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Measuring out-of-time-order correlations and
multiple quantum spectra in a trapped-ion
quantummagnet
Martin Gärttner1†, Justin G. Bohnet2†, Arghavan Safavi-Naini1, Michael L. Wall1, John J. Bollinger2

and AnaMaria Rey1*

Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into
unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum
correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of
particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body
dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with
more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain
fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the
quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could
enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum
and gravitational systems.

T ime reversal has fascinated and puzzled physicists for
centuries. In an iconic example, Josef Loschmidt argued that
the second law of thermodynamics would be violated by

time-reversing an entropy-increasing collision1. Ludwig Boltzmann
responded by formulating the probabilistic definition of entropy,
one of the cornerstones of statistical mechanics, and now a
fundamental concept in quantum information. Since the days of
Boltzmann and Loschmidt, the notion of time reversal has moved
from the arena of thought experiments into the laboratory, with
time reversal of non-interacting quantum systems in the form of
Hahn spin echoes2 forming an essential part of nuclear magnetic
resonance (NMR)3 and magnetic resonance imaging.

Recently, the experimental implementation of many-body time-
reversal protocols4,5 in atomic quantum systems has attracted
attention6–9 for their potential to quantify the flow of quantum
information in time and set bounds on thermalization times10–13,
which might also enable experimental tests of the holographic
duality between quantum and gravitational systems6,14–17. The
key quantities sought after are special types of out-of-time-order
correlation (OTOC) functions,

F(τ )=〈Ŵ †
(τ )V̂ †Ŵ (τ )V̂ 〉 (1)

where Ŵ (τ ) = eiĤτŴe−iĤτ , with Ĥ an interacting many-body
Hamiltonian and Ŵ and V̂ two commuting unitary operators.
Physically, F(τ )measures the ‘scrambling’ of quantum information
across the system’s many-body degrees of freedom—for example,
how fast an initial local perturbation becomes inaccessible to
local probes16. Since Re[F(τ )] = 1 − 〈|[Ŵ (τ ), V̂ ]|2〉/2, F(τ )
encapsulates the degree by which the initially commuting operators
Ŵ and V̂ fail to commute at later times due to the interactions

generated by Ĥ , which we adopt as an operational definition
of scrambling.

Most theoretical studies of scrambling have focused on so-called
fast scramblers in thermal states10,11,16, systems where the commuta-
tor grows exponentially at a rate exclusively determined by the tem-
perature. However, the scrambling behaviour of non-equilibrium
systems at zero temperature will depend on the microscopic param-
eters of the Hamiltonian. This largely unexplored topic can
provide valuable insights into the dynamics of interacting quantum
many-body systems.

Here we perform measurements of OTOCs with a quantum
simulator composed of more than 100 trapped ions18 interacting
via all-to-all Ising interactions that can be reversed in time. This
Ising interaction allows us to study interesting entangled states18–21,
yet still operate in a regime where simulations on conventional
computers are feasible. Thus, our work is a first stepping stone
for exploring scrambling in initially pure quantum systems. Our
approach is modelled after the multiple quantum coherence (MQC)
protocol developed in the context of NMR3,22,23 to quantify the
buildup of multi-particle coherences (off-diagonal elements of the
many-body density matrix). We show that this protocol, under
specific choices of the initial state (pure states in our experiment),
implements the measurement of a family of OTOCs. Careful
comparison with theory allows us to use the measurements as
a verification protocol to benchmark the performance of the
quantum simulator, and to sensitively quantify different sources of
decoherence and imperfect control. In our experiment, which starts
with a pure product state, scrambling can be physically interpreted
as the process by which the information stored (or encoded) in
the initial state, through the interactions, is distributed over and
therefore stored in other many-body degrees of freedom of the
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system. Thus, it cannot be extracted by measurements of single-
particle observables. Instead it requires measurements of higher-
order correlations. The information is not lost, but requires reading
out the various degrees of freedom.

Future generalizations such as adding a spatially inhomogeneous
magnetic field or a periodic drive would allow one to experimentally
study scrambling behaviour in regimes intractable to theory,
to explore the possibility of fast scrambling in low-temperature
systems, and to investigate possible connections between chaos and
fast scrambling away from the semi-classical limit. The protocols
demonstrated here are widely applicable, and could be implemented
in a variety of other platforms with reversible dynamics, such
as linear ion chains20,24, ultracold atomic gases4,5,25, cold atoms
in optical cavities26–28, Rydberg-dressed atoms29, superconducting
qubits30, and NMR systems22.

The general protocol is illustrated in Fig. 1a. For concreteness,
we consider the system of spin-1/2s, which we implement in our
trapped-ion experiment. The state of interest ρ̂(τ ) is prepared by
evolving a fiducial state, ρ̂0, under an interacting Hamiltonian
Ĥ for a time τ . In our experiment the initial density matrix is
ρ̂0=|+ . . .+〉 〈+ . . .+|, where |+〉= (|↑〉+ |↓〉)/

√
2 and Ĥ is

a collective Ising model given by

Ĥzz=
J
N

∑
i<j

σ̂
z
i σ̂

z
j (2)

where N is the number of spins and σ̂ z
i are Pauli spin operators.

Inverting the sign of Ĥzz (by changing J to −J ) and evolving
again for time τ to the final state ρ̂f , implements the many-
body time reversal, which ideally takes the system back to the
initial state ρ̂0. If a state rotation R̂x(φ)= e−iŜxφ , here about the x-
axis with Ŝx= 1

2

∑
i σ̂

x
i , is inserted between the two halves of the

time evolution through a variable angle φ, the dependence of the
revival probability on this angle contains information about ρ̂(τ ).
In this work, we measure two different observables at the end of
the sequence, the collective magnetization along the x-direction,
〈Ŝx〉= tr[Ŝx ρ̂f ], and the fidelity Fφ(τ )= tr[ρ̂0ρ̂f ].

The magnetization provides a direct measurement of

2
N
〈Ŝx〉=Fφ(τ )=〈Ŵ †

φ
(τ )σ̂

x
i Ŵφ(τ )σ̂

x
i 〉0 (3)

for any i, with Ŵφ(τ )= eiĤzz τ R̂x(φ)e−iĤzz τ . Here, 〈·〉0 denotes the
expectation value in state ρ̂0. The implementation is facilitated
by the fact that V̂ |+〉 = σ̂ x

i |+〉 = |+〉. Moreover, single-spin
resolution is not necessary due to the permutation symmetry of our
system that directly maps σ̂ x

i to the global magnetization along x :
σ̂ x
i → (2/N )Ŝx . In the absence of permutation symmetry, theOTOC

measured by Fφ(τ ) should be interpreted as the average over the
magnetization of each of the spins in the array.

Similarly, the fidelity, that is, many-body overlap with the initial
state, can be cast as an OTOC, where now V̂ = ρ̂0 is not unitary
but Fφ(τ ) still measures the failure of two operators to commute
following dynamical evolution (seeMethods).Moreover, the fidelity
can be directly linked to the so-called multiple quantum intensities
Im (see Methods), which quantify the amplitudes of the off-diagonal
elements3, or coherences, of the density matrix ρ̂(τ ). The Im are
measured by the Fourier components of

Fφ(τ )= tr[ρ̂f ρ̂0]= tr[ρ̂(τ )ρ̂φ(τ )]=
N∑

m=−N

Im(τ )e−imφ (4)

where ρ̂φ(τ ) = R̂x(φ)ρ̂(τ )R̂†
x(φ) (see Methods). In contrast to

previous implementations in NMR spectroscopy, which typically
operate at effectively infinite temperature, here we consider a spin
system that is initially in a pure state at zero temperature.

