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The methods of kinetic theory are used to describe the radiation from an atom immersed 
in a gas of perturbing particles. It is shown that the line shape can be expressed in terms 
of a one-particle distribution function. The appropriate BBGKY hierarchy of equations 
is derived. This hierarchy is then truncated by assuming that only two-body collisions 
are important. The resulting equations are solved to obtain a non-Markovian kinetic 
equation which describes the combined effects of Doppler and pressure broadening. 
When the Markovian assumption is applied, a generalized linear Boltzmann equation 
is obtained which describes the line shape in the region where the impact limit is valid 
and which also describes the phenomenon of collisional narrowing. 
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1. INTRODUCTION 

It has been known for some time that the problem of describing the shape of a spectral 
line is intimately connected with the description of collisional processes in the gas 
one is observing. As a consequence, it should be no surprise that there is a close 
connection between atomic spectroscopy and kinetic theory. Some of the methods 
used by kinetic theorists have, in fact, been applied to the line shape problem. In 
particular, Popielawski and Rice'l) and Smith and Hooper(2) have used the Liouville 
operator formalism of  fan^(^) and Zwanzigc4) to develop expressions for the line shape. 
On the other hand, Bez~erides'~) has applied the Green's function method to this 
problem. With the exception of the work of Smith and Hooper,(z) who were concerned 
with Stark broadening, these papers arrived at rather formal and not readily calculable 
results. 
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The purpose of this paper is to show that the use of one of the simpler and more 
popular techniques of kinetic theorists, namely the BBGKY hierarchy approach,(Q 
leads very quickly to a relatively simple expression for the line shape which includes 
both the effects of collisions on the internal states of the radiator (pressure broadening) 
and on the center-of-mass motion of the radiator (Doppler narrowing). The collision 
integral can then be treated by means similar to those used for the ordinary Boltzmann 
equation. 

The motivation for this is the phenomenon of Doppler narrowing of spectral 
lines, first discussed by Wittke and Dicke") and more recently by Rautian and 
S~bel 'man,(~)  who treated the problem by means of a phenomenological kinetic 
equation. It is of interest to note that a similar phenomenon occurs(9) in light scattering 
from liquids and plasmas,(lO) where it has received considerable attention in recent 
years. In all of these problems, the usual approach is by means of a kinetic equation 
for an autocorrelation function. In the case of light scattering, this is the density 
autocorrelation f u n c t i ~ n , ( ~ ~ l ~ )  whereas in the case of spectral lines, it is the dipole 
autocorrelation function. 

An interesting property of the autocorrelation functions is the fact that the kinetic 
equations turn out to be linear as opposed to the usual kinetic equations. This is an 
important and useful simplification. 

We begin by writing the line shape in terms of a modified, one-particle, reduced 
density matrix. As is usually the case, this one-particle density matrix is coupled to 
two- and three-particle and higher density matrices through a hierarchy of equations. 
This hierarchy is truncated by assuming that only two-body collisions are important. 
It is then solved to yield a non-Markovian kinetic equation. For long times (small 
frequencies), the equation is approximately Markovian. Non-Markovian effects can 
become important on the wings of the line. A somewhat similar approach has been 
used recently by Pestov and Rautian.(ll) However, they neglect all non-Markovian 
effects and use a Born approximation which is inappropriate for neutral particles. 

In a separate paper,(12) we have used the more classical techniques of line shape 
theory to derive the same results. We feel that the derivation given here will be of 
interest to the kinetic theorist because it shows quite clearly and simply how the line 
shape problem can be cast into a kinetic theory problem. This connection between 
atomic and molecular spectroscopy and kinetic theory has important consequences for 
both fields. On the one hand, there are many new and useful techniques developed by 
kinetic theorists that can be applied to spectroscopy. On the other hand, spectroscopy 
offers an excellent way in which to test the assumptions used in kinetic theory. It is 
very interesting that a single line shape requires a kinetic equation which is valid for 
both long (line center) and short (line wings) times. 

