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We report correlationmeasurements on two 9Beþ ions that violate a chained Bell inequality obeyed by any
local-realistic theory. The correlations can be modeled as derived from a mixture of a local-realistic
probabilistic distribution and a distribution that violates the inequality.A statistical framework is formulated to
quantify the local-realistic fraction allowable in the observed distribution without the fair-sampling or
independent-and-identical-distributions assumptions. We exclude models of our experiment whose local-
realistic fraction is above 0.327 at the 95% confidence level. This bound is significantly lower than 0.586, the
minimum fraction derived from a perfect Clauser-Horne-Shimony-Holt inequality experiment. Furthermore,
our data provide a device-independent certification of the deterministically created Bell states.
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Recently, several groups have reported loophole-free
tests of local realism with Bell’s theorem [1], rejecting with
high confidence theories of local realism [2–4]. While these
experiments falsify the idea that nature obeys local realism,
they are limited in the extent to which their data differ from
local realism. Chained Bell inequality (CBI) [5] experi-
ments can show greater departures from local realism in
the following sense: Elitzur, Popescu, and Rohrlich [6]
described a model of the distribution of outcomes measured
from a quantum state as a mixture of a local-realistic
distribution, which obeys Bell’s inequalities, and another
distribution that does not. Following their convention, we
call these distributions “local” and “nonlocal.” According
to Ref. [6], a probability distribution P for the outcomes of
an experiment can be written as

P ¼ plocalPL þ ð1 − plocalÞPNL; ð1Þ
where PL represents a local joint probability distribution (a
“local part”), and PNL represents a nonlocal distribution,
with plocal as the weight of the local component bound by
0 ≤ plocal ≤ 1. For an ideal Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality experiment, where two physical
systems (usually particles) are jointly measured with four
different measurement settings [7], the lowest attainable
upper bound on the local content plocal in any quantum
distribution is ∼0.586 [8,9]. In principle, this bound can be
lowered to zero by using a chained Bell inequality
experiment.
As indicated in Fig. 1, CBI experiments are similar to

CHSH-type experiments but involve more measurement
settings. During each trial, a source that may be treated as a
“black box” emits two systems labeled a and b, respec-
tively. The experimentalist records the measurement out-
comes after choosing a pair of measurements to perform

separately on a and b. We use the symbols ak, bl to denote
the respective measurement settings and akbl for the pair.
The latter is usually simply referred to as “the settings” or
“the setting pairs.” There is a hierarchy in which the Nth

FIG. 1. (a) Illustration of a single trial in a Bell inequality
experiment. To begin, a source creates two entangled systemsa and
b, here, two 9Beþ ions. After choosing this trial’s measurement
settings ak and bl, each ion’s state is rotated by an amount
corresponding to its settings (which is controlled with classical
variables). Then, a standard fluorescence based measurement in a
fixed basis is applied to each ion. This is equivalent to choosing the
measurement basis for the state that is present before the meas-
urement settings are applied. Each system’s measurement outcome
is labeled B for “bright” or D for “dark,” corresponding to the
observation of fluorescence or not. From the jointmeasurement,we
record “c ¼ 1” if the outcomes are the same and “c ¼ 0” if they are
not. (b) “Chaining” of the measurement settings for the Nth CBI
experiment. The measurement settings can be visualized as a chain
where akbk and akþ1bkþ1 are linked by akbkþ1, and the chain is
closed by the settings aNb1. Example settings ak and bl are
highlighted in red. The CHSH Bell inequality experiment corre-
sponds to the special case of N ¼ 2. A full experiment involves
many trials with different choices for measurement settings.
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CBI experiment involves 2N different settings. The N ¼ 2
CBI experiment is equivalent to the CHSH Bell inequality
experiment. The settings for general N are chosen from
the set

Z¼fa1b1;a1b2;a2b2;a2b3;…;aN−1bN;aNbN;aNb1g: ð2Þ
Each local measurement has a binary outcome of B for
“bright” orD for “dark” (Fig. 1). The outcome of the trial is
recorded as cðx; yÞ ¼ 1 if x ¼ y or 0 if x ≠ y, where x is the
outcome from system a, and y is the outcome from system
b. The probability to obtain cðx; yÞ ¼ 1 may depend on the
choices ak and bl, so we define that probability to be the
correlation Cðak; blÞ ¼ PðBBjakblÞ þ PðDDjakblÞ, where
PðxyjakblÞ is the probability that system a yields meas-
urement outcome x, and system b yields measurement
outcome y when the setting pair is akbl. We define the
chained Bell parameter to be:

IN ¼ Cða1; b1Þ þ Cða1; b2Þ þ Cða2; b2Þ þ � � �
� � � þ CðaN; bNÞ þ ½1 − CðaN; b1Þ�: ð3Þ

If the experiment is governed by a local hidden variable
model, then the CBI IN ≥ 1 must be satisfied [5]. Note that
IN can be estimated using only the record of the settings
akbl and outcomes cðx; yÞ without knowledge of the
mechanism of the source. It was shown in Ref. [8] that
the chained Bell parameter IN is always an upper bound on
plocal. In fact, IN is a least upper bound for plocal under the
assumption that the distributions are nonsignaling in the
sense that each party’s measurement outcomes do not
depend on the other party’s setting choice [10]. In the
limit of N → ∞ and with perfect experimental conditions,
CBI experiments could be used to show that plocal → 0,
demonstrating complete departure from local realism.
Similar to a CHSH-type experiment, a CBI experiment

may be subject to “loopholes” [11,12] that, in principle,
allow local systems to show violation of the inequality.
These loopholes arise when one must rely on various
supporting assumptions that are made in the design and
execution of the experiments but which cannot be abso-
lutely verified. For example, if the setting choice for a can
be communicated to b (or vice versa), the “locality loop-
hole” is opened. Ensuring spacelike separation between the
choices and remote measurement events closes this loop-
hole [13]. The “detection loophole” [5,14] is opened by
making the fair-sampling assumption, which says that a
subset of the data can be used to represent the entire data
set. This assumption is often used when some trials fail to
produce outcomes due to inefficient detectors. High effi-
ciency detectors are required to close the detection loophole
and observe violation of the inequality [15]. The minimum
detection efficiency required to close the detection loophole
for the Nth CBI experiment is given by Ref. [15] as

ηminðNÞ ¼ 2
N

N−1 cosð π
2NÞ þ 1

; ð4Þ

assuming that the measurement efficiencies on a and b are
equal and that a maximally entangled state is measured.
This emphasizes the importance of high detection effi-
ciency in large N CBI experiments. If the analysis of the
data assumes that the outcomes of the trials are independent
and identically distributed (i.i.d.), the “memory loophole”
is opened [16]. For example, one way to determine IN is by
running each of the CBI setting pairs akbl for a total
number of Mk;l trials, respectively, and calculating

C̄ðak; blÞ ¼
PMk;l

i¼1 cðxi; yiÞ
Mk;l

; ð5Þ

(where i indexes the trials) to estimate each Cðak; blÞ term
in Eq. (3). This analysis requires the i.i.d. assumption for
standard error estimates to be valid. The memory loophole
can be closed by applying appropriate analysis techniques
to an experiment that uses randomized settings for each
trial [17].
Previous experiments on the CBIs employed entangled

photon pairs [9,18–20]. The lowest yet reported upper
bound on plocal is approximately 0.126 for N ¼ 18 [9], but
this value is based on postselection for coincidences. All
previous CBI experiments prior to our work with N ≥ 3 are
open to locality, detection, and memory loopholes.
Here, with a pair of atomic ions, we experimentally put an

upper bound on plocal by measuring IN with near 100%
detection efficiency. The measurement outcomes of every
trial in each experiment are recorded and used to determine
IN , so the detection loophole is closed, as first incorporated
in a CHSH Bell inequality experiment [21]. Furthermore,
we address thememory loophole in aN ¼ 6CBI experiment
by employing uniformly random settings and developing a
statistical analysis technique that does not require the
assumption that trials are i.i.d. However, with each ion’s
measurement inside the lightcone of the event where the
other ion’s setting choice ismade,we do not close the locality
loophole. In a CBI experiment using atomic systems, the
locality loophole could be closed by connecting distant ion
traps with photonic links as demonstrated in Refs. [2,22,23].
Two beryllium ions (9Beþ) are confined and aligned

along the axis of a linear Paul trap by applying a
combination of radio frequency (rf) and static potentials
[24] (see Fig. 2). This trap features segmented control
electrodes, allowing ions to be confined in different wells
by applying controlled potentials [26]. The ions can be
confined together in a single harmonic well or separately
confined in different locations along the trap axis. Time
varying potentials are applied to the control electrodes to
deterministically separate ions and transport them between
different locations [26,27].
The two states of the ions are encoded in the two electronic