Beyond the expected decay of the measured OTOCs for
increasing τ and fixed φ, studying the dependence of them on
the rotation angle φ thus reveals information about the buildup
of correlations and provides fine-grained information about the
many-body properties of the state ρ̂(τ ). The value of the fidelity at
φ= 0 mod 2π also provides a direct measurement of the purity of
the many-body spin state, F0(τ )= tr[ρ̂(τ )2]. Note that the fidelity
measurement directly implements a many-body Loschmidt echo,
which is typically challenging to experimentallymeasure for systems
of more than∼10 particles.

To clearly illustrate the dynamics of Im and their connection
to off-diagonal elements of the density matrix, we compute Fφ(τ )

for a small system with N = 6 spins shown in Fig. 1b,c. At
τ= tcat=πh̄N/(4J ) a macroscopic superposition (Schrödinger cat)
state along x is formed31, which is signalled in the MQC spectrum
by the cancellation of all Im except I0 and I±N . Note that for this case
our scheme is equivalent to the interferometric cat-state verification
scheme realized with N≤6 ions in Paul traps19.

Motivated by the MQC protocol we study the dynamics of the
Fourier amplitudes Am of the magnetization

Fφ(τ )=
N∑

m=−N

Am(τ )e−imφ (5)

which probe the buildup of many-body correlations. One can show
that a non-zero Am(τ ) signals the buildup of at least m-body cor-
relations. In the case of the Ising model, where all terms in the
Hamiltonian commute with each other, Am(τ ) can only be non-
zero if the Hamiltonian directly couples a given spin tom−1 other
spins (see Methods and Supplementary Information). In Fig. 1d we
illustrate the Im andAm dynamics forN=48 in the absence of deco-
herence, showing the sequential buildup of higher-order coherences
and correlations. Even for the homogeneous Ising interaction, the
protocol reveals a rich structure in the many-body state, including
multiple revivals of coherences. The Im spreadmore rapidly than the
Am because the Im depends on themany-body overlapwith the initial
state, an N -body operator, which is more sensitive to the central
rotation than the mean spin, a single-body observable.

Our experimental demonstration uses two-dimensional (2D) ar-
rays of laser-cooled 9Be+ ions in a Penning trap, where the spins are
the valence electron spin states in theB=4.46 Tmagnetic field18,32,33.
Arbitrary collective spin rotations are applied via microwave pulses
(see Fig. 2 and Supplementary Information). Long-range, tunable
spin interactions are engineered through a time-dependent optical
dipole force (ODF), characterized by a frequency µr , that couples
the spins to the axial motional (phonon) modes of the ion crystal.
The driven spin-dependent motion, combined with the Coulomb
force, mediates the spin–spin interaction. Laser cooling and optical
pumping allow us to initialize the spins in a pure, coherent collective
spin state with fidelity >99.9% (ref. 34), and initialize the motional
modes with an average thermal occupation of six quanta, set by the
Doppler cooling limit.

To implement the reversible Ising dynamics, we operate in a
regime where the spins couple to a single phonon mode, the
collective centre-of-mass (COM) mode at frequency ωz . Although
there are N axial phonon modes in the crystal, the COM mode
is well-resolved for the ODF detuning from the COM mode
δ=µr−ωz used here33, justifying the single-mode approximation.
Then the spin–phonon dynamics are given by31,35

ĤI=−
Ω0

2
√
N

N∑
j=1

(
â0eiδτ+ â†

0e
−iδτ)

σ̂
z
j (6)

where Ω0 is proportional to the ODF and â0(â†
0) is the

annihilation(creation) operator for the COM mode phonons.
In general, the spins will be coupled to the phonon mode, except at
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Figure 1 | Illustration of the many-body echo scheme. a, Experimental sequence. The global−π/2 rotation R̂y about the y-axis prepares an initial state with
all spins pointing along the x-axis, and enables a measurement in this same basis. The generalized Bloch spheres illustrate the evolution of the state
(Husimi distribution). In the case of φ=0 (blue) the spins return to the initial state, while for φ=π/2 (green) the overlap of the final state ρ̂f with the
initial state is small. b, Fidelity signal for an idealized case with N=6 spins and di�erent evolution times τ given in c. c, The Fourier transforms of the fidelity
signals of b. The Fourier amplitudes are identical to the MQCs Im, which quantify the coherence of the state ρ̂(τ ). The small squares on the right show the
absolute values of the density matrix elements of ρ̂(τ ) in the basis of symmetric Dicke states. Thus, Im is the sum of the squares of all matrix elements at a
distance m from the diagonal. The times are given in units of the time to reach the Schrödinger cat state tcat=πh̄N/(4J). d, Simulated dynamics of the
Fourier amplitudes of fidelity, Im, and magnetization, Am, for purely coherent evolution of 48 ions, illustrating complementary probes of the flow of quantum
information. The vanishing odd Fourier components are not shown.

particular decoupling times τn=2πn/δ for an integer n (Fig. 2c and
Supplementary Information). Here we always choose |δ|= 2πn/τ ,
ensuring spins and phonons decouple. This guarantees that the
dynamics matches that of the Ising Hamiltonian in equation (2)
with uniform couplings J (δ)/h̄=Ω2

0/(2δ), and leads to different
values of the coupling constant J at different interaction times
τ . The detuning-dependent coupling enables us to implement a
many-body echo of the spin dynamics by inverting the sign of δ.

For measuring magnetization and fidelity, we collect the global
ion fluorescence scattered from the Doppler cooling laser on the
cycling transition for ions in |↑〉, after applying a π/2 rotation
of the spins. We count the total number of photons collected
on a photomultiplier tube (PMT) in a detection period, typically
tc=5ms. From the independently calibrated photons collected per
ion, we can infer the state populations, N↑ and N↓. After averaging
over many experimental trials, between 500 and 800, we calculate
the expectation values 〈Ŝz〉=〈N̂↑〉−N/2. To measure the fidelity,
we distinguish the single state with all ions in |↓〉, which does
not scatter from the cooling laser, from all other states. Any ion
fluorescence indicates the system is no longer in the initial state. The
fidelity is the fraction of experimental trials that result in measuring
the state |↓ ...↓〉 (see Supplementary Information).

Figure 3 shows the measured fidelity F as a function of the
angle φ for different evolution times τ in an array of 48 ions.
The measurements at φ = 0 and 2π give the state purity, while
the π-periodic oscillations encode information on the buildup of
MQCs. The pulse sequence in Fig. 3a follows Fig. 1, whereas in
Fig. 3b, an additional π-rotation has been inserted in the middle
of each evolution period τ to suppress some forms of decoherence.
We extract the coherences Im, shown in Fig. 3c, as the Fourier
components of the fidelity in Fig. 3b. We see a clear buildup of the
two-body (I2), and then four-body (I4) coherences with increasing

interaction time. Odd components are zero within statistical error,
consistent with the fact that the coherences are generated by the
Ising interaction, which can be viewed as only flipping pairs of spins.

All the measurements are in good agreement with theory
calculations (solid lines) that account for independently calibrated
sources of decoherence. Off-resonant light scattering is the
dominant decoherence mechanism in the system. Because the
fidelity measures a projection onto a single many-body state, it
decays with a rate approximatelyNΓ , where Γ is the single-particle
decoherence rate. This causes a fast decay of I0 as exp(−NΓ τ).
However, Fig. 3c shows that I0 decays as exp(−NΓ τ)I (pure)0 , where
the algebraic decay I (pure)0 ≈ 1/(1 + J 2τ 2) (see Supplementary
Section 3) signals the buildup of higher-order coherences seen also
in the fully coherent case.Other sources of decoherence include slow
drifts in themagnetic field36 andCOMmode frequency fluctuations,
which the MQC can distinguish. Figure 3a reveals the degree to
which the COM axial mode phonons cannot be decoupled from
the spins due to uncertainty in the COM mode frequency ωz . The
impact of residual spin–phonon coupling, arising from fluctuations
in ωz , is more pronounced at φ = π than φ = 0. In contrast,
slow magnetic field noise causes a reduction of the fidelity around
φ= 0(2π), but has no effect at φ= π, allowing us to benchmark
these two imperfections independently. For the data in Fig. 3b,
where the sequence includes an additional π rotation to suppress
errors from slow drifts in the magnetic field and COM mode
frequency, the full theory collapses to a solution that includes only
off-resonant light scattering as the sole decoherence mechanism
(dashed line).

