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Hyperfine-mediated electric quadrupole shifts in Al+ and In+ ion clocks
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We evaluate the electric quadrupole moments of the 1S0 and 3P 0 clock states of 27Al+ and 115In+. To capture all
dominant contributions, our analysis extends through third order of perturbation theory and includes hyperfine
coupling of the electrons to both the magnetic dipole and electric quadrupole moments of the nucleus. For 27Al+,
a fortuitous cancellation leads to a suppressed frequency shift. This should allow for continued improvement of
the clock without special techniques to control or cancel the shift, such as the averaging schemes that are critical
to other optical ion clocks.
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I. INTRODUCTION

State-of-the-art optical ion clocks owe their low systematic
uncertainties, in part, to the external electric fields that provide
strong confinement to the ion being probed. Electric-field
gradients are an inevitable byproduct of this trapping and,
when coupled with the electric quadrupole (E2) moments
of the clock states, induce substantial frequency shifts in
clocks based, for example, on Hg+ [1], Sr+ [2,3], and Yb+

[4,5]. Exploiting the rotational symmetry of the E2 interaction
allows cancellation of the shift by averaging over different
magnetic substates or bias magnetic-field orientations [6,7].
The additional operational burden of these averaging schemes
is accompanied by distinct technical challenges, such as
maintaining stringent control over the bias magnetic-field
direction.

In contrast to the clocks above, the Al+ clock [1,8] employs
two J = 0 clock states, where J specifies the total electronic
angular momentum. Given the spherical symmetry implied by
J = 0, the electrons nominally do not contribute to an E2
moment. Rather, the E2 moments of the clock states reduce to
the negligibly small, state-independent nuclear E2 moment. To
date, this has allowed the Al+ clock to operate without special
regard for electric-field gradients, including those attributed to
the cotrapped Be+ or Mg+ logic ion.

Under closer scrutiny, the J = 0 symmetry of the clock
states is weakly broken by the coupling of the electrons to the
electromagnetic moments of the nucleus, i.e., the hyperfine
interaction. This gives rise to state-dependent “hyperfine-
mediated” corrections to the E2 moments, which may readily
overshadow the bare nuclear E2 moment. Estimates of these
effects have given justification for their prior neglect [9].
However, given the continued improvement of the Al+ clock
[10], a more refined analysis is now warranted. In this paper, we
evaluate the E2 moments of the Al+ clock states using methods
of many-body atomic structure theory and discuss implications
for the Al+ clock going forward. We further extend our analysis
to In+, motivated by the pursuit of a many-ion clock based on
this species in Braunschweig [11].

Hyperfine-mediated E2 moments have recently been an-
alyzed for ground-state alkali-metal atoms, with potential
relevance to microwave atomic clocks [12]. As one critical
difference to that work, here we find it necessary to proceed
through third order of perturbation theory (first order in the

external field, second order in the hyperfine interaction) to
capture all dominant effects.

Gaussian electromagnetic expressions are employed
throughout. We let e and aB denote the elementary charge
and the Bohr radius, respectively.

II. E2 ENERGY SHIFT

Here we present formulas for the E2 energy shift for
an atom in a hyperfine state |nFM〉, where n identifies the
electronic state (inclusive of J ), nuclear spin I is implicit, and
F and M specify the total angular momentum and its projection
onto the z axis, respectively. To clarify, here |nFM〉 represents
an eigenstate of the full atomic Hamiltonian, inclusive of
nuclear spin and the hyperfine interaction. Generally, we are
interested in a scenario in which static and radio-frequency
electric fields simultaneously perturb the atom. Here we limit
our concern to effects first order in the field, in which case
only the static component needs to be considered. Describing
this field with the electric potential �, the E2 interaction can
be written as the scalar product

VE2 = E2 · Q2, (1)

where E2 is shorthand for the field-gradient tensor,

E2 ≡ 1√
6
{∇ ⊗ ∇}2�,

understood to be evaluated at the center-of-mass position of the
atom. Here {∇ ⊗ ∇}2 represents the second rank tensor formed
by coupling ∇ with itself [13]. Q2 is a rank-2, even-parity
operator that acts on both electronic and nuclear coordinates.
It is given by Q2 = ∑

i qir
2
i C2(r̂i), with qi the charge and

ri the position of the ith electron or nucleon (ri = ri r̂i) and
with C2(r̂) being the conventional rank-2 C tensor (normalized
spherical harmonic).