ground-state hyperfine levels jF ¼ 2; mF ¼ 0i ¼ j↓i and
jF ¼ 1; mF ¼ 1i ¼ j↑i, where F and mF are the total
angular momentum and its projection along the quantization
axis provided by an external magnetic field of ≃0.0119T.
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For details, see Ref. [24], which includes an energy level
diagram. The frequency splitting of the two states is
approximately 1.2 GHz and is first-order insensitive to
magnetic field fluctuations [28]. With coherent operations
based on stimulated Raman transitions (with laser wave-
lengths near 313 nm), we can deterministically create the
entangled states

jΦþ=−i ¼
1ffiffiffi
2

p ðj↑↑i � j↓↓iÞ; ð6Þ

with high fidelity, where the notation j↑↑i denotes the two
ion state j↑iaj↑ib [24] (see Supplemental Material [25] for
details on theBell state generation). States jΦþ=−i are created
with the ions located in zone S (Fig. 2). This is followed by
separating the ions and placing them in two separate potential
wells, one located in zone E and one located in E0, separated
by ∼340 μm. These processes represent the source in Fig. 1
and prepare the two ions a and b for the measurement
of IN described below.
To implement the different settings, we illuminate the

ions with stimulated Raman transition-inducing laser
beams controlled with classical parameters. Ideally, they
can be described as the following rotations:

j↑ir →
1ffiffiffi
2

p ðj↑ir − ie−irk j↓irÞ;

j↓ir →
1ffiffiffi
2

p ðj↓ir − ieirk j↑irÞ; ð7Þ

where r ¼ a or b to represent each of the ions, and the
angles rk ¼ ak or bk are

ak ¼
ð2k − 1Þπ

2N
; ð8Þ

bl ¼ −
ðl − 1Þπ

N
; ð9Þ

which are chosen from Eq. (2). These angles minimize the
expected value of IN if the produced entangled state is ideal
[29]. These rotation operations are implemented by setting
the amplitude and phase of the Raman laser beams with
an acousto-optic modulator (AOM). The radio-frequency
electric field driving the AOM is produced by a field-
programable gate array (FPGA)-controlled direct digital
synthesizer. The classical variable is the phase of the
oscillating field that implements a particular setting ak.
Analogous operations are applied to ion b with setting bl.
The laser beams implementing these rotations have a beam
waist of ≃25 μm and are focused at zone S. They are
applied sequentially to one of the ions in zone S, while the
other ion is located in a different well; each ion is trans-
ported in and out of zone S to interact with the laser beams
(see Supplemental Material [25]).
After the settings rotations are applied, the state of each

ion, j↑i or j↓i, is measured sequentially in zone S with a
state-dependent fluorescence technique [30]. When the
detection laser beam is applied, we detect, on average,
30 photon counts on a photomultiplier tube if the ion is in
the j↑i state and about 2 counts if the ion is in the j↓i state.
Our photon collection apparatus images ions in zone S with
a field of view of approximately 50 μm. We label a
measurement outcome “dark” (D) if 6 or fewer photons
are observed and “bright” (B) if more than 6 are observed.
Thus, we obtain the 4 possible joint-measurement fluores-
cence outcomes, BB, BD, DB, DD, for each trial. These
outcomes correspond to the states j↑↑i, j↑↓i, j↓↑i, and
j↓↓i. Among previous CHSH-type experiments with
trapped ions [21–23,31], only two were performed with
ions manipulated and measured in individual wells [22,23].
In those experiments, the ions were confined in two traps
separated by about ∼1 m.
When the state jΦþi is prepared, we compute an estimate

ÎN of IN as shown in Eq. (3), with Eq. (5) used to estimate
the C̄ðak; blÞ terms. For the state jΦ−i, we instead use
anticorrelations and compute

ÎAN ¼ Āða1; b1Þ þ Āða1; b2Þ þ Āða2; b2Þ þ � � �
þ ĀðaN; bNÞ þ ½1 − ĀðaN; b1Þ�; ð10Þ

where Āðak; blÞ ¼ 1 − C̄ðak; blÞ. The measured ÎAN is
equivalent to ÎN for the purpose of quantifying plocal.
We performed the experiment for the CBI parameter N

ranging from 2 to 15. Two different data sets, collected ∼6
months apart, were obtained. Figure 3 shows the exper-
imentally obtained CBI parameter ÎN as a function of N.
The data points in Fig. 3 were obtained with multiple
sequential trials having the same settings, then iterated
across different choices of settings. The error bars are

