The spectrum of DO₂ near 60 GHz and the structure of the hydroperoxyl radical

Yardley Beers

National Bureau of Standards, Boulder, Colorado 80302

Carleton J. Howard

Aeronomy Laboratory, NOAA Environmental Research Laboratories, Boulder, Colorado 80302 (Received 29 October 1975)

Spectra for the lowest rotational transition in DO₂, $N = 1 \leftarrow 0$, have been observed near 60 GHz. These data have been used to calculate the sum of the rotational constants B + C for DO₂ = 60467.7±3 MHz. This result was combined with other measurements on HO₂ to compute a structure for the hydroperoxyl radical: $r(H-O) = 0.977 \times 10^{-10}$ m, $r(O-O) = 1.335 \times 10^{-10}$ m, and $< H-O-O = 104.1^{\circ}$. Also we have found for DO₂ that $(\epsilon_{bb} + \epsilon_{cc})/2 = -191 \pm 3$ MHz for elements of the electron-spin rotation tensor and a value of -4.2 ± 1.5 MHz for the Fermi contact interaction parameter σ .

INTRODUCTION

The HO₂ radical has an interesting history of speculation on its existence, stability, and structure. Although the existence of a transