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Phase-space study of surface-electrode Paul traps: Integrable, chaotic, and mixed motions
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We present a comprehensive phase-space treatment of the motion of charged particles in electrodynamic
traps. Focusing on five-wire surface-electrode Paul traps, we study the details of integrable and chaotic motion
of a single ion. We introduce appropriate phase-space measures and give a universal characterization of the
trap effectiveness as a function of the parameters. We rigorously derive the commonly used (time-independent)
pseudopotential approximation, quantify its regime of validity, and analyze the mechanism of its breakdown
within the time-dependent potential. The phase-space approach that we develop gives a general framework for
describing ion dynamics in a broad variety of surface Paul traps. To probe this framework experimentally, we
propose and analyze, using numerical simulations, an experiment that can be realized with an existing four-wire
trap. We predict a robust experimental signature of the existence of trapping pockets within a mixed regular and
chaotic phase-space structure. Intricately rich escape dynamics suggest that surface traps give access to exploring
microscopic Hamiltonian transport phenomena in phase space.
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I. INTRODUCTION AND MAIN RESULTS

Surface-electrode Paul traps are becoming increasingly
widespread, in large part due to their potential for scalable
microfabrication [1,2]. Introduced only recently [3,4], they
differ from traditional linear and hyperbolic Paul traps by the
strong nonlinearity of the potential, leading to complex and
partly chaotic motion even for a single ion. Furthermore, the
small scale of surface traps implies a limited trapping volume,
and the importance of perturbations, intrinsic or extrinsic to
the trap, grows significantly. Therefore, on the practical side,
a comprehensive understanding of the different dynamical
regimes in these traps is important for optimizing ion loading,
cooling, storage, and manipulation. From a more fundamental
perspective, surface traps offer a unique setup for studying the
interplay of nonlinearity, chaos, and microscopic stochastic
forces.

Nonlinear and stochastic ion dynamics have attracted fun-
damental and practical interest since the first crystallization
of charged particles in electrodynamic fields [5]. The first
systematic studies of chaos in Paul traps followed the demon-
strations of a cloud-crystal phase transition with small clusters
[6,7] and clouds [8]. Since Paul traps are based on (periodic)
time-dependent electric fields, the system does not conserve
energy and so particles can eventually heat up and escape the
trap. Deterministic chaos was found to be a predominant source
of heating that balances the laser cooling and stabilizes the
cloud phase. The smallest system with appreciable nonlinearity
(and hence, possibly, chaotic motion) in the earlier Paul traps
was that of two ions, and it was studied in detail [9–15],
within a time-independent approximation [16,17], including
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an analysis of all integrable cases [18–21]. Because of their
importance in high-accuracy quantum applications, the effects
of the periodic driving (known as the “micromotion”) are
extensively studied in various regimes [22–30]. The nonlinear
(and time-dependent) regimes of motion in a surface trap
remain largely unexplored, however.

In this paper, we develop a phase-space framework for
studying classical dynamics of charged particles in surface
Paul traps. We introduce appropriate phase-space measures
that allow us to quantify and compare the trap’s effectiveness
at different parameter values. Our quantitative results apply
directly to any five-wire trap of any size (for the model that we
consider). The general conclusions of the study apply to a broad
range of surface traps and present a systematic approach to the
investigation of the nonlinear and time-dependent motion.

We consider an ion trapped in vacuum above a set of
planar electrodes in the five-wire configuration, carrying a
combination of direct current (DC) and radio-frequency (rf)
periodically modulated voltages (see Sec. II and Fig. 1). The
axial x motion (parallel to the electrodes’ symmetry axis)
is that of a decoupled, time-independent harmonic oscillator
with frequency ωx , the axial harmonic trapping frequency. The
yz motion is coupled, nonlinear, and driven periodically in
time, and hence the phase space {y,z,py,pz} whose dimension
is 4 (with py and pz the canonical momenta) has to be in
practice increased to include the time t , making it effectively
five-dimensional (5D).

A 5D phase space is a big place [31]. Moreover, the number
of independent parameters of the full model can become quite
high [32]. However, we show that an essential understanding
of the dynamics can be obtained by a systematic study starting
from a two-dimensional (2D) time-independent reduction, and
continuing through more elaborate three-dimensional (3D,
which is the effective dimension of a 2D phase space with
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FIG. 1. Layout and rf-potential of the five-wire surface trap. All
electrodes lie in the z = 0 plane, with the two electrodes connected
to the rf drive shown in red. They are of width w in the y direction
with their center offset by ±w from y = 0. Along the x direction they
are approximated as having an infinite extent. The remainder of the
z = 0 plane is filled by grounded surfaces, shown in gold. Setting the
rf electrodes to 1 V produces the potential V5w(y,z) of Eq. (2), with
equipotential lines in the plane x = 0 shown as a contour plot in the
back of the figure. The bar legend shows the potential in units of V.
The thick solid black line shows the potential minimum line and the
thick dashed line shows the saddle line of the potential [with z = zs

and z = zu, respectively, defined in Eq. (21)]. Not shown in the figure
are the electrodes giving rise to the harmonic DC potential of Eq. (7).

a time-dependent Hamiltonian), and four-dimensional (4D)
phase-space analysis. This procedure, which we develop in
this work, requires also that we limit the parameters at each
step. Hence, as a starting point, we assume a trap configuration
with equal y and z harmonic DC antitrapping coming from the
axial electrode and no further harmonic DC terms. In this case,
an ion starting with the initial conditions ẏ = y = 0 (in the
coordinate parallel to the electrodes’ plane), remains at y = 0,
and the z direction (normal to the electrode surface) decouples
exactly. We study this motion in detail in Sec. III, also assuming
at first that there is no further “bias” DC voltage on the rf
electrodes. Then the dynamics depend on two parameters—the
rf voltage Urf and the axial DC trapping voltage UDC ∝ ω2

x .
Studying the rf-driven z motion begins with the commonly
used approximation that replaces the time-dependent potential
with an effective, time-independent pseudopotential. The latter
depends in this setup on a single nondimensional parameter
that we name the “pseudopotential parameter,”

λ = (mωx�w2/
√

2eUrf )
2 ∝ UDC/(Urf )

2, (1)

where m and e are the ion’s mass and charge, � is the
rf frequency, and w is the electrodes’ width and separation
(see Sec. II for details). Since the pseudopotential is time
independent, the phase space is 2D, and the motion is integrable
without any chaos. Within the pseudopotential approximation,
a maximization of the trap depth is misleadingly simple—it is
a monotonously decreasing function of λ, so it decreases with
ωx and increases with Urf .

This simple dependence is completely altered within the
time-dependent potential. The latter can be thought of as
composed of the pseudopotential (characterized by λ) and a
time-dependent perturbation scaled by Urf . Since the equations
of motion depend explicitly on time, the phase space is now
effectively 3D. With Urf below a threshold value, the entire 3D

phase space is very close to regular and the pseudopotential
approximation is admissible for any λ. Increasing Urf gradually
makes the phase space “mixed”—chaotic motion develops
inside bounded strips within the regular phase space, and
most notably within a large connected “chaotic sea” that
reaches from the top of the trap and penetrates the phase
space toward the trap center. Once inside the chaotic sea, the
ion will quickly escape past the trap’s barrier, and therefore
increasing Urf beyond an optimal value leads to a degradation
of the trap’s effectiveness. We find that the maximal trapping
can be obtained by taking Urf at the threshold of validity
of the pseudopotential approximation, together with λ → 0
(requiring the reduction of the axial trapping ωx). If ωx is
constrained to a certain value or range of values, optimal
trapping can be obtained by tuning Urf to a λ-dependent value.

With this characterization of the 3D phase space of z motion,
we turn in Sec. IV to the coupled yz motion, starting with
the 4D phase space of the pseudopotential approximation.
Remarkably, we find that the motion is very close to being
completely integrable, i.e., with almost no chaotic signatures.
This is quite surprising since the pseudopotential is highly
nonlinear and a priori there is no reason to expect its inte-
grability. We continue by first studying in detail the effect of a
bias DC voltage (Ub) applied to the rf electrodes, still within
the pseudopotential’s 4D phase space. The bias voltage leads
first to an increase of the trap depth, but beyond a threshold
magnitude causes the gradual destruction of the regular phase
space. As a function of the energy, the phase space may split
into a few (nearly regular) trapping “islands” separated by
chaotic regions.

Reintroducing the time dependence of the trap, we study
how the integrability-breaking perturbation that scales with
Urf leads the ion to escape from the trap, due to the combined
effect of the bias and time dependence. In the 5D phase space,
the regions of regular and chaotic motion can be intertwined
in a complicated way. This introduces new possibilities for
transport mechanisms in phase space, as we briefly discuss
below. At the same time, it presents a challenge for visualizing
and exhaustively analyzing the motion. For a practical, first step
study of the ion’s escape from the trap, we present a simple
measure of phase-space volume that enables quantification of
these competing processes and their dependence on the three
parameters λ, Urf , and Ub.

We find (in Sec. IV B) that the border of validity of the
pseudopotential (for approximately regular motion) found for
the z motion holds also for the coupled yz motion, restricted
to intermediate values of λ and Ub. Above this threshold, all
chaotic trajectories escape, and the regular region gradually
shrinks as well. We also find an optimal regime of the
parameters maximizing the (mostly regular) trapping phase
space volume of yz motion in the model five-wire trap. We
find that this regime is obtained for Urf just below the threshold
of validity of the pseudopotential, with λ → 0 (requiring to
reduce the axial trapping ωx), and an optimal intermediate
value of Ub. These parameters are distinctly different from a
naïve pseudopotential approach that would lead to increasing
Ub and Urf as much as possible.

The near integrability of the pseudopotential for the sym-
metric, unbiased five-wire configuration makes it a natural
starting point to analyze dynamics in surface traps, since the
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motion remains close to integrable for any perturbation that
is not too large. This includes the full rf-driven motion in 5D
phase space, and indeed we confirm that this perturbation can
be considered small within the 5D phase space, in the same
regime where it is small in the 3D phase space of z motion. A
systematic treatment based on the integrable pseudopotential
limit of the symmetric five-wire trap gives a framework for
studying further coupling or asymmetry, or the application
to different geometries. The consideration of circular traps
[33,34], and even of electrons guided on a chip [35], could
be another interesting direction, immediately applicable (the
latter is essentially a surface trap, operating at much higher
frequencies since the electrons are much lighter).

