistic contributions. The simulated
results approximately agree with the results reported in the
present paper for reasons discussed below; however we do not
neglect relativistic contributions to the phase.

There are two problems with the literal application of an
interference signal that is produced at the beamsplitter. The
first is that in some gravimeters the reference beam, or the
test beam, or both, are transported unequal distances by fibers
and/or mirrors before interference takes place [9]; this intro-
duces an unknown constant phase between the reference and
test beams. Also, the interference signal occurs within the
argument of a trigonometric function–such as a cosine–and is
undetermined to within a constant added integral multiple of
2π. This issue is treated in detail in section 3, where a theory
of frequency modulation by a signal with modulation index β
that is large compared to unity is developed. These facts lead
to reconsideration of the choice of fit parameters and the effect
on g of the cube’s properties.

In the following section, we discuss the choice of fit para-
meters, and the effect on g. The constant parameter combin-
ation Z0+Dn− d disappears from the non-relativistic part of
the phase and becomes a small relativistic contribution. Two
methods are presented in section 4 for explicitly computing
relativistic effects arising from the cube’s velocity. Measure-
ments made at Table Mountain, Boulder, CO, with open and
solid cubes of comparable dimensions, in similar dropping
chambers, are described and discussed in section 4.1; to within
measurement uncertainties the same value of g was obtained–
at the same location and during comparable time periods. The
relativistic corrections–obtained in two ways–were in agree-
ment to within 0.01 µGal5. Sections 5 and 6 compare the data
analysis using commercial software and software based on the
present theory, respectively.

2. The parameter Z0

Four constant parameters are usually used to describe the fall-
ing cube: The initial position Z0, initial velocity V0, and the
acceleration of gravity g and its gradient γ at the chosen ori-
gin of coordinates, which in [1] was the point of separation and
recombination of the beams, at the beamsplitter. The interfer-
ence phase at the beamsplitter was calculated neglecting quad-
ratic and higher order terms in the gravity gradient γ and to this
order may be compactly expressed as

5 1 µGal= 10−8 m s−2.
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F(t) is independent of frequency, and can be separated into
non-relativistic and relativistic parts:
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Equation (2) is mathematically equivalent, to first order in γ, to
the interference phase, equation(1), and allows one to cleanly
separate relativistic from non-relativistic contributions. The
purpose of this section is to show that, contrary to many state-
ments in the literature, Z0 cannot always be considered a useful
parameter in data fitting. Tomake this clearer, in the remainder
of this section we discuss a non-relativistic model, without the
complication of relativistic effects.

Assuming there is no modulation, the phase of the inter-
ference signal at the beamsplitter where recombination was
assumed to occur is
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The non-relativistic form of this limiting phase is obtained by
making the replacement

Ω→ 2πc
λ
. (7)

Then in the non-relativistic approximation,
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A minus sign was introduced so that the coefficient of the term
in gt2 is positive, corresponding to measurements in which the
number of fringes increases with time. This phase occurs in the
argument of a cosine function, to which an arbitrary multiple
of 2π can be added without changing the cosine’s magnitude;
this is discussed in detail in section 3. The observable phase is
equivalent to

ϕ(t)+ 2πM , (9)
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where M is an unknown, arbitrary integer. Any constant con-
tribution on the right side of equation (8) can be combinedwith
the term 2πM leaving a residual phase ψ:

2πM− 4π
λ
(Z0 +Dn− d) = ψ . (10)

The observable phase in a non-relativistic approximation is
therefore

ϕ(t) = ψ− 4π
λ

(
V0t−

1
2
gt2 + γ(

1
2
Z0t

2 +
1
6
V0t

3 − 1
24
gt4)

)
.

