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Abstract-When an atom is immersed in a plasma the energy levels are broadened and shifted by the interaction 
with the fluctuating electric field of the plasma. We discuss the effect of this field on the spectral line shape by 
the use of results from plasma kinetic theory. In particular we show that in the equilibrium plasma the dominant 
effect is from single-particle collisions although correlation effects lead to a different result from the usual impact 
theory. In nonequilibrium plasmas the collective modes can become important and lead to appreciable satellites 
on the forbidden lines. In the case of a two-temperature electron gas the plasma wave effect is considerably 
enhanced. The possibility of observing the satellites in unstable plasmas is discussed and the relationship to 
quasilinear theory is given. In particular, we show that in isotropic systems the line shape can be used to directly 
observe the turbulent spectrum. 

I N T R O D U C T I O N  

IN AN earlier paper'') we discussed the fact that the effect of electron correlations on Stark 
broadening had been incorrectly treated in the usual impact theory.'" We showed that 
a well-known result of plasma kinetic theory leads to an expression for (E(r) . E(0)) which 
could be interpreted as dynamic double-screening as opposed to the static (or dynamic) 
single-screened expression proposed by GRIEM et al.") We indicated very briefly the effect 
of the additional screening on Griem's function and mentioned the possible effects 
of collective modes. 

In the past year there has been increasing interest in the effects of nonequilibrium 
 plasma^'^.^) on line shapes and other applications of plasma kinetic theory'5) to spectral 
line shapes. 

The purpose of this paper is to give a more complete explanation of the "double- 
screened" result and to discuss the effects of nonequilibrium plasmas on the line shape. 
We begin by showing that if strong interactions of the atom with the plasma are ignored 
the line shape can be written in terms of the electric field autocorrelation function (E(t). 
E(0)) in the plasma. 
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We then introduce ROSTOKER’S(~) idea of quasiparticles or dressed test particles and 
use it to interpret his expression for E(t). This expression for E(t) is used to calculate the 
autocorrelation function by assuming that the plasma consists of noninteracting quasi- 
particles. 

We consider the case of an equilibrium plasma and exhibit the low and high frequency 
approximations for the autocorrelation function. These approximations are shown to 
have a wide range of validity when compared to computer results for frequencies in the 
intermediate region. 

We next consider the effect of collective modes (plasma waves, etc.) on the line shape. 
The main effect is the BARANGER-MozER”’ plasma satellites on a forbidden line. In the 
case of a stable plasma the expression derived for the electric field autocorrelation function 
can be used to obtain the size of these satellites. The more interesting case is probably 
that of an unstable plasma. We indicate the connection between the line shape theory 
for unstable plasmas and the theory of unstable or turbulent plasmas. In the case of an 
isotropic system we show that the turbulent spectrum of the electric field can be directly 
observed. 

T H E  LINE S H A P E  

It is well-known that the effect of a plasma on the line shape can be approximately 
broken into two regimes. The ions, which move very short distances during the lifetime 
of the excited state are considered to be static and represented by an electric field pro- 
bability density P(E). On the other hand, the electrons move great distances during a 
lifetime and must be treated dynamically. This splitting, although convenient, is very 
troublesome in that it is well-known that the electron and ion dynamics are intertwined. 
This coupling is of particular importance with regard to ion acoustic waves which are a 
low frequency mode. Thus, we might expect to lose some interesting effects by this splitting. 
It is very unclear how we should proceed if we retain the ion dynamics. However, ion dy- 
namics are known to be important only for frequency separations from the line center 
less than the ion plasma frequency and this is usually well inside the halfwidth. Con- 
sequently, having noted that ion dynamics present an interesting but probably often 
unimportant problem, we shall henceforth use the static ion approximation (except for 
further comments in the section on plasma satellites). 

The interaction of the atom with the electrons is approximately given by@) 

V(r, t )  = -d E(r, t), (1) 

where E(r, t )  is the classical electric field produced by the electrons at the position of the 
atom at  time t. In most theories the atom is taken to be at the origin and the field is written as 
E(t). The dipole moment operator is given by d. The only role played by the ions in deter- 
mining E is as a neutralizing positive background. 

The Hamiltonian for the atom in the plasma can be written 2s 

H = H,+I/; (2) 

where H, is the Hamiltonian for an atom in a static ion field E possessing eigenstates 
{ la)} and eigenvalues { E , }  which are functions of this static ion field. 
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We consider transitions from a set of upper (initial) states {a }  to a set of lower (final) 
states {b}. Due to interactions with the plasma the line will be broadened and shifted. 
In many cases the most important contribution to the line shape arises from interactions 
of atoms in the upper state with the perturbers (the broadening and shift of the lower 
state being negligible). In such cases the problem is greatly simplified by the assumption 
of no lower state interactions. In this case, we can write the line shape ad9) 

where pa. is the probability the atom was initially in state a' and 

K ( o )  = [o + E ,  - H ,  - 9 ( m  + E b -  H,)] - 1 (4) 

If we assume that there are only weak interactions between the atom and the plasma, 

We then obtain 

is a resolvant operator and we have chosen h = 1. 

we can take the first term in the expansion of 2' in powers of the electric 

the operator P(t) is given by 

and the brackets denote an ensemble average over the coordinates and momenta of the 
electrons. We can rewrite equation ( 5 )  in the form 

m 

9(o) = - i e'"'d(t)d(O) : (E(t)E(O)) dt, (7) J 0 

where 

(8) d(t) = eitHode-itHo. 

We see then that the electron contribution to the line shape is given by the Laplace 

Of course, there still remain difficult calculational problems involved with matrix 
transform of the electric field autocorrelation function. 

inversion and the ion field average,@) but these are not of direct concern to us here. 

ELECTRIC FIELD AUTOCORRELATION FUNCTION 

The electric field autocorrelation function (E(t) . E(t')) is of fundamental importance 
to plasma kinetic theory. It has been shown, for example, that its Fourier transform in 
space and time describes the scattering of radiation by the plasma.(lO) The production of 
bremsstrahlung radiation'") by electron-ion collisions is closely related to the Fourier 
transform in time. Because of this important role its properties are reasonably well-known. 
However, the quantity most intensively studied has been the Fourier transform over space 
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and time of (E@, t )  . E(0,O)) whereas the quantity of interest to us here is the Laplace 
transform in time of (E(r, t)  . E(r, O)).(’2) 

ROSTOKER@) has developed a very useful description of a plasma which involves looking 
at the plasma as a collection of statistically independent “dressed” test particles (or quasi- 
particles). This method is particularly appropriate here because the previous work on the 
effect of electron correlations on line 3, have relied on a single-particle picture 
in which the electrons are considered to travel past the atom on a straight line. 

In a similar manner the quasiparticle picture depicts the electrons moving along a 
straight line. However, since the electron polarizes the surrounding plasma, it carries 
with it a polarization cloud of other particles. The field felt by the atom is the sum of 
the field due to the electron and the field due to the polarization cloud. The electron plus 
its polarization cloud is called a quasiparticle and it is possible to write down a phase space 
density describing the quasiparticle.(14) 

It is very easy to write down the field due to the quasiparticle. If the electrons in the 
plasma did not interact with each other, the field at the origin due to an electron at r’ = 
ro + v,t would be 

dk ik Eo(r’) = 47ce ~ - 
( 2 7 ~ ) ~  k2 (9) 

This is the field due to a single electron traveling in a straight line initial position and 
momentum (ro, vo). If we include the field due to the polarization cloud, we obtaid6,15) 

- i k r ’  

j ( 2 1 r ) ~ k ~ ~ ( k ,  k . v)’ 
E&’) = 47ce 

where 

The quantities mp,f(v), and q are the plasma frequency (47cnez/m)’/2, the one-electron 
distribution function, and the positive infinitesimal, respectively. The quantity E(k, W )  

is the wave number- and frequency-dependent dielectric constant. The effect of the polariza- 
tion cloud is to give rise to a screening of the ordinary Coulomb interaction. We note 
that the screening depends on the wavenumber of the particle Fourier component and 
the velocity of the particle. Because of the velocity dependence, the field is said to be 
dynamically screened. The total electric field is then given ’) 

that is, as a sum over all quasiparticles. This expression is valid only for times less than 
the 90” deflection time and neglects the effects of strong, short-range collisions between 
the electrons and three body  correlation^.^^^'^^'^) 

The autocorrelation function implies an average over the initial coordinates and 
velocities of the particles. In the quasiparticle or dressed test particle picture this is written 
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in the 5 ,  

(E(t) . E(t’)) = V N  1 . . dr, . . . dr, dv, . . . dv, 

ik . ikf(v,). . .f(vN) 
k’k’’&(k, k . ~ i ) ~ ( k ,  k‘ . vj) 

e - ik‘.(r, + v,“) 

1199 

where we used E( - k, - w)  = E(k, w).* The statistical independence of the quasiparticles 
implies that there are no correlations between the initial positions of the electrons. All 
the effects of interactions are included in the dielectric constant. This result is valid to 
lowest nontrivial order in the plasma smallness parameter (HA;)-’ (the inverse of the 
number of particles in a Debye sphere). This, as stated before, neglects three body and 
higher order correlations and strong, close collisions. The result given by equation (14) 
has been obtained by other methods in the same order of approximation.‘”) However, 
none of the other methods are as capable of a single-particle interpretation as Rostoker’s 
method. 

We can rewrite the autocorrelation function in a form that is particularly appropriate 
for comparison with previous work on line shapes. That is, in the form 

where Esc(ro) is the dynamically screened field at the atom due to a quasiparticle at ro and 
is given by equation (10). GRIEM et ~ 1 . ‘ ~ )  arrived at an expression for the autocorrelation 
function which involved only one screened field. Since they were working in the impact 
approximation which corresponds to Aw = 0, they chose that screening to be static. That 
is, the appropriate dielectric constant was Efk, 0). 

We see that the difference between our results and the previous one is that each Qf the 
fields in equation (15) is screened dynamically. We therefore will use the term “double- 
screening” to refer to this result in the remainder of the paper. 

It is easy to show that 

(16) 
1 

~ ( A w )  = --d’g(Aw), 
3 

Where(6,14,15) 
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We note that 

dk 1 dvf (u)6(Ao - k . v) (18) 
(47ce)'n 

Re g(Am) = g,(Am) = ~ 

2(27~)' 1 k21.z(k, Am)[' 

and 

where P denotes the Cauchy principle value integral and Aw measures either the distance 
from the allowed line or the distance from the forbidden line depending on the case of 
interest as we will see in the next section. 

The quantity g,(Aw) is essentially proportional to the width of the line (there is some 
mixing of g, and g, when the resolvant in equation (4) is evaluated). It also plays an im- 
portant role in plasma kinetic theory since it is proportional to the resistivity of a plasma. 
In this context it was studied extensively by DAWSON and OBERMAN."~) 

This quantity can be written in a somewhat simpler form if we assume the plasma is in 
equilibrium. In that case, we can write 

where 

and" 7 ,  

where 

E~(z ,  Q) = 1 + 2z2 e" dt + iJ(n)Qz e-R2zZ 

and we have introduced a strong collision cutoff zo which is equal to Am/J(2)AD where A,,, 
is the minimum impact parameter. 

The quantity G(Am) is easily evaluated in the limits Am << mp (which corresponds to 
the impact theory region) and Am >> cop. In these cases &(k, Am) takes a simple form. For 
Am << up, E(k, Am) is approximately equal to E(k, 0) = 1 +(k;/k2).(l7) For Am >> w p ,  
E(k, Am) is approximately unity.'") Consequently, for Am << mp 

I c 

AD C(Am) In---, 
Amin 2 
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and for Am >> m,, 

where y is Euler's constant 0577 . . . . ( I 6 )  The low frequency result differs from the impact 
theory results by the factor of Je in the logarithm. Using the same minimum impact 
parameter, this factor leads to about a 15-20 per cent difference between our results 
and Griem's Qab. The high frequency result agrees with the Lewis limit.('8) 

G ( A d  (IMPACT) I .............. ...... . . .. ... ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._ 

3.0 

L I I I I ,  / I , I  I 1 1 I I l l l l  1 1 l i i l l l  

lo-' I a= A w / w ,  
IO 

FIG. 1. A comparison of the equilibrium G(Aw) in equation 21 (solid line) with the "single-screened'' 
impact result'2) (dotted line) and the LEWIS result('8) (dashed line) for zo = 