Single-body observables, like the collective magnetization, are
much less sensitive to decoherence, and provide an alternative way
to experimentally measure the sequential buildup of higher-order
correlations induced by spin–spin interactions. In Fig. 4, we show
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Figure 2 | Phonon-mediated, reversible spin–spin coupling in a
Penning trap. a, (Left) Illustration of Penning trap cross-section. Ions (blue
circles) are confined axially to a single 2D plane (shown in b) with static
electric fields from potentials on the electrodes (gold). Rotation of the ions
in the axial magnetic field B produces radial confinement from the Lorentz
force. A pair of detuned ODF beams (green) interfere and form a travelling
wave optical lattice, producing spin-dependent COM mode excitations that
couple the spins to the axial phonon mode. Shown here are two of (2N+ 1)
excitations: all ions in |↑〉 (purple) and all in |↓〉 (orange). (Right) The
phonon wave packets experience equal and opposite displacement in the
axial potential Vz. Spin-dependent motion, along with the Coulomb
interaction, generates the spin–spin coupling. b, Rotating frame image of 2D
array of 9Be+ ions, integration time 2.1 s. c, Residual spin–phonon coupling
for drive frequencies away from the decoupling points±δ appears as a
decrease in the magnetization measured after the experimental sequence
from Fig. 1, with φ=π, and without inverting Ĥzz. Here τ=200µs. Note
that decoupling points appear at±δ with+δ giving an anti-ferromagnetic
interaction, and−δ giving a ferromagnetic interaction used for the time
reversal of the Ĥzz dynamics.

the results of the magnetization OTOC measurement sequence,
which shows a buildup of Fourier amplitudes, Am, up to m= 8,
observable even for N = 111. These measurements also allow us
to benchmark the quality of our quantum simulator by comparing
to theory predictions with no adjusted parameters. Here, the
dashed lines are obtained by solving the pure spin model including
only spontaneous emission decoherence (see Supplementary
Information), showing agreement in both the φ-dependent signal
(Fig. 4a) and its Fourier transform (Fig. 4b). Accounting for static
magnetic field noise largely explains the remaining discrepancy
at small angles (solid lines in Fig. 4a). Comparison of the data to
theory predictions with no decoherence (Fig. 4c) confirms that the
decay of the Fourier amplitudes at long times is not a decoherence
effect but a consequence of many-body interactions which induce
a decrease of low-m components with a corresponding buildup of
high-m components. Since the observed dynamics is dominated
by the coherent evolution under the Ising interaction, these results
suggest that the observed features can be explained only by the
formation of quantum correlations.

In summary, we have shown that many-body Loschmidt echo
sequences are powerful tools to measure OTOCs and quantify
the degree of coherence in quantum simulators, with an explicit
demonstration for ions in a Penning trap. In particular, we
studied OTOCs involving variable angle spin rotations. The Fourier
components with respect to the rotation angle (Im and Am) show
a buildup of many-body coherence and correlations, indicating
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Figure 3 | Measured fidelity and coherence spectrum of N= 48 ions.
a,b, Dependence of the fidelity Fφ(τ ) on the rotation angle φ. The
experimental sequence in b includes an additional π pulse in the middle of
each evolution period τ . The dashed lines are simulations including
o�-resonant light scattering as the only source of decoherence, with
Γ =62 s−1. The solid lines include e�ects of COM mode and magnetic field
fluctuations, with COM mode frequency fluctuations1COM/ωz=

8.0× 10−5 r.m.s., and magnetic field noise1B/B=0.32× 10−9 r.m.s.
(Methods). Note that for each interaction time τ the detuning is chosen
so that δ=2π/τ (a) or δ=4π/τ (b). In each case, the spin–spin coupling
also varies as J/h̄=Ω2

0/(2δ) whereΩ0=7,850 s−1. c, Fourier amplitudes
of fidelity (b) as a function of time. Solid lines are simulations including all
known decoherence processes. I2 and I4 clearly show the buildup of
higher-order MQCs. Odd coherences and coherences m≥6 are zero
within the statistical error. For I0, decoherence induced decay (dashed)
and approximate analytic curve (dotted, see text) are shown. The data
points at τ=0.3 and 0.9 (not shown in b) have been added. The longest
measured evolution time of τ= 1 ms corresponds to 6.5% of tcat
(see Fig. 1d). All error bars denote the statistical error of 1 standard
deviation (s.d.) of the mean.

scrambling of quantum information. Our experimental results are
described well by a theory model which accounts for all known
sources of decoherence (photon scattering,magnetic field noise, and
spin–phonon coupling), allowing us to benchmark the performance
of our trapped-ion quantum simulator.
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Figure 4 | Probing scrambling through magnetization dynamics.
a, Dependence of the normalized component Fφ(τ )= (2/N)〈Ŝx〉 of the total
spin on the rotation angle φ, measured in an array of N= 111(2) ions. Lines
are the solutions of the full master equation with (solid) and without
(dashed) magnetic field noise, where1B/B=0.32× 10−9 r.m.s. The e�ect
of COM mode fluctuations is negligible here. Error bars denote the
statistical error of 1 s.d. of the mean. b, Fourier amplitudes Am as a function
of time. In the theory plot, the case without magnetic field noise (dashed
lines in a) was used. The interaction parameter varies as J/h̄=Ω2

0/(2δ)
whereΩ0=7,450 s−1 and Γ =91 s−1. The longest measured evolution
time of τ= 1.2 ms corresponds to 7.3% of tcat. c, Ideal case for N= 111,
neglecting all decoherence e�ects. This corresponds to the lower panel of
Fig. 1d. The box in the left panel shows the experimentally accessed region
which is magnified in the right panel.

The characteristic features of Ams reported in this work demon-
strate a high level of control over the coherent many-body dy-
namics achieved by our trapped-ion quantum simulator and are
fully consistent with the buildup of quantum correlations. Al-
though currently the latter can be only indirectly inferred from the
measurements, it is supported by previous benchmarking of the
system using standard entanglement witnesses such as spin squeez-
ing18. We expect future work to derive formal connections be-
tween entanglement and scrambling, and to construct strict bounds
that witness entanglement directly from Im and Am measurements.

Although the current experimental system realizes a model
amenable to classical simulations, we envisage experiments going
beyond this limit—for example, by adding a spatially inhomoge-
neous magnetic field or preparing the system in non-symmetric
or impure initial states, such as thermal states. These general-
izations will allow us to explore the dynamics of OTOCs and
characterize scrambling in unexplored regimes and under condi-
tions where fast scrambling can occur. Furthermore, the ability to
time-reverse the dynamics will allow enhanced phase estimation
without single-particle detection resolution5,29,37, investigations of
quantum phase transitions38, criticality39, thermalization in nearly
closed quantum systems13,40 and the exploration of the quantum-
classical boundary41—for example, observation of the violation of
Leggett–Garg inequalities42.