1.1. The Line Shape 

If an atom or molecule is immersed in a gas of perturbing particles, the line shape 
of the dipole radiation emitted by the atom can be written approximately as [cf. 
Eq. (2.15) of Ref. 121 m 

0 
Z(w) = ( I / T )  Re eiwtC(t) dt (1)  
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where 

C(t) = Tr{d(-k, 0) D(k, t ) )  

and 

D(k, t )  = pd(k, - t )  (3) 

where p is the equilibrium density matrix for the system. 
The quantity d(k, t )  is defined by 

d(k, t )  = [exp(iHt/h)] d[exp(ik * R)] exp(-iHt/A) (4) 

where k = (w/c)ff, d and R are the atomic dipole moment operator and center-of-mass 
position operator, respectively, and H is the Hamiltonian for the system composed 
of the atom and the gas of perturbers. 

The quantity D(k, t )  can be considered as a modified density matrix since it 
satisfies the quantum Liouville equation 

iA(a/at)D = [H, D] ( 5 )  

Since d(-k, 0) operates only on radiator states, we can rewrite Eq. (2) as 

C(t)  = Tr,{d(-k, 0) Dl(k, t ) }  (6) 

where D, is a modified one-particle, reduced density matrix for the radiator and 
Tr, denotes the trace over radiator states. The quantity D, can be defined by its matrix 
elements, which are given by 

(a ,  p I DdkY t>l bY P’> = (a ,  p; P I D(k, t)l b, P’; P> 
P 

= (a ,  P I Tr, D(k, t)l 6 ,  P’) (7) 

where p denotes a complete set of quantum numbers for the perturbers and Tr, 
denotes the trace over all perturber states. Equation (6) then follows because d does 
not operate on the perturber states. We are labeling the atomic states by the internal 
quantum numbers a and b and the translational momentum P. 

We can write the expression for C(t) in a more convenient and somewhat familiar 
form by using Eq. (3), the cyclic invariance of the trace, and the fact that R commutes 
with d to obtain 

C(t)  = Tr,{[exp(-ik * R)] d - D,(k, t ) }  

= Tr,{[exp(-ik * R/2)] d D,(k, t )  exp(-ik - R/2)} 
= ( b  I d I a )  * (a ,  P + &Ak 1 D,(k, t)l b, P - 4Ak) (8) 

a . b  P 
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where 

F,,(k, P, t )  E (a, P I [exp(ik R/2)] Dl(k, t )  exp(-ik - R/2) 1 b, P) 

= (a, P + BAk I Dl(k, t )  I b, P - iAk) (10) 

and we have use of the relation 

exp(ik * R) I P) = 1 P + hk) (1 1) 

The quantity Fab(k, P, t )  is an off-diagonal matrix element of the one-particle, 
reduced density matrix corresponding to D. It has a very close resemblance to the one- 
particle Wigner distribution function.(13) Indeed, if a = b, this quantity is the Fourier 
transform (in space) of a one-particle Wigner distribution function. We might, there- 
fore, expect to find that Fab approximately obeys something like a Boltzmann equation, 
at least for long times (or, in terms of frequency, near the line center). 

This brings in the question of time scales. Since the Fourier transform of F gives 
rise to the line shape which is characterized by a halfwidth Awl,, (among other things), 
the time scale on which Fa, changes is the inverse half-width r l i 2 .  Another charac- 
teristic time in the problem is the average duration of a collision (or correlation time) 
T d  , which is of the order of the interaction range between atom and perturber divided 
by the thermal velocity. A third characteristic time will be the inverse of the frequency 
measured from the line center T = l/Aw. If r d  < rl/, and we are interested in times 
T > T d  , then we expect that Fab will be adequately described by a Markovian equation 
such as the Boltzmann equation. If, on the other hand, r < T d ,  we would expect 
that non-Markovian effects would begin to appear. 

2. T H E  KINETIC EQUATION:  NEUTRAL PERTURBERS 

There are, of course, many methods that can be used to obtain kinetic equations. 
These fall primarily into two classes, those which begin from the BBGKY hierarchyc6) 
and those which follow the Brussels school.(14) We will, in this case, use the hierarchy 
method, which seems to be the fastest and least complicated method for arriving at 
the first nontrivial approximation to the kinetic equation. 

We consider a single atom or molecule which we call the emitter or radiator 
interacting with N perturbers in a volume V. 

In order to simplify notation, we will assume that the interaction between per- 
turbers is negligible and that the internal states of the perturbers are not affected by 
their collisions with the emitters. These assumptions can be lifted without difficulty. 
Thus, we write the Hamiltonian as 

N N 

H = H, + H&) + V(i) 
i=l i=l 

where Ho is the unperturbed Hamiltonian for the emitter and has the eigenvalues 

Ho I UP) = [(P2/2m) + ea] I UP) (13) 
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The quantity H,(i) is the Hamiltonian for a free perturber and V(i) is the interaction 
potential between the radiator and the ith perturber. 