(11)
The terms Dn− d contribute instead to the relativistic part of
the phase. The parameter Z0 now contributes only weakly,
since it is multiplied by the gradient γ. The phase in equation
(11) suggests fitting the data (neglecting relativistic effects)
using the parameters {ψ,Z0,V0,g}. The results are not reli-
able because both g and Z0 have coefficients proportional to
t2: g and Z0 are highly correlated and the covariance mat-
rix is nearly singular. Inclusion of relativistic terms does not
improve the situation. The difficulty may be remedied by com-
bining g and Z0 into a single parameter. Let

gt = g− γZ0 . (12)

We also replace g in the last term of equation (11) by gt. At a
maximum drop time of 0.3 s., with Z0≈0.75 m the error of the
latter replacement is of order

π

6λ
γ2Z0t

4 ≈ 5× 10−7 radians, (13)

which is negligible as it cannot give rise to a significant number
of fringes. Then Z0 disappears from the non-relativistic model.
The fit parameters become ψ,V0,gt. In this scheme the covari-
ance matrix is non-singular. Relativistic contributions depend
on the velocity of the center of mass, which can also be written
to the same order in terms of gt:

Vcm(t) = V0 − gt+ γ(Z0t+
1
2
V0t

2 − 1
6
gt3)

≈ V0 − gtt+ γ(
1
2
V0t

2 − 1
6
gtt

3) (14)

The phase error introduced by the quadratic term in γ is less
than 10−20 radians. However the value of gt at the ‘top of the
drop’ is no longer at a fixed location in the chosen coordinate
system, but includes variations in initial drop position, thus
might suffer from greater errors than if it were evaluated at a
fixed location in the coordinate system. This is consistent with
some previously published models (see e.g. appendix of [9]),
in which the acceleration of the cube is written as

Z̈=−g+ γ(Z−Z0) . (15)

Here g would be evaluated for a particular drop at the initial
instant when Z=Z0 and might vary depending on the consist-
ency of release.

3. Modulation; choice of fit parameters

The purpose of this section is to develop an appropriate expres-
sion for the frequency-modulated interference signal with
large modulation index, including relativistic effects. This is
based on the interference phase in equation (2). If the refer-
ence signal is modulated at angular frequency ω with amp-
litude ωm, the instantaneous angular frequency can be written
Ω+ωmcos(ωt+ϕ). Then apart from a constant of integration,
the signal phase will be

ˆ t (
Ω+ωm cos(ωt+ϕ)

)
dt=Ωt+β sin(ωt+ϕ) (16)

where β=ωm/ω is the modulation index. In the gravimeter
used in the present experiment, the laser light is modulated at
ω= (2π)× 8333 Hz with peak-to-peak amplitude 6MHz [13],
so

β ≈ 3× 106

8333
= 340≫ 1 . (17)

An expansion for small modulation index is inappropriate. Let
the reference beam emerging from the beam splitter be repres-
ented by the scalar wavefunction

Ψref = e−iΩt−iβ sin(ωt+ϕ) (18)

where βsin(ϕ) represents the phase difference between the ref-
erence beam and the modulation at time t= 0.

Thus, in addition to the principal frequency Ω, frequencies
Ω±nω will be present, where n can be any integer. For a signal
of frequency Ω′, equation (2) shows that the final phase of the
signal that passes up through the retroreflector and back to the
beamsplitter is proportional to Ω′, so that at the beamsplitter
the component of frequency Ω becomes

e−iΩt → e−iΩ(t+F(t)); (19)

and for the side frequency terms,

e−iΩt±inωt → e(−iΩ±inω)(t+F(t)). (20)

The function F(t) was defined in equation (3). The test beam
is therefore

Ψtest = e−iΩ(t+F(t)+β sin(ωt+ωF(t)+ϕ) . (21)

We assume the wavefunctions are superimposed at the beam-
splitter with equal amplitudes, so the net signal is

Ψ=Ψref +Ψtest . (22)

The intensity of the signal will be proportional to

|Ψ|2 = |Ψref|2 + |Ψtest|2 +ΨrefΨ
∗
test +Ψ∗

refΨtest

= 2+ 2cos(ΩF(t)+β
(
sin(ωt+ϕ+ωF(t))− sin(ωt+ϕ)

)
= 2+ 2cos(ΩF(t)+β

(
sin(ωt+ϕ)(cos(ωF(t))− 1)

+ cos(ωt+ϕ)sin(ωF(t)
)
. (23)
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In the present experiment, for each drop 2700 times were
recorded separated by 400 fringes, so the maximum value of
the function F(t) can be estimated by setting

F(tmax)Ω = (2π)× 400× 2700, or Fmax = 2.85× 10−9s ;
(24)

then ωFmax ≈ 0.00015≪ 1. Even with β as large as it is, we
can make the approximations

cos(ωF(t))≈ 1, sin(ωF(t))≈ ωF(t) . (25)

The signal intensity then simplifies to

|Ψ|2 = 2+ 2cos(ΩF(t)+βωF(t)cos(ωt+ϕ)) . (26)

The function F(t) is given in equation (3) as the sum of non-

relativistic and relativistic contributions:

Fnr(t) =−2(Zcm(t)+Dn− d); Frel = 2Vcm(t)(Zcm(t)+Dn− d) .