FIG. 2. Layout of the relevant segmented trap electrodes. Each
CBI experiment begins with one ion located in zone E and the
other in zone E0. The blue dots, which indicate the ions, are
overlaid on a photograph showing the trap electrodes (gold). By
transporting the ions in and out of zone S, we individually
implement settings and measure each ion sequentially (details in
Supplemental Material [25]). The ions are separated by at least
∼340 μm when settings akbl are applied, a distance much larger
than the laser beams size of ∼25 μm.
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calculated under the assumption that the settings and
outcomes are i.i.d. The error bars indicate the propagated

standard errors
ffiffiffiffiffiffiffiffiffiffiffiP

jϵ
2
j

q
, with ϵj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χjð1 − χjÞ=ðMj − 1Þp

,

whereMj is the number of trials (here,Mj ∼ 2; 000) and χj
is the averaged correlated or anticorrelated outcome for the
jth setting pair. The Î2 experiment took a total of ∼5
minutes, the one for Î15 ∼ 20 minutes. The lowest value of
ÎN is obtained for the N ¼ 9 data run, which corresponds
to Î9 ¼ 0.296ð12Þ.
To remove the i.i.d. assumption, we performed an N ¼ 6

experiment employing uniformly random settings. The
settings were chosen with a pseudorandom generator
during run time. For each randomly chosen setting pair,
blocks of 100 trials with identical settings were carried out
before changing to the next randomly selected setting pair.
This procedure was repeated 1,398 times. This is the
number of blocks we obtained in a single day’s experiment
run and was deemed sufficient for our statistical analysis to
be reasonably informative. While we could have run one
trial per settings choice, this would have implied a low data
collection efficiency since a single trial takes ∼10 ms,
but reprograming the FPGA controlling the apparatus to
change the settings takes∼4 s. ThisN ¼ 6 experiment took

∼7 hours. Although 100 outcome pairs are available for
each random settings choice, only a single trial from each
block should be analyzed when not making the i.i.d.
assumption. We chose ahead of time to use the center trial
(the 50th trial of each block) in our analysis. The choice of
the 50th trial was arbitrary; any other choice would have
also produced a valid analysis. To enable this choice, we
assume that the 50th trial does not depend on the earlier
trials in each block. Collisions between ions and back-
ground gases can cause the ions to overheat or be ejected
from the potential well. To reduce the consequences of
these effects, we checked the status of the ions with
fluorescence measurements. If the measurements made
prior to the beginning of each trial do not detect a problem
with the ions, that trial was “heralded” and included in the
analysis (see Supplemental Material [25]). Because we use
only information gained prior to the beginning of a trial to
herald that trial, the detection loophole is not opened. When
studying the 50th trial of each block, 1,361 trials were
therefore analyzed.
A memory-robust statistical framework is formulated to

infer a bound on the maximum local content in the
observed correlation. For jΦþi, we draw inferences based
on the statistic Tiðx; y; ak; blÞ, defined as

Tiðx; y;ak;blÞ ¼

8>>><
>>>:

0 if x¼ y and ðak;blÞ ≠ ðaN;b1Þ
1 if x ≠ y and ðak; blÞ ≠ ðaN;b1Þ
1 if x¼ y and ðak;blÞ ¼ ðaN;b1Þ
0 if x ≠ y and ðak; blÞ ¼ ðaN;b1Þ

;

ð11Þ

where x and y are the measurement outcomes from the two
ions when they are measured with settings akbl, chosen
from Eq. (2) during trial i. As a trial-by-trial function of
both settings and outcomes, Ti is more suitable for
memory-robust statistical analysis than a statistic (such
as C̄) that is normalized by the number of times each
measurement setting occurs [16]. The expectation value of
Ti is 1 − IN=ð2NÞ, so intuitively larger values of

P1;361
i¼1 Ti

should correspond to a lower local fraction PL in Eq. (1). In
the presence of memory effects, it is possible for the
proportion of local states to change over time. Hence, we
model each trial i as having a probability pi

local of gen-
erating a local state, and derive a one-sided 1 − α con-
fidence interval ½0; p̂� for pmin

local ≔ minipi
local, the minimum

local content that can occur over the course of the experi-
ment. The probability of seeing a