Motivated by practical questions on the motion of trapped
ions, this work is focused mostly on the ion’s escape from the
trap. However, from a broader point of view, one can study how
transport between different parts of the phase space proceeds
within the Hamiltonian motion. As described in the following,
for a phase space which is effectively 3D or 4D, the motion is
amenable to classification using 2D Poincaré sections, and the
transport properties can be scrutinized. With more degrees of
freedom, there are richer options for transport and there is a
fundamental interest in unveiling the involved mechanisms.
The ion trap offers a system with excellent prospects for
experimenting with this physics, at the level of elementary
particles. The trap parameters are highly controllable, the
dimensionality of the effective phase space can be altered,
and as we find in the following, further control parameters
can be devised. There are some limitations with respect to
directly measuring microscopic properties of the motion that
nonetheless can be circumvented.

In Sec. V, we propose an experiment probing the nonlinear
and chaotic motion of an ion in a surface trap. Our analysis
is based on a four-wire trap described in Ref. [36], with
an electrode configuration that is more complicated than the
model of the five-wire trap discussed above. We consider
adding a controlled “tickle” perturbation (a small-amplitude
voltage modulation) on one of the electrodes, at a frequency
above resonance with the secular motion. It gives a robust
experimental procedure resulting in a clear signal with a
nonmonotonous and sensitive dependence on the parameters.

Running numerical simulations of this trap configuration
with real experiment parameters, we find clear evidence
(within the limitations of an initial study) of trapping “pockets”
induced in the trap’s phase space. We predict a variety of
distinct functional forms for the ion’s escape probability from
these pockets, which present a challenge for further theory
and experiments on Hamiltonian transport in a mixed phase
space [37–39]. We also find quantitatively very similar escape
probabilities with the pseudopotential approximation for this
trap, indicating that it is being operated not far from its
integrability limit.

The theory presented in this work gives a general framework
that can be applied to various surface-electrode traps. With an
understanding of the mechanism that determines the nature
of the dynamics, the scope of the conclusions that we draw
(Sec. VI) extends beyond the particular models here studied.
In the appendixes, we collect a set of phase-space tools that
allow one to treat arbitrary trap potentials which are nonlinear
and periodically driven. In particular, we rigorously derive the

pseudopotential approximation for a generic periodic potential,
as a canonical transformation from the original coordinates,
that results in a time-independent pseudo-Hamiltonian (which
may a priori depend on the canonical momenta [40,41]). The
derivation of the pseudopotential from a canonical transforma-
tion allows us to keep the Hamiltonian phase-space structure,
and in particular the structure of the invariant tori of the motion
(in the near-integrable regime). As briefly discussed in the
outlook of Sec. VI, this Hamiltonian structure turns out to be
invaluable in a treatment of stochastic motion in phase space,
using a Fokker-Planck approach [42].

II. THE FIVE-WIRE SURFACE TRAP

In this section, we present the details of the trap model
and set the notation for the rest of this work. The total trap
potential is the sum of two parts; the time-dependent potential
produced by two rf surface-electrodes and a time-independent
harmonic potential contribution (quadratic in the coordinates).
As shown in Fig. 1, the surface electrodes lie in the z = 0
plane and are assumed to have an infinite extent along the
x axis. The y axis is perpendicular to the infinite direction of the
electrodes in the electrode plane, and the z axis is orthogonal
to the electrode plane. The electric potential from the surface
electrodes is given by [32,43–45]

V5w(y,z) = [Vw(y,z; w) − Vw(y,z; −w)], (2)

with the potential due to one planar electrode of width w

centered at +w and held at unit voltage being

Vw(y,z; w)

= 1

π

[
arctan

(
y − w/2

z

)
− arctan

(
y − 3w/2

z

)]
. (3)

The field due to the potential of Eq. (2) vanishes at a
saddle point �R0 = {0,0,z0} at a height z0 = √

3w/2 above
the electrodes. Since this potential does not trap along the x

axis, additional (DC) electrodes must be included. Here we
approximate the potential confining the ion along x by an
ideal static quadrupole (harmonic) potential along x that leads
to antitrapping in the radial directions. The total dimensional
potential energy of an ion in the trap is

Ṽtrap = e
∑

α

UDC

2cα

(Rα − R0,α)2

+ e(Ub − Urf cos �t)V5w(y,z), (4)

where α ∈ {x,y,z}, �R is the vector coordinate of the ion, � is
the rf frequency, and e is the charge of the ion. Urf and Ub are
the rf and the DC “bias” voltages (respectively) applied to the
rf electrodes, and UDC characterizes the strength of the static
harmonic potential. The geometric properties of the latter are
defined by cα (which are of squared-length dimension), and by
the origin of the static quadrupole that we choose to coincide
with the saddle point of V5w, that is �R0,α = {0,0,z0}.

Measuring distances in units of the width w and rescaling
time by half the rf frequency, �/2,

�Rα → �Rα/w t → �t/2, (5)
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we find the nondimensional potential

Vtrap = Vh + (a5 − 2q5 cos 2t)V5w(y,z), (6)

where

Vh = 1
2 [axx

2 + ayy
2 + az(z − z0)2], (7)

and the nondimensional parameters are

aα = 4eUDC

m�2cα

, q5 = 2eUrf

mw2�2
, a5 = 4eUb

mw2�2
. (8)

In this setup, the motion in the x direction is that of a simple
harmonic oscillator (with frequency ωx), decoupled from the
motion in the radial yz plane. As a consequence of the Laplace
equation, the harmonic axial DC voltage gives rise to radial
antitrapping, which we take to be symmetric:

az = ay = − 1
2ax, ax > 0. (9)

The linearized secular frequencies of the ion near the center
of the trap are given by [46]

ωα = να

�

2
, (10)

where να(aα,qα) is the nondimensional characteristic exponent
of the corresponding Mathieu equation, with parameters aα,qα .
The latter (qα) can be obtained by a linearization of the trap
potential Vtrap of Eq. (6) around {y = 0,z = z0}, giving, for
a5 = 0,

qx = 0, qz = −qy = 2√
3π

q5. (11)

In the limit aα,q2
α � 1, we can approximate

να ≈
√

aα + q2
α/2, (12)

which results in

ωx = √
ax

�

2
, ωz ≈

√
−ax + q2

z

�

2
√

2
. (13)

For the figures and numerical analysis in this paper, we
consider both nondimensional parameters and physical param-
eters that give a specific example of real-world values. All
the dimensional values are given for 9Be+ ions in a trap with
electrode width and rf frequency [that appear in Eq. (5)], given
by

w = 50 μm, � = 2π × 100 MHz. (14)

III. HAMILTONIAN MOTION IN ONE SPATIAL
DIMENSION

In this section, we consider the unbiased configuration Ub = 0
(i.e., a5 = 0) and characterize the motion of the ion in the
rf potential, and the corresponding pseudopotential, of the
z spatial coordinate orthogonal to the electrode plane. In
Sec. III A, we introduce the notation, and in Sec. III B, we
present the possible types of phase space structures and discuss
the qualitative implications. Then in Sec. III C, we define
quantitative measures that enable characterization of the trap’s
dependence on its parameters. The effect of the bias voltage
Ub will be studied in Sec. IV, for the coupled yz motion.

A. Reduction of the equation of motion

Setting y = ẏ = 0 in the equations of motion derived
from Eq. (6) results in y(t) = 0 for all times, and thus the
z motion can be studied independently. Since a5 = 0, the
potential depends on two parameters, ax ∝ ω2

x and q5, that
are proportional to the static quadrupole and the rf voltages
respectively [Eq. (8)]. With y = 0 in Eq. (6), the rf potential
can be simplified to

V 1D
rf = az

(z − z0)2

2
− 4

π
q5 cos 2t

[
arctan

(−1/2

z

)

− arctan

(−3/2

z

)]
. (15)

In the rest of the paper, we refer to this potential as the 1D “rf
potential.”

Since the rf frequency sets the fastest frequency scale,
the method of averaging is a natural approach, allowing one
to simplify the description of the motion and reduce the
equations of motion to an autonomous system. Using this
method, it is possible to derive an effective time-independent
pseudopotential approximation to the rf potential that is well
known [47,48]. In Appendix A, we present a derivation of
the pseudopotential as a time-dependent canonical transfor-
mation, from the original phase-space coordinates of motion
within the rf potential, to new coordinates. This transformation
eliminates the π -periodic component of the position and
momentum, while preserving the Hamiltonian structure (with
a new time-independent Hamiltonian). Thus, although the new
Hamiltonian is time independent, the new variables are actually
time-dependent functions of the original ones (and vice versa).
In the following subsections, we will consider in detail the
regime where the pseudopotential gives a simpler and accurate
approximation and its limits of applicability.

The 1D pseudopotential approximation to Eq. (15), derived
in Appendix A, is

V 1D
pseudo = az

(z − z0)2

2
+ q2

5
16(3 − 4z2)2

π2(9 + 40z2 + 16z4)2
. (16)

By a second rescaling of time using

t → q5t, (17)

we get the rescaled pseudopotential,

V 1D
λ ≡ V 1D

pseudo

q2
5

= −λ
(z − z0)2

2
+ 16(3 − 4z2)2

π2
(
9 + 40z2 + 16z4

)2

(18)

governed by a single pseudopotential parameter defined equiv-
alently to Eq. (1) by

λ = − az

q2
5

= ax

2q2
5

> 0, (19)

where we have used the fact that in the symmetric case that we
consider, az = −ax/2 < 0, as in Eq. (9).

The pseudopotential has two fixed points, defined as the
solutions of

dV 1D
pseudo/dz = 0. (20)
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FIG. 2. (a) Phase-space trajectories for motion in the nondi-
mensional pseudopotential of Eq. (16) with

√
λ = 0.035 and q5 =

0.65 [ωx = 2π × 2 MHz, ωz ≈ 2π × 8.4 MHz, Urf = 30V; see also
Eq. (14)]. For each initial condition, the ion moves continuously
along a curve. The stable (zs) and unstable (zu) fixed points can
be identified at the center and at the right tip, together with some
escaping trajectories. (b) Stroboscopic map taken at t = 0 (mod π ),
of the motion in the rf potential [Eq. (15)] for the same parameters.
The ion returns to this 2D cut of its phase space every π period, and
for regular motion, all points started with a given initial condition lie
on a curve. Small regions of chaotic motion, filling an area in phase
space, can be identified near the slightly lowered unstable fixed point.
(c) Similarly, for

√
λ = 0.068, q5 = 0.868 [ωx = 2π × 4.18 MHz,

ωz ≈ 2π × 11.1 MHz, Urf = 40 V], the motion is mostly regular in-
side the last unbroken torus (with resonance island chains surrounded
by very thin chaotic strips, between unbroken tori), beyond which a
chaotic “sea” emerges from the region near the unstable fixed point.
(d) A close-up of the region around the last unbroken torus of panel (c).