It is quite remarkable that the low frequency approximation is very good over the 
range 0 I Am < 1.70, and the high frequency approximation is very good over the 
range Am 2 1.70,. This can be seen quite clearly from the results of numerical integration 
shown in Fig. 1. A similar figure was obtained by DAWSON and OBERMAN.('~) We have also 
confirmed Dawson and Oberman's observation that the results for a different minimum 
impact parameter Xm are obtained from those for Am by adding InAm/Xm to G(A,w). We 
have checked this over the range 

It should be noted that our treatment breaks down for times of the order of and greater 
than the 90" deflection time. However, the electric field autocorrelation function goes to 
zero after a time - 1/0,, hence these errors should be negligible when the 90" deflection 
time is greater than l/mp. This limitation also applies to the usual impact theory") where 
the time between strong collisions (which usually is less than or comparable to the 90" 
deflection time) has to be large compared with the duration of the collision (at most - l/m,). 
This restriction is equivalent to requiring that there be many particles in a Debye sphere. 
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The integral over k can be decomposed into a part for k I k, and another for k 2 k,. 
The small k part may be regarded as being due to plasma oscillations and the large k part 
is interpreted as the “collisional” part. The wave part is responsible for the small bump 
near cop .because the dispersion relation for the waves forces the contribution to be con- 
centrated near cop .  On the other hand, the collisional part contributes over the entire 
frequency spectrum and in the equilibrium case is the dominant component. 

The wave part, as we shall see, can be significantly enhanced by small changes in the 
velocity distribution function. While the collisional part is largely unaffected by small 
changes in f(v). 

PLASMA SATELLITES 

The previous paragraph suggests that we might see structure on the line near the 
plasma frequency. There is, however, an additional difficulty in that the average over the 
ion microfield can smear out the effect of plasma peaks appearing in 8. The most hopeful 
cases are those where forbidden lines occur on the wings of the allowed lines.(7) In such 
cases we can expand the resolvant in inverse powers of doab( = separation from the allowed 
line) to obtain 

I(w) = l i ( 0 )  +I,(o), (25) 

where 

and 

I , (W) = -7c-’ dEP(E) Im 1 (AWab)-’(AWa,b)-’ 
a,a’,b 

X (a’ldlb) . (bldla’)(a18(Aoab)la’) -I- . . e ,  (27) 

are the ion and electron contributions to the line. We recall that la) and Ib) depend on 
the ion field strength since the ion field is included in the unperturbed Hamiltonian. 
This means that radiation will appear at the “forbidden” line. To illustrate the effect of 
the plasma satellites on the forbidden line which will occur even in the absence of any ion 
field, we will for simplicity assume that the field dependence of the states is small. We then 
simplify the problem further by considering a three-state atom consisting of a ground 
state b and two excited states a and c having the properties that the transition a -, b by 
dipole radiation is allowed, the transition c -P b is forbidden. Moreover w,b falls on the 
wings of the line centered at 0 , b .  

In this case the only significant contribution to Ze(o) in the region of the forbidden 
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where we have inserted the intermediate state IC) in order to evaluate (a19(Awab)Ja). 
The effect is to change the frequency variable from Amab to A o c b  (the separation from the 
forbidden line). As a consequence we find that 

In 1961, BARANGER and MOZER‘~) pointed out that the presence of oscillatory behavior 
in E(t) at the plasma frequency wp could give rise to sidebands on either side of the forbidden 
line. It is easy to demonstrate this effect. If we simply choose 

E(t) = E,, COS opt, (30) 
we obtain 

giving rise to lines at w = wCb+wp. In fact, the theory of the ac Stark effect shows there 
will be an infinite number of side bands, coming from higher powers of V,  centered about 
the forbidden line.(”) It is possible to look upon the effect as arising from a second-order 
process in which, for example, an atom in state c makes a transition to state a by emitting 
a plasmon and then makes a transition to state b by emitting a photon. 

