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Characterizing the Nonlinear Propagation
of Femtosecond Pulses in Bulk Media

Scott A. Diddams, Hilary K. Eaton, Alex A. Zozulya, and Tracy S. Clement,Member, IEEE

Abstract—Frequency-resolved optical gating is used to char-
acterize the amplitude and phase of intense femtosecond pulses
propagating in nonlinear dispersive media. The combined effects
of group velocity dispersion (GVD) and third-order nonlinearity
(n2) lead to rapid broadening and splitting of the pulses. We
present measurements at 800 and 1200 nm and investigate the
influence of the chirp of the input field. Measurements are
compared with the predictions of one- and three-dimensional
nonlinear Schrödinger equations. The influence of the Raman
contribution to the nonlinear index of refraction is also examined
theoretically.

Index Terms—Nonlinear optics, optical propagation in nonlin-
ear media, optical pulse measurements, ultrafast optics.

I. INTRODUCTION

T HE PROPAGATION of intense femtosecond pulses is
a field rich in linear and nonlinear phenomena. Peak

powers greater than 10 GW, which are readily attained with
current laser systems, turn most any medium into an interesting
nonlinear sample. In addition, as pulsewidths continue to de-
crease, the corresponding increase in bandwidth makes linear
dispersion even more of an issue. Along with such intense
femtosecond pulses have come many challenging problems.
Examples include the pulse generation and amplification itself
[1], atmospheric propagation [2]–[4], optical communications
[5], and laser–plasma interactions [6]. It can be argued that,
in all of these cases, accurate information about the complete
electric field on a femtosecond time scale would be a powerful
tool in understanding the complex light–matter interactions
involved. Unfortunately, obtaining this information can be a
daunting task. Not only is the short time scale difficult to
deal with, but the fields may vary greatly both spectrally and
spatially as a function of time.

The nonlinear Schrödinger equation (NLSE) [7] is often
used to model the propagation of intense ultrashort pulses in
both one and three dimensions, accounting for an instantaneous
Kerr nonlinearity, dispersion and diffraction. However, as peak
powers increase and spot sizes decrease many of the details
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surrounding the propagation of the femtosecond field become
unknown. Examples include continuum generation [8], self-
trapping [3], [4], and optically induced breakdown [2], [9].
In this regime, the standard NLSE begins to fail. Higher
order effects, such as Raman scattering, ionization, and third-
order dispersion can be included phenomenologically. But
other effects, such as nonparaxiality [10] and shock terms
[11] require modification of the assumptions used in deriving
the NLSE. Which effects are most important and how they
should be modeled are open questions. Furthermore, most
experimental data that have thus far been compared with the
theories are incomplete in the sense that they only provide
details on one aspect of the electric field (usually the spectral
intensity). In this paper, we attempt to address some of these
issues with measurements of the complete amplitude and phase
of intense femtosecond pulses propagating in fused silica. We
first present measurements in a regime that can be modeled
by the one-dimensional (1-D) NLSE. In this way, we are
able to test the technique of frequency-resolved optical gating
(FROG) [12], [13] as a tool for tracking nonlinear propagation.
We then apply FROG to the analysis of the more complex
situation where the three-dimensional (3-D) NLSE can be
applied. In this regime the combined effects of diffraction,
normal dispersion, and cubic nonlinearity lead to strong self-
focusing and pulse splitting. We present measurements of
pulse splitting and examine its dependence on the chirp of the
input pulse. In addition, we show measurements of the spatial
profile of the pulse as it undergoes splitting, and compare
these measurements with theoretical calculations. Finally, we
include theoretical studies that examine the noninstantaneous
(Raman) contribution to the nonlinear index of refraction and
its role in the pulse splitting process.