After the completion of this work, we became aware of measure-
ments of OTOCs using four spins in an NMR system43.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Trap parameters. The experimental system is a two-dimensional (2D) Wigner
crystal of 9Be+ ions formed in a Penning trap, described in ref. 18. Details relevant
to this work are documented here. Axial confinement in the trap is provided by
electric potentials applied to a stack of cylindrical electrodes; radial confinement is
achieved using the Lorentz force produced by the controlled ion crystal rotation
through the axial magnetic field, B=4.46T, of the trap. The axial trap frequency is
ωz=1.570MHz, with a rotation frequency of ωr=180 kHz. The ions are
laser-cooled to the Doppler limit (≈0.5mK, with mean thermal occupation n̄≈6)
using a pair of beams tuned close to the optical cycling transition∣∣2S1/2J=+1/2,mJ=1/2

〉
→
∣∣2P3/2J=+3/2,mJ=3/2

〉
. The centre-of-mass

(COM) motional mode frequency is the trap axial frequency ωz , with the shorter
wavelength modes well-resolved at lower frequencies33.

Qubit parameters. The two-level spin system is formed by the valence electron
spin in the magnetic field of the Penning trap, with
|↑〉=

∣∣mJ=1/2
〉
(|↓〉=

∣∣mJ=−1/2
〉
) parallel (anti-parallel) to the field. The

spin states are split by 124GHz. Global spin state rotations are performed using
resonant microwaves, characterized by a π rotation time of 70µs. The coherence
time is primarily limited by shot-to-shot magnetic field fluctuations, causing
fluctuations of the qubit state splitting with a standard deviation of 40Hz.

Effective Hamiltonian parameters. The Ising Hamiltonian evolution is
implemented using the spin–motion coupling described in equation (6). The
spin-dependent ODF, with magnitude |F0|=|h̄Ω0|/z0, where z0≡

√
h̄/(2mωz ) is

the ground state wavefunction size for a single trapped ion, is provided by a pair of
far-detuned 313 nm laser beams that excite the axial drumhead modes of the ion
crystal. The Coulomb force mediates effective spin–spin interactions through the
spin-dependent motion, leading to well-characterized Ising interactions18,32, similar
to those used in a number of trapped-ion quantum simulators44–46. For this work,
|F0| is typically 45 yN. The detuning δ in this work ranges from 2π×1 kHz to
2π×5 kHz, and the impact of coupling to other axial modes, separated by at least
2π×25 kHz from ωz , is negligible. For δ=2π×1kHz, we typically achieve J/h̄
between 4,000 and 5,000 s−1, calibrated using mean-field spin precession32 and
collective spin depolarization18.

Decoherence. The ODF beams scatter off-resonant photons, which is the primary
source of decoherence during the coherent evolution. We independently determine
the total single-particle decoherence rate Γ using measurements of the decay of the
second-order moment of the collective spin 〈Ŝ2

〉. Typically, Γ ∼65 s−1, in good
agreement with the prediction from the laser intensity alone. However, for the data
in Fig. 4, we measured Γ ∼90 s−1, which we attribute to effects of the larger
Lamb–Dicke confinement parameter for this data (see Supplementary Information
of ref. 18), which had tighter radial trapping parameters than the data in Fig. 3
(and therefore lower frequency transverse modes). The decoherence rate Γ is
dominated by elastic Rayleigh scattering, which is 3.9 times the total inelastic
Raman scattering rate47.

Beyond spontaneous emission, we also observe effects of fluctuations in the
trap axial frequency ωz . Any fluctuations in the COM frequency will adversely
affect the final state fidelity, since entanglement between the spin and motional
degrees of freedom is present unless operating precisely at the decoupling
times τn. In addition, errors in δ lead to different spin–spin couplings in the
two halves of the echo sequence, leading to imperfect many-body echoes
(Supplementary Information). We independently measure the effective COM
mode stability with an experimental sequence like that of Fig. 1 with φ=π, and
δ is nominally set to zero, measuring 〈Ŝx〉 versus τ . From the decay of 〈Ŝx〉, we find
the effective r.m.s. fluctuations in ωz to be 2π×125(50)Hz. The incorporation of
the COMmode frequency fluctuations in our theoretical model is described in a
later section.

We measure shot-to-shot magnetic field fluctuations using the experimental
sequence of Fig. 1, but with the ODF beams blocked and φ=0. From the decay of
〈Ŝx〉 versus τ , we determined magnetic-field-induced fluctuations in the qubit
frequency of 40Hz r.m.s. We note that these measured fluctuations are the same
order as, but slightly smaller than measured previously (∼68Hz; ref. 36).

Experimental readout. To measure the fidelity, we distinguish the single state with
all ions in |↓〉, which does not scatter from the cooling laser, from all other states.
Off-resonant repumping from the cooling laser limits the detection time, and so
setting a photon count threshold based on the average photons collected per ion
generally underestimates the fidelityFφ . We recover nearly all the fidelity using a
reference photon count distribution where all ions are prepared in |↓〉
(Supplementary Information).

Multiple quantum coherence protocol. To prove the relation between the Fourier
components of the fidelity and the multiple quantum intensities (or coherences) Im
we introduce the canonical product basis |α〉=|α1 . . .αN 〉, where αi∈{+,−} and

|±〉 are the eigenstates of σ̂x . The states |α〉 are eigenstates of Ŝx=
∑

i σ̂
x
i /2 with

eigenvaluesMx , which are (half) integer numbers between−N/2 and N/2. We can
now write the state ρ̂(τ ) as a sum of different coherence sectors ρ̂(τ )=

∑
m ρ̂m.

Here, ρ̂m contains all density matrix elements that account for coherences between
basis states |α〉 and |α′〉 for whichMx−M ′x=m; that is, which differ in the
number of spins in the |+〉-state bym.

With this, one defines the MQC spectrum known from NMR3:

Im= tr[ρ̂mρ̂−m]=
∑

Mx−Mx′=m

|ρ̂αα′ |
2 (7)

Noting that a rotation about x only results in themth sector picking up a
phase−mφ, one finds

Fφ(τ ) = tr[ρ̂0ρ̂f ]= tr[ρ̂0Û †Rx(φ)Û ρ̂0Û †R̂†
x(φ)Û]

= tr[ρ̂(τ )ρ̂φ(τ )]= tr

[∑
m′
ρ̂m′
∑
m

ρ̂me−imφ
]

=
∑
m

tr[ρ̂−mρ̂m]e−imφ=
∑
m

Ime−imφ (8)

where ρ̂φ(τ )= R̂x(φ)ρ̂(τ )R̂†
x(φ) and Û=exp[−iĤzzτ ], and we have used cyclic

permutations under the trace. The equalityFφ(τ )= tr[ρ̂(τ )ρ̂φ(τ )] shows that for
φ=0 the fidelity measures the purity of the state ρ̂(τ ). Equation (8) still holds in
the presence of specific types of decoherence present in our experiment
(Supplementary Information).

Scrambling of quantum information from Ising models. In this section we
provide further insight on the scrambling of quantum information. We show that
themth Fourier component of Fφ(τ ) is non-zero only if at least one expectation
value of an n-point operator, with n≥m, is non-zero. Details of this calculation can
be found in the Supplementary Information.

In the main text we defined the magnetization OTOC as the x-magnetization
per spin Fφ(τ )= (2/N )〈Ŝx〉=1/N

∑N
i=1〈σ̂

x
i 〉, which with permutation

symmetry simplifies to Fφ(τ )=〈σ̂ x
i 〉 (for any i). We can express the global

magnetization 〈Ŝx〉 at the end of the time-reversal scheme in terms of an
expectation value in ρ̂(τ ) (analogous to equation equation (8)):
〈Ŝx〉= tr[R̂x(φ)Û Ŝx Û †R̂†

x(φ)ρ̂(τ )], where Û is the unitary evolution under
the interaction Hamiltonian, R̂x(φ) generates the rotation of the spins about x .
Thus, 〈Ŝx〉 has the form 〈e−iŜxφÔ(τ )eiŜxφ〉τ , where 〈·〉τ denotes the
expectation value in state ρ̂(τ ). The general Hermitian operator Ô(τ ) can
be written as a sum of products of single-spin operators Ô(τ )=

∑
k ak
∏

j∈Dk
σ̂

bkj
j ,

where Dk⊂{1, . . . ,N} is a set of particle indices and bkj ∈{x ,y , z}. Applying the
x-rotation to the operator Ô(τ ) is accomplished by replacing all Pauli spin
operators according to: σ̂ x

→ σ̂ x , σ̂ y
→ σ̂ y cos(φ)+ σ̂ z sin(φ), and

σ̂ y
→ σ̂ z cos(φ)− σ̂ y sin(φ). The resulting operator can be restated as

〈e−iŜxφÔ(τ )eiŜxφ〉τ =

〈∑
k

ãk(cosφ)pk (sinφ)qk
∏
j∈D̃k

σ̂
b̃kj
j

〉
τ

=
∑

k

ãk(cosφ)pk (sinφ)qk 〈ĈD̃k 〉τ (9)

Here the tilde indicates that the coefficients and indices are different from the
ones of Ô(τ ). pk and qk satisfy 0≤pk+qk≤N . The crucial step is now to notice
that terms with pk+qk=m are associated with at leastm-spin correlation
functions, that is, expectation values 〈ĈD̃k 〉 of products of |Dk|≥m spin Pauli
spin operators. Expanding 〈e−iŜxφÔ(τ )eiŜxφ〉 into a Fourier series we find that
terms with pk+qk=m contribute only to Fourier components An where n≤m.
Thus, if all correlation functions of more thanm spins are zero, then also all
Fourier components abovem necessarily vanish. Conversely, if we observe a
Fourier component |Am|>0, we know that n-body correlations with n≥m
must exist.

In the Supplementary Information we illustrate this argument by considering
the concrete case of an Ising model with arbitrary couplings Jij. We show that for a
k-local Ising model, in which any spin interacts with at most k others, only Fourier
components Am withm≤k+1 can appear. For example, in a one-dimensional
Ising chain with nearest-neighbour interactions, no higher components than A3

can buildup. In addition, the successive buildup of higher Am as a function of time
τ and the vanishing of odd components can be understood in this way.

The observation of higher-order Fourier components of Fφ(τ ) also allows to
draw conclusions about the unitary evolution that creates the interacting dynamics.
If this unitary is fully separable—that is, a product of unitaries acting on
single spins, such as a simple rotation—then Fφ(τ ) can at most develop Fourier
components |m|≤1, since in this case 〈Ŝx〉 can be written as a sum of independent
single-particle expectation values. This argument can be generalized to unitaries
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being products of terms acting on disjoint subsets of spins of at most size≤m. If
this is the case, then An>m=0. Thus, the observation of non-zero Am implies that
the interaction Hamiltonian couples clusters of at leastm spins. We emphasize that
this result is general, and does not rely on the assumption of an Ising interaction.

In the main text we noted that 〈|[Ŵ (τ ), V̂ ]|2〉=2(1−Re[F(τ )]). This holds if
both Ŵ (τ ) and V̂ are unitary (as for Ŵ (τ )=Ŵφ(τ )=exp(iĤτ)R̂x(φ)exp(−iĤτ)
and V̂= σ̂ x

i ). If V̂= ρ̂0=|ψ0〉 〈ψ0| is the projector in the (pure) initial state,
we obtain

〈|[Ŵ (τ ), V̂ ]|2〉=1−〈Ŵ †
(τ )V̂ Ŵ (τ )V̂ 〉=1−Fφ(τ ) (10)

where we used that V̂= V̂ †, V̂ 2
= V̂ and V̂ |ψ0〉=|ψ0〉.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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Here we provide details on the experimental readout techniques and elaborate on the connection between the buildup
of many-body correlations and the Fourier components of the magnetization. Also, we give a detailed derivation of
the approximate analytical expression for I0 given in the main text. Finally, we specify the numerical methods used
for including various decoherence effects.

I. MAXIMUM LIKELIHOOD ESTIMATION OF THE ALL-DARK FRACTION

We improve our fidelity measurement by using a reference photon count distribution where all ions are prepared in
|↓〉 with a fidelity > 99.9% [1] to calibrate the background count rate Γd and probability for a spin flip in the detection
time pflip (Fig. S1a). Then the expected count distribution is

C(k) =(1− pflip)P (Γdtc, k) +
pflip
tc

∫ tc

0

dt
∑
m

P (Γdt,m)P [(Γd + Γb)(tc − t), k −m]

=(1− pflip)P (Γdtc, k) + pflip
Γ(k + 1,Γdtc) + Γ[k + 1, (Γd + Γb)tc]

Γbtck!
,

(S1)

where τ is the detection time, Γb is the independently calibrated scattering rate for an ion in the bright state, P (µ, k)
is the Poisson distribution and Γ(k, z) is the incomplete gamma function. The probability for two spin flips is typically
� 1%, so we neglect these in our model.

Fitting the photon count histogram from each experiment can then extract the fidelity F . The amplitude of the
peak determines the fidelity F for all spins being in |↓〉. Fig. S1(b) shows a typical photon count histogram with the
corresponding fit. For the fit, only the bins below a certain threshold are used to ensure that no events with one spin
in the state |↑〉 are counted. The threshold is chosen such that the expected contribution of events with one ion in
the ”bright” state |↑〉 to the fitted bins is negligible.

II. BUILDUP OF m-BODY CORRELATIONS

We showed in the main text that following the time-reversal protocol a measurement of the single particle operator
〈σ̂x

i 〉 is an out-of-time-order correlator Fφ(τ) and quantifies the scrambling of quantum information. In this section
we show that the observation of higher order Fourier components Am of Fφ(τ), indicates the buildup of higher order
correlations between the spins. We illustrate how this leads to a better understanding of the features observed in
Fig. 4.

A. General argument.

By measuring the global magnetization 〈Ŝx〉 at the end of the time reversal scheme we obtain (similar to equation
(8))

〈Ŝx〉 = tr[Ŝxρ̂f ] = tr[ŜxÛ†R̂†
x(φ)ρ̂(τ)R̂x(φ)Û ] = tr[R̂x(φ)Û ŜxÛ†R̂†

x(φ)ρ̂(τ)] (S2)

where Û is the unitary evolution under the interaction Hamiltonian, R̂x(φ) generates the rotation of the spins about

x and ρ̂(τ) is the time evolved (under Û) state that we are interested in. Thus 〈Ŝx〉 has the form 〈e−iŜxφÔ(τ)eiŜ
xφ〉τ
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FIG. S1. Extraction of fidelity. a, Reference histogram taken with all ions optically pumped into the ”dark” state |↓〉. b,
Example of a photon count histogram obtained with the full MQC sequence.

where 〈·〉τ now denotes the expectation value in state ρ̂(τ). The general Hermitian operator Ô(τ) can be written as
a sum of products of single-spin operators

Ô(τ) =
∑
k

ak
∏

j∈Dk

σ̂
bkj
j (S3)

where Dk ⊂ {1, . . . , N} is a set of particle indices and bkj ∈ {x, y, z}. This representation exploits the fact that all

possible products of N operators with factors in {1̂, σ̂x, σ̂y, σ̂z} form a complete set of operators acting on the Hilbert

space of N spins. Applying the x-rotation to the operator Ô(τ) is accomplished by replacing all Pauli spin operators
according to: σ̂x → σ̂x, σ̂y → σ̂y cos(φ) + σ̂z sin(φ), and σ̂y → σ̂z cos(φ) − σ̂y sin(φ). After doing this the products
can be multiplied out and the sum reordered, yielding

〈e−iŜxφÔ(τ)eiŜxφ〉τ =

〈∑
k

ãk(cosφ)
pk(sinφ)qk

∏

j∈D̃k

σ̂
b̃kj
j

〉

τ

=
∑
k

ãk(cosφ)
pk(sinφ)qk〈ĈD̃k

〉τ . (S4)

Here the tilde indicates that the coefficients and indices are different from the previous ones. pk and qk are non-
negative integers satisfying 0 ≤ pk + qk ≤ N . The crucial step is now, to notice that terms with pk + qk = m are
associated with at least m-spin correlation functions, i.e. expectation values 〈CD̃k

〉 of products of |Dk| ≥ m spin

Pauli spin operators. Expanding 〈e−iSxφO(τ)eiSxφ〉 into a Fourier series we find that terms with pk + qk = m only
contribute to Fourier components An where n ≤ m. Thus, if all correlation functions of more than m spins are zero,
then also all Fourier components above m necessarily vanish. Conversely, if we observe a Fourier component |Am| > 0,
we know that n-body correlations with n ≥ m must exist.
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B. Ising models with general coupling coefficients.