The first-order E2 energy shift to the state |nFM〉 reads

δE = 〈nFM|VE2|nFM〉 = E20〈nFM|Q20|nFM〉,
where, following from elementary angular selection rules,
the matrix element 〈nFM|Q20|nFM〉 is nonzero only for
F � 1. Generally, VE2 mixes states of different M , suggesting
the need to diagonalize a (2F + 1)-dimensional matrix. Here
contributions off-diagonal in M are assumed to be negligible.
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In practice this is ensured by application of a sufficiently large
bias magnetic field, which defines the z axis and lifts the
degeneracy in the M states. This permits us to take M as a
“good” quantum number and has the consequence of isolating
the zero component of the scalar product in Eq. (1). The zero
component of E2 is

E20 =
(

−1

6

∂2

∂x2
− 1

6

∂2

∂y2
+ 1

3

∂2

∂z2

)
� = 1

2

∂2�

∂z2
,

where we invoked ∇2� = 0 to arrive at the last expression.
We proceed to define the E2 moment � as the expectation

value of Q20 for the “stretched” state,

� ≡ 〈nFF |Q20|nFF 〉.
Meanwhile, from the Wigner-Eckart theorem,

〈nFM|Q20|nFM〉 = (−1)F−M

(
F 2 F

−M 0 M

)
(

F 2 F
−F 0 F

)

× 〈nFF |Q20|nFF 〉.
Evaluating the 3j symbols and combining the preceding
expressions, we arrive at the energy shift expression

δE = 1

2

∂2�

∂z2

3M2 − F (F + 1)

F (2F − 1)
�.

Note that the M dependence appears explicitly in this last
expression, with � itself being independent of M .

The definition of the E2 moment � is chosen to be
consistent with previous works for J � 1 atomic states, where
nuclear structure and hyperfine effects are typically neglected.
Expressions in the following section make explicit reference to
the nuclear E2 moment Q. For this quantity, we adhere to the
conventional nuclear physics definition, which incorporates
an additional factor of 2. Specifically, in a complete absence
of electrons, � equates to Q/2. In any case, our formulas
are self-consistent and unambiguously specify the physical
meaning of �.

III. HYPERFINE-MEDIATED E2 MOMENTS
FOR J = 0 STATES

The expressions in the previous section are valid for generic
hyperfine states. In the remainder, we limit our attention to
J = 0 atomic states, with the immediate consequence that
F = I (I � 1 assumed throughout). To arrive at practical
expressions for evaluating the E2 moments, we treat the E2
interaction and the hyperfine interaction on equal footing as
perturbations,

VE2 = E2 · Q(e)
2 + E2 · Q(n)

2 ,

Vhfi = μ
(n)
1 · T (e)

1 + Q(n)
2 · T (e)

2 . (2)

Subscripts appearing on the right-hand side of the expressions
specify tensor rank, while superscripts identify operators
acting exclusively on electronic (e) or nuclear (n) coordinates,
inclusive of spin. Note that the operator Q2 of the preceding
section has been partitioned into electronic and nuclear parts.
Vhfi accounts for coupling of the electrons to the magnetic
dipole and electric quadrupole moments of the nucleus. We

will refer to the respective terms as the M1-hyperfine interac-
tion and E2-hyperfine interaction, where the latter is not to be
confused with the E2 interaction with the external field, VE2.
In the limit of a point nucleus, T (e)

1 = −e
∑

i(1/r2
i )(αi×r̂i)

and T (e)
2 = −e

∑
i(1/r3

i )C2(r̂i), where α is composed of the
conventional Dirac matrices (αx,αy,αz) and the summations
run over all electrons. We neglect coupling of the electrons
to higher-multipolar moments of the nucleus (M3-hyperfine,
E4-hyperfine, etc.).