II. 1-D PROPAGATION

Fused silica is usually the transmissive material of choice in
femtosecond laser systems operating in the visible and near in-
frared because it has low dispersion and is therefore presumed
to contribute little to the broadening of femtosecond pulses.
However, this may not be the case when intensities greater
than 1 GW/cm are present. At these intensities the effect of
the nonlinear contribution to the index of refraction becomes
important. Furthermore, the interplay between the nonlinearity
and the linear dispersion can lead to surprisingly large changes
in the pulsewidth over relatively small propagation lengths.
In this section, we report results which illustrate this pulse
broadening effect.
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These experiments employ the output of a Ti:sapphire-based
chirped pulse amplifier operating at 1-kHz repetition rate. The
output of the compressor is collimated in a near-Gaussian
beam characterized by a radius of 2.9 mm ( radius
of the intensity). The measured average pulse energy is 795J,
and pulsewidths are sub-100 fs. The pulse train from the com-
pressor is characterized (before and after propagation through
fused silica samples of different thickness) using the second-
harmonic form of frequency-resolved optical gating (SHG-
FROG) [14]. The SHG-FROG measurement is a spectrally
resolved noncolinear autocorrelation performed in a 100-m
piece of BBO. The measurement yields a two–dimensional
(2-D) spectrogram from which the amplitude and phase of
the electric field may be uniquely determined (subject to
certain constraints) [13], [15]. By amplitude and phase, we
refer to the slowly varying, time-dependent complex quantity

. The delay stage in the correlator is
scanned with a stepper motor, and exposure times are such
that the signal from several hundred pulses is integrated each
step. In all measurements, an aperture is used before the SHG-
FROG apparatus to select only the on-axis portion of the beam.
We employ several checks in all measurements to validate the
results and eliminate systematic errors. The spectrum of the
propagated fundamental (corrected for instrument response) is
recorded and its autoconvolution is compared to the frequency
marginal of the SHG-FROG measurement, thus correcting for
the bandwidth limitations [16]. The same spectrum is also
compared with the spectrum recovered by the SHG-FROG
algorithm. We also make a second SHG-FROG measurement,
letting the initially measured field propagate through 5 cm
of BK-7 glass at low intensity. The information from this
second measurement, along with the known dispersion of the
BK-7, is used to remove the time ambiguity of the initial
measurement.

Fig. 1 shows the evolution of the on-axis temporal field of
an intense pulse as it propagates through fused silica. All fields
are retrieved from SHG-FROG measurements. In Fig. 1(a),
we present the intensity and phase of the input pulse. Plots
(b) and (c) of this figure show the intensity and phase of the
same pulse after having traveled through 1.27 cm and 2.54
cm of fused silica, respectively. In addition, plots (b) and (c)
show the calculated intensity and phase using the measured
field of Fig. 1(a) as an initial condition to the 1-D nonlinear
Schr̈odinger equation:

(1)

In this equation, is the slowly varying complex am-
plitude of the field in the rest frame moving at the group
velocity. The wave vector is , with being
the linear index of refraction at the center wavelength. The
GVD is determined by , which is the second derivative of
(with respect to frequency) evaluated at. The instantaneous
nonlinear index of refraction is denoted by, and the field
is normalized such that is the intensity in units of
W/cm . Given the initial field of Fig. 1(a), we then solve
(1) using a split-step technique [17], [18]. As can be seen

Fig. 1. Temporal field of an intense femtosecond pulse at propagation
distances in fused silica ofz = 0, 1.27, and 2.54 cm. The experimentally
measured intensity (solid lines) and phase (solid triangles) are shown in all
three plots. The calculated intensity (dashed lines) and phase (open circles)
are also shown in plots (b) and (c).

in Fig. 1(b) and (c), good agreement exists between the
measurement and the theory. Here we have taken the input
peak intensity to be 57 GW/cm, which we calculate from the
measured pulse energy, beam diameter (assumed Gaussian),
and the temporal profile shown in Fig. 1(a). In addition, we
use the values of 1.46, 800 nm, and 360
fs /cm. The value of can then be used as a fitting parameter.
For these measurements 2.5 10 cm /W gives the
best agreement between experiment and theory. This value
of is in good agreement with other recent measurements
[19], [20]. These positive results give us confidence that the
SHG-FROG technique can be applied to the more complicated
propagation measurements presented in the later sections of
this paper.

The use of (1) to model the experimental conditions is
justified as long as the field is well approximated by a plane
wave during its propagation. This is indeed the situation for
the large diameter beam, which has a confocal parameter

of many tens of meters. The peak power of the
pulses used in these measurements is near 10 GW. This power
is many orders of magnitude greater than the critical power
for self-focusing [7], which
evaluates to 2.6 MW for fused silica at 800 nm.
However, the self-focusing length, [7], is
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Fig. 2. Measured and calculated FWHM of the intensities of the fields
presented in Fig. 1. All calculations use the measured field of Fig. 1(a) as
an input.

still on the order of 50 cm, which is more than twenty times
greater than the propagation length. The validity of this plane-
wave approximation is further confirmed by comparing the
results obtained from (1) with the results of a full 3-D model,
which we present later in this paper. For the experimental
conditions outlined above, both the 1-D and 3-D models give
near-identical results.