In the above argument we made no assumptions about the interaction Hamiltonian or the observable that is
measured. We now want to consider the concrete case of evolution under an Ising Hamiltonian and measurement

of the magnetization (N/2)Fφ(τ) = 〈Sx〉 = 1/2
∑N

i=1〈σx
i 〉. We find that for Hamiltonians with pair-wise Ising

interactions (i) the mth Fourier component of Fφ(τ) is non-zero only if at least one spin, labeled i, in the system is
coupled to m− 1 other spins in the system and that (ii) higher order Fourier components build up at higher order in
the short-time expansion.

The system evolves under the Hamiltonian Ĥzz =
∑

j �=k Jjkσ̂
z
j σ̂

z
k, which can be split into two parts:

Ĥzz =
1

2
B̂i

eff σ̂
z
i + ˆ̃Hi , (S5)

ˆ̃Hi =
∑

j �=k �=i

Jjkσ̂
z
j σ̂

z
k , (S6)

B̂eff = 4
∑
j �=i

Jij σ̂
z
j . (S7)

Without loss of generality we calculate the expectation value 〈σx
i 〉. All statements we make immediately generalize

to the magnetization OTOC Fφ(τ) = 1/N
∑N

i=1〈σx
i 〉. Again evolving under the MQC sequence (assuming a pure

state ρ(τ) = |ψ〉 〈ψ| for convenience):

〈σx
i 〉 = 〈ψ| e−iŜxφe−iĤzzτ σ̂x

i e
iĤzzτeiŜ

xφ |ψ〉 = 〈ψ| e−iŜxφe−iB̂i
effτ/2σ̂x

i e
iB̂i

effτ/2eiŜ
xφ |ψ〉 , (S8)

where we have used [σx
i ,

ˆ̃Hi] = 0. Using the relationship

e−iB̂i
effτ/2σ̂x

i e
iB̂i

effτ/2 = e−iB̂i
effτ σ̂+

i + eiB̂
i
effτ σ̂−

i ,

we can rewrite equation (S8) as

〈σx
i 〉 =

〈
1/2[σx

i + i(σy
i cosφ+ σz

i sinφ)]
ˆ̃Oi

〉
τ
+ c.c. (S9)

where

ˆ̃Oi = e−iτ(cosφ ˆ̃Sz
i −sinφ ˆ̃Sy

i ) . (S10)

Here, ˆ̃Sα
i =

∑m
j=1

′
4Jij σ̂

α
j with α = y, z and the prime on the summation indicates that particle i is excluded and m is

the number of particles connected to particle i via interactions Jij (i.e. the sum over j only includes non-zero terms
Jij). It is useful to expand equation (S10) in the form

ˆ̃Oi =

m∏
j=1

(
cos(4Jijτ)Îj − i sin(4Jijτ)

(
cosφ σ̂z

j − sinφ σ̂y
j

))
. (S11)

From equations (S9) and (S11) we see that 〈σ̂x
i 〉 has at most (m+ 1) non-zero Fourier components, that is one more

than the number of interactions links between particle i and the rest of the system. This point is also illustrated in
figure S2. Panels (a) and (b) correspond to one-dimensional chains with nearest-neighbor and next-nearest-neighbor
couplings, respectively. Consequently in the former |A2| is the highest non-zero Fourier component, while in the latter
|A4| is also observed. This proves statement (i).

Next, we write an explicit expression for Fφ(τ) in terms of n-point functions by expanding the exponential in
equation (S10):

ˆ̃Oi = e−iτ(cosφ ˆ̃Sz
i −sinφ ˆ̃Sy

i )

=
∞∑

n=0

(iτ)n

n!

[
cosφ ˆ̃Sz

i − sinφ ˆ̃Sy
i

]n

=

∞∑
n=0

(iτ)n

n!

n∑
p=0

(cosφ)p(sinφ)n−p P̂p,n

{
ˆ̃Sz
i ,

ˆ̃Sy
i

}
, (S12)
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a   Nearest-neighbor Coupling

b  Next-nearest-neighbor Coupling
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FIG. S2. Dynamics of Fourier components of the magnetization OTOC Fφ(τ) in a 1D chain with N = 10. a,
Under the nearest-neighbor Ising model each particle is only linked to two other particles and m = ±2 are the highest non-zero
Fourier components observed. b, In the presence of next-nearest-neighbor Ising interactions there are four direct links for each
particle and m = ±4 are the highest non-zero Fourier components observed.

where P̂p,n{Â, B̂} is used to denote the equally weighted sum of all operators with p Âs and (n− p) B̂s. For example,

P̂1,3{ ˆ̃Sz
i ,

ˆ̃Sy
i } = ˆ̃Sz

i (
ˆ̃Sy
i )

2 + ˆ̃Sy
i
ˆ̃Sz
i
ˆ̃Sy
i + ( ˆ̃Sy

i )
2 ˆ̃Sz

i .

Equations (S9) and (S12) together show that the amplitude of mth Fourier component of Fφ(τ), denoted by

Am, is determined by the magnitude of (at least) m-point functions of the form 〈σ̂αP̂p,n=m−1{ ˆ̃Sz
i ,

ˆ̃Sy
i }〉τ , where the

expectation is in the state ρ. Furthermore equation (S12) shows that at short times Am grows as τm−1 (or slower
since the n-point functions depend on τ themselves and possibly vanish at 0th order in the small τ expansion), which
proves (ii).
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C. All-to-all Ising dynamcis.

If we consider the case of a permutation symmetric Ising model, which we study in the main text, the expression
(S12) can be recast in terms of collective spin operators, giving

Fφ(τ) =
2

N
e−iJt/2

〈
Ŝx

∑
even n

(iJt)n

n!

n∑
p=0

P̂p,n{Ŝz, Ŝy} cosp φ sinn−p φ

−i(Ŝy cosφ− Ŝz sinφ)
∑
odd n

(iJt)n

n!

n∑
p=0

P̂p,n{Ŝz, Ŝy} cosp φ sinn−p φ

〉

τ

.

(S13)

This again illustrates the sequential buildup of higher Fourier components Am. We also note that the above expression
is a sum of terms ∝ cosp φ sinq φ, where p+ q is always even. Since for even p+ q these terms contribute only to even
Fourier components m ≤ p+ q, this explains the observed absence of odd Fourier components of Fφ(τ).

III. DYNAMICS OF I0

In this section we show that for pure states the Im can be related to the counting statistics of the spins {Pn}, where
a specific Pn denotes the probability of measuring a state with exactly n particles in the |+〉 state.