The first point, zs , is the stable fixed point at the center of
the trap (that is, the pseudopotential minimum). The second
point, zu, is an unstable fixed point, a local maximum of the
pseudopotential, beyond which the ion escapes the trap. As
discussed above, we assume a configuration such that the z

origin of the harmonic term in Eq. (18) coincides with the
point where the force from V5w is 0. In that case, the stable
fixed point is independent of the parameters ax and q5: Within
the pseudopotential as well as the rf potential, z0 = zs for all
λ. For λ = 0, zu is maximal, while for λ > 0, zu moves toward
zs . The numerical values of the fixed points are given by

zs =
√

3

2
≈ 0.866, zu|λ=0 =

√
3/4 +

√
3 ≈ 1.575. (21)

The linearization near zs of V 1D
pseudo of Eq. (16) gives the

harmonic oscillator potential

V 1D
pseudo → V 1D

h.o. ≡ 1
2ν2

z z
2, (22)

and the linearization of V 1D
rf of Eq. (15) gives the Mathieu

oscillator potential

V 1D
rf → V 1D

M.o. ≡ 1
2 (az − 2qz cos 2t)z2, (23)

FIG. 3. Stroboscopic map of the time-dependent phase space
for

√
λ = 0.015 and q5 = 1.30 [ωx = 2π × 1.41 MHz, ωz ≈ 2π ×

17.8 MHz, and Urf = 60V], at (a) t = 0 (mod π ), (b) t ≈ 0.26π

(mod π ), (c) t ≈ 0.53π (mod π ), and (d) t ≈ 0.8π (mod π ).
Although λ is small and therefore the unstable fixed point is close to
its maximal position, the chaotic region connected to it is extremely
large. The distortion of phase space during a micromotion cycle can
be clearly seen. The area of every set of points that maps onto itself
under the Hamiltonian evolution is invariant.

with characteristic exponent νz(az,qz) that coincides with νz

appearing in Eq. (22), within the approximation of Eq. (12).

B. Phase-space structure

The pseudopotential is time independent, and therefore the
total energy is conserved in time. Furthermore, conservative
motion in one spatial dimension is integrable, and the motion
of the ion in the 2D phase space {z,pz} is restricted to a
closed curve for bounded motion; see Fig. 2(a). Here, pz = ż

is the canonical momentum, with the mass absorbed into the
parameters in Eq. (8).

The rf potential is, in contrast, time dependent and π

periodic, so the motion can be thought of as occurring within
a 3D phase space defined by {z,pz,t}, with the t dimension
periodic. The ion trajectories can be studied by constructing a
2D cut of phase space taken at fixed value of t (mod π ); see
Fig. 2(b). The continuous Hamiltonian motion as a function
of time is then “stroboscopically” projected to a discrete map
of phase space onto itself at π time intervals. The ion does
not follow continuously as a function of time any curve in this
planar surface of section, but rather revisits this plane every π

period of the external drive.
In contrast to the pseudopotential, within the time-

dependent potential two different types of motion can arise—
regular and chaotic. For bounded regular motion, the ion’s
return points to the 2D surface of section lie on a closed, 1D
curve, or a finite set of such curves in the case of a chain
of resonance “islands.” In the latter case, in each period the
ion revisits a different island from the chain in a fixed order.
For chaotic motion, the ion’s return points will in the limit of
infinite time fill a region with nonzero area. The structure of
unbroken tori (invariant curves), chaotic strips, and resonance
island chains is fractal [repeating itself in smaller and smaller
scales—see Figs. 2(c) and 2(d)]. Each closed curve and every
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connected region of chaotic trajectories, are invariant under
the time evolution. Therefore, a stroboscopic map taken at any
value of t (mod π ) will contain the corresponding structures
with the same enclosed area, distorted in time with periodicity
π ; see Fig. 3. This important property of the time evolution
will be used below.

Figures 2(a) and 2(b) show the similarity between the pseu-
dopotential phase space and that of the rf potential for small
q5. This can be understood by decomposing the rf potential
as a sum of its time-independent-averaged pseudopotential
(whose phase-space structure depends on the single parameter
λ) and a time-dependent perturbation, whose amplitude is
controlled by q5. Therefore, we expect the rf potential to be
well approximated by the pseudopotential in the limit of small
q5 for any λ. The pseudopotential is integrable, and the measure
of chaotic trajectories in the phase space increases with q5.
When q5 is small, the phase space is composed of mostly
regular motion and as it is increased, an increasing area of
phase space becomes chaotic. Figures 2(c) and 2(d) show the
stroboscopic map with a moderate value of both λ and q5, for
which there is significant deviation from integrability with the
aforementioned mixed structure of regular tori, chaotic strips,
resonance islands, and a large chaotic sea leading through the
unstable fixed point to escape from the trap. Figure 3 shows the
phase space with only a small central regular island remaining,
for a larger q5. In this figure also the micromotion dressing of
the pseudopotential motion is visualized.

To gain more understanding of the motion within the rf
potential, we can use a correspondence between the phase
space of the time-dependent rf potential and a higher dimen-
sional phase space of a time-independent potential (see, e.g.,
Ref. [49] and references therein). It is a general method that
relates also to approaches for treating dynamical modes of
periodic Hamiltonians [24,50,51]. The motion generated by
the Hamiltonian

H (z,pz,t) = p2
z /2 + V 1D

rf (z,t) (24)

can be embedded into a larger, 4D time-independent phase
space, using the correspondence

H (z,pz,t) → H(q,p,Q,P ) = H (q,p,Q) + P. (25)

In Appendix B, we show that this embedding reproduces
the original motion of {z(t),pz(t)} for a fixed energy shell
of H(q,p,Q,P ) = 0. Since the conserved energy of a 4D
time-independent Hamiltonian defines a 3D manifold, this
justifies our statement that the original motion takes place in
an effectively 3D phase space.

Using this embedding, we can deduce that the phase space
of the rf potential has a further important property. Since this
phase space is effectively 3D, any 2D invariant torus within
it divides the space into two disconnected regions—“inside”
and “outside.” This means that it is possible to define the “last
unbroken torus,” that is, the torus with maximal volume. In the
stroboscopic map, it is simply the “last” continuous invariant
curve, having maximal area. Since phase-space trajectories
cannot cross, any motion started with an initial condition within
the last unbroken torus will remain bounded. Even chaotic
motion, within this torus, is disconnected from the chaotic
sea outside. The existence of a torus that divides the phase

space into two disconnected components facilitates a rigorous
characterization of the trap.

C. Trap characterization

As a quantitative measure of the trap’s ability to trap
particles, we take the phase space area within the last unbroken
torus. This measure is in fact proportional to the action of the
canonical action-angle coordinates for integrable motion. It
is a phase-space invariant conserved in time, which is well
defined both for the pseudopotential and the rf potential (for
which the energy, in contrast, is not conserved) and allows an
accurate comparison of the capability of the trap to store ions.
The action is also monotonous with the ion’s maximal kinetic
energy (Fig. 2). Beyond the last unbroken torus, the chaotic
region is connected to the unstable fixed point and the ion is
likely to quickly escape the trap.

For the pseudopotential, the phase-space area within a given
closed invariant curve can be easily calculated by integrating
along the curve,

J =
∮

pzdz = 2
∫ √

2
[
E − V 1D

pseudo(z)
]
dz, (26)

where the integration on the right-hand side is to be performed
from the minimal z to the maximal z of the closed curve, and
E is the energy of the particle. The phase-space area of the
rescaled pseudopotential of Eq. (18) is given by Jλ = J/q5,
coming from Eq. (17). The trapping phase-space area, Jmax, is
defined for each set of parameters as the maximal value of J

for the bounded motion. In fact, it is the area bounded by the
separatrix—the closed curve that passes through the unstable
fixed point.

Within the rf potential, the area within the last unbroken
torus can be calculated directly from the stroboscopic map.
However, this calculation is cumbersome when pz (restricted
to positive values, say), is not a function of z, as can happen
near resonance islands; see Fig. 2(d). We can use the fact that
the stroboscopic map of H coincides with a Poincaré surface of
section of H defined in Eq. (25), as discussed in Appendix B,
and calculate the phase-space area within a closed curve of the
stroboscopic map using a method developed for calculating the
action of 2D tori surfaces in the 4D phase space, described in
Appendix C. With this method, we calculate Jmax, the phase-
space trapping area, which is the area bounded by the last
unbroken torus of the rf potential phase space.

To map the phase space of both the rf potential and
the pseudopotential, we simulate the dynamics with initial
conditions of pz(0) = 0 and small increments in z(0) between
zs and zu. This allows us to cover the entire phase space (except
some resonance islands) and also to construct numerically the
transformation to action-angle variables throughout the region
of regular motion. The simulation is repeated for different trap
parameters, giving a complete characterization of the depen-
dence on the parameters. An invariant curve is numerically
identified if the curve obtained from a single trajectory is
continuous and has no width (to some accuracy). For the
verification of the numerics, the pseudopotential simulations
are compared with direct quadrature, numerically minimizing
Eq. (20) and integrating Eq. (26). The phase-space trapping
area is also calculated directly for convex curves from the
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FIG. 4. Rescaled (nondimensional) trapping phase-space area,
plotted as function of

√
λ ∝ ωx/Urf , at increasing values of q5 [see

text for details and also Eqs. (5) and (14)]. The points are obtained by
numerical simulation of the equations of motion in the rf potential,
and the dotted curve is obtained for the pseudopotential from Eq. (26).
Up to q5 ≈ 0.5 (Urf ≈ 25 V), the pseudopotential gives a very good
approximation of the global trap characteristics in the rf potential, with
all simulated trap parameters falling very close to the pseudopotential
curve, a function only of λ. The sharp jumps for larger q5 values are
due to the last unbroken torus breaking and being replaced by a nested
one.

stroboscopic map, and the tori winding number (defined in
Appendix C) is calculated and compared with its expected limit
at the center of the trap, where νz is known.