We can obtain an equation of motion for Fab from the Liouville equation by 
making use of the definition given in Eq. (10). We obtain 

[(a/at) + i (wab  + k * p/ml F a b ( k  p, t )  
= -(fn/fi) * 1 (a, P + @k; p1 1 [v(I), &(k, 1 ,  t ) ]  16, P - Bfik; PI> (14) 

01 

where 

wUb = rZ-l(~, - Eb) and n = N / V  (15) 
The modified two-body reduced density matrix D, is defined by 

(0, P; PI I D2(k 1, t )  I a’, P‘; PI’) 

= Y (a, P, pi 3 ~2 ).-., PN I D(k, t> I a’, P’; pi’, ps ) . . e ,  PN) (16) 
PZ...PN 

where p1 ,..., pN denote the momenta of the perturbers. 
The next step is, of course, to obtain an expression for D, . In the usual manner,(6) 

one can generate a hierarchy of equations for D, , D2 , etc. similar to the well-known 
BBGKY hierarchy. If the gas of neutral perturbers is sufficiently dilute, we expect 
the dominant contributions to arise from two-body collisions with the effects of three- 
and four-body and higher collisions smaller than those of two-body collisions by 
additional powers of the perturber density. Thus, we can “truncate” the hierarchy 
at the second level (Le., the equation for D,) by treating the emitter and the perturbing 
particle as a simple two-body system (thus ignoring terms which are higher order 
in the perturber density). Then, 

is the two-body Hamiltonian for the system composed of emitter plus perturber. 
It is convenient to introduce the two-particle correlation operator 

Gz(1, t> D2(k, 1, t> - -Y--lDi(k t>fi(l)  (19) 

where fi( 1) is the Maxwell-Boltzmann distribution function for the perturbers. We 
are assuming here that the particles obey Boltzmann as opposed to Fermi or Bose 
statistics. This is valid in the ranges of density and temperature of experimental 
interest. 

If we insert the above expression for D, in terms of D, and G, into Eq. (14), 
we find that the Dlfi terms vanish because of spatial homogeneity (Le., fl is diagonal 
in momentum states) and we are left with 

[ (a /a t )  + i(mao + k ’ p/m>] F u a ( k ,  P, t )  

= -(in/&> (a, P + &fik; PI I [V(1), G,(k 1, t ) ]  I b, P - Qfik; pi> (20) 
p1- Cl 
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From Eq. (17), we obtain, to lowest order in the perturber density n, 

G,(k, 1, t )  = e-iHzt/fiG,(k7 1, 0) eiHZtlfi 

- ( i / v h )  f d.r e-iHa"fi[[V(l), D,(k, t - .)f1(l)] eiHZT" (22) 
0 

We will henceforth neglect any initial correlations between the atom and the perturbers. 
The effects of such correlations have been shown to be important only for short times 
T or, alternatively, for f i  d w  > kT,(15) which is often an uninteresting region of a line 
profile. One might also expect these contributions to vanish because of phase mixing, 
a common phenomenon in kinetic theory.(14) Substituting the resulting expression 
into Eq. (20), we obtain 

[(a/at) -k i(wub + k ' P/m)] F&, p, t )  

= - (n/?P) 1 j' dr (u ,  P,  p1 1 [exp(-ik - R/2)] 

x [ W ) ,  U P 7  -)[VU, -1, [exp(--iH0.r/fi)I 

x D& t - .r)fi(l) exp(iH0.r/fi)] U+(O, -7)] exp(-ik * R/2) I b, P, P,) (23) 

p1 O 

We define the operator F(k, t ) ,  

F(k7 t )  = [exp( -ik * R/2)] Dl(k, t )  exp( -ik . R/2) (26) 

t 
= - (n/fi2) 1 d.r (u ,  P,  p1 I [exp(-ik * R/2)] 

P1.C1 0 

X [V(1), U(0, -~)[p(l, -T), [exp(-iH,.r/fi)][exp(ik - R/2)] 

x exp(-ik - R/2) 1 b, P, pl) 

X F(k, t - .r)[exp(ik ' R/2)]fl(l) exp(iH0.r/fi)] U+(O, -T)] 



A Kinetic Theory of Spectral Line Shapes 407 

The above equation is a non-Markovian equation for F,,(k, P, t )  [or F(k, t)] 
which we can write in the form 

(a/&) F(k, t )  + (i/ti)[Ho , F] = st d~ a(.) F(k, t - T )  (29) 
0 

Clearly when the Laplace transform is performed to obtain the line shape [cf. Eq. (l)], 
the Laplace transform B(w) of g ( ~ )  represents a width and shift operator. 