BARANGER and MOZER(’) pointed out that the collective modes (plasma waves) in a 
plasma could give rise to such an effect. They then discussed the possibility of observing 
these sidebands on forbidden lines in He. They came to the conclusion that this would be 
impossible in an equilibrium plasma because of the low level of excitation of the waves. 
but might well be possible in nonequilibrium plasmas. The problem with their results 
was that there was no way of predicting what kind of plasma would give rise to enhance- 
ments of the plasma bump. 

The use of the results of plasma kinetic theory can give us such information. The 
expression for g(Aw) in equation (17) is valid as long as the plasma is reasonably stable 
(i.e. the plasma waves have a finite lifetime). When the plasma is marginally stable or 
unstable one must appeal to a more complicated theory. 

The presence of collective modes is accounted for in equation (17) by the zeros in 
E(k, w )  as a function of w. For a stable plasma these zeros are in the lower half w-plane 
and the closest zero to the real axis occurs near w = -l~,.(~’) These zeros in E(k, 0) then 
lead to resonances in the integrand of gr(Awcb) near Amcb = +up giving rise to the Baranger- 
Mozer sidebands. In the equilibrium case these sidebands are represented by the small 
bump at 0, in Fig. 1 (which is symmetric about w = 0) thus verifying that the effect is 
insignificant in an equilibrium plasma. 

On the other hand, it is possible to construct models of nonequilibrium plasmas where 
sufficient plasma waves are excited to produce a noticeable effect. 

It is possible to show that the area under the plasma bump in gr(Aw) is proportional 
to the mean energy density of the plasma waves.(21) Thus 
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where 

F(u) = dv/(i.)d( u- y )  (33) 

The denominator in the integrand can be reduced by a nonthermal high velocity tail on 
the electron distribution.(22) We expect the corresponding increase of area to be due to 
an increase of the height of the plasma bump at up. 

The area under the bump is essentially proportional to the rate of emission of radiation 
by electron-ion hence it is quite natural to consider models that 
have been proposed for generating enhanced bremsstrahlung by collective effects. These 
models generally involve placing hot electrons into a background plasma which then 
generate plasma waves by a Cerenkov-like effect. 

We have calculated g,(Ao) for TIDMAN and DUPREE’S two-temperature electron gas.(23) 
This system is composed of a background plasma described by a Maxwell-Boltzmann 
distribution with density n, and temperature T, . Superposed on the background plasma 
is a group of hot electrons also described by a Maxwell-Boltzmann distribution with 
temperature T, >> T, and density n2 << n,. The production of plasma waves is enhanced 
because of the relative increase in the number of particles in the region i. > ,/(kT,/m) 
and a subsequent decrease in the derivative of the distribution function in the same region. 
In this case the quantity G(Ao) defined in equation (20) is given by 

where 

1 E ~ ( z ,  R) = 1 + 22’ e‘* dt + iJ(n)Rz e-n2z2 

and y = (Tl/T2)1/2, a = n l / n 2 ,  and 6 = (n2T1/nlT2)1’2. The plasma resonance occurs 
for z >> 1 at o N op. In this region the numerator of the integrand in equation (34) is 
dominated by the second term which arises from the hot electrons. Similarly the de- 
nominator is dominated by the last term in Eq. (35) which also arises from the hot electrons. 
The integrand is therefore a factor ~ t d - ~ y -  ey2R2z2 greater than it would be if the hot elec- 
trons were absent. The effect of this is shown in Fig. 2 which was obtained by numerical 
integration for the case izl/nz = lo8, T,/T2 = lo-’, and zo = We note that there is a 
dramatic enhancement of the plasma bump over its equilibrium value. Since the plasma 
wave contribution arises from small values of k this contribution is largely independent of 
the minimum impact parameter. It is important to note that one must build up the resonance 
over a finite range of k because of the integration over k. 



Non-thermal effects in Stark broadening 1205 

This is one example of a system where the plasma wave contribution is significant. 
Another model proposed by TIDMAN et involves a plasma in a magnetic field. In 
this case there is a group of hot electrons which has a kinetic temperature perpendicular 
to the magnetic field which is much larger than the temperature parallel to the field and 
which has a drift velocity through the thermal plasma along the field. For weak fields 
(0, << wp) where o, is the electron cyclotron frequency, this gives rise to a splitting of the 
resonance into two peaks separated by 0,‘ f20p .  