To lowest order, (1) includes the effects of temporal self-
phase modulation (SPM) and dispersion. During propagation
in the regime of positive GVD and positive , one
anticipates that both dispersion and temporal SPM will act to
impose a predominantly positive chirp on the pulse. Although
SPM by itself does not contribute to any temporal broadening,
its combination with GVD enhances the positive chirp and
increases the broadening. Similar results have been observed
in optical fibers where (1) also applies [21]. However, we
believe the data of Fig. 1 provide the first amplitude and phase
measurement detailing the interplay ofGVD and SPM in
bulk propagation. The importance of the interplay ofGVD
and SPM is further illustrated in Fig. 2, where we plot the
full-width at half maximum (FWHM) of the measured and
calculated intensities as a function of propagation length. In
addition, we also plot the calculated FWHM for the case of

0 (GVD alone). As can be seen, with no nonlinearity and
2.5 cm of propagation, the pulse is predicted to broaden about
5 fs from the initial FWHM of 92 fs. However, the inclusion
of the nonlinearity leads to dramatic broadening of nearly 80
fs for the same propagation length, resulting in a FWHM
of 170 fs. The fact that the calculated FWHM is slightly
less than the measured may be due to the inertial (Raman)
response of the fused silica, which is not accounted for
in (1).

III. 3-D PROPAGATION

The addition of transverse dimensions to the problem of
nonlinear femtosecond pulse propagation results in interesting
and unexpected phenomena. For the case ofGVD and

, the full spatio-temporal evolution of a femtosecond

pulse has been studied theoretically in some detail. It has
been shown that the inclusion of diffraction and self-focusing
can result in the situation where the pulse splits temporally
[22]–[25]. We emphasize this in contrast to the 1-D situation
presented in the previous section where pulse splitting is
not observed. In fact, for Gaussian input pulses, (1) does
not predict pulse splitting—even with higher intensities and
greater propagation distances. Measurements of the spectrum
of a self-focusing femtosecond pulse have implied that the
pulse develops temporal substructure [26], [27], and intensity
autocorrelation measurements by Rankaet al. [28] validate the
predictions of pulse splitting in the time domain. However,
these measurements lack full information about the amplitude
and phase of the field. In order to provide a more complete
picture of this complicated situation, we have recently used
SHG-FROG to measure the complete on-axis temporal field
of a self-focusing femtosecond pulse [29]. The full temporal
field, as provided by the SHG-FROG measurement, gives a
more complete picture of the dynamics, and should allow us to
test the validity of the NLSE (and its variations) for describing
nonlinear pulse propagation.

If we assume azimuthal symmetry, we can include the
transverse dimension to the NLSE such that (1) takes the
following form:

(2)

The only difference between this equation and (1) is the radial
Laplacian , and the additional radial dependence of the field

Numerical solutions of (2) are performed, using the
Crank–Nicholson method to compute the derivatives. For all
simulations, we assume a real input field given by

(3)

All parameters are the same as those used in the one-
dimensional model of (1) along with 10
cm /W. The input FWHM of the pulse of (3) is set at 70

m in the spatial domain and 90 fs in temporal domain.
Sample theoretical results are shown in Fig. 3 where we
present normalized intensity surface plots at three propagation
distances in the fused silica. Fig. 3(a) is the input field as
described by (3), with peak intensity of 87 GW/cm. Fig. 3(b)
and (c) are the intensity distributions at 2.0 cm and
3.0 cm, respectively. As can be seen, the field is initially
focused both in space and time before it ultimately splits into
two pulses along the temporal coordinate.

The evolution seen in Fig. 3 is summarized by Fig. 4, where
we plot both the calculated on-axis temporal FWHM
of the pulse and the peak intensity. With reference to both
Figs. 3 and 4(a), we see that as the pulse focuses spatially, its
on-axis temporal width actually decreases by close to 50%.
This phenomenon is the pulse sharpening first predicted and
measured 30 years ago [30], [31]. Put simply, it is the result
of the self-focusing induced transfer of off-axis energy toward
the peak of the pulse. At about the position 1.75 cm,



DIDDAMS et al.: CHARACTERIZING THE NONLINEAR PROPAGATION OF FEMTOSECOND PULSES IN BULK MEDIA 309

(a)

(b)

(c)