3. THE MARKOVIAN O R  IMPACT LIMIT 

In many cases of interest, the duration of a collision is much smaller than the 
inverse half-width. In such cases, it is expected that for t > T ~ ,  the kinetic equation 
becomes approximately Markovian. The process of obtaining the Markovian equation 
is quite analogous to that used to obtain the Boltzmann equation for neutral gases(16) 
and the Balescu-Lenard equation for plasmas.(17) In the context of line broadening 
theories, this approximation is known as the impact approximation.(15) 

We begin by noting that Eq. (28) can also be written in the form 
t 

0 
(a /a t )  F(k, t )  + (i/h)[HO , F] = j dT B(T)[e-iHOT’*F(k, t - T )  eiBoT’*] (30) 

[B(T) is not the same operator as L ~ ( T ) ] .  We then note from Eq. (28) that the kernel 
B(T) becomes very small when T > rd  [because of the operators V(1) and r(I,-T)]. 

This behavior allows us to make a number of important simplifications. One of 
these is that we can neglect the factors exp(&ik * R) because they can be shown to lead 
to oscillating factors in the kernel of the form exp(ik PT/wz), which are small when 
T < -rD since k * P T / ~  is of the order of the range of the interaction potential divided 
by the wavelength of the observed radiation; we can neglect these oscillating factors. 

Furthermore, if we confine ourselves to times of interest t larger than T &  (the range 
where the Markovian approximation is expected to be valid), we can extend the upper 
limit of the T integration to infinity, giving the result 

(a/at)  F(k, t )  + (i/ti)[Ho , F] N jm d~ BO(~)[e-iHo”fiF(k, t - T )  eiHoT’*] (31) 
0 

where B,(T) differs from B(T) in not having the exponential factors exp(&ik * R). 
The next crucial approximation involves the time dependence of F(k, t ) .  In the 

usual case, where one is considering the ordinary one-particle distribution function 
f ( t ) ,  one notes it changes on a time scale of the order of the relaxation time.(16J7) 
This allows the replacement off(t  - T )  byf(t) in the collision integral. In this case, 
however, because of the presence of the second term on the right-hand side of Eq. (31), 
there is a rapid oscillation superimposed on the usual time behavior. Ignoring for the 
moment this additional time dependence, we note, as stated in the sentence following 
Eq. (29), that ~:~TB,,(T) is of the order of the half-width. If we remove the rapid 
oscillation by defining a new function 

f(t, 7) = e-iHoT/RF(k, t - 7) eiHoT’* (32) 
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we find that f(t, T )  as a function of T will indeed vary on a time scale of the order of 
7 1 / 2  (the magnitude of the kernel is unchanged by the unitary transformation). Thus, 
since the values of T for which B(T) is nonzero are never larger than T~ (<T1,2), we 
can replace f(t, T )  by f(t, 0). That is, for T < 71/2  and t > T~ , we can write 

e-iHo"hF(k, t - T )  eiHoT/* 21 F(k, t )  (33) 

The error made in this approximation is of the order of T ~ / T ~ / ,  < 1 which is the usual 
criterion of validity for the impact approximation.{l5) 

As a result of these approximations, the kinetic equation takes the form 

[(W> + 4 % a  + k - P/" Rub@, p, t> 

= - (4W Jm d7 (a, p ,  P1 I [ w ,  U(0, -4 
p1 

x [ W ,  -4, ~ ( k ,  t)fl(l)i wo, -)+I I b, p ,  pl> (34) 
We then note that 

(a/a7)U(O, -T)  F(k, t)fi(l)U(O, -7)' 

= - (i/h)U(O, -~)Cv(l, -71, F(k, t)fi(l)l U(0, -7)' (3 5)  

After performing the integration over T ,  we finally arrive at the Markovian form 

