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ABSTRACT
Effective spin-spin interactions between N + 1 qubits enable the determination of the eigenvalue
of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates
that is independent of N and encodes the eigenvalue in the measurement basis states of an extra
ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic
oscillator, a situation that can be realized in many physical qubit implementations. For example,
suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible
to implement stabilizer codes for quantum error correction with a constant number of multi-qubit
gates, in contrast to typical constructions with a number of two-qubit gates that increases as a
function of N. The special case of finding the parity of N qubits only requires a small number of
operations that is independent of N. This compares favorably to algorithms for computing the parity
on conventional machines, which implies a genuine quantum advantage.
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1. Preface

Some of the work presented here was developed in 2004
to support a spectroscopy demonstration with three en-
tangled ions (1), where a special case of the key relation
Equation (6) below was stated without proof and with-
out discussing further implications. This publication ap-
peared before supplemental materials became common
and the proof was too long to include it in a letter-style
publication at the time. Thirteen years later, we have
picked up the thread again and generalize the special case
stated in (1) to relate more general spin-spin interactions
to arbitrary Pauli product operators.

It may be rare that experimental physicists resort to
the principle of mathematical induction, as we have done
below. However, our contribution seems to be in tune
with a particularly important lesson that Danny’s life can
teach us: You should not be afraid to do things in your
own way, nomatter how far of the beaten path this might
take you.

2. Introduction

In this contribution we provide a link between effective
spin-spin interactions ofN+1 qubits and the eigenvalues
of an arbitrary Pauli product of dimension N. Suitable
effective spin-spin interactions can, for example, be im-
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plemented if the qubits are coupled to a shared harmonic
oscillator, a condition realized in several physical qubit
implementations. For trapped ion qubits, suitable inter-
actions that couple allN + 1 spins simultaneously in one
operation were first discussed for robust entanglement
operations typically referred to as Mømer-Sørensen-type
gates (2–5). Such operations form the basis for most of
the recent work with entangled states of ions in quantum
information processing and quantum simulation. For
example, work described in (1, 6–13) produced entangled
states by using lasers to couple the qubits to a harmonic
normal-mode motion of the ions and in (14–17) this
was accomplished with microwave fields. These and re-
lated experiments encompass a wide range of contexts,
including precision spectroscopy, quantum information
processing and quantum simulation. In particular, the
effective spin-spin operations at the heart of our study
have been realized for up to 14 ion-qubits (13) and have
enabled the highest fidelity two-qubit gates reported to
date at F � 0.999 (18, 19). The natural extensibility
of Mølmer-Sørensen type operations to more than two
qubits can offer algorithmic advantages over the more
conventional decomposition into two-qubit gates and
single qubit rotations.

Here we show, that one or two operations of this
type, on N qubits and one ancilla-qubit, together with
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individual single-qubit rotations that can be performed
in parallel, are sufficient to determine the eigenvalue of an
arbitrary Pauli-product operator on the group ofN of the
qubits. The eigenvalue is stored it in themeasurement ba-
sis eigenstates of the ancilla-qubit after these operations.
Read-out of the ancilla state projects the N qubits into a
corresponding eigenstate of the Pauli-product operator
that is available for further processing. Therefore, such
operations may become useful in error correction, as
discussed in more detail below.

The parity of a state of N ions can be determined
with a total of three (N even) or four operations (N odd)
and is revealed by onemeasurement on the ancilla-qubit,
independent of the size of N. This constitutes a constant
depth parity-finding algorithm with a circuit of a size
proportional toN, while parity determination algorithms
on conventional computers require polynomial sized cir-
cuit families of close to log (N) depth (20). Our proposed
implementation therefore provides an advantage even for
relatively smallN and falls into a family of constant depth
parity circuits discussed in (21).

3. Generalized spin-spin interactions and Pauli

products

We consider N two-level systems with logical basis of
the l-th qubit (l ε {1, . . . ,N}) defined by the eigenstates
{| ↓〉, | ↑〉} of the z-component of a spin-1/2 angular
momentum operator Sl,k with k = {x, y, z}. We write σl,i
for the 2 × 2 identity matrix in the state space of the l-
th qubit and σl,k for the Pauli-matrices for k = {x, y, z}.
When setting � = 1 for simplicity, the eigenvalues in the
measurement basis are

Sl,z | ↑〉 = 1
2
σl,z | ↑〉 = 1

2
| ↑〉,

Sl,z | ↓〉 = 1
2
σl,z | ↓〉 = −12 | ↓〉, (1)

Our previous work relied on the collective angular mo-
mentum operator in the N-spin Bloch vector
representation

�J =
N∑
l=1
�Sl = 1/2

N∑
l=1

�σl. (2)

This notation allows, for example, for a compact rep-
resentation of the collective rotation operator R(N)

k ≡
exp[−iπ2 Jk] (k = {x, y, z}), often called a ‘π/2’-pulse,
applied to all N qubits uniformly.

Mølmer and Sørensen (2, 3) (for k = φ and σl,φ =
cos (φ)σl,x − sin (φ)σl,y) and Milburn (4) (for k = z)
showed how the interaction

Uk = exp[−iχ J2k ], (3)

that acts uniformly on all qubits with a suitable coupling
parameter χ can be implemented in trapped ion systems
(see also (5)). The approach in ion traps can be general-
ized to any systemof qubits that couples uniformly to one
harmonic oscillator. The theoretical work set off a flurry
of experiments in which entangled states of two to 14 ion
qubits were produced and studied. Examples of this effort
were briefly mentioned in the introduction (1, 6–17).

Here we generalize Uk, in which interactions are uni-
formly along direction k over all qubits, to allow for
interactions along different directions on different qubits.
In particular, for every product of Pauli matrices and the
identity over N qubits (kl = {i, x, y, z}),

PN =
N∏
l=1

σl,kl , (4)

we define an associated operator DN

DN = 1/2
N∑
l=1

σl,kl , (5)

that can be used as the generator of a generalized spin-
spin D2

N -operation according to GN = exp[−iαD2
N ].

The connection between PN and DN will be discussed in
Section 4. Products of Pauli-matrices like PN are essential
as so called stabilizers in a certain class of quantum-error
correction codes (22) (see section 5). In the special cases
kl = k for all l, the operator DN is equivalent to Jk,
therefore all relations that hold for DN will also be true
for any Jk of dimension N.

4. Connection between generalized spin-spin

interactions and Pauli product operators

With the above definitions, we now state our main result:
Depending onwhetherN is odd or even, the correspond-
ing DN and PN fulfill

UN =
{
exp[−iπ2D2

N ] ; N even
exp[−iπ2DN ] exp[−iπ2D2

N ] ; N odd

= exp (− i π
4E )√

2

(
1+ iN+EPN

)
(6)

with E = 1 forN even and E = 2 forN odd. Equation
(6) was stated without proof for the uniform cases where
kl = k as Equation (2) in (1). In the special case of
kl = k = x and applying UN to the initial state | ↓
,N〉 ≡ | ↓,↓, . . . ,↓〉, relation (6) was also given by
Sørensen and Mølmer (2). The fact that Equation (6)
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applies to arbitrary input states is crucial for the efficient
algorithms we present in Section 5, including a constant
depth algorithm for finding the parity of a state. It should
also be mentioned that since Ref. (1) appeared, another
related constant depth algorithm for finding the parity
was published (23). This work does not contain a proof
of Equation (6) and relies on two J2-operations instead
of one.

For all l, all operators σl,kl commute with each other
and σ 2

l,kl
= 1 holds for each of them. To simplify the

notation during the proof, we abbreviate the σl,kl ≡ σl .
As a first step in the proof we can rewrite the exponential
inGN as a product and use exp (−i α2 σkσl) = cos (α/2)−
i sin (α/2)σkσl to arrive at

exp (− iαD2
N ) = exp (− i

α

4
N)

N∏
l=2

×
l−1∏
k=1

(
cos (α/2)− i sin (α/2)σkσl

)
.

(7)

For α = π
2 we obtain

exp (− i
π

2
D2
N ) = exp (− i

π

8
N)

N∏
l=2

l−1∏
k=1

1√
2

(
1− iσkσl

)
.

(8)
Starting from this result we can now prove Equation (6)
for N even or odd separately by induction.

4.1. Even N

Equations (6) and (8) are obviously equivalent forN = 2.
To show equivalence of equations (6) and (8) for N ′ =
N+2we re-expressUN+2 using Equation (8) as a product
of UN times additional factors, and substitute the right
hand side of Equation (8) for UN .

UN+2 = exp (− i
π

8
(N + 2))

N+2∏
l=2

l−1∏
k=1

1√
2

(
1− iσkσl

)

= exp (− iπ/2)
2

(1+ iN+1σ1 . . . σN

− iσN+1σN+2 + iNσ1 . . . σN+2)

×
N∏
k=1

1
2
(1− iσkσN+1)(1− iσkσN+2). (9)

On the other hand we can verify that

1
2
(1+ iN+1σ1 . . . σN − iσN+1σN+2 + iNσ1 . . . σN+2)

× 1
2
(1+ iNσ1 . . . σN − σN+1σN+2 + iNσ1 . . . σN+2)

= exp (iπ/4)√
2

(
1+ iN+3σ1 . . . σN+2

)
. (10)

Therefore Equation (6) is true for N + 2 (N even) if
we can show that

N∏
k=1

1
2
(
1− iσka

) (
1− iσkb

)

= 1
2
(
1+ iNσ1 . . . σN − ab+ iNσ1 . . . σNab

)
, (11)

when a2 = b2 = 1. This can be shown by another
inductive proof. Again for N = 2, relation (11) is easily
verified. For N replaced by N + 2 we get

N+2∏
k=1

1
2
(
1− iσka

) (
1− iσkb

)

=
[ N∏
k=1

1
2
(
1− iσka

) (
1− iσkb

)]

× 1
4
(
1− iσN+1(a+ b)− ab

)
× (

1− iσN+2(a+ b)− ab
)

= 1
4
(
1+ iNσ1 . . . σN − ab+ iNσ1 . . . σNab

)
× (

1− σN+1σN+2 − ab− σN+1σN+2ab
)

= 1
2
(
1− ab+ (1+ ab)iN+2σ1 . . . σN

)
, (12)

which completes the argument for N even.

4.2. Odd N

For N odd and N ≥ 3 the relation for UN corresponding
to Equation (8) is

UN = exp (− i
π

2
DN ) exp (− i

π

2
D2
N )

= exp (− i
π

8
N)

{ N∏
l=2

l−1∏
k=1

1√
2

(
1− iσkσl

)}

×
N∏

m=1

1√
2

(
1− iσm

)
. (13)

For N = 3 the equivalence of Equation (6) and Equa-
tion (13) can be shown by explicit calculation. For N ′ =
N + 2 the proof proceeds similarly to the even case. One
can first show that

exp (− i
π

2
DN+2) exp (− i

π

2
D2
N+2)

= e−i π8√
2

(
1− iNσ1 . . . σN

)



4 D. LEIBFRIED AND D. J. WINELAND

× 1
2
(
1− σN+1 − σN+2 − σN+1σN+2

)
×

N∏
k=1

1
2
(1− iσkσN+1)(1− iσkσN+2). (14)

Analogously to the even case, one can then prove by
induction that for a2 = b2 = 1

(1− a− b− ab)
N∏
k=1

1
2
(
1− iσk(a+ b)− ab

)
= (

1− ab+ (1+ ab)iNσ1 . . . σN
)
. (15)

Since

e−i π8√
2

(
1− iNσ1 . . . σN

)
× 1
2
(
1+ iNσ1 . . . σN+2 + iNσ1 . . . σN − σN+1σN+2

)
= e−i π8√

2

(
1− iN+2σ1 . . . σN+2

)
, (16)

the proof is complete.