These models indicate that we can find systems in which the plasma waves yield a 
significant contribution to g,(Aw). This large enhancement of the plasma bump at wp 
then gives the Baranger-Mozer satellites. We note that, as Baranger and Mozer pointed out, 
the ( A w , ~ ) - ~  factor in equation (29) causes the satellite further from the allowed line to be 
smaller than the near satellite. 

The results given here neglect all ion dynamics. The reason for this simplification 
as we mentioned earlier, was the fact that the effects of ions and electrons have traditionally 

1 I I I  I I  
0.2 0.5 0.8 1.0 1.5 2.0 3.0 5.0 

i l = A w / w ,  

FIG. 2. G(Ao) for the two-temperature electron gas. 

been considered separately. There have been some recent attempts at a theory@) which 
might avoid this problem but the general situation is unclear. 

Although line broadening theory is at present incapable of a unified treatment of 
electrons and ions this is not the case with plasma kinetic theory. Rostoker’s formalism 
can easily be extended to include ion motion. In this case there are “dressed” test electrons 
and “dressed” test ions which travel in straight lines enveloped in polarization clouds 
consisting of electrons and ions. The electric field due to the electrons, E,, and that due 
to the ions, Ei, each have a fast component (due to the electrons) and a slow component 
(due to the ions). If one wishes to break the broadening into a quasi-static part and an 
impact part as before presumably the slow components of both E, and E, should be included 
in the quasi-static theory and the fast components in an impact-like theory. Another 
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point is that there are now four nonvanishing autocorrelation functions (E,(O) . E,(t)), 
(E,(O). Ei(t)), (Ei(0). Ei(t)) and finally (E(0). E@)) where 

E(t) = E,(t)+Ei(t). (36) 

The relative contributions from these various autocorrelation functions vary with frequency. 
For frequencies, in the range of up, however the dynamics of the ions can be ignored. 

There is one case where the electrons and ions can be treated in a unified manner and 
which could be amenable to experiments. If there is a relative drift of the emitters and the 
plasma which is fast enough that both the electrons and ions could be treated by the impact 
theory. This drift velocity should be of the order of the Debye length times the linewidth. 
In this case the autocorrelation function would become (E(0,O) . E(v,t, t ) ) ,  where E(v,t, t )  
is the total electric field at the point vot and time t, and vo is the drift velocity. When ion 
dynamics are included there is another collective mode present known as the ion acoustic 
mode. This mode can become even more spectacularly enhanced than the electron plasma 
waves.(22) 

U N S T A B L E  P L A S M A S  

In the previous section we pointed out that the plasma bump in gr(Au) can be signi- 
ficantly enhanced in certain nonthermal plasmas where additional energy is pumped into 
the plasma waves. Although we confined ourselves to stable plasmas, it should be clear 
that the best hunting ground for the plasma satellites would be systems in which some 
of the collective modes become unstable. In this case the wave amplitudes would grow 
in time until damped by nonlinear processes. Because this problem essentially involves 
the solution of the nonlinear Vlasov equation there is no general agreement concerning 
the theoretical treatment of such systems. However, the problem of weakly unstable 
systems is often treated by means of the so-called quasilinear theory and we will indicate 
how this theory applies to the plasma satellite problem. 

The collective modes are defined by solutions of the linearized Vlasov equation which 
lead to oscillations in the Fourier components, Ek(t), of the electric field. For these modes 
we can write 

(37) Ek(t') = Ek(t) e-hk(f-f')-Yy(f-f') 

In the case of an unstable plasma there is some range of wave numbers such that Yk becomes 
negative and the waves begin to grow and eventually the linearized Vlasov equation is 
no longer valid. At this point the growth begins to affect the velocity distribution function 
which determines Y k .  In the quasilinear theory this leads to a diffusion in velocity space 
and the velocity distribution function is finally changed to such an extent that Yk eventually 
goes to zero and finally becomes negative thereby terminating the growth of the wave 
amplitudes. This process is assumed to take place over many pl'asma oscillations and 
the effect of collisional processes is assumed to be negligible in comparison. 