Consider the definition of Im = tr [ρ̂mρ̂−m]. For pure collective states we can write Im using |ψ〉 = ∑
m cm|m〉 with

Ŝx|m〉 = (m−N/2)|m〉 as,

Im =
∑
n

PnPm+n , (S14)

where Pm = |cm|2. This relationship allows us to derive an analytic expression for I0 =
∑

n |Pn|2 for pure states. In
the Dicke basis we fine that

Pn(τ) =

∣∣∣∣
( N∑

m=0

n∑
p=0

(
N

m

)(
m

p

)(
N −m

n− p

)
(−1)pei2J/N(m−N/2)2τ

)/(
2N

√(
N

n

))∣∣∣∣
2

(S15)

In Fig. S3 we plot the above series for I0, terminating the series at 1, 2, or 3 terms. It is evident that the dynamics
of I0 are to a large extent captured by P 2

0 , since at short times, to leading order, Pn(τ) ∝ τ2n for n > 0. Moreover
for experimentally relevant timescales one can obtain a simple analytic formula using the normal approximation to
the binomial distribution,

I0(τ) ≈ P 2
0 (τ) =

1

1 + J2τ2
. (S16)

IV. EFFECT OF DECOHERENCE ON Fφ(τ)

In order to illustrate more clearly the effects of decoherence due to off-resonant light scattering on the magnetization
OTOC, we show Fig. 4 with the decoherence-free case added (faint lines in Fig. S4). It can be seen that decoherence
leads to a global decay of Fφ(τ) for short times τ , while at longer times the effects are less obvious.

V. SOLUTION OF THE FULL MASTER EQUATION

The evolution including decoherence due to photon scattering is governed by a master equation of Lindblad form

˙̂ρ = −i[Ĥ, ρ̂] +
∑
k

L(Γ̂k)ρ̂ , (S17)

where Ĥ = Ĥzz +B
∑

i σ̂
z
i (the second term is needed if static magnetic-field noise is included) and

L(Γ̂k)ρ̂ =
∑
i

Γ̂k,iρ̂Γ̂
†
k,i −

1

2
(Γ̂†

k,iΓ̂k,iρ̂+ ρ̂Γ̂†
k,iΓ̂k,i) , (S18)
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FIG. S3. Approximate dynamics of I0. The solid, dashed, and dotted lines use Eq. (S14) with an upper limit on the
summation of 0, 1, and 2, respectively.
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FIG. S4. Effect of decoherence on Fφ(τ). As in Fig. 4a, dashed and solid lines show the magnetization OTOC accounting
for decoherence due to off-resonant light scattering and additionally static magnetic field noise, respectively. The faint solid
lines show the ideal case neglecting all sources of decoherence.

is the Lindblad superoperator (i is the spin index). The relevant types of decoherence to consider are spontaneous

emission up (Γ̂du,i =
√
Γdu |↑i〉 〈↓i|) and down (Γ̂ud,i =

√
Γud |↓i〉 〈↑i|) and dephasing [Γ̂el,i =

√
Γel/2(|↑i〉 〈↑i|−|↓i〉 〈↓i|)]

[2].

All terms of the master equation are invariant under exchange of the particle indices. This symmetry can be exploited
to drastically reduce the complexity of the problem. The density matrix of the initial state is fully symmetric under
particle exchange and this symmetry is conserved by the time evolution. Within the 4N -dimensional space of N -spin
density matrices the dynamics is therefore restricted to the subspace of fully symmetric density matrices, which has
dimension (N + 1)(N + 2)(N + 3)/6. Techniques to represent and solve the master equation on this symmetrized
Liouville space have been discussed for example in Refs. [3–5]. In the present case the Liouvillian is block diagonal with
blocks of dimension ∼ N . Thus the complexity of one time propagation step is ∼ N4. Rotations can be performed
analytically and can be decomposed into block diagonal superoperators with the number of non-zero matrix elements
of order N4. This efficient implementation allows us to solve the master equation of more than 100 of spins on a
conventional computer. This method was used to produce the dashed and solid lines shown in Fig. 4 in the main text.

The Liouville picture also makes it possible to understand how the MQC scheme is affected by decoherence. As
long as Γud = Γdu, which is fulfilled to a good approximation, the superoperator of the Lindblad terms is diagonal
and in this case equation (4) of the main text still holds, meaning that the Fourier components of the fidelity still
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exactly represent the coherences Im of the state ρ̂(τ). In particular, the equality Fφ(τ) = tr[ρ̂0ρ̂f ] = tr[ρ̂(τ)ρ̂φ(τ)]
still holds showing that F0(τ) measures the purity of ρ̂(τ).

The bare values of Γud, Γdu, and Γel are calculated based on the polarizations and a measurement of the intensity of
the ODF beams. For higher rotation frequencies where the Lamb-Dicke confinement criterion is not well satisfied we
measure an additional decay Γadd of the total spin vector as a function of the time the ODF beams are on. The total
decoherence rate (quoted in the main text) is obtained as Γ = (Γel +Γadd +Γdu +Γud)/2. The single spin coherences
decay with this rate.

For the data presented in Fig. 3, the scattering rates calculated from laser intensity measurements are Γel = 91 s−1,
Γud = 14 s−1, Γdu = 10 s−1. Independent measurements are consistent with Γadd = 0 but have an uncertainty of
about 10%, i.e., Γ = 57(6) s−1. The fidelity measurement actually provides a more sensitive way to determine Γ,
which motivates the choice of Γ = 62 s−1 for the simulations shown in Fig. 3. By solving the full master equation
as outlined above, we confirmed that at short times (τ � 1ms) the decoherence can be accounted for by globally
reducing the fidelity by a factor exp(−NΓτ).

For the simulations in Fig. 4 we used Γud = 14 s−1, Γdu = 10 s−1, Γel = 94 s−1 + Γadd, Γadd = 65 s−1, where Γadd

was determined in an independent measurement.

VI. SPIN-MOTION COUPLING

The trapped ion simulator utilizes spin-motion interactions to generate the effective spin-spin couplings. In the
regime where only the COM mode participates, the system dynamics are generated by the interaction picture spin-
phonon Hamiltonian given by

Ĥfull = − Ω0√
N

N∑
j=1

cos(µrt+ ϕ)(â0e
−iωzt + â†0e

iωzt)σ̂z
j , (S19)

where ωz is the center of mass frequency, ϕ is the ODF phase, and µr = ωz + δ is the ODF beat note frequency, with
δ denoting the detuning. The system dynamics is generated by the propagator Û = ÛSPÛSS given by

ÛSP(t, t0) = exp


∑

j

(
α(t, t0)â

†
0 − ᾱ(t, t0)â0

)
σ̂z
j


 , (S20)

ÛSS(t, t0) = exp


−iJ(t, t0)

∑
i<j

σ̂z
i σ̂

z
j


 , (S21)

where

α(t, t0) = i
Ω0√
N

∫ t

t0

dτeiωzτ cos(µrτ + ϕ), (S22)

J(t, t0) =
2Ω2

0

N

∫ t

t0

dτ

∫ τ

t0

dτ ′ cos(µrτ
′ + ϕ) cos(µrτ + ϕ) (S23)

× sin(ωz(τ − τ ′)), (S24)

where •̄ denotes complex conjugation. In the regime where δ � ωz one may use the rotating wave approximation.
Then the Hamiltonian Ĥfull reduces to ĤI given by Eq. (6) and the expressions for α and J simplify to

α(t, t0) ≈ − Ω0

2δ
√
N

e−iϕ
(
e−iδt − e−iδt0

)
(S25)

J(t, t0) ≈
Ω2

0

2Nδ
(t− t0) , (S26)

where in the last expression we provide the secular expression for J(t, t0). Within these approximate expressions it is
easy to see that at times tn = t0 + 2πn/δ, where n is an integer, spin and motion decouple and the dynamics of the

system resembles that of a spin system with uniform Ising interactions given by J =
Ω2

0

2Nδ .
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The experimental sequence consists of an initial rotation aligning the spins such that they are pointing along the
x-axis,

|ψ(0)〉 =
N∏
j=1

(
1√
2
| ↑〉j +

1√
2
| ↓〉j

)
,

The initial density matrix of the system including the thermal phonons is given by:

ρ̂(0) = |ψ(0)〉〈ψ(0)| ⊗ ρ̂thermal . (S27)

The time evolution is generated by the propagator Û(2τ, 0) = Û(2τ, τ)R̂x(φ)Û(τ, 0), where R̂x(φ) denotes a rotation
around the x direction by angle φ.