5. Efficient stabilizer-code syndrome

measurement

Stabilizer codes are a powerful tool for quantum error-
correction and extensively discussed in the literature.
An introduction to this subject and many of the early
original references can be found in (22). Here we only
need a few basic facts, namely that errors are detected by
determining the eigenvalues pε{−1, 1} of Pauli products
that are designed to detect the absence or presence of a
certain error. The Pauli product PN is then called a sta-
bilizer and can be applied to a state. For a state |p〉 inside
the code space, the eigenvalue, also called the syndrome
is PN |p〉 = +1|p〉, while measuring PN |p〉 = −1|p〉
indicates that the code state has been compromised by
a specific error that the stabilizer code is constructed
to detect. By taking advantage of interference, we can
determine the syndrome of the stabilizer PN acting on
a string of N qubits based on the generalized spin-spin
interactions mediated by the associated operators DN .
Implementations require a constant number of multi-
qubit operations and possibly a number of single qubit
rotations that is linear in N, depending on details of
the implementation and the stabilizers in the code (see
Section 6). The read-out requires only one ancilla and
does not disturb the code state |p〉 which can therefore
remain encoded for further steps.

We assume that N qubits are in an eigenstate |p〉 of a
certain stabilizer PN , PN |p〉 = p|p〉, with pε{−1, 1}. For

the algorithmwe add one ancilla qubit that we prepare in
| ↑〉. In the following we assume that N + 1 and N+1

2 are
even. Implementation of caseswithN+1 oddwill require
additional single-qubit rotations and if N+1

2 is not even,
this will produce a different sign between the identity
operator and the parity operator in Equation (17), which
can be taken into account by changing the axis of the final
rotation on the ancilla in Equation (19) below. For our
particular choice of N + 1, UN+1 simplifies to

UN+1 = e−i π4√
2

(
1+ iN+2σ1 . . . σN+1

)
= e−i π4√

2

(
1+ iPNσN+1

)
. (17)

We assume the ancilla at position N + 1 was prepared in
state | ↑〉 and first apply a π/2-rotation R(1)

y to the ancilla
only and then UN+1 as it appears on the right-hand side
of Equation (17) to allN+1 qubits, including the ancilla,
for which we choose σN+1 = σz . This results in

UN+1
[
|p〉(R(1)

y | ↑〉)
]

= exp[−iπ/4]√
2

(
1+ iPNσz

) |p〉 1√
2
(| ↑〉 + | ↓〉)

= |p〉exp[−iπ/4]√
2

(
1+ ip√

2
| ↑〉 + 1− ip√

2
| ↓〉

)
.

(18)

A final rotation (R(1)
x )† of the ancilla qubit around the

x-direction will produce the state

(R(1)
x )†UN+1

[
|p〉(R(1)

y | ↓〉)
]

= |p〉
(
1+ p
2
| ↑〉 + 1− p

2
| ↓〉

)
. (19)

The syndrome of |p〉, is now encoded in the state of
the ancilla which will be | ↑〉 for p = 1 or | ↓〉 for p = −1
and can be read out without disturbing the code state |p〉.

If the input state to this pulse sequence is not an
eigenstate of the stabilizer PN , finding the ancilla in the
state corresponding to p will project the initial state into
a superposition of eigenstates |Sp〉 with eigenvalue p.
If p = 1, |S1〉 contains at least one code state of the
stabilizer code.Otherwise, one can take note that p = −1,
which means that |S−1〉 contains at least one state of the
code rotated by one of the errors that yield p = −1
when PN is applied. After applying all error operators
and learning their syndromes, the resulting state can be
recovered into the codes space by applying the correction
operation compatible with all the syndrome results one
has found. To exploit this for code-state preparation, we
can initialize the N qubits in an equal superposition of
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all states by applying a collective π/2-rotation R(N)
y and

then successively measure all stabilizers PN that are error
operators of the code. We keep track of all instances of
measuring p = −1 and eventually apply the correction
operation corresponding to the set of syndromes we have
found.After this correction, the resulting state |S(f )

1 〉must
be a superposition of code states and can be projected
into a certain encoded qubit state by, for example, finally
measuring the eigenvalue of the encoded operator σ̄z
which is implemented by another stabilizer Pσ̄z . In this
way, an encoded qubit state can be efficiently produced in
N steps. In principle this scheme can be executed several
times to increase the probability of obtaining a code state,
even if not all operations and measurements are perfect.