(27)
One factor 1/c is cancelled out when the replacement Ω→
(2πc/λ) is made. The number of fringes counted N(t) will be
determined by the argument of the interference cosine, which
is

Ntotal =
1
2π

(
ΩF(t)+β

(
cos(ωt+ϕ)ωF(t)

))
. (28)

The phase is undetermined towithin an added integral multiple
of 2π:

N(t) =
1
2π

(
2πM+ΩF(t)+β cos(ωt+ϕ)ωF(t)

)
=M+

1
2π

(
2πc
λ

(
1
c
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1
c2
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)
+βω(cos(ϕ)cos(ωt)
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(
1
c
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1
c2Frel

))
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1
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(
1+λAcos(ωt)+λBsin(ωt)

)(
Fnr+

1
c
Frel

)
,

(29)

where M is an unknown integer and

Acos(ωt)+Bsin(ωt) =
βω

2πc
cos(ωt+ϕ) . (30)

Thus the modulation index is related to the amplitudes A
and B by √

A2 +B2 =
βω

2πc
; (31)

although the modulation index is large, the coefficients A and
Bwill be small. Apart from the arbitrary whole numberM, The
nonrelativistic fringe function is then

Nnr(t) =−2

(
1
λ
+
(
Acos(ωt)+Bsin(ωt)

))
(Zcm(t)+ dn− d)

(32)

and the relativistic contributions, showing explicitly the factor
c−1, are

Nrel(t) = N(t)−Nnr(t) =
1
cλ
Frel(t)+

1
c

(
Acos(ωt)

+Bsin(ωt)
)
Frel(t) . (33)

The functions Fnr and Frel are given by

Fnr+
1
c
Frel =−2

(
Zcm(t)+Dn− d

)(
1− Vcm(t)

c

)
. (34)

If ωF(t), which is slowly varying, were treated as a con-
stant then we would simply have the two parameters A and B
to add to the list of parameters to be fit. Including two such
constant parameters typically reduces the residuals by a factor
of 5 or more without having much impact on g. Including the
variation due to F(t) results in reduction in the residuals by
roughly 3% to 4% for this experiment. As discussed in the pre-
vious section, writing the CM position and velocity in terms of
gt, eliminates Z0 from the model. Consider the non-relativistic
contributions to the fringe number in equation (32) at t= 0,
where we regard the arbitraryM as part of the non-relativistic
contribution. (Our approach is to group the relativistic constant
contributions with the relativistic corrections.)

Nnr(0) =M+
1
λ
(1+λA)(Z0 +Dn− d) . (35)

We replace these constant contributions by a residual phase
constant ψ

2π , so the number of observed fringes becomes

N(t) =
ψ

2π
− 1
λ
(1+λA)(Z0 +Dn− d)

+
1
λ

(
1+λAcos(ωt)+λBsin(ωt)

)(
Fnr+

1
c
Frel

)
,

(36)

As discussed in section 2, introducing gt as in equation (12)
and making the approximation g→ gt removes the parameter
Z0 from the model. The parameters to be fit are ψ,V0,gt,A,B.
We discuss fitting data obtained with both open and solid
retroreflectors using this model in sections 5 and 6.