[(a/at)  + i ( o , b  + k * P/m)l F d k  P,  t )  

= - (in/fi) (a, P,  ~ 1 ,  pi I [%(l> F(k, t )  Q'+" 
h * C l  

- Qc+!h(l) t )  Ttl I b, P,  ci 9 pi) (36) 

Q(+) = U(0, -03) and T = VQ(+) (37) 
where 

are the binary collision Moller operator and T-matrix, respectively. 
Equation (36) is a generalized Boltzmann equation for the "modified" [cf. Eqs. (3) 

and (lo)] radiator distribution function. Note that this equation is linear, as we might 
expect in analogy with the results pertaining to light scattering in liquids(9) and plas- 
mas.(18) The reason for the linearity is that the modified density matrix D differs 
from the usual one by an operator which acts only on radiator states. This leads to 
the form D, given by Eq. (19) and this form is responsible for the linearity of the 
final kinetic equation. When one is dealing with ordinary density matrices, the form of 
pz is given by(6) 

p z ( L  2) = Pl(1) Pl(2) + g2(L 2 )  (38) 

and this form gives rise to nonlinear kinetic equations. 
The rather complicated form of this Boltzmann-like equation results from the 

fact that we have retained the effects of collisions on both the internal and translational 
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states of the radiator. We can remove the influence of the collisions on the internal 
states of the radiators by assuming that V, T, and Q(+) are diagonal in these states. In 
that case, as we might expect, the collision integral takes the usual Boltzmann form 

[(a/at) + i(W,b + k P/m)l F d k ,  p7 t )  = 1 A(P’, p) Fdk7 p’7 t )  - .(P) F d k ,  p, t )  

where 

P 
(39) 

4 P ,  P’) = ( 2 4 4  I<P, P1 I T I P’, P1‘)I2 
D1.D1’ 

x fdP1’)  &w) + E(P1) - W’) - E(P1’)l (40) 

.(P) = A(P, P’) (41) 

and 

P‘ 

except, of course, that the collision integral is linear in Fub . This equation is therefore 
not the usual linearized Boltzmann equation.(lg) This particular form also arises in 
the light scattering problem for the quantity 

fs(r, v, t ;  r‘ , v’, 0) = (S(r - rl(t)) S(v - vl(t)) 

x 8(r’ - r,(O)) 6(v’ - v,(O))) (42) 

where rl(t) and vl(t) are the exact position and velocity of a given particle at time t. 
The quantity Fob is very similar in form toys.  

Equation (39) is the quantum generalization of the equation postulated by 
Rautian and Sobel’man(8) in their treatment of collisional narrowing of a pure Doppler 
profile. Equation (36) contains not only collisional narrowing, but also pressure 
broadening. It is fairly easy to show that the ordinary pressure broadening result can 
be obtained from Eq. (36) when the effects on translational motion are neg1ected.(l2) 
In addition, as we will show in a separate paper,(12) there is a term which arises because 
of a correlation between the effects on internal and translational states as well as 
the customary pressure broadening and collisional narrowing terms. 

4. DISCUSSION 

We have used the well-known hierarchy approach to derive a non-Markovian 
kinetic equation which describes the line shape of radiation from an atom or molecule 
immersed in a gas of perturbers. In the longtime limit (provided T~ < T ~ , ~ ) ,  this equa- 
tion becomes approximately Markovian and has the general appearance of a linear 
Boltzmann equation. The linearity arises because of the particular form of the one- 
particle distribution function we are dealing with. The kinetic equation yields the 
ordinary pressure broadening and collisional narrowing results and contains corre- 
lations between these two effects. 

The fact that a single line shape encompasses the entire time (frequency) scale 
makes spectroscopy a potentially important and interesting application of kinetic 
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theory. Because of the range of times demanded, a single line shape can, in principle, 
be a test of several of the assumptions used in kinetic theory. In particular, because of 
the Boltzmann-like form of the kinetic equation derived here, line shapes can be used 
to find the ranges of validity of various models and approximate solutions of kinetic 
equations such as the BGK@O) and Fokker-Planck models. 

N O T E  ADDED IN PROOF 

A paper by P. R. Berman and W. E. Lamb, Jr., in which they use an alter- 
native approach, has recently appeared in Phys. Rev. A 4:319 (1971). The general 
results of their formalism and ours are in agreement. 
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