The COM fluctuations manifest as imperfect knowledge of ωz in each run of the experiment. This means that
for each experimental run the actual COM frequency is in fact ωCOM = ωz + δωz, resulting in an actual detuning
δCOM = δ− δωz for the first arm of the experiment and δCOM = −δ− δωz in the reversal. In light of the imperfection
in the reversal we label the argument of the displacement operator for the first (second) arm of the experiment with

α (β), with D̂(α) = exp
[
αâ†0 − ᾱâ0

]
. Additionally we use J = J(τ, 0) and J̃ = J(2τ, τ) to denote the spin-spin

interactions in the two experimental arms. Note that we use the full expressions for α and J given by Eqs. (S22) and
(S23).

In principle, the ODF phase in Eq. (S19) can be different in the two arms. In the following, we model the
experimental protocol where these phases, denoted by ϕ1 and ϕ2, are chosen to satisfy ϕ2 − ϕ1 = 2π(tπ/τ) with
tπ = 75 µs the length of the π-pulse.

Here, we outline the procedure used to quantify the effect of center of mass mode fluctuations, modeled as a
Gaussian noise with width σ/2π = ∆COM = 125(50) Hz on the fidelity Fφ(τ) and spin component 〈Ŝx〉.
In order to facilitate experimental comparisons we can easily include the effects of a static magnetic field noise

within the formalism presented above. To this end we modify ÛSP by adding the term B
∑

j σ̂
z
j , where B is sampled

from a Gaussian distribution with σB/2π = ∆B ∼ 40 Hz. This is equivalent to the substitutions α → α + Bτ and
β → β +Bτ in the following expressions.

A. Fidelity Fφ(τ).

We take advantage of the all-to-all nature of the interactions and use the manifold of collective Dicke states to
study the unitary evolution of the system. We find that the thermally averaged fidelity is given by

〈Fφ(τ)〉th =
N∑

m,m′,l,l′=0

√(
N
m

)(
N
m′

)√(
N
l

)(
N
l′

)

22N
d
N/2
M ′/2,M/2(φ)d̄

N/2
L′/2,L/2(φ)e

−i(JM2+J̃M ′2 )τ/2ei(JL
2+J̃L′2 )τ/2

× ei(θL,L′+θM,M′ ) exp
[
−(n̄+ 1/2)(|γ|2 + |γ̃|2)

]
I0

(
2eβth/2|γ||γ̃|n̄

)
,

(S28)

where the capitalized form of the summation indices corresponds to A = N − 2a for A = M,M ′, L, L′, and a =
m,m′, l, l′. Here γ ≡ Mα + M ′β, γ̃ ≡ Lα + L′β, θM,M ′ ≡ Im

[
M ′Mβ̄α

]
, and θL,L′ ≡ Im

[
L′Lβ̄α

]
. We have used

d
N/2
M ′/2,M/2(φ) and d

N/2
L/2,L′/2(φ) to denote the Wigner d matrices in the z − x − z convention, which are related to

the z − y − z convention matrices by a multiplicative factor, d
N/2
M ′/2,M/2(φ) = d

N/2 (z−y−z)
M ′/2,M/2 (φ)i(M/2−M ′/2). Here n̄ is

the thermally averaged mode quanta and βth = 1/kBT . Finally I0 is the modified Bessel function with power series
expansion I0(x) = 1 + x2/4 + . . . .
We note that the COM fluctuations lead to a strong decay of the fidelity signal at φ = π. This is because for the

experimentally implemented protocol the spin-dependent force has approximately the same phase in both arms of
the sequence and the resulting spin-dependent displacements in the two arms are approximately opposite, α ≈ −β.
Hence, a φ = π rotation nearly doubles the spin-dependent displacement, leading to spin-phonon entanglement, at
the end of the sequence. This is in contrast to the static magnetic field noise, as the latter is completely eliminated
by the φ = π (echo) sequence. The reverse is true for φ = 0, 2π, where the effect of COM fluctuations are suppressed
and static magnetic field noise leads to a decay of the fidelity signal.

Finally, as discussed in section V the experiment operates in the regime where Γel � Γud,Γdu. In this regime, and
for experimentally relevant times, the decay of fidelity can be approximated by Fφ(τ) → e−NΓτ [Fφ(τ)]Γ→0, where
Γ = (Γel + Γud + Γdu)/2. We have used this approximation and the expression given in Eq. (S28) for the theoretical
predictions in Fig. 3(a) in the main text. In Fig. 3(b) the expression was modified to include the π-pulses (echo) in
the middle of each arm of the MQC sequence.

NATURE PHYSICS | www.nature.com/naturephysics	 8

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS4119

http://www.nature.com/naturephysics
http://dx.doi.org/10.1038/nphys4119


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

9

N=10

N=30

a

0.5 ms

0.7 ms

0.9 ms
0 1 2 3 4 5 6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

rotation angle ϕ

N
da
rk
/N

φ

φ

φ
0 1 2 3 4 5 6

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

ϕ

N
da
rk
/N

t=0.7ms

0 1 2 3 4 5 6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

ϕ

N
da
rk
/N

t=0.7ms

m
ag

ne
tiz

at
io

n 
O

TO
C
F φ

(τ
)

m
ag

ne
tiz

at
io

n 
O

TO
C
F φ

(τ
)

m
ag

ne
tiz

at
io

n 
O

TO
C
F φ

(τ
)

b

c

FIG. S5. Effect of spin-motion coupling on magnetization OTOC Fφ(τ) a, b, Fφ(τ) = (2/N) 〈Ŝx〉 at τ = 0.9ms using
J/� = 4374 s−1 for N = 10 and N = 30, respectively. In each panel the solid line includes the COM mode fluctuations and
magnetic field noise. The effect of COM mode fluctuations is less visible in larger crystals. c, Experiment-theory comparisons
for N = 48 using the same parameters as Fig. 3a.
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B. Magnetization 〈Ŝx〉.

Using the same formalism we can find an analytic expression for the spin component 〈Ŝx〉

〈
Ŝx

〉

th

= Re

[ ∑
m,m′,p′

√(
N
m

)(
N
m′

)√
p′(N/2 + p′ + 1)

2N
e−iJ(M2−M ′2 )τ/2e−iJ̃((P ′−2)2−P ′2 )τ/2

d
N/2
N/2−m′,N/2−p′(−φ)d

N/2
N/2−(p′−1),N/2−m(φ)ei(ν1−ν2)e−|γ|2(n̄+1/2)

]
,

(S29)

where P ′ = N−p′, ν1 ≡ (M ′P ′−M(P ′−2))Im [ᾱβ], ν2 ≡ Im
[
(M ′α+ P ′β)((P ′ − 2)β̄ +Mᾱ

)
, and γ ≡ (M −M ′)α−

2β.
Evaluating the expression for 〈Ŝx〉 given by Eq. (S29) in the presence of static magnetic field noise and for large

number of spins is computationally expensive. However we observe that the effect of COM frequency fluctuations on
〈Ŝx〉 decreases as the size of the system N increases. This is illustrated in Fig. S5(a) and (b), where in both panels
the solid lines include the decoherence effects due to COM fluctuations, as well as the static magnetic field noise, and
the dashed lines are in the absence of these two decoherence effects. In Fig. S5(c) we show the experimental data for

〈Ŝx〉/(N/2) corresponding to the fidelity data shown in Fig. 3a. As discussed in the previous section the experiment

operates in the regime where Γel � Γud,Γdu. In this regime, and for experimentally relevant times, the decay of 〈Ŝx〉
can be approximated by a multiplicative factor e−Γτ . Here we use Γ = 62 s−1.
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