4. Relativistic corrections

Fitting a theoretical expression for fringe number N(tj) that
depends on a set of fit parameters pk involves the covariance
matrix

Ckl =
∑
j

∂N(tj)
∂pk

∂N(tj)
∂pl

, (37)

where the recorded times are tj at epoch j and where the meas-
ured total number of fringes is Mj =M(tj). Guessing values

p(0)k for the fit parameters, and substituting these into the N(tj)
and its partial derivatives, the next approximation will be

p(1)k = p(0)k +
∑
l

(
C−1

)
kl

∑
j

(Mj−N(tj))
∂N(tj)
∂pl

. (38)
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The improved parameter values p(1)k are substituted into the
right side of equation (38) and the process is repeated until
there is no further change in any parameter. At this point the
covariance matrix is non-singular so the residuals satisfy∑

j

(Mj−N(tj))
∂N(tj)
∂pl

= 0 . (39)

Equation (39) permits the development of an explicit expres-
sion for the relativistic contribution to the determination of g.
Divide the theoretical expression for the fringe number into
non-relativistic and relativistic contributions; the latter will be
of order c−1, where c is the speed of light. Only first order
terms in an expansion in powers of c−1 need be kept. Then

N(tj) = Nnr(tj)+Nrel(tj), (40)

and the covariance matrix becomes

Ckl =
∑
j

∂Nnr
∂pk

∂Nnr
∂pl

+
∑
j

(
∂Nnr
∂pk

∂Nrel

∂pl
+
∂Nrel

∂pk

∂Nnr
∂pl

)
(41)

= Cnrkl +Crelkl , (42)

where to simplify the notation the arguments tj have been sup-
pressed. The inverse covariance matrix can be expanded in
powers of C−1:

C−1 = (Cnr)−1 − (Cnr)−1Crel(Cnr)−1 . (43)

Then equation (38) becomes approximately

p(1)k = p(0)k +
∑
l

(Cnr)−1
kl

∑
j

(Mj−Nnr(tj))
∂Nnr(tj)
∂pl

+
∑
l

(
(Cnr)−1Crel(Cnr)−1

)
kl

∑
j

(Mj−Nnr(tj))

×
∂Nnr(tj)
∂pl

+
∑
l

(Cnr)−1
kl

∑
j

(Mj−Nnr(tj))
∂Nrel(tj)
∂pl

−
∑
l

(Cnr)−1
kl

∑
j

Nrel(tj)
∂Nnr(tj)
∂pl

. (44)

Then one can consider the following approximate itera-
tion scheme. First neglect the last three lines of equation (44),
fitting the parameters using only the non-relativistic theory
expressed in the first line. The non-relativistic values of these
parameters can then be inserted into the remaining terms in
lines 2 through 4 since each of these terms already contains a
factor c−1. But the iteration process has converged and reduces
the first line,∑

l

(Cnr)−1
kl

∑
j

(Mj−Nnr(tj))
∂Nnr(tj)
∂pl

to a negligible level. Then line 2 is also negligible. Line 3 is
not identically zero but is found to be negligibly small because

each term Mj−Nnr(tj) is small, a result of the fit. The relativ-
istic contributions to the parameters are then simply:

prelk =−
∑
l

(Cnr)−1
kl

∑
j

Nrel(tj)
∂Nnr(tj)
∂pl

. (45)

One may check equation (45) by first fitting the parameters

using equation (38) with the complete expression for N(tj),

instead of Nnr, and then subtracting the non-relativistic fit

obtained from iterating the non-relativistic model:

(pnrk )(1) = (pnrk )(0) +
∑
l

(
(Cnr)−1)

kl

∑
j

(Mj−Nnr(tj))
∂Nnr(tj)

∂pl
.

(46)
The relativistic corrections, equation (45), were found to agree
within 0.01 µGal with the differences in the fits with open and
solid retroreflectors reported in tables 1 through 4.

4.1. Correcting recorded times for relativity.

Another approach is to model the fringe count non-
relativistically, as in equation (32), but seek corrections δt
to the recorded times, such that correcting the time data brings
the data into agreement with the full relativistic model. The
nonrelativistic fringe function can be written:

Nnr(t) =− 2
λ

(
Zcm(t)+Dn− d

)(
1+

βωλ

2πc
cos(ωt+ϕ)

)
,

(47)
and the relativistic contribution to the fringe function, from
equations (33) and (34) is

Nrel =
2Vcm(t)
λc

(
Zcm(t)+Dn− d

)(
1+

βωλ

2πc
cos(ωt+ϕ)

)
.

(48)
We replace t by t+ δt in equation (47) and expand to first
order:

Nnr(t+ δt) = Nnr(t)+
dNnr(t)
dt

δt

= Nnr(t)−
2
λ
Vcm(t)

(
1+

βωλ

2πc
cos(ωt+ϕ)

)
δt

+ 2
(
Zcm(t)+Dn− d

)(βω2

2πc
sin(ωt+ϕ)

)
δt .