Fig. 3. Calculated intensity surface plots of a self-focusing femtosecond
pulse at three different propagation lengths: (a) input; (b)z = 2.0 cm; and
(c) z = 3.0 cm. The temporal and spatial scales on all plots are the same;
however, the intensities have all been normalized by the peak value.

the pulse stops focusing temporally, and at 2.2 cm
the pulse is split to the extent that the FWHM of the two
subpulses may be measured. It is at this point that we see the
discontinuity in Fig. 4(a), as the individual split pulses each
have FWHM on the order of 30 fs. These trends are mirrored
in Fig. 4(b) where the on-axis peak intensity is plotted as a
function of the same propagation distance. The 15increase
in intensity is primarily due to the strong spatial self-focusing
rather than the reduction in pulsewidth (see also Fig. 3). It
is at the position 1.95 in Fig. 4(b) that two individual
peaks are first recognizable and the discontinuity occurs in the
figure.

Fig. 4. (a) Calculated temporal FWHM and (b) peak intensity of a femtosec-
ond pulse propagating in fused silica. The solid squares are for the pulse prior
to splitting, while the open circles designate the pulse after splitting. The lines
are meant only to guide the eye. See text for further details.

From a simple physical standpoint, we understand the
process of pulse splitting as follows: Initially, strong self-
focusing moves off-axis energy toward the peak of the pulse
and compresses it in both space and time [30]. As the peak
intensity increases, the process of SPM also increases, thereby
generating new frequency components. The combination of
the SPM-induced up-chirp andGVD then act to push the
energy away from 0, initiating the pulse splitting. As
this process continues, the peak intensity drops, stopping the
collapse at 0. However, off-axis energy continues to focus
at 0 such that two pulses are resolved [24].

A. Experimental Results at 800 nm

For the following measurements, the output from the same
laser system described above is strongly attenuated and then
focused with a 50-cm focal length lens to a spot size of 70-

m FWHM at the entrance face of the fused silica sample.
After propagation in the fused silica, the beam is allowed
to diverge for 75 cm. The central 5%–10% of the beam
is then selected with an aperture and used as input to the
SHG-FROG apparatus described above. In contrast to the 1-D
experiments described above, the peak power of the pulses
used in these experiments is much lower—typically one to
three times the critical power for self-focusing. However, both
the self-focusing length and the confocal parameter are
on the order of the propagation length, meaning that transverse
changes in the beam may no longer be neglected.
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(a) (b)

(c) (d)

Fig. 5. SHG-FROG data of split pulse. (a) Measured and (b) recovered SHG-FROG traces. (c) Recovered intensity (line) and phase (points). (d) Recovered
(points) and measured spectrum (line).

Experimental SHG-FROG data that demonstrates the pre-
dicted splitting is shown in Fig. 5. For this data, the length of
the fused silica is 2.54 cm. The input pulse has a FWHM of
92 fs and a peak intensity of 88 GW/cm, meaning the peak
power is It is worth noting the excellent agreement
between the measured SHG-FROG trace of Fig. 5(a), and the
retrieved SHG-FROG trace of Fig. 5(b). Such agreement is
typical, indicating good convergence of the phase retrieval
algorithm and boosting our confidence in the ability of SHG-
FROG to characterize complicated pulses. The intensity and
phase of the retrieved field are shown in Fig. 5(c), while
Fig. 5(d) shows the recovered spectrum [Fourier transform
of Fig. 5(c)] and the independently measured spectrum. Here
again, we have good agreement, even with the complicated
structure. As seen in Fig. 5(c) the near-Gaussian input pulse
has completely split into two pulses having FWHM of roughly
50 fs. In contrast to the calculated splitting of Fig. 3, both the
intensity and phase are asymmetric. It is believed that this
asymmetry is due to nonlinear shock formation and space-
time focusing [32], with cubic temporal phase variations on
the initial field playing a lesser role [33]. These mechanisms
are explored in a future publication [34]. The Raman response
of the fused silica is investigated as a possible source of
asymmetry in a later section of this paper. Although the
intensity of the self-focused field approaches the TW/cm
level, we see no intensity-dependent loss which would in-
dicate multiphoton absorption or ionization. Furthermore, no
visible signs of permanent damage are observed in the fused
silica.

Fig. 6. Measured spatial FWHM of beam size as a function of peak power
(points). The solid curve is the calculated beam size assuming a Gaussian
spatial profile for the input beam.