With the rescaled units of Eq. (17), Fig. 4 presents the
complete information on the 3D phase space of the symmetric,
unbiased five-wire trap. We find that the pseudopotential
measures the phase-space trapping area of the rf potential very
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FIG. 5. Trapping phase space area Jmax (nondimensional), as a
function of the axial trapping frequency ωx for increasing values of
Urf (equivalently,q5; see text for details). ForUrf = 20 V, the results of
the rf potential simulations overlap the pseudopotential curve. With
Urf = 30 V, Jmax increases for both the pseudopotential and the rf
potential, but is lower within the rf potential for ωx/2π � 3 MHz as
compared with the pseudopotential curve. For higher values of Urf , the
deviation becomes even more pronounced, since the pseudopotential
trapping phase-space area (not shown) only increases, while within the
rf potential Jmax decreases due to chaos. While for the pseudopotential
Jmax depends monotonously on ωx and Urf , within the rf potential this
dependence is nonmonotonous and is generally more complicated
due to the role played by chaotic motion. The maximal trapping is
obtained with Urf ≈ 25 V and λ → 0.

FIG. 6. (a) Trapping phase-space area and (b) escape height [both
in nondimensional units; see Eq. (5)], as a function of the linearized
frequency ωz at the stable fixed point, for increasing values of the
axial trapping frequency ωx . The global trapping characteristics are
nonmonotonic with ωz and tend to become independent of ωx . In
addition, it can be seen that the escape height and phase-space
trapping area do not reach their maximum together as a function of
the parameters.

accurately up to q5 ≈ 0.5 (Urf ≈ 25 V), for any λ. Further
increasing Urf (i.e., q5) leads to two competing effects. On
the one hand, as for smaller values of Urf , the size of the
trapped region within the pseudopotential approximation keeps
increasing. This again is due both to the fact that increasing q5

decreases λ, which in turn increases the depth of the potential,
and with it the maximal rescaled phase-space trapping area
Jmax/q5, and also to the fact that in the original unscaled
phase-space units, Jmax grows linearly with q5 (at fixed λ,
i.e., at fixed scaled pseudopotential dynamics). However, at
the same time, within the rf potential, the rf perturbation starts
to significantly affect the nature of the dynamics: Invariant
tori begin to break, and the effective trapping is lowered due
the increasing size of the chaotic regions connected to the
exterior of the trap. The consequences of this mechanism can
be observed for instance in Fig. 4 for q5 � 0.65. Furthermore,
at any fixed value of q5 � 0.87 (Urf � 40 V), Jmax can be seen
in the same figure to make large jumps as a function of

√
λ or

of ωx . These large jumps can be associated with the breaking
of a torus, leading to the connection of a chaotic layer around a
resonance (island chain) with the main chaotic region coming
from the unstable fixed point. The same phenomenon is visible
in Fig. 5, which is discussed below.

The competition between the increase of the pseudopoten-
tial phase-space trapping area and the increase of the chaotic
region leads to a nonmonotonic dependence of the phase-space
trapping area (in unscaled units) on the parameters in the rf
potential. This can be seen in Figs. 5 and 6(a), where the
secular frequencies ωx and ωz serve as the control parameters.
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To maximize the total phase-space trapping area, taking Urf ≈
25 V at the border of the validity of the pseudopotential
is optimal, and λ → 0 (equivalently, ωx → 0) is required.
Otherwise, if ωx is constrained, the maximal trapping will
be obtained at different values of Urf . In experiments with
trapped ions, it is often desirable to have the linearized trapping
frequencies ωα as high as possible. However, increasing ωx

causes antitrapping in the radial coordinates and increases λ

(at fixed ωz). Increasing ωz (at fixed ωx) requires increasing
Urf and hence the nonintegrable perturbation. Both effects
eventually degrade the trap.

Finally, in Fig. 6(b) we plot the escape height from the
trap, defined as the minimal position z > zs , at pz = 0 and
t = 0 (mod π ), for which the ion escapes the trap. The escape
height and the phase-space trapping area do not attain their
maximum together, which emphasizes the importance of the

trap’s capability to trap high-momentum particles, measured
by the phase-space area.

IV. HAMILTONIAN MOTION IN TWO SPATIAL
DIMENSIONS

The pseudopotential for the coupled yz motion, including the
bias voltage, can be decomposed as

V 2D
pseudo = 1

2az[y
2 + (z − z0)2] + q2

5

[
V 2D

avg

]
+ a5

[
V5w(y,z) − 1

3

]
, (27)

with V5w defined in Eq. (2), the factor of 1/3 makes the po-
tential vanish at its minimum, and V 2D

avg, the time-independent
approximation to the time-dependent part of Eq. (6), can be
derived as outlined in Appendix A and reads

V 2D
avg = 16[16(y2 + z2)2 + 24(y − z)(y + z) + 9]

π2[(1 − 2y)2 + 4z2][(3 − 2y)2 + 4z2][(2y + 1)2 + 4z2][(2y + 3)2 + 4z2]
. (28)

With the second rescaling of time (t → q5t) given in Eq. (17),
we get the rescaled pseudopotential

V 2D
λ = − 1

2λ[y2 + (z − z0)2] + V 2D
avg − λb

[
V5w(y,z) − 1

3

]
,

(29)

where we have defined the pseudopotential bias parameter,

λb = − a5

q2
5

∝ − Ub

(Urf )2
. (30)

Let us first consider the unbiased potential (λb = 0). By
running careful numerical simulations of the dynamics over
a fine grid of initial conditions, we have found almost no
signatures of chaos throughout the phase space up to the
unstable fixed point. Pinning down the reason for this near
-integrability and identifying the implied additional constant
of motion is beyond the scope of the current work. However,
this integrability implies that any added perturbation, if not too
large, introduces only a limited structural change of the phase
space. In this section, we demonstrate this statement for two
separate perturbations of the integrable pseudopotential and
then their combined effect. First, we consider (in Sec. IV A)
the effect of a negative bias voltage on the structure of the
pseudopotential phase space. Then, in Sec. IV B, we study
the full rf potential, which can be considered as a second
perturbation scaled by q5 that is added to the pseudopotential,
including the bias.

A. The 4D pseudopotential phase space

In the 4D phase space of the yz pseudopotential, increasing
λb increases the trap depth by pushing the unstable fixed
point zu up, and eventually completely eliminating it, allowing
the ion to be trapped without escaping for any energy. At
the same time, this perturbation gradually deforms the phase
space, breaks the main island into several smaller islands, and
introduces a chaotic region where the ion is expected to be more
susceptible to heating and can escape from the trap (within the

rf potential, to be studied in Sec. IV B). Hence, the bias voltage
induces a competition between two mechanisms of opposite
nature that we investigate in the following.

We have simulated the equations of motion derived from
Eq. (27), varying the parameters. We vary λ between

√
λ ≈

0.016 and
√

λ ≈ 0.065 [ωx = 2π × 0.5 MHz to ωx = 2π ×
2 MHz at Urf = 20 V], corresponding to the first quarter of
the horizontal axis of Fig. 4. We vary λb between

√
λb = 0.21

[Ub = −0.2 V at Urf = 20 V] and
√

λb = 0.43 [Ub = −0.8 V
at Urf = 20 V], in addition to the unbiased potential λb = 0.

For each pair (λ,λb), we run the simulation on a grid of
energies between 0 and up to a maximal energy, which we
take to be the energy of a particle at rest at a certain height
z0

max. For λb = 0, this height is just z0
max = zu. For λb > 0, zu

is pushed up significantly, and we truncate the simulations at
an arbitrary energy shell corresponding to a particle at rest at
a height of

z0
max ≈ 2.3 × zs ≈ 2. (31)

As we discuss in detail in the conclusions of the following
subsection, trajectories that reach very high above the electrode
are expected to be less relevant from an experimental point of
view, and hence the condition above is a reasonable one.

We begin by examining the structure of the phase space as a
function of λ and λb. For a small value of the bias potential, we
find that hardly any parts of phase space become chaotic as zu

is pushed up. Figure 7 demonstrates this for different values of
λ. Each panel shows a Poincaré surface of section, constructed
by taking simulations with different initial conditions at a fixed
energy, and plotting a point in the plane of {z,pz}, every time a
simulated trajectory goes through y = 0, with py > 0. Except
for the largest λ value, the phase space contains a large central
regular island. For the two highest λ values shown, the cusp
in the trajectories indicates the proximity of the unstable fixed
point in a higher energy shell. For the maximal value of λ,
the phase space is completely broken into smaller resonance
islands, although the motion still stays almost regular.
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FIG. 7. Poincaré surfaces of section simulated using the biased
pseudopotential of Eq. (27) with a low bias voltage,

√
λb = 0.21

[Urf = 20 V, Ub = −0.2 V]. In each panel (a)–(d), a different value
of λ is indicated, corresponding to ωx = 2π × {0.5,1,1.66,2}MHz
respectively, and the energy shell is close to the maximal simulated
energy value for the respective λ (and λb). For the parameters of
panels (a) and (b) the ion does not escape for any initial condition
in the simulated energy shells [constrained by Eq. (31)], while for
panels (c) and (d) (with increased λ), the unstable fixed point zu is
nearby in energy. We find that for this relatively small value of λb, zu

can be pushed significantly up, while the phase space remains mostly
regular (albeit with large resonance islands). We note that in contrast
to Figs. 2 and 3, here the island centers do not correspond to any fixed
point. In addition, each island is seen to be a section of a different,
disconnected family of tori.

Fixing the parameters, with λ at the maximal value we have
used and λb at an intermediate value, Fig. 8 shows Poincaré
sections at different, increasing energies. The phase space splits
into two central islands with an increasing chaotic sea between
them. In Fig. 9, for the largest value of λb, a similar phase-
space splitting occurs (with the main island centered at lower z

values), together with island destruction and an emergence of

FIG. 8. Poincaré surfaces of section at increasing values of the
energy within the biased potential of Eq. (27) with

√
λ = 0.065 and√

λb = 0.30 [Urf = 20 V, Ub = −0.4 V, and ωx = 2π × 2 MHz].
The phase space expands, breaks at first into two main islands, and
becomes more chaotic at higher energies where one island is almost
destroyed. The entire chaotic region and even parts of the islands will
gradually lead to escape out of the trap within the rf potential as its
amplitude is increased beyond a threshold (see Figs. 11 and 12).