(49)

The extra terms in δt will reproduce the relativistic contribu-
tions provided that

δt=−1
c
(Zcm(t)+Dn− d) , (50)

and provided the extra term in ω2, which arose from the time
derivative of the modulation, is negligible. But substituting the
solution equation (50) into the last line on equation (49) gives
a coefficient that is extremely small:

βω2

πc2
≈ 3× 10−6 . (51)

This is a negligible contribution to the fringe count.
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Figure 1 The two test masses used in the experiment. The object on the left has an ‘open face’ retroreflector (Chamber #2), while the object
on the right has the standard ‘closed face’ retroreflector (Chamber #1). Diagram courtesy of Micro-g LaCoste.

If it were not for modulation terms, the time correction
could be expressed as

δt=
λ

2c

(
Nnr(t)−

ψ

2π

)
+

1
2c

(Z0 +Dn− d) , (52)

where Nnr(t) is the observed number of fringes at the recorded
time t. A similar correction is used in the g9 software.

5. Experimental setup

A Micro-g Lacoste FG5-X absolute gravimeter [9, 10], S/N
302,6 was operated at the NOAA Table Mountain Geophys-
ical Observatory in August of 2019 [12]. Over the course of
three days, two different dropping chambers were installed
on the instrument. Chamber #1 is a ‘standard’ FG5-X drop-
ping chamber, (S/N 102), which employs a solid glass, ‘closed
face’ (n = 1.5) retroreflector. Chamber #2 is a research unit,
similar in construction to #1, but with a hollow ‘open face’
retroreflector comprised of three mirrors. In both chambers,
the retroreflectors are housed in a ‘test mass’ which under-
goes free-fall acceleration. Because the center of mass of each
test mass needs to be coincident with the optical center of
the retroreflector (to minimize second order rotation effects),
the test mass of Chamber #2 is necessarily of slightly dif-
ferent construction than that of #1 (figure 1). Otherwise, the
dropping chambers are identical: same counter mass design,
drop length, nominal vacuum level, etc The rest of FG5X
302’s hardware - the laser, interferometer, the seismic isol-
ation device (‘Superspring’), the data acquisition hardware,
and all cabling - was used in all set ups to minimize any sys-
tematic effects between the observations. Before the observa-
tions, both chambers were tested to quantify any horizontal
velocity of the test mass at the beginning of the drop. Any
such motion in the east-west direction will result in a Cori-
olis acceleration that could systematically and significantly

6 The U. S. Government does not endorse any particular equipment.

bias the gravity results. However, both chambers registered
negligible velocities: Chamber #1 has a Coriolis accelera-
tion equivalent to 0.2± 0.1 µGal, and Chamber #2 has no
noticeable acceleration at all: 0.0± 0.1 µGal. Both values
are well within the total uncertainty of the final gravity val-
ues, and the ‘Coriolis Effect’ is henceforth neglected in the
analysis.

The first observations employed Chamber #1 and com-
prised 12 sets of 100 drops at a 5 second drop interval, for
a total acquisition time of 12 hours. A second data set with
Chamber #1 was then acquired two days later, with a single set
of 1000 drops (84 minutes). Next, Chamber #2 was installed,
and a set of 500 drops was then acquired (42 minutes). This
process was repeated twomore times (500 drop sets) for a total
of three iterations between the chambers.

Between each setup, care was taken to realign the system to
the local plumb line, maximize the interferometer fringe con-
trast (always between 390 mV and 400 mV, peak-to-peak),
and accurately measure the height of the dropping chamber.
The g9 software of Micro-g LaCoste was used to process the
data, and the default corrections for Earth tide, ocean loading,
barometric admittance, and polar motion were applied on a
drop by drop basis.

Regardless of which chamber was installed, the drop to
drop standard deviation for all runs was between 1.9 and
2.1 µGal. These small values are a strong indication that the
object was not significantly rotating in either chamber. Such an
effect is usually sporadic, and if it had been present, it would
have led to an increased scatter in the results.