Measurements illustrating changes in the spatial profile
of the beam are presented in Fig. 6. Here, we present the
measured beam diameter at the exit face of a 3.0-cm fused
silica sample at four different input powers corresponding to
various degrees of pulse splitting. SHG-FROG measurements
of the temporal field are also made at these same input powers,
allowing us to monitor the degree of temporal splitting. The
time-domain results are similar to previously published data
that show the intensity dependence of the pulse splitting [29].
The beam diameters shown in Fig. 6 are obtained by imaging
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(a) (b)

(c) (d)

Fig. 7. Measured SHG-FROG traces for (a) down-chirped and (c) up-chirped input pulses for a peak intensity of 57 GW/cm2. The corresponding measured
spectra (line) and retrieved spectra (points) are shown in (b) and (d), respectively.

the exit face of the fused silica sample onto a charge-coupled
device (CCD) camera with a magnification of2.8. The two
points at the lowest powers correspond to pulses that have
broadened temporally, but have not yet split. At the third point,
the pulse is partially split, such that the intensity between
the two pulses drops to half the peak value. At the highest
peak power, the pulse is completely split—similar to Fig. 5(c).
The solid line in Fig. 6 shows the calculated beam diameter
assuming the input field of Fig. 3(a). This calculated beam
diameter is obtained by integrating over the temporal dimen-
sion of intensity plots similar to those presented in Fig. 3.
Both the theoretical and experimental results demonstrate that
the spot size approaches a constant value at powers where
pulse splitting occurs. The measurements indicate that this
regime occurs at lower powers than predicted by the theory.
Although, as seen in Fig. 6, the error in the measured power is
on the order of 25% due to uncertainties in the measured pulse
energy and the temporal profile of the pulse. In addition, the
measured spot size is never as small as the calculated value.
This discrepancy may arise from spatial profile deviations of
the actual beam from an ideal Gaussian.

In previous measurements, we reported on the intensity
dependence of the pulse splitting [29]. Here, we provide more
detailed measurements describing the influence of the chirp of
the input pulse on the propagation process. It is possible to
create a predominantly linearly chirped pulse by lengthening
or shortening the grating compressor of our chirped pulse
amplification system. We can then use FROG to accurately
characterize the chirped pulse before and after propagation
through the fused silica sample. The up-chirped pulse for

these measurements has a temporal FWHM of 147 fs, and the
down-chirped pulse has a temporal FWHM of 153 fs. Each
of the chirped input pulses is propagated through the fused
silica sample at two different peak intensities. The lower peak
intensity values are 45 and 49 GW/cmfor the up- and down-
chirped pulses, respectively. The higher input peak intensity
is 57 GW/cm for both up- and down-chirped pulses.

Fig. 7 shows the measured SHG-FROG traces obtained with
chirped input pulses in each of the higher intensity cases.
In addition, both the retrieved and independently measured
spectra are plotted for comparison. The characteristic shape
of the SHG-FROG trace for pulse splitting with a down-
chirped input pulse [Fig. 7(a)] is very different than when
the input pulse is up-chirped [Fig. 7(c)]. An up-chirped input
pulse leads to SHG-FROG traces which are largely diamond
shaped, with decreasing intensity in the center of the trace
for greater splitting. A down-chirped input pulse, on the other
hand, maintains a significant intensity in the center of the trace.
Fig. 8 shows the retrieved time and spectral domain intensity
and phase for each of the four input pulse cases. At higher peak
powers, the amount of pulse splitting and spectral modulation
increases. When an initially down-chirped pulse [Fig. 8(a)
and (b)] splits temporally, the resulting pulses are about two-
times narrower than those produced from the splitting of an
up-chirped pulse [Fig. 8(c) and (d)]. In addition, the spectra
in Fig. 8(e) and (f) (down-chirped input) are narrower than
the spectra of Fig. 8(g) and (h) (up-chirped input). A simple
explanation for these observations arises from the fact that
both GVD and SPM (with act to produce positive,
linear chirp over the central region
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Fig. 8. Retrieved fields from SHG-FROG. (a)–(d) Temporal intensity (line) and phase (points); (e)–(h) associated spectral intensity (lines) and phase (points).
(a), (b) correspond to down-chirped input at 49 and 57 GW/cm2. (c), (d) correspond to up-chirped input at 45 and 57 GW/cm2.