P
n
i¼1 Ti statistic as large

or larger than that actually observed for a model with
pmin
local ¼ q is less than or equal to the same probability for an

i.i.d. model with pi
local ¼ q for all i. From this, the desired

confidence interval can be obtained by inversion of
hypothesis-test acceptance regions (§ 7.1.2 of [32]); see
Supplemental Material [25]. In particular, this implies that

FIG. 3. Experimentally measured values ÎN and ÎAN as a
function of N. Data represented by black and blue dots are
obtained with two 9Beþ ions, with black (blue) dots correspond-
ing to tests on jΦþi (jΦ−i). These two data sets were obtained
approximately six months apart. The difference between them
and the finer features within each data set are probably due to
miscalibrations and our inability to reproduce exact experimental
conditions. Orange squares are data from tests on jΦþi, prepared
on a 9Beþ − 25Mgþ pair. The red cross represents the (95% con-
fidence level) upper bound p̂ ¼ 0.327, estimated using our
statistical framework, which does not require the i.i.d.
assumption. The gray circles indicate the lowest IN achievable
with perfect CBI experiments, using a maximally entangled state.
As N increases from 2, the experimentally measured values of ÎN
for each different pair of ions reach a minimum and then trend
upward. This is due to errors that accumulate during experiments
with higher values of N. In general, ÎN becomes more sensitive to
errors and noise as N increases [15].
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we can take p̂ to be the largest value x for which a binomial
random variable with n ¼ 1, 361 trials and probability of
success ð2N − xÞ=2N yields a value as great or greater than
the observed value of

P
iTi with a probability of at least α.

We compute one-sided pmin
local confidence intervals of

[0,0.327], [0,0.366], and [0,0.413] for confidence levels of
0.95, 0.99, and 0.999, respectively, using the 50th trial in
each block of the randomized N ¼ 6 experiment.
Randomization of settings and the use of this statistical
framework also remove any concern that experimental
drifts might erroneously lead to a lower estimate of pmin

local.
The values of Î6 and p̂, obtained when we analyzed the

1st through 100th trial in each block, representing the I6
estimates and confidence intervals that would have been
obtained with a different choice of representative trial, are
shown in the Supplemental Material [25].
Using the same apparatus, we also perform the CBI

experiment on a pair of 9Beþ and 25Mgþ ions; see Ref. [33]
and Supplemental Material [25] for details. The computed
ÎN values are shown as orange squares in Fig. 3.
Our lowest measurement of Î2 corresponds to a

CHSH inequality parameter (sum of correlations) of
BCHSH ¼ 2.80ð2Þ. Under local realism, BCHSH ¼
4 − 2I2 ≤ 2. A consequence of the near-maximal violations
of the CHSH inequality (Bmax

CHSH ¼ 2
ffiffiffi
2

p ≃ 2.82) provides a
black box certification of the created entangled states
[34–36]. Such a characterization with minimal assumptions
on our physical system and measurements is formalized by
the self-testing framework [37,38]. Using the method of
Ref. [35], we infer a self-tested Bell-state fidelity lower
bound (at the 95% confidence level) of ∼0.958. This is a
record self-tested Bell-state fidelity with the detection loop-
hole closed; see Supplemental Material [25] for comparison
with the experiments reported in Refs. [21–23,31,33,39–44].
The apparatus used here is designed for the implemen-

tation of quantum information processing (QIP) with
trapped ions in a scalable system of trap zones in an array
[45,46]. The basic QIP elements incorporated for the
realization of the CBI experiment described here include
high-fidelity state preparation, manipulation, and measure-
ment on individual qubits with long coherence times,
transport between zones, and high-fidelity two-qubit gates.
Therefore, CBI experimental results can also be regarded as
a useful benchmark toward the goal of general purpose
scalable QIP.
Our experiment is the first to report violation of CBIs

for N ≥ 3 while closing the detection loophole. Also, it is
the first CBI for N ≥ 3 experiment that uses massive
particles. We infer the presence of distributions whose
local fraction was less than 0.327 at the 95% confidence
level. Furthermore, for the special case of the CHSH
inequality, our self-tested fidelity appears to be the highest
for a deterministically created Bell state.
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