6. Experimental results I: applying commercial
software

The observation details and gravity results are listed in table 1.
Following standard practice in gravimeter cmparisons, the
slight difference in the starting heights of the test masses is
accounted for by transferring the g value from the actual ‘top
of the drop,’ to a common height of 139.6 cm above the bench

6
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Table 1. Experimental Results using commercial software. Height is the distance from the bench mark to the optical center of the
retroreflector at the top of the drop. The gravity values are differenced from 979 622 000 µGal. The vertical gravity gradient is used to
transfer the raw values to a common height of 139.6 cm above the bench mark.

Dates Drop Drops Height g Std.Dev. Net Uncer-
(2019) Type Made(Fit) (cm) (µGal) (µGal) tainty(µGal)

8.6 solid 1200 (1190) 139.8 710.7 1.6 1.8
8.8 solid 1000 (983) 139.8 709.9 2.0 1.8
8.8 open 500 (484) 139.45 711.3 2.0 1.8
8.9 solid 500 (496) 139.75 710.8 2.0 1.8
8.9 open 500 (488) 139.5 709.9 1.8 1.8
8.9 solid 500 (496) 139.8 710.0 2.2 1.8
8.9 open 500 (494) 139.45 711.4 2.2 1.8

Table 2. Experimental results using commercial software. The
mean gravity values are differenced from 979 622 000 µGal. All
units are µGal.

Mean Gravity Chamber # 1 (Glass) 710.4

Error of the Mean 1.0
Systematic Uncertainty 0.5
Combined Uncertainty 1.1

Mean Gravity Chamber # 2 (Open) 710.9

Error of the Mean 1.2
Systematic Uncertainty 0.5
Combined Uncertainty 1.3

Difference (Glass-Open) -0.5
Total Uncertainty 2.4

mark (an approximate average of the various raw heights) [11].
A vertical gravity gradient of -3.18 µGal cm−1 observed at
the TMGO Pier, AT, was used to make this transfer. The lis-
ted ‘uncertainty’ is simply the total uncertainty that is repor-
ted by the g9 software. As discussed below, it will be reduced
when we calculate the difference in gravity observed by the
two chambers.

Table 2 lists the mean value of gravity from each dropping
chamber, along with the standard deviation of the observa-
tions and the standard statistical error. The systematic uncer-
tainty for each measurement is estimated to be 0.5 µGal.
This was determined by using the default systematic uncer-
tainty values in the g9 software, but setting the uncertainties
of the laser, clock, ‘system,’ and barometer to zero (as cor-
rections for changes in these effects should be negligible).
The ‘setup’ uncertainty was estimated to be 0.5 µGal (primar-
ily attributed to imperfections in the plumb line alignment
and height determination). Next, the statistical uncertainty,
σ/

√
N, is added in quadrature with the systematic to get a

total uncertainty of about 1 µGal for each chamber (compare
with the default uncertainty of 1.8 µGal reported in table 1).
The final difference in gravity as measured by the two cham-
bers (glass - open) is (−0.5± 2.4) µGal, where the final uncer-
tainty on the (correlated) difference is the sum of the combined
uncertainties.

Table 3. Experimental Results using software based on equation
(36). Height is the distance from the bench mark to the optical center
of the retroreflector at the top of the drop. The gravity values are
differenced from 979 622 000 µGal. The vertical gravity gradient is
used to transfer the raw values to a common height of 139.6 cm
above the bench mark. Chamber # 1 labels the solid retroreflector.

Date Chamber Number of Drops Height Gravity Uncertainty
Processed (cm) (µGal) (µGal)

8.6.201 9 # 1 1190 139.8 710.3 1.8
8.8.201 9 # 1 983 139.8 709.6 1.8
8.8.201 9 # 2 485 139.45 711.8 1.8
8.9.201 9 # 1 496 139.75 710.7 1.8
8.9.201 9 # 2 489 139.5 710.4 1.8
8.9.201 9 # 1 496 139.8 709.7 1.8
8.9.201 9 # 2 493 139.45 711.9 1.8

7. Experimental results II: new software

The data collected by dropping both solid and open
retroreflectors, described in section 5, was also processed
using software based on the relativistic treatment using equa-
tion (36), above. Frequency modulation of the interference
signal is represented by including the constants A and B, as
derived in section 3; this modulation theory includes both non-
relativistic and relativistic effects arising from the last factor in
equation (36). Frequency modulation coefficients suggested
in [9] would be equivalent to the replacement

(
Acos(ωt)+Bsin(ωt)

)(
Fnr+

1
c
Frel

)
→ Acos(ωt)+Bsin(ωt) .