of the pulse. Thus, an initial up-chirp on the pulse acts as
a head start to the propagation induced up-chirp, resulting
in broader pulses. An initial down-chirp, however, acts to
negate the propagation induced up-chirp, yielding shorter split
pulses at the output. The narrower (and deeply modulated)
spectrum seen with the down-chirped input can be interpreted
as destructive interference between existing frequencies and
new frequencies created by SPM. Note also that the spectral
phase after propagation for all four cases has an overall
concave-up curvature, regardless of the sign of the chirp of the
input pulse. This phase curvature implies an up-chirp across
the total split field such that the leading pulse is spectrally red-
shifted compared to the trailing pulse. This up-chirp is due to
the combined effects of positive GVD and SPM in the regime
of , as discussed earlier.

B. Experimental Results at 1200 nm

We also present preliminary measurements using the output
of a femtosecond optical parametric amplifier (OPA). The OPA

used is similar to that described by Yakovlev [35], consisting
of single-pass amplification of infrared continuum in a 4-mm
BBO crystal (Type-I phase matching). When pumped at 800
nm, the OPA produces signal fields with wavelengths in the
range of 1100–1400 nm. This is an interesting regime in
which to study propagation because these wavelengths are
predominantly used for optical communications in fused silica
fibers. In addition, in this wavelength range, the GVD in
fused silica decreases in magnitude and then changes sign
from positive to negative near 1250 nm, while remains
approximately constant. With GVD (anomalous dispersion)
and , it has been predicted that spatio-temporal solitons
can propagate—provided saturates or there exists a higher
order intensity-dependent term with opposite sign [36]. From
a practical point of view, such 3-D solitons could have
important implications for optical communications and all-
optical switching [37], [5].

To insure good beam quality, the output of the OPA is
spatially filtered and recollimated before being focused onto
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Fig. 9. Measured fields at 1200 nm. (a) Intensity (line) and phase (points) of input field. (b) Corresponding measured spectrum (line) and spectrum retrieved
from SHG-FROG (points). Plots (c) and (d) are the same as (a) and (b), except the pulse has traveled through 3.0 cm of fused silica.

the entrance face of the fused silica sample in the same manner
described above. Beam parameters are approximately the same
as those used at 800 nm, so that qualitative comparisons
can be made between the two situations. Results at the
wavelength of 1.2 m are shown in Fig. 9. In this figure,
we show the temporal intensity and phase before and after
propagation through the same 3.0-cm fused silica sample
used for measurements at 800 nm. The corresponding spectra
recovered from SHG-FROG, and the independently measured
spectra are also shown. Here, again we see excellent agreement
between the recovered and measured spectra. The input field
of Fig. 9(a) has a FWHM duration of 92 fs, but the large
negative curvature of the phase indicates the existence of
significant linear up-chirp. Indeed, the time-bandwidth product
is three times the transform limit, implying 30-fs pulses could
be generated if the up-chirp were properly compensated. After
propagation through the fused silica, we see in Fig. 9(c) that
the pulse begins to split. The input peak power in this case is 9
MW, or , assuming the value of is the same at both
800 and 1200 nm. With a 10% increase in the power above
9 MW, we observe rapid spectral broadening and continuum
generation. From (2), one would expect splitting to be less
pronounced in this regime because of the decrease in the
GVD. Indeed, no splitting is predicted in numerical solutions
of (2) when a value of 60 fs /cm is used. These results,
together with the results of recent simulations [38], indicate
that the third-order dispersion plays an important role in pulse
splitting in this wavelength regime.

IV. 3-D PROPAGATION INCLUDING THE RAMAN RESPONSE

It is interesting to explore the possible sources of asymmetry
observed in the experimental data presented in the previous
section and in our previous work [29]. As written (2) is
symmetric in time and space, such that for a symmetric
input the output is also symmetric. An obvious source of
asymmetry is an initial asymmetry of the input pulse—in
amplitude and phase of either the temporal or spatial dimen-
sions. Furthermore, the addition of third-order dispersion to
(2) creates temporal asymmetries. Another possibility is a
noninstantaneous nonlinearity such as Raman scattering, which
is discussed here in further detail. It is well known that the
nonlinear susceptibility of fused silica is comprised of both
a near-instantaneous electronic response and a slower nuclear
response [39]. The slower response, also called the Raman
response, is due to nuclear vibrations excited by the optically
induced (fast) perturbation of the electronic structure. The
characteristic Raman response time is on the order of 50–100
fs and can comprise up to 20% of the total nonlinear response
[39]–[41].