FIG. 9. Poincaré surfaces of section as in Fig. 8, with
√

λ =
0.016 and

√
λb = 0.43 [Urf = 20 V, Ub = −0.8 V, and ωx = 0.5π ×

2 MHz]. Here the central island is pushed to the lower z side, while
at higher z values the motion becomes at some high energy almost
completely chaotic and then a new island emerges with a large size.
We note the different scale of the axes (in particular of pz) as compared
with Figs. 7 and 8. The relatively small value of λ allows increasing
λb and significantly enlarging the phase space while still maintaining
large (nearly) regular islands at high energies.

a new island. However, since in Fig. 9 the value of λ is small,
even in the high-energy shells there can be a large fraction of
(nearly) regular motion—and we note that the scale of the pz

axis is ∼1.6 times that of Fig. 8 and twice that of Fig. 7.
In order to quantify the trap’s effectiveness within the

pseudopotential approximation, we single out a 4D phase-
space volume with a given property, to be defined below. Since
such a volume is a function of the conserved energy E up to
which it is measured, it can be obtained by integration of a 3D
volume of interest �(3D)

χ (E) over the energy shells,

�(4D)
χ (E) =

∫ E

0
dE′[�(3D)

χ (E′)
]
, (32)

�(3D)
χ (E) =

∫
d �qd �pχ (�q, �p)δ(E − H (�q, �p)), (33)

with �q = {y,z}, �p = {py,pz}, H the pseudopotential Hamil-
tonian, and χ (�q, �p) an indicator function (taking therefore
either the value 0 or 1) that selects some region of phase
space with a specific property (different χ functions will be
introduced below). We note that by its definition, �(3D)

χ (E) is
independent of the rescaling of time [in Eq. (17)], leading to
the pseudopotential of Eq. (29), but �(4D)

χ (E) is not.
Within each energy shell, �(3D)

χ (E) can be calculated in a
straightforward manner from the Poincaré section, as outlined
in Appendix D. We stress here that by its definition, the
Poincaré section contains the full information on the motion
(at each energy). Within the pseudopotential approximation,
the Poincaré section is 2D, which simplifies the analysis
significantly, since we can reduce the 4D indicator functions
χ (�q, �p) to their 2D counterparts χ (z,pz) within the Poincaré
section.

We introduce two indicators, χt(z,pz) and χr(z,pz), and
assign their value within each Poincaré section (gridded ap-
propriately). For the first, we set χt(z,pz) = 1 on every point
of the Poincaré section such that the corresponding motion is
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FIG. 10. The 4D phase space volume �(4D)
χ , measuring pseu-

dopotential trajectories with a given property, as defined by two
different indicator functions. The symbols correspond to the total
pseudopotential volume (χt), and the lines to motion bounded by the
last unbroken torus of centred islands, approximately regular (χr). The
values are given for Urf = 20 V for comparison with Figs. 11 and 12,
but within the pseudopotential the dynamics is fully determined by λ

and λb and the volume �(4D)
χ scales with (Urf )2. The open pentagram

symbols corresponding to
√

λb = 0.43 are outside of the plot scale
(at �(4D)

χ ∼ 0.03), which is maintained for comparison with Figs. 11
and 12. See the text for a detailed discussion.

bounded within the pseudopotential approximation. Hence, χt

measures the total pseudopotential phase-space volume. We
further define χr(z,pz) to equal 1 on points of the Poincaré
section that (in the pseudopotential approximation) are within
the last unbroken torus of the center islands (around pz = 0),
and 0 otherwise. With this definition, it is relatively fast to
compute χr numerically, and it gives a good approximation
of the regular motion volume. A more accurate quantification
where regular regions outside the last unbroken torus are
included and chaotic regions within the last unbroken torus
are excluded would be significantly more complicated to
implement for very extensive simulations, and not necessarily
more relevant.

Figure 10 compares these two measures of the pseudopo-
tential phase-space volume, as a function of λ, λb. The limit
of integrability appears to be near λ → 0 and λb → 0. For the
smallest λ value, even a large λb (up to the largest one) allows
a large gain of (mostly) regular phase space (Fig. 9). Likewise,
for the smallest value of λb, the phase space can change its
structure but maintain primarily regular motion up to a large
value of λ (Fig. 7). However, as both λ and λb increase beyond
their minimal values, the increased useful phase-space volume
due to the bias may be saturated at a certain (λ-dependent)
λb value, by the destruction of the regular motion regions that
come with it (Fig. 8). Within the pseudopotential, the dynamics
are independent of the value of Urf , which only rescales the
units as discussed below. In Fig. 10, Urf = 20 V is chosen for
comparison with the dynamics within the rf potential, studied
in the following subsection.

B. The 5D rf phase space

Turning to the full yz rf potential of Eq. (6), beyond the
addition of a third parameter (Urf ), the motion takes place in

an effectively 5D phase space. The construction of Poincaré
sections in this case is not straightforward, and in addition a
torus of regular motion (which is only a 3D manifold), cannot
divide the phase space into disconnected regions, so there is
no longer a last unbroken torus. For any amplitude of the
perturbation, there will always be some (possibly exponentially
small) measures of tori destroyed by the perturbation. Since no
regular torus divides the phase space, these broken tori become
connected and transport between different regions of phase
space can then proceed in a complex manner. A comprehensive
analysis becomes thus significantly more complicated.

In particular, within a 5D phase space (and above), Arnol’d
diffusion is a possible transport mechanism [52]. This process
takes place through successive hops from one thin chaotic
layer to another one. In practice, due to various uncontrollable
perturbations in ion traps (from, e.g., fluctuations of voltages
and charges on the electrodes, or stray electromagnetic fields),
the ion is constantly heated and slowly diffuses. The strength of
the random forces is independent of the phase-space structure
(regular or chaotic) and can be expected to overwhelm the
exponentially suppressed Arnol’d diffusion rate (from deep
within the regular regions). In this subsection, we therefore
take a simpler approach, in which we use information about
the dynamics from simulations with the full rf potential, but
we do not analyze the full 5D phase space of the rf motion
and rather keep the simplicity of being able to use the 2D
Poincaré sections constructed for the 4D phase space of the
pseudopotential.

Repeating the same set of simulations as described in the
previous subsection (for the pseudopotential), within the full
yz rf potential of Eq. (6), we take Urf between 20 and 35 V (cor-
responding to q5 ∈ [0.43,0.76]), as suggested by the analysis
of Sec. III. At each value of Urf , we simulate exactly the same
initial conditions as simulated with the pseudopotential. We run
the simulation for 20 000 rf periods, a duration longer than the
typical lifetime of the trajectories that were observed to escape.
In addition to χt and χr that characterize the motion solely
within the pseudopotential, we can now define χn(z,pz) = 1
on every point of the pseudopotential Poincaré section if it
belongs to a trajectory that does not escape from the trap within
the rf potential simulation, when initiated at time t = 0 with
the same initial condition (and 0 otherwise).

In Figs. 11 and 12 we compare, as a function of λ, λb, and
Urf , the total pseudopotential phase-space volume nonescaping
within the rf potential (χtχn), with the pseudopotential volume
bounded within the last unbroken torus of center islands, and
nonescaping within the rf potential (χrχn). Although within
the pseudopotential, the dynamics are determined by λ and
are identical for any value of Urf at fixed λ, the 4D phase-
space volume �(4D)

χ in fact scales ∝ (Urf )2. This scaling would
imply an increase of the volume with (Urf )2 for fixed λ and
λb. However, the competition with the effect of trajectories
gradually escaping from the trap due to the increase of Urf , in
particular in the higher energy shells and larger values of λ and
λb, determines the effective gain due to the increase of Urf .

By comparing Fig. 10 with Fig. 11(a), we find that for
intermediate parameter values,

√
λ � 0.043 and

√
λb � 0.30,

almost the entire pseudopotential phase-space volume is
bounded within unbroken tori, and hardly any of that escapes
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FIG. 11. The 4D phase-space volume �(4D)
χ , measuring pseu-

dopotential trajectories with a given property, that are nonescaping
with the rf potential. The symbols correspond to all pseudopotential
trajectories, and the full lines correspond to those bounded by the
last unbroken torus of center islands. See Fig. 12 for the legend
of λb values, and the text for a detailed discussion. The maximal
(mostly) regular trapped volume which can be considered as robust
to nonintegrable perturbations is obtained with Urf = 20 V, λ → 0,
and

√
λb ≈ 0.37.

within the rf simulation at Urf = 20 V. For larger λ, λb values,
there could be a large chaotic volume that remains trapped.
Comparing with Fig. 11(b), we see that the trapped volume
increases (and is mostly regular) if increasing Urf to 25 V for√

λb � 0.3, while for larger λb, we see a crossover from an
increase to a decrease of the volume (depending on λ), due to
trajectories escaping within the rf potential. Figure 12(a) shows
that for Urf = 30 V and

√
λb � 0.3, trajectories continue to

escape from the rf potential and lead to a decrease of trapped
phase-space volume as compared with Urf = 25 V, since even
the regular parts shrink. For Urf = 35 V [Fig. 12(b)], even
for λb � 0.2, the volume decreases (as compared with Urf =
30 V).

Hence, we see again how the near-integrable pseudopoten-
tial behaves under the addition of combined perturbations.
The pseudopotential volume bounded by the last unbroken
torus of center islands appears to give a good measure of the
trajectories that are robust to escape under the rf potential.
It indicates the trap’s capability to trap particles of a high
kinetic energy, and it is a relatively simple quantity to calculate
numerically. The border of validity of the pseudopotential (for
approximately regular motion) was found in Sec. III to be
q5 ≈ 0.5 (Urf ≈ 25 V), for any value of λ. We can conclude that
this threshold holds also in the coupled yz motion, restricted to
intermediate values of λ and λb. Above this Urf threshold, all
chaotic trajectories escape, and the regular region shrinks as
well. For lower values of Urf , even parts of the chaotic motion
could remain trapped (for very long times), but for

√
λ � 0.043

and
√

λb � 0.30, the phase space is primarily regular. For
higher values of λ or λb the picture is more complicated and
sensitive to an interplay of the parameters, as described above.