The E2 moment � is attributed to energy shifts first order
in VE2 and all orders in Vhfi. In practice, however, we only
retain the leading contributions in Vhfi. The notation �(1+m)

is used to denote the (1 + m)-th order contribution, with m

being the number of hyperfine interactions involved. Applying
conventional perturbation theory through third order, we arrive
at the following expressions specific to J = 0 states:

�(1+0) = 1

2
Q,

�(1+1) = 1

5
Q[Q2,T2]1,

�(1+2) = 2√
15

μ2A11;I [Q2,T1,T1] + 1

3
μ2A11;I [T1,Q2,T1]

+ 1

5
μQA12;I [Q2,T1,T2]+ 1√

15
μQA12;I [Q2,T2,T1]

− 1√
15

μQA12;I [T1,Q2,T2]+ 1

10
Q2A22;I [Q2,T2,T2]

+ 1

20
Q2A22;I [T2,Q2,T2] + 1

6
μ2QB1;I [T1,T1]2

+ 1

40
Q3B2;I [T2,T2]2,

where μ and Q are the conventional nuclear M1 and E2
moments. The I -dependent angular factors Ak1k2;I and Bk;I

are given in terms of 3j and 6j symbols by

Ak1k2;I = (−1)2I

(
I 2 I

−I 0 I

){
k1 k2 2
I I I

}
(

I k1 I

−I 0 I

)(
I k2 I

−I 0 I

) ,

Bk;I = (−1)2I

{
I I k

I I 2

}
−
{

I I k

I I 0

}
(

I k I

−I 0 I

)2 .

The string of operators appearing in square brackets is compact
notation for the pure electronic factors,

[Xk,Yk]r =
∑
n′

〈n||Xk||n′〉〈n′||Yk||n〉
(En − En′ )r

,

[Xk1 ,Yk2 ,Zk3 ] =
∑
n′n′′

〈n||Xk1 ||n′〉〈n′||Yk2 ||n′′〉〈n′′||Zk3 ||n〉
(En − En′)(En − En′′ )

,

where we have dropped the superscript (e) on the operators
involved. Here |n〉 and En, with an arbitrary number of
primes attached to the n, denote electronic states and energies.
That is, these are eigensolutions to the atomic Hamiltonian
in absence of nuclear spin and the hyperfine interaction.
Reduced matrix elements and energies are independent of the
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magnetic substates, and it is understood that the sum-over-
states expressions above exclude summation over magnetic
quantum numbers. The unprimed n designates the J = 0 state
of concern, while n′ and n′′ run over all other electronic states
(having J ′ and J ′′, respectively). Selection rules insist that
J ′ = k for the top expression and J ′ = k1 and J ′′ = k3 for the
bottom expression. Moreover, since only even-parity operators
play a role, all states involved must have identical parity.

The first order �(1+0) represents the E2 moment in
absence of the hyperfine interaction. In accordance with the
Introduction, this reduces to the bare nuclear value, with a
factor of 1/2 bridging the atomic physics and nuclear physics
definitions of the E2 moment. At second order, a correction
�(1+1) arises due to the E2-hyperfine interaction. Selection
rules preclude the M1-hyperfine interaction from having effect
at this order, prompting further progression to third order.
The expression for �(1+2) includes several terms. The first
two terms involve two M1-hyperfine interactions, while the
remaining terms can be regarded as higher order in interactions
that already contribute to �(1+0) and �(1+1). For the specific
problem at hand, we further note that the excited clock state is
part of a 3P J fine-structure manifold. The hyperfine-mediated
effects are consequently expected to be dominated by hyperfine
mixing of the 3P 0 clock state with the neighboring 3P 1 and
3P 2 states, with corresponding terms in the sum-over-states
expressions entering with small energy denominators. From
the preceding arguments, we identify one second-order term
and two third-order terms to be of principal interest,