In the special case ofmeasuring the parity operatorPN ,
by using the uniform Mølmer-Sørensen type interaction
DN = Jz , the parity can be determined with a constant
circuit depth of three (N even) or four operations (N odd)
and one measurement on the ancilla qubit, a number of
operations that only depend on N being odd or even,
but not on the size of N. Parity finding algorithms on
conventional computers require polynomial sized circuit
families of close to logN depth (20). The parity finding
algorithmproposed here therefore provides an advantage
even for relatively small N and is a member of family of
constant depth parity circuits discussed in (21).

6. Implementations in ion trap systems

In many codes, for example CSS codes (22), stabilizers
are products of only one Pauli-operator, either σl,x or σl,y ,
and the identity σl,i. For such codes, stabilizer measure-
ments with just Mølmer and Sørensen type interactions
with either φ = 0 for σl,φ = σl,x or φ = −π/2 for
σφ = σl,y seems possible. The third Pauli operator is not
required because a σl,z (phase-flip) error can be thought
of as sequentially occurring σl,x and σl,y (bit-flip) errors.

The conceptually simplest way to realize identities
could be to physically remove all qubits that are acted on
byσl,i withinDN (sonophysical operationon that qubit is
required), for example by transporting them to a location
away from where interactions are applied in a multi-
zone architecture (24, 25). This effectively reduces the
original stabilizer to PN ′ withN ′ ≤ N and all elements in
the stabilizer PN ′ are Pauli-matrices. We can then either
apply Mølmer and Sørensen type interactions with two
different phases, or, for non-CSS codes that may require
more complicated Pauli products, rotate each remaining
qubit individually by rl such that σl,kl = r†l σl,zrl . If we
denote the operator that applies such individual rotations
to all remaining qubits as Rk,N ′ =∏N ′

l=1 rl we haveDN ′ =
R†k,N ′ JzRk,N ′ and can rewrite any integer powerm of DN ′
as

(DN ′)
m = R†k,N ′Jz(Rk,N ′R

†
k,N ′)Jz(Rk,N ′R

†
k,N ′) . . . JzRk,N ′

= R†k,N ′(Jz)
mRk,N ′ . (20)

Because this reasoning can be applied to every term in
the sum defining the operator-exponential function, we
can initially applyRk,N ′ , thenUz and then undo the initial
rotation with R†k,N ′ , which implies GN ′ = R†k,N ′UzRk,N ′ .
After this we can recombine all N qubits and have ef-
fectively implemented GN up to a global phase, because
GN = exp[iα(N −N ′)]GN ′ . Any other uniform J2 inter-
actionUφ can also be used for the uniform coupling of all
N ′ qubits, after modifying the initial and final rotations
to match the direction specified by φ.

Separation of qubits is not required in an architecture
as described in (26), where, in a minimal construction,
Mølmer and Sørensen J2x or J2y type interactions that act
globally on all N qubits can be supplemented by individ-
ually addressed σl,z rotations, applied to only the qubits
that are supposed tonot partake in the J2-interaction. The
individual rotations are realized by AC-Stark shifts and
refocus each of the addressed qubits in such a way that
their state is unchanged by the total operation. Depend-
ing on the particular structure of the error-correction
code, a more optimal sequence in the sense defined in
(26) may also exist, but will be hard to find using the
numerical optimization methods described in this work
as the state space of the code increases in size. In any
case, this type of implementation should be particularly
efficient if all stabilizers contain the same Pauli-matrix
apart from the individually refocused group of qubits, as
in CSS codes.

Alternatively, one can use an array of tightly focused
laser beams that address ions individually (27) and allow
for precise definition of individual operations σl,kl on
each ion (with σl,i corresponding to not turning the indi-
vidual beam on for the l-th ion). With such a setup, any
D2
N interaction canbe implementeddirectly and executed

in a constant number of parallel operations (constant
depth).
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