Figure 11 also allows us to deduce how to maximize a
trapped phase-space volume that is (mostly) regular. A value of
Urf that is just below the threshold of pseudopotential validity
is apparently close to optimal. At lower Urf , the phase-space

FIG. 12. As in Fig. 11, but with larger Urf values. The legend in
panel (a) shows the value of λb assigned to the symbols representing
the total pseudopotential phase-space volume not escaping within
the rf potential (χtχn = 1), and the legend in panel (b) gives λb

assigned to the full lines showing the pseudopotential phase-space
volume (mostly) regular and bounded within the center islands, also
nonescaping (χrχn = 1).

volume shrinks because of the energy scaling, and at higher Urf ,
significantly more trajectories escape. For the trap parameters
of Eq. (14), it is Urf ≈ 20 V. Taking λ → 0 is required, and√

λb ≈ 0.37 can be considered to give the maximal volume
which is robust to small integrability-breaking perturbations.
Although increasing λb allows [according to Fig. 11(a)] to
continue and increase the trapped volume, by comparing Fig.
11(a) with Fig. 11(b) we see that this added volume is expected
to be unstable to small perturbations (in particular the trap’s rf
potential itself). At higher values ofUrf , as in Fig. 12, restricting
the parameters to lower values of λb is favorable.

The above simulations were based on constraining the
maximal height in the calculation of the phase-space volume
as a function of the different trap parameters. Beyond being
useful for numerical reasons, it is relevant experimentally
for a few reasons. Motion far from the trap center in any
direction would be in the edges of the laser-cooling beam waist
and would damp slowly, possibly slower than typical heating
rates. In particular, motion at high energy that approaches very
closely the electrodes is potentially more susceptible to heating
effects which scale with 1/zα , where α ≈ 4 [53]. Finally, while
being cooled toward lower energy, the ion could possibly hit
the chaotic sea just because of the topology of the regular
trapping islands, shown, e.g., in the higher energy shells of
Fig. 9.

We have truncated the simulations at the height given in
Eq. (31), which [with Eq. (14)] corresponds to a pseudopo-
tential trap depth of at least E/kB ≈ 70 K [with Urf = 20 V
and Ub = −0.2 V]. Since atomic ions are trapped in vacuum
and routinely cooled by Doppler cooling to milli-Kelvin
temperatures, with the entire setup possibly refrigerated to a
few Kelvin, this is a very high energy scale. It is only smaller
than the initial ion temperatures after their evaporation from an
oven and ionization. We have not directly explored the motion
at the scale of oven temperatures in our simulations, and the
operation of laser cooling during the loading process remains
an interesting open question.
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V. EXPERIMENTAL PROBE OF NONEQUILIBRIUM
ION DYNAMICS

Experimentally probing the phase-space structure of a
trap is a challenging task. To avoid any non-Hamiltonian
perturbations, the experiment has to be done on a short time
scale (so that heating is negligible), and “in the dark” (with
the laser cooling beam turned off after the initial cooling step).
An ideal experimental sequence would consist of exciting the
ion into various well-resolved initial conditions, and then mea-
suring microscopic properties of the trajectory. Both aspects,
however, are nontrivial to achieve with large-amplitude motion
in 3D. In this section, we present an initial proposal of an
experiment procedure that allows one to probe Hamiltonian
transport in a mixed phase space with a trapped ion, while
circumventing these difficulties.

We consider an indirect method of exciting the ion to
a large amplitude motion by an additional low-amplitude
periodic modulation [54] of one electrode’s potential (known
as a “tickle”) that produces an oscillatory electric field at
the equilibrium position of the ion. The tickle perturbation
gradually (as a function of its amplitude) destroys the regular
motion parts of phase space, turning them into mixed regions,
with islands (that vanish and emerge), and chaotic strips that
grow into contiguous chaotic regions. The latter may become
connected to the regions already chaotic in the unperturbed
Hamiltonian, with a structure and geometry which are very
sensitive to the tickle parameters. Numerical simulations allow
one to construct the ion’s survival probability in the trap as
a function of the tickle amplitude and its duration, which
shows distinct features that can be averaged over the initial
conditions. Thus this approach uses the properties of chaotic
motion—sensitive dependence on initial conditions, whose
memory is, however, quickly erased (assuming it is mixing),
to avoid the necessity of initializing the ion to precise initial
conditions. It further replaces the difficulty of experimentally
measuring the details of the trajectory with the more accessible
reconstruction of the ion’s survival probability as a function of
the initial ion energy, the electric field amplitude of the tickle,
and the duration of the tickle. As we show below, the survival
probability shows strong features that are distinguishable from
simple thermal activation over a barrier, or a simple oscillator
excitation process.

We must now depart from the five-wire trap in the symmetric
configuration, modeled so far in this work. Hitherto, it was
chosen because it enabled us to build the theory in steps
of increasing complexity of the phase space and parameter
dependence. In hindsight, it allowed us to uncover a near-
integrable limit of surface traps, which plausibly stands at
the basis of their practical success. However, in order to
guarantee laser cooling in all three spatial directions, the yz

symmetry has to be broken in practice. This can be done
in the five-wire trap as discussed in the introduction, while
another commonly used trap configuration is the so-called
four-wire trap. The simulations described below are based on
an operational four-wire trap, which implies that the effects
described could be observed in a realistic trap geometry.
A detailed investigation of the phase space for this trap is
beyond the scope of the current work. However, we model the
experiment setup faithfully and by comparing the numerical

FIG. 13. The simulated survival probability [Eq. (37)] as a func-
tion of time for different tickle amplitudes (U0), in a four-wire trap
(see the text for details of the model and parameters). The simulations
show a sharp threshold for the ion’s escape out of the trap, followed
by a nonmonotonous dependence on U0. We interpret the saturation
of (some) curves as the coexistence of long-lived trapping pockets
that are destroyed and re-emerge as a function of the perturbation
amplitude. These features together with the different functional forms
of Ps(t ; U0) present a potentially strong experimental signature that
could be used to indirectly probe the trap’s phase-space structure,
and a promising direction for studying Hamiltonian transport in a
mixed-phase space.

simulations of the trap’s rf potential to its pseudopotential
approximation, we can also assess the correspondence between
the two through their response to the tickle perturbation.

We model the trap used in Ref. [36]. The four-wire trap
potential can in general mix all three spatial coordinates (in
the large-amplitude regime); however, for the parameters of our
simulation, we find that the axial motion (along x) remains to a
large extent decoupled from the radial yz plane. Nevertheless,
the yz motion corresponds to a 5D phase space as discussed in
Sec. IV. For the parameters of the simulation, the rf frequency
is � = 2π × 163 MHz, the stable fixed point is approximately
40 μm above the electrode surface, and the linearized secular
oscillation frequencies around it are

ωx,y,z ≈ 2π × {1.49,9.16,10.36} MHz. (34)

Numerical simulations are performed by solving the equations
of motion of the ion in the 3D rf potential, starting with initial
conditions picked at random from a thermal distribution at the
Doppler cooling limit. A periodically modulated voltage (the
tickle) is added to an electrode potential [55], with the form

Ud(t) = U0 cos(ωdt + φ0), (35)

where φ0, the initial phase of the tickle modulation, is a
(uniformly distributed) random variable, and

ωd = 1.1 × ωz. (36)

Simulating 200 initial conditions at each value of tickle
modulation for a fixed maximal duration of 0.4 ms, we obtain
the probability that the ion remains trapped as a function of
time t and tickle amplitude U0. The ion’s survival probability
at fixed values of U0 is shown in Fig. 13, for U0 in the
range 192–244 mV, in steps of 4 mV. We define the survival
probability function as

Ps(t ; U0) = 1 − Pe(τ � t ; U0), (37)
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where Pe(τ � t ; U0) is the probability that the escape time τ

(which is a random variable in each realization) is between 0
and t , for a fixed value of U0.

With the frequency of the tickle modulation slightly higher
than ωz, the center of the main island (close to resonant with the
tickle), is gradually destroyed asU0 is increased, but can remain
as a pocket of long-lived chaotic motion (longer than the time
reached in our simulation), protected from escaping by a broad
region of (mostly) regular tori. Indeed for tickle amplitude
U0 = 192 mV we observe no escape of the ion. Increasing the
tickle amplitude beyond this threshold value, we find a sharp
onset of ion escape. After a short-time flat part of the survival
probability, the ion escapes at a slow rate (almost linearly with
time for U0 = 200 mV). Surprisingly, the escape rate is not
monotonic with the tickle amplitude, and Ps(t ; U0) returns to
nearly unity for U0 = 208–216 mV, before dropping sharply
again.

With U0 ≈ 220 mV, the functional shape of Ps(t ; U0)
changes strongly and approximates an exponential distribution
with a saturation. This is possibly the result of a branching
process where the ion, depending on the exact (random)
initial conditions, may get trapped in a long-lived “pocket,” or
otherwise escape the trap. The escape plausibly occurs from a
(mixing) chaotic region through a “bottleneck,” leading to the
unstable fixed point, typically a memoryless process with an
exponential distribution. The trapping is likely to occur in a
large region in phase space that is connected to the region of
initial conditions by chaotic motion, but weakly connected to
the unstable fixed point, so the probability to escape the pocket
is low on the studied timescale. On a longer timescale, the
trapping pockets could eventually decay. For U0 ≈ 240 mV,
there are no observable pockets, but the ion lifetime increases
with the perturbation amplitude, and new pockets are formed. It
should be stressed that the escape probability shown in Fig. 13
is strictly different from the exponential decay of a simple
thermal activation mechanism above a barrier and also cannot
be explained as a linear or parametric resonance of a harmonic
oscillator, relevant in the low amplitude regime [56,57]. This
rich nonmonotonic behavior remains to be explored with a
more detailed analysis of the phase space, the pockets, and
the statistical properties of the motion, but the salient features
could be observed with a relatively simple experiment.

Figure 13 indicates that the escape probability beyond
t � 0.1 ms is weakly dependent on time. In Fig. 14, we
plot the value of the survival probability at fixed t = 0.3 ms
as a function of the tickle voltage (with data from more
simulations). The nonmonotonic dependence of the survival
probability on U0 is a clear experimental signal that may be
obtained by just cooling the ion to the Doppler limit and varying
the tickle amplitude. We note that due to the signal being based
on ensuing ion escape, a full set of experiments would require
a large number of lost and reloaded ions. Beyond a certain
number of repetitions, this might degrade the trap stability due
to uncontrolled stray charges of the trap electrodes produced
by the loading, a technical weakness of the proposed scheme.
An extension of the proposed experiment to a multizone
trap, separating the loading region from the escape region,
may avoid these shortcomings. Another possibility would be
observing transfer between multiple wells without going over
the trap’s barrier, thus avoiding the ion’s escape altogether.