We shall concentrate our attention entirely on the collective modes and write 

E(r, t )  = - J dke-ik"Ek(t) 
(W3 
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for the electric field at the point r and time t due to these modes. If Ek(t) has the property 
given in equation (37), we can write 

(E(r, t )  . E(r, t ' ) )  = dk dk' e-"" e-ik"r 
( 2 4  ' J  J I 

We assume the system to be homogeneous which allows us to average over the spatial 
coordinate giving 

IEk(t)l ' 
&k(t) = lim ~ 

v-tm 64n4V' 

where I/ is the volume of the system. We choose this definition in order to agree with 
BERNSTEIN and ENGELMANN." ') 

The quantity g,(Aw) is then given by 

g,(Aw) = Re dz eiA"'(E(t). E(t +z)) 
0 J 

where we assumed 
change over a time 
to be many plasma 

&k(t) to be slowly varying in time (quasilinear theory"" shows it to 
period of the inverse of the maximum growth rate which is assumed 
periods). 

The quantity &k(t )  is proportional to the energy density in the kth mode at time t. In 
the quasilinear theory it is determined by the set of coupled equations'") 

and 

where Yk is a functional off(v)(") and 

(45) 

is the diffusion tensor. 
If the system is initially unstable, equations (43) and (44) lead to an initial growth of 

& k ( t )  above the thermal level. As &k(t) grows, it begins to affect f(v) through the diffusion 
tensor in such a way as to slow down and finally reverse the growth. In order to follow 
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this process, we need to know the initial distribution function. We see that equation (42) 
will then lead to an enhancement of the plasma satellites which are at the frequency 0,’. 

It is interesting to note that if the emitters are moving at a uniform velocity v0 with 
respect to the plasma the quantity g,(Aw) has an appearance very similar to the trace 
of the diffusion tensor because of the Doppler shift in do. That is 

In the case where IYkl << wk, i.e. weakly turbulent systems, we can approximate the 
expression given for g,(Aw) in equation (42) by 

g,(Aw) = 87L2 dke,(t)d(Aw- Ok). (47) s 
If the turbulence is isotropic, &k and wk depend only on lkl, and we obtain 

where the value of K is given by w, = Aw (and we assumed the equation had only one root) 
and o: = (d/dK)w,. This means that the turbulent spectrum € k i t )  can be obtained directly 
from the Baranger-Mozer satellites. 

The difficulty with the quasilinear theory is that it breaks down if the energy density 
in the waves becomes a significant fraction of the total energy density. In such a case there 
are other more complicated nonlinear processes which compete with the one described 
here (such as coupling between the different modes). Moreover there are other instabilities 
than those which arise from the linearized Vlasov equation (nonlinear instabilities). 

The importance of looking at the satellites in unstable plasmas lies in the information 
which can be obtained about the level of excitation from the size of the satellites and the 
possibility of testing the many competing theories which attempt to describe unstable 
or turbulent plasmas. 

C O N C L U S I O N  

We have discussed in this paper the connection between the kinetic theory of plasmas 
and Stark broadening. We have shown that one of the central results of plasma kinetic 
theory, namely the electric field autocorrelation function, can be used to calculate the 
effect of weak electron-atom collisions on the atomic spectra including many body effects. 
This result leads to a correction to the old impact theory because of the “double screening” 
of the fields. 

The contribution of weak electron-atom collisions can be approximately split into a 
collisional part and a wave part. In an equilibrium plasma the wave part, which only 
contributes near frequencies appropriate to the collective mode is insignificant. However, 
in nonequilibrium plasmas the wave part can be significantly enhanced over its thermal 
value leading to the Baranger-Mozer satellites on forbidden lines. The observation of 
these lines can thus be extremely useful in obtaining information about nonequilibrium 
plasmas. This is particularly true with unstable plasmas where the theory at present is 
in a state of great flux and the electric field autocorrelation function is a vital piece of 
information. 
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There have been two recent reports of observations of plasma satellites on forbidden 
lines. KUNZE and GRIJ3M(3) observed the satellites in a Theta pinch by looking in the 
region of the collisionless shock front. In a separate experiment COOPER and RINGLER(4) 
observed satellites on forbidden lines arising from an externally imposed ac field.  COOPER(^^) 
later looked at a region of instability in an electron beam and observed satellites due to 
the internal fluctuating fields. 
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