(53)

The present model was derived in section 3; rms residuals
are approximately 0.0024 fringes and are a few percent smal-
ler than the replacement modulation scheme suggested in
equation (53) .

The data for each of the solid/open retroreflectors was
processed in two ways. One way consisted of combining
both non-relativistic and relativistic effects, as expressed in
equation (36). With this model the non-relativistic effects
can be separated out by taking c→∞; fitting with this
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Table 4. Experimental results using software based on equation
(36). The mean gravity values are differenced from 979 622 000
µGal. All units are µGal.

Mean Gravity Chamber # 1 (Glass) 710.1

Error of the Mean 1.1
Systematic Uncertainty 0.5
Combined Uncertainty 1.2

Mean Gravity Chamber # 2 (Open) 711.4

Error of the Mean 1.2
Systematic Uncertainty 0.5
Combined Uncertainty 1.3

Difference (Glass-Open) -1.3
Total Uncertainty 2.4

completely non-relativistic model, the relativistic corrections
can be calculated using equation (45). The differences between
the fully relativistic model and the non-relativistic model for
gt were found to be equal to the relativistic corrections to
within 0.01µGal. In all cases the relativistic corrections were
−13.9µGal so a separate column for these corrections is not
given in table 3. The results for the complete model including
relativistic effects are given in table 4.

8. Conclusions

Comparison of the values of gravity determined by dropping
open and solid glass retroreflectors shows good agreement,
to within the estimated uncertainties. Statistical and system-
atic uncertainties are dependent on the gravimeter used for
the measurements and are the same for retroreflectors of both
types. Although no valid error has been found in the expres-
sion in [1] for the phase difference between interference and
test beams when combined at the beamsplitter, literal applica-
tion of that difference to experimental data leads [1] to a pre-
diction of several µGal difference in g between open and solid
retroreflectors; this difference disappears when the ambiguity
in the argument of a trigonometric function such as a cosine is
accounted for. The intensity of the interference fringe pattern
contains constant terms:

|Ψ|2 ≈ cos

(
− 2
λ
(Z0 +Dn− d)+ ....

)
. (54)

Whether open or solid, such terms cannot bemeasured because
a constant 2πM, whereM is an arbitrary integer, can be added
to the argument of the cosine reducing the argument to a poly-
nomial in the time with negligible constant terms.

An improved treatment of the effect of frequency modu-
lation, with modulation index β >> 1 has been given, imple-
mented in software, and applied to data for both open and
solid retroreflectors. Typically for a given drop with a time
series of more than 2400 times, each corresponding to a fringe
spacing of 400 fringes, the rms residual between the spe-
cified number of fringes and the theoretical number, given by
equation (36), is 0.02 fringes. Two methods for computing

relativistic corrections have been implemented: (1) the dif-
ference between gravity determined by the fully relativistic
model, and (2) the matrix calculation given by equation (45).
These two methods consistently give -13.88 µGal for relativ-
istic corrections in the present case.

Appendix: Distance of fall vs. wavelength

The phase difference between reference and test beams if
recombined at the beamsplitter is given in equation (2). The
corresponding number of fringes is obtained by replacing Ω
by 2πc/λ and dividing by 2π. The number of fringes is then

N(t) =− 2
λ
(Zcm(t)+Dn− d)

(
1− Vcm(t)

c

)
+ constant .

(A1)
Suppose that during some small time interval the CM posi-

tion and velocity change by∆Zcm and∆Vcm, respectively. The
number of fringes observed will be

∆N=− 2
λ
(∆Zcm)(

(
1− Vcm(t)

c

)
+

2
λ
(Zcm(t)+Dn− d)

(
∆Vcm(t)

c

)
. (A2)

If the retroreflector falls by a half-wavelength, ∆Zcm =

−λ/2, then the number of fringes observed will be

∆N= 1− Vcm(t)
c

+
2
cλ

(Zcm(t)+Dn− d)∆Vcm(t) . (A3)

and the number is unity, with relativistic corrections.
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