FIG. 14. The survival probability at t = 0.3 ms as a function of
the tickle amplitude, simulated using both the full rf potential of the
trap and its pseudopotential approximation. The trap parameters are
the same as in Fig. 13. The quantitative agreement of the two curves
indicates that the simulated four-wire trap is close to the limit where
the rf potential is well described by its pseudopotential approximation.
Finding such a nonmonotonous dependence on U0 in an experiment
will distinguish the predictions of the phase-space theory from a
thermal or a parametric oscillator activation across a barrier.

Figure 14 also shows the results of simulations using the
pseudopotential approximation for the trap. We see that for
these parameters the pseudopotential closely reproduces the
effect of the tickle. This is an indirect indication that the trap is
operating in a regime where its phase-space structure is mostly
determined by the pseudopotential with little perturbation from
the time-dependent drive. From the results of Secs. III and IV,
we expect that this holds close to an integrable limit of the
trap. In addition, we can conclude that the mechanisms leading
to the rich transport features described above are occurring
within a 5D phase space (that of the 4D pseudopotential with
the additional time-dependent tickle), to which surface traps
provide access for a controllable experimental study. Further
numerical studies of the trap’s phase space and complementing
experiments would be required to confirm the validity of our
findings and to establish that the general conclusions of the
theory presented in this work are relevant for a wide variety of
surface electrode traps used in practice.

VI. SUMMARY AND OUTLOOK

The main goal of this paper has been to provide a description
of Hamiltonian dynamics within surface-electrode Paul traps.
We have aimed at developing a general framework that enables
us, put simply, to understand both what is going on in the
phase space and why it is like that. This understanding of the
nature of the dynamics has furthermore allowed us to answer
practical questions such as the optimal choice of experimental
parameters to obtain the largest possible trapping regions.

To achieve that goal, we have increased the complexity of
the treatment gradually, starting from a time-independent one-
dimensional model describing the motion along the z direction
perpendicular to the trap surface and including successively
the effects of the time dependence and of coupling with
the y direction (in plane but orthogonal to the direction of
the rf wires). In this process, we find that although many
regimes, each of them having their own idiosyncrasy, exist, the
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global picture that emerges is characterized by a few simple
observations.

The first is that in the regime where presumably most traps
are operated in practice, chaotic trajectories usually do not
remain trapped. Thus, we can identify the trapped volume
with the volume of regular (near-integrable) dynamics. As
a consequence, there is in general a competition between
increasing the strength of the applied trapping forces, which
we would intuitively expect to increase trapped phase-space
volumes, and the necessity to avoid entering a regime which
is too chaotic. The optimal choice of parameters is determined
by that competition, controlled by a few parameters that play
multiple roles, and for the five-wire configuration that we
have considered in detail, we provide explicit values (while, of
course, real-life traps would always contain elements omitted
from our model).

More broadly, the theory presented in this work gives a
general framework that can be applied to various surface-
electrode traps. It can be a starting point for asking more refined
questions on the dynamics, for example, including dissipative
processes like cooling, or heating. Of the general conclusions
that we can draw, an important first step in a future analysis
would be to identify an integrable or near-integrable limit of a
trap. Then, the parameters should be studied according to their
role in increasing the phase space volume on the one hand,
and introducing chaotic motion on the other hand. As we saw,
typically each parameter introduces both effects, with some
value forming a threshold between the two. A further general
conclusion is that a classification of the phase-space motion
within the pseudopotential approximation could be sufficient
for answering many questions for practical parameters and
regimes of motion. A natural and robust “boundary” is formed
by those parameter values for which the motion is largely
integrable within the pseudopotential, up to the point at which
a change of the parameters introduces a lot of chaotic motion.
The same holds for the rf potential, which has a threshold for
the drive amplitude, beyond which a lot of chaos is quickly
introduced. Thus below this threshold, for any new parameter
that has to be considered, we expect that a study of the
pseudopotential is sufficient (up to the point where a significant
volume of chaotic motion is introduced), which implies a
tremendous simplification. Above this rf threshold, at least for
the examples analyzed here, we find that there is little benefit
because the trajectories quickly escape.

This work represents also a first and necessary step to
study in detail Hamiltonian and non-Hamiltonian phase-space
transport effects. We have in this work merely touched on
the complex motion possible in the 5D phase space. We have
presented a preliminary study indicating that rich Hamilto-
nian transport mechanisms can be explored in the ion trap,
and we hope to provoke further endeavours in this direc-
tion. The phase-space framework is also a natural starting
point for a semiclassical consideration of quantum mechan-
ical effects. The strength of a charged particle’s interaction
with the environment also implies that stringent conditions
on the system’s isolation are required in order to observe
such effects. The manifestations of the phase-space structures
that we studied in this work, when the motion becomes
sufficiently coherent [37], could be an interesting future
direction.

Finally, a quantitative study of non-Hamiltonian effects,
such as heating by electric noise, or laser cooling dynamics
within the Paul trap, is also of importance and interest. In
particular, the combination of micromotion together with
stochastic processes presents a challenge both for experimental
control and theoretical description. We will study these effects
in future publications. In Ref. [42], we will study in detail laser
cooling in the nonlinear and time-dependent potential, and
its interplay with position-dependent noise, where the phase-
space framework will again prove essential to our approach of
the problem. Strong position dependence is one characteristic
of a dominant source of noise in Paul traps, the so-called
anomalous heating [53], which is also characterized by a “col-
ored” (frequency-dependent) noise spectrum. The treatment
of colored noise, again using a phase-space approach, will be
studied separately [58].
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APPENDIX A: THE PSEUDOPOTENTIAL

The pseudopotential [48] is a time-independent approxima-
tion [41] of the time-dependent rf potential. We will now derive
the pseudopotential approximation using canonical perturba-
tion theory [59]. We introduce a formal perturbation parameter
ε, and we consider a particle subject to the Hamiltonian

H (q,p,t) = H0(p) + εH1(q,t) + ε2H2(q)

= p2/2 + εf (t)V2(q) + ε2V0(q), (A1)

where f (t) is periodic with a period T = 2π/�. At the end
of the calculation, we can set ε = 1, but we will see that ε

can be assigned a physical meaning, and that the ordering
of the terms in Eq. (A1) is meaningful as well. We avoid an
explicit vector notation here, but the dimension of phase space
is arbitrary. We are searching for a canonical transformation
to the new set of conjugate coordinates {Q,P }, derived from a
generating function F (q,P,t). The transformation will depend
explicitly on time and is required to reduce to the identity at
t = 0. Starting with q(t = 0) and p(t = 0), we will construct
the canonical transformation to describe the stroboscopic map
of H (q,p,t), such that {Q(t = T ),P (t = T )} approximate
{q(t = T ),p(t = T )} within the Poincaré surface of section
after one iteration. We will see that the evolution of {Q,P } can
be derived from a time-independent Hamiltonian expanded in
the perturbation parameter,

K(Q,P ) = K0(Q,P ) + εK1(Q,P ) + ε2K2(Q,P ) + · · · .

(A2)
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Hence, with the canonical transformation defined by q =
q(Q,P,t) and p = p(Q,P,t), we require that F obeys

F (q,P,t) = qP + εF1 + ε2F2 + ... , p= ∂F

∂q
, Q= ∂F

∂P
,

(A3)

and we expand similarly the transformation functions,

q(Q,P,t) = Q + εq1 + ε2q2 + · · · ,

p(Q,P,t) = P + εp1 + ε2p2 + · · · . (A4)

Now by plugging q = q(Q,P,t) using Eq. (A4) into the
definition of F from Eq. (A3), Taylor expanding the terms
of F with respect to q, and collecting the terms up to order ε2,
we have

p1 =
[
∂F1(q,P,t)

∂q

]
q=Q

,

(A5)

p2 =
[
∂2F1(q,P,t)

∂q2
q1(Q,P,t) + ∂F2(q,P,t)

∂q

]
q=Q

,

where the partial derivatives are to be taken with respect to
argument q, and then q is simply to be replaced by the variable
Q (and not by the function q(Q,P,t), which has already been
used in the expansion). Similarly,

q1 = −
[
∂F1(q,P,t)

∂P

]
q=Q

,

q2 = −
[
∂2F1(q,P,t)

∂q∂P
q1(Q,P,t) + ∂F2(q,P,t)

∂P

]
q=Q

. (A6)

Finally, the transformed Hamiltonian, expanded to the same
order, is given by

K(Q,P ) = H (q,p,t) + ∂F (q,P,t)

∂t

= H0(P + εp1 + ε2p2) + εH1(Q + εq1,t)

+ ε2H2(Q) + ε

[
∂F1

∂t

]
q=Q+εq1

+ ε2

[
∂F2

∂t

]
q=Q

,

(A7)

where the first step of the expansion has been indicated, and
the next steps will be performed in the following.