The Raman contribution to the refractive index can be
modeled by replacing the nonlinear term in (2) with the
following:

(4)

In this equation, is the fraction of the nonlinearity resulting
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(a)

(b)

Fig. 10. Calculated intensity surface plots of a self-focusing femtosecond
pulse with the inclusion of the Raman response: (a)z = 2.0 cm and (b)z =
3.0 cm. The temporal and spatial scales on all plots are the same; however,
the intensities have been normalized by the peak value.

from the Raman contribution and is the normalized
Raman response function, which we approximate by [41]

(5)

In all numerical simulations, we use 0.18, 50 fs and
the dimensionless quantity 4.2.

Intensity surface plots at propagation distances of 2.0
cm and 3.0 cm are shown in Fig. 10. The input pulse
for these simulations is the same as shown in Fig. 3(a). The
principle change due to the inclusion of the Raman effect is
the asymmetry between the leading and trailing pulses. As
can be seen, at the position 3.0 cm, the leading pulse
has almost twice the peak intensity of the trailing pulse. The
increase of the leading pulse at the expense of the trailing
pulse can be understood simply in terms of Raman gain. The
response function of (5) is the time-domain representation
of the more common frequency-domain picture of stimulated
Raman scattering, whereby red-shifted frequency components
are amplified at the expense of the blue-shifted components.
Since in this case GVD and SPM move the red components
ahead of the blue components, it follows that the leading
pulse should be larger because of the preferential Raman gain.
Therefore, we conclude that Raman scattering is not the direct
source of the observed asymmetry in the intensities of the
fully split pulses in Figs. 5 and 8.

Fig. 11. Same as Fig. 4, but with the inclusion of the Raman response of the
medium. The solid squares are for the pulse prior to splitting. After splitting,
the open circles designate the leading pulse, while the crosses are for the
trailing pulse. The lines are meant only to guide the eye. See text for further
details.

Details of the evolution of the on-axis temporal profile and
the peak intensity of the pulse with the Raman term included
are shown in Fig. 11. Similar to the previous case with no
Raman contribution, during the first 1.5 cm of propagation the
on-axis temporal FWHM decreases by about 30%. The pulse
then starts to broaden, but it is not until the position 1.95
cm that two peaks begin separating out of the single pulse. The
separation of these two nascent pulses continues until2.2
cm, which is the point where each of the two pulses can be
characterized by its own FWHM. This is the point at which
the line in Fig. 11(a) bifurcates, and the individual FWHM of
the two pulses are tracked until 3.0 cm. In the last 0.5 cm
of propagation the individual pulses start to broaden, with the
trailing pulse broadening more rapidly.

The peak intensity of the field (normalized by the peak input
intensity) as shown in Fig. 11(b) compliments the temporal
behavior. The temporal compression seen in Fig. 11(a) is
accompanied by strong spatial compression which results in a
ten fold increase in the peak intensity after a few centimeters
of propagation. As noted above, at the position 1.95 cm
two distinct peaks are resolved. It is at this point that the curve
of Fig. 11(b) bifurcates and the individual peak intensities are
tracked independently. Once splitting starts, it is evident that
the peak intensities of both pulses fall rapidly. An interesting
point seen in Fig. 11(b) is that when the pulse first begins to
split, the trailing peak has a higher intensity than the leading
peak. At about 2.1 cm, this trend reverses and the leading
pulse maintains a higher peak intensity.
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V. CONCLUSION

We have shown that FROG can be a useful tool in studying
the nonlinear propagation of intense femtosecond pulses in
nonlinear, dispersive media. In situations that can be modeled
with the 1-D NLSE, we obtain excellent agreement between
the measured and calculated electric fields, and we observe
rapid temporal broadening from the combined effects of GVD
and SPM. In situations where the full 3-D nature of the field
must be considered, we have measured the splitting of an input
pulse into subpulses that are almost two times shorter than the
input. This splitting is not generally symmetric, and we have
presented calculations that indicate that Raman scattering is
not the direct source of the observed asymmetry. In addition,
we have made measurements that illustrate the effect of input
linear chirp on the pulse splitting. Finally, we have presented
data for propagation of femtosecond pulses at 1200 nm,
demonstrating that these pulses undergo temporal splitting
when self-focused in fused silica. At 1200 nm, numerical
simulations indicate that third-order dispersion must be taken
into consideration to fully explain the splitting.
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