−1

5

Q

�20
〈3P 0||Q2||3P 2〉〈3P 2||T2||3P 0〉, (3)

8
√

2

75

μ2

�20�10
〈3P 0||Q2||3P 2〉〈3P 2||T1||3P 1〉〈3P 1||T1||3P 0〉,

(4)

4

15

√
2

15

μ2

�2
10

〈3P 0||T1||3P 1〉〈3P 1||Q2||3P 1〉〈3P 1||T1||3P 0〉,

(5)

with fine-structure splittings �10 ≡ (E3P 1
− E3P 0

) and �20 ≡
(E3P 2

− E3P 0
). Terms (4) and (5) are specific to I = 5/2

(27Al+). For other I , these terms should be multiplied by
an additional factor (5/8)(2I − 1)/I . For the sake of com-
pleteness, below we evaluate all first- through third-order
contributions to the E2 moments of both clock states. Terms
(3)–(5) are found to be comparable to one another and
dominate significantly over all other contributions. Given
that the fine-structure splittings and nuclear moments are
known, the critical task reduces to the accurate determination
of the five distinct matrix elements appearing in these three
terms.

IV. NUMERICAL ANALYSIS AND RESULTS

To evaluate electronic properties, we employ the method of
configuration interaction plus many-body perturbation theory
(CI + MBPT) [14,15]. In brief, we start with a Dirac-Hartree-
Fock description of the atomic core (nuclear charge plus core
electrons). The CI procedure treats the strongly interacting
valence electrons in the presence of the “frozen” core. The
MBPT extension accounts for additional perturbative effects
of the valence electrons on the core. Further details of our
CI + MBPT implementation, with only minor modification,
can be found in Ref. [16].

The CI + MBPT method has been applied to numerous
divalent systems, including heavy systems such as Ra [17].
Al+ is comparatively simple. To best gauge the accuracy of
our calculations, in particular the matrix elements appearing
in terms (3)–(5), we first identify relevant data in the literature
for comparison. Hyperfine intervals for the 3P 1 state of 27Al+

[9] and the 3P 1,2 states of 25Mg [18] have been measured.
Mg has similar electronic structure to Al+, justifying its
inclusion here. Neglecting higher-order effects, the hyperfine
intervals may be combined with nuclear moments [19] to infer
diagonal M1-hyperfine and E2-hyperfine matrix elements,
〈3P J ||T1||3P J 〉 and 〈3P J ||T2||3P J 〉, for the respective states.
These results are presented in Table I with the label “inferred,
uncorrected.” To these values, we add second-order correc-
tions attributed to hyperfine mixing between the neighboring

TABLE I. Diagonal M1-hyperfine and E2-hyperfine matrix elements for 3P J states of Mg, Al+, and In+. Uncorrected matrix elements are
inferred from hyperfine intervals [9,18,21] and nuclear moments [19] found in the literature, neglecting higher-order effects of the hyperfine
interaction. These results are subsequently corrected for second-order effects using off-diagonal ab initio CI + MBPT hyperfine matrix elements
between the 3P J states, together with nuclear moments and fine structure intervals [20]. In many cases, the corrections do not or barely change
the expressed result. The corrected matrix elements are then compared to ab initio CI + MBPT hyperfine matrix elements. All values are in
atomic units [22].

Mg, 3s3p 3P J Al+, 3s3p 3P J In+, 5s5p 3P J

J = 1 J = 2 J = 1 J = 1 J = 2

〈3P J ||T1||3P J 〉

⎧⎪⎨
⎪⎩

inferred, uncorrected

inferred, corrected

CI + MBPT

0.07938(<1) 0.1573(<1) 0.1723(<1) 1.059(<1) 1.733(4)

0.07936(<1) 0.1572(<1) 0.1723(<1) 1.059(<1) 1.733(4)

0.07847 0.1561 0.1696 1.150 1.841

〈3P J ||T2||3P J 〉

⎧⎪⎨
⎪⎩

inferred, uncorrected

inferred, corrected

CI + MBPT

−0.482(7) 0.70(1) −1.72(1) −6.9(6) 7(2)

−0.466(7) 0.71(1) −1.26(2) −6.4(6) 7(2)

−0.4621 0.7023 − 1.199 −6.175 8.582
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TABLE II. Ab initio CI + MBPT results for the five distinct
matrix elements appearing in terms (3)–(5), evaluated for Al+ and
In+. State labels refer to the 3s3p 3P J and 5s5p 3P J fine-structure
manifolds of the respective ion. All values are in atomic units [22].

Al+ In+

〈3P 0||Q2||3P 2〉 −6.271 −6.932
〈3P 1||Q2||3P 1〉 −5.428 −5.825
〈3P 0||T1||3P 1〉 0.1195 0.7556
〈3P 1||T1||3P 2〉 −0.1545 −0.7973
〈3P 0||T2||3P 2〉 −1.382 −7.114

3P J states. The corrections are evaluated using off-diagonal
ab initio CI + MBPT hyperfine matrix elements, together
with the nuclear moments and fine-structure intervals [20].
The results are presented in Table I with the label “inferred,
corrected.” Finally, these values are compared to the respective
diagonal ab initio CI + MBPT matrix elements, labeled
“CI + MBPT.”

First, we examine the M1-hyperfine matrix elements in
Table I. For all three Mg and Al+ states, the second-order
corrections are small, with the resulting “inferred, corrected”
values being accurate to within the displayed digits. The
corresponding CI + MBPT results exhibit agreement in
the range 0.7–1.6%. This is indicative of the CI + MBPT
accuracy for the M1-hyperfine matrix elements between the
different 3P J states. Next, we examine the E2-hyperfine matrix
elements for the three Mg and Al+ states. Here, non-negligible
uncertainty in the “inferred, uncorrected” values stems from
uncertainty in the nuclear E2 moments. At the same time,
the second-order corrections are more prominent. These
corrections are dominated by terms involving off-diagonal
M1-hyperfine matrix elements. Our preceding assessment of
the CI + MBPT performance for these matrix elements allows
us to ascribe a fair uncertainty to the corrections. This is only of
significance for the 3P 1 state of Al+, where the correction leads
to a doubling of the uncertainty. Finally, for the 3P1,2 states of
Mg, the diagonal CI + MBPT matrix elements are found to
be within 1σ (∼1.5%) of the “inferred, corrected” values.
Meanwhile, for the 3P 1 state of Al+, the CI + MBPT result
is found to be within 3σ (∼5%) of the “inferred, corrected”
value. This provides us with a measure of the CI + MBPT
accuracy for the E2-hyperfine matrix elements between the
different 3P J states. Unfortunately, literature data are lacking
to directly assess CI + MBPT performance for E2 matrix
elements (Q2 operator) between the 3P J states. However, we
have no reason to expect the E2 matrix elements to be any
less accurate than the M1-hyperfine or E2-hyperfine matrix
elements between these states. We will briefly return to the
discussion of accuracy below.

Table II presents our CI + MBPT results for the five
distinct matrix elements appearing in terms (3)–(5). Together
with nuclear moments [19] and fine-structure splittings [20],
these matrix elements yield the results −1.08×10−5 ea2

B

for term (3), 3.92×10−6 ea2
B for term (4), and 5.13×10−6 ea2

B

for term (5). The third-order M1-hyperfine-mediated terms
(4) and (5) are seen to be comparable in magnitude and
add constructively. Together they are close in magnitude

TABLE III. Contributions to the E2 moments of the ground and
excited clock states in 27Al+ and 115In+. All values are in units of ea2

B .
The notation x[y] indicates x×10y .

27Al+ 115In+

bare nucleus
�(1+0) 2.62[−9] 15[−9]

ground clock state
�(1+1) −10[−9]
�(1+2) −0.1[−12]
� total −8[−9]

excited clock state
�(1+1), term (3) −10.8[−6] −18.5[−6]
�(1+1), all other 9[−9]
�(1+2), term (4)a 3.9[−6] 1.1[−6]
�(1+2), term (5)a 5.1[−6] 1.7[−6]
�(1+2), all other −19[−9]
� total −1.7[−6] −15.7[−6]

aFor 115In+, terms (4) and (5) are multiplied by 10/9, as appropriate
for the nuclear spin I = 9/2.

to the second-order E2-hyperfine-mediated term (3) but of
opposite sign. This results in significant cancellation, with
a suppressed cumulative result of −1.7×10−6 ea2

B for these
three terms. Clearly, it would have been erroneous to limit
our analysis to second-order perturbation theory or to account
for hyperfine-mediated effects using only the M1-hyperfine
interaction.

Despite the cancellation, terms (3)–(5) provide a correc-
tion to the E2 moment of the excited clock state three
orders of magnitude larger than the bare nuclear value of
2.62×10−9 ea2

B . Remaining second- and third-order contri-
butions were evaluated using CI + MBPT matrix elements
and energies, with experimental nuclear moments. For both
clock states, these contributions amount to −1×10−8 ea2

B ,
verifying the dominance of the terms (3)–(5). Table III provides
a breakdown of the contributions to the E2 moments of both
clock states.

To estimate uncertainty of � for the excited clock state, we
ascribe a 3% uncertainty to each of the five distinct matrix
elements entering terms (3)–(5). We assume uncorrelated
error in these matrix elements and propagate uncertainty
accordingly, rendering a final value � = −1.7(6)×10−6 ea2

B .
In Ref. [9], the E2 moment of the excited clock state

was given as � ≈ −1.2×10−5 ea2
B , this being an order of

magnitude larger than the present evaluation. After inspecting
notes from that work, a sign error was discovered for the term
(5) contribution. A large relative error in � resulted from an
absence of the cancellation discussed above. Correcting the
sign error, the previous result is brought into agreement with
the present result.

V. IMPLICATIONS FOR THE Al+ ION CLOCK

Al+ ion clocks to date have operated with a single Al+ ion
and a single logic ion (Be+ or Mg+) simultaneously confined
in a linear rf Paul trap [23]. For this configuration, there are two
contributions to the electric quadrupole field at the position of
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the Al+ ion: that due to the static axial confining trap potential
and that due to the logic ion. Following Ref. [24], we write the
total trap electric potential as

�T = V0

2
cos(	t)

X2 − Y 2

R2
+ U0

Z2 − αX2 − (1 − α)Y 2

d2
,

where V0/2 and 	 are the amplitude and angular frequency
of the voltage applied to the rf electrodes, U0 is the voltage
applied to the end-cap electrodes, R and d are characteristic
radial and axial dimensions of the trap, and α parametrizes the
radial asymmetry of the static field. Above, X, Y , and Z are
spatial coordinates in the trap coordinate frame, while t denotes
time. Dropping the rf term, transforming to the quantization
coordinate frame, and taking the second derivative with respect
to z, we get

∂2�T

∂z2
= 2U0

d2

[
3 cos2 θ − 1

2
−

(
α − 1

2

)
sin2 θ cos(2φ)

]
,

where θ and φ are the polar and azimuthal angles of the bias
magnetic field as referenced from the trap frame. This result
is independent of the position of the Al+ ion in the trap. The
electric potential due to the other ion can be written as

�I = e√
(X − Xi)2 + (Y − Yi)2 + (Z − Zi)2

,

where (Xi,Yi,Zi) is the position of the logic ion. Transforming
to the quantization coordinate frame, taking the second
derivative with respect to z, and substituting the equilibrium
ion positions (X,Y,Z) = (0,0,±(ed2/8U0)1/3), we get

∂2�I

∂z2
= 2U0

d2

3 cos2 θ − 1

2
.

The trap dc potential satisfies

U0

d2
= m1ω

2

2e

μ

1 + μ −
√

1 − μ + μ2
,

where m1 and m2 = μm1 are the masses of the logic and
clock ions and ω is the angular frequency of the axial common
secular mode. Given that ω is a readily accessible experimental
parameter, U0/d

2 can be immediately determined from the
expression above.

For the Al+ clock reported in Ref. [8], with ω/2π =
3.00 MHz, α = 1.65, and θ = φ = 45◦, we calculate an E2
clock shift of −28 μHz, or −2.5×10−20 fractionally. The
magnetic-field orientation with respect to the trap axes was not
characterized with high accuracy in this experiment, but due to
geometric constraints we can bound the uncertainty of θ and
φ to be better than ±5◦. Taking this field-gradient uncertainty
together with uncertainty in �, we find an uncertainty in the
clock shift of 19 μHz, or 1.7×10−20 fractionally. As expected,
both the shift and its uncertainty are negligible in comparison
with the total clock uncertainty of 8.6×10−18 reported in
Ref. [8]. Even as the Al+ clock continues to improve [10], this
shift will likely remain small with respect to the uncertainty
budget for the immediate future.

VI. ESTIMATES FOR AN In+ MANY-ION CLOCK

Following Refs. [25,26], we consider a many-ion clock
based on 115In+. We evaluate terms (3)–(5), with appropriate
scaling for the nuclear spin I = 9/2, and neglect all other
contributions. Results are tabulated alongside 27Al+ results
in Tables I–III above. Unlike 27Al+, there is not signif-
icant cancellation among the terms (3)–(5). The second-
order E2-hyperfine-mediated term (3) dominates, with a
final value of � = −1.6×10−5ea2

B . Through inspection of
Table I, this result is expected to be accurate to within
∼20%.

To estimate the clock shift, we assume a linear crystal of
eight In+ clock ions and two Yb+ sympathetic cooling ions,
with the Yb+ ions residing in the center. We suppose that
the trap strength is such that the axial secular frequency of a
single 172Yb+ ion is 330 kHz and that α ≈ 1/2 and θ = 25◦.
By generalizing the above formulas to the many-ion case,
we calculate the mean of the E2 shift of each of the eight
In+ ions to be −490 μHz, or −3.9×10−19 fractionally. The
full width of the associated inhomogeneous broadening is
530 μHz, which given the lifetime limited transition linewidth
of 820 mHz [27] will not limit the spectroscopy linewidth. We
note that at some level it might be necessary to take into account
anharmonicity in the trapping potential over the extended size
of the ion crystal for a more accurate estimate of the E2
shift.

VII. CONCLUSION

Here we have derived expressions for hyperfine-mediated
electric quadrupole moments of J = 0 atomic states and
have used these expressions to evaluate the correspond-
ing clock shift in optical ion clocks based on 27Al+

and 115In+. Interestingly, for 27Al+, the second-order E2-
hyperfine-mediated contribution is nearly equal but oppo-
site to the third-order M1-hyperfine-mediated contributions,
leading to a substantial suppression of the already small
shift.

While the magnitudes of the E2 shifts for the clocks
considered here are small with respect to current total
systematic uncertainties, the E2 shift may be more significant
for future clocks with lower total systematic uncertainties,
clocks with stronger confinement, or clocks based on other
atomic species. For these cases, in addition to the established
techniques of canceling the shift by averaging over different
magnetic substates or bias magnetic-field orientations, it is
worth noting that the shift can also be suppressed by setting
θ = arccos(1/

√
3) ≈ 54.7◦ and φ = 45◦. Finally, while the

quadrupole moments are rather small, it may be possible to
do a direct experimental measurement using the technique of
Ref. [28].
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