Equating Eq. (A2) with Eq. (A7), we get at order ε0 simply

K0(P ) = H0(p = P ) = P 2/2. (A8)

We now recall that if G(Q,P,t) is a function of phase-space
variables with an explicit dependence on time, its total time
evolution (on an orbit in phase space, for motion generated
by the Hamiltonian K0) has the derivative (using Poisson
brackets),

dG(Q(t),P (t),t)

dt
= ∂G(Q,P,t)

∂t
+ {K0,G}

= ∂G

∂t
+ ∂K0

∂P

∂G

∂Q
− ∂K0

∂Q

∂G

∂P

= ∂G

∂t
+ P

∂G

∂Q
. (A9)

At order ε1 we get the equation

K1(Q,P ) = p1(Q,P,t)P + H1(q = Q,t) +
[
∂F1

∂t

]
q=Q

,

(A10)

which, substituting p1 from Eq. (A5) and using Eq. (A9), can
be seen to have the form

dG1(Q,P,t)

dt
= K1(Q,P ) − H1(Q,t), (A11)

where Q evolves along the orbits of K0(P ) [a free particle], and
G1 = [F1]q=Q. Equation (A11) can be solved by the method of
integrating of the right-hand side along these orbits [59], and
F1 would be that integral, with q replacing Q and the initial
condition F1(t = 0) = 0. Skipping the details of the derivation,
it is easy to verify that G1 is given by

G1(Q,P,t) =
∫ t

0

[
K1(Q + P (t ′ − t),P )

−H1(Q + P (t ′ − t),t ′)
]
dt ′. (A12)

and hence, F1(q,P,t) = G1(Q,P,t)|Q=q .
So far the treatment has been quite general, and there is still

a lot of freedom in the choice of K1. The natural choice that
defines the pseudopotential is to take K1 to be the average of H1

along the orbit of K0, over a period T . This will make {Q,P }
the mapping of {q,p} under one iteration of the stroboscopic
map, and also F1 will remain well behaved—without terms
that are unbounded in time. We find

K1(Q,P ) = 1

T

∫ T

0
H1(Q + P (t ′ − T ),t ′)dt ′

≈ 1

T

∫ T

0
f (t ′)[V2(Q) + ∇V2(Q)P (t ′ − T )]dt ′,

(A13)

where the potentials have been Taylor expanded to the required
order (as will be justified below), and we use ∇ = ∂/∂Q to
emphasize that the results can be generalized to any dimension
as noted above. We will now further simplify the algebra in the
following by assuming that f (t) obeys the two conditions,∫ T

0
f (t ′)dt ′ = 0,

∫ T

0
f (t ′)t ′dt ′ = 0, (A14)

which hold for any T -periodic and time-reversal-invariant
function f (t) = f (−t), and in particular for f (t) = cos �t .
In this case, we get simply

K1(Q,P ) = 0. (A15)

We can now obtain the canonical transformation functions (at
order ε) explicitly,

p1(Q,P,t) = ∂G1

∂Q
= −

∫ t

0
dt ′f (t ′)∇V2(Q + P (t ′ − t)),

q1(Q,P,t) = −∂G1

∂P
=

∫ t

0
dt ′f (t ′)(t ′−t)∇V2(Q+P (t ′ − t)).

(A16)

053419-15



V. ROBERDEL, D. LEIBFRIED, D. ULLMO, AND H. LANDA PHYSICAL REVIEW A 97, 053419 (2018)

At order ε2 we get the equation

K2(Q,P ) = p2(Q,P,t)P + 1

2
[p1(Q,P,t)]2

+
[
H2(q) + ∂H1(q,t)

∂q
q1(Q,P,t)

+ ∂2F1

∂q∂t
q1(Q,P,t) + ∂F2

∂t

]
q=Q

, (A17)

which, as before, substituting p2 from Eq. (A5) and using
Eq. (A9), can be rearranged to have the form

dG2(Q,P,t)

dt
= K2(Q,P ) − H2(Q) − 1

2
[p1(Q,P,t)]2

+ ∂

∂Q

[
p1(Q,P,t)P + H1(Q,t)

+ ∂F1(Q,P,t)

∂t

]
q1(Q,P,t), (A18)

with G2 = [F2]q=Q. From Eq. (A10), the term in square
brackets is just K1(Q,P ) and by Eq. (A15) it is 0. We will
not need the explicit solution for G2 [that can be obtained as in
Eq. (A12)]; however, we are interested in the pseudopotential
K2(Q,P ), that is chosen to make the mean of G2 over a period
T vanish. Hence, we have

K2(Q,P ) = 1

T

∫ T

0

[
H2(Q + P (t ′ − T ))

+ 1

2

[
p1(Q + P (t ′ − T ),P ,t ′)

]2
]
dt ′. (A19)

which gives, using Eq. (A16),

K2(Q,P ) ≈ V0(Q)+ 1

2T

∫ T

0
dt ′

[∫ t ′

0
dt2f (t2)

]2

[∇V2(Q)]2.

(A20)

For f (t) = cos �t , we have thus derived the familiar pseu-
dopotential expression (setting ε = 1),

K(Q,P ) = P 2/2 + V0(Q) + 1

4�2
[∇V2(Q)]2. (A21)

We note that K is independent of the momentum P due to
the conditions in Eq. (A14). We are left only with justifying
the Taylor expansion of the potentials. The motion within the
pseudopotential K(Q,P ) is characterized by a frequency ω,
and the nondimensional frequency ν = 2ω/� can serve as the
perturbation parameter. The scale of the variables and functions
above is given by

Q ∼ 1, P ∼ ωQ ∼ ν

�
Q,

(A22)
K ∼ V0 ∼ K2 ∼ ω2Q2 ∼ ν2�2Q2,

which is consistent with V2 ∼ ν�2Q2 and ∇V2 ∼ ν�2Q when
Eq. (A21) is used. Looking at the order of the terms in
Eqs. (A13) and (A18) [for short times of order �−1] justifies a
posteriori the approximation in these equations, showing that
pseudopotential of Eq. (A21) is an approximation to second
order in ν. This is consistent with the perturbation parameter

that was used in the derivation, ε = ν [24], and the ordering of
the terms in Eq. (A1).

APPENDIX B: EMBEDDING IN 4D PHASE SPACE

In Eq. (25), we have written the embedding of the mo-
tion generated by a general 1D time-dependent Hamiltonian,
in H (z,pz,t) → H(q,p,Q,P ) = H (q,p,Q) + P . To see that
this embedding reproduces the original motion as solutions of
Hamilton’s equations, we can directly calculate the latter. The
equations for q and p coincide with those of z and pz, and in
addition we have Q̇ = 1 (and hence ṫ = 1 which is required
by consistency), and Ṗ = −∂H (q,p,Q)/∂Q. Since H is time
independent, each of its trajectories lies on a 3D manifold of
constant “energy” H(q,p,Q,P ) ≡ ε, in the 4D phase space.
The original motion is reproduced for H = ε = 0, since this
gives using Eq. (25), 0 = H (t) + P (t), compatible with the
equation for Ṗ , as can be verified directly.

A Poincaré surface of section is constructed by taking
simulations with different initial conditions at a fixed energy,
and plotting a point in the plane of two variables (e.g.) q and
p, every time a simulated trajectory goes through a fixed value
of (e.g.) Q, in a definite direction. Here since H depends on Q

only through cos 2Q, we can understand that the stroboscopic
map of H , taken at a fixed value of t (mod π ), is equivalent
to a Poincaré surface of section of H, taken within the fixed
energy subspace ε = 0, with cos 2Q = const. Therefore, the
phase-space area within a closed curve of the stroboscopic map
can be calculated using a method developed for calculating the
action of 2D tori surfaces in the 4D phase space, described in
Appendix C. This method can also be applied to the calculation
of the action for the yz motion within the pseudopotential
approximation, studied in Sec. IV.

APPENDIX C: INVARIANT TORI IN 4D PHASE SPACE

Here we describe (based on Ref. [37]) the calculation of ac-
tion invariants in the 4D phase space of the canonical variables
{q,p,Q,P }, that can correspond to the time-independent pseu-
dopotential in two spatial dimensions, or to the time-dependent
potential in one spatial dimension using the correspondence in
Eq. (25). On each invariant torus one can draw two independent
paths C1 and C2, and define the corresponding area Ja =∫
Ca

[pdq + QdP ], and action Ia = Ja/2π , with a = 1,2. We
are working within the integrable approximation (ignoring any
chaotic structure in the phase space), inside the main island up
to the last unbroken torus, where there exists a local canonical
action-angle transformation {q,p,Q,P } → (I1,I2,θ1,θ2). The
energy is conserved, i.e.,

H(J1,J2) = ε, (C1)

and we can choose C1 to be in the Poincaré surface of section
defined by the intersection of the torus with Q = 0. The action
integral over C1 is then J1 = ∫

C1
pdq. To obtain both the value

of J1 and J2 (the latter cannot be calculated directly), we use
the fact that Eq. (C1) determines an implicit function J2(J1).
Taking its differential,

∂H
∂J1

dJ1 + ∂H
∂J2

dJ2 = 0 ⇒ dJ2

dJ1
= −ν1

ν2
≡ −α, (C2)
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where α is the winding number of the torus, allows us to define
the Legendre transform of J2(J1),

J (α) = J2(J1(α)) + αJ1(α). (C3)

The total action, J , is given by the integration of the Lagrangian
over the time,

J =
∫

[pdq + PdQ] =
∫ [

pq̇ + PQ̇
]
dt. (C4)

The winding number can be approximated by r/s, where r is the
number of turns around the center of the Poincaré section and
s is the number of times, starting from q(0),p(0) in the Q = 0
plane, that the trajectory crosses the Poincaré section before
returning (within some accuracy) to the initial point. By the
definition of the Legendre transform, dJ/dα = J1. Therefore,
simulating the equations of motion on a narrow grid covering
the phase space, and calculating the corresponding values of
J and α, allow one to obtain J1 and J2.

For the particular case of Eqs. (24) and (25), the action is
given by

J =
∫ [

pq̇ + PQ̇
]
dt =

∫ [
pzż − H (z,pz,t)

]
dt

=
∫ [

ż2 − H (z,pz,t)
]
dt =

∫ [
1

2
ż2 − V 1D

rf (z,t)

]
dt.

(C5)

APPENDIX D: VOLUME IN 4D PHASE SPACE

To calculate any volume of a 4D phase space with a specific
property, let us define an indicator function of phase space
χ�q, �p , taking the value 1 on phase-space structures to be
counted, and 0 otherwise. Here, �q = {q,Q}, and �p = {p,P }.
Within a fixed energy shell E, the restricted 3D volume of
interest can be defined by

�(3D)
χ (E) =

∫
d �qd �p[

δ(E − H (�q, �p))χ (�q, �p)
]
, (D1)

with the Hamiltonian H (�q, �p). We now employ a canonical
transformation,

{�q, �p} → �Z ≡ {q,p,t, − E}, (D2)

where {q,p} are the coordinates within the Poincaré section
that has to be constructed. The integral in Eq. (D1) then
transforms according to

�(3D)
χ =

∫
d �Z[δ(E−H ( �Z))χ ( �Z)] =

∫
dqdpT (q,p)χ (q,p),

(D3)

where T (q,p) is the return time of the particle to the Poincaré
section—the time along the trajectory from a point starting on
the Poincaré surface, to its next return to the section. Then a
total 4D phase space volume of interest up to energy E can be
obtained by integrating over the energy shells,

�(4D)
χ (E) =

∫ E

0
�(3D)

χ (E′)dE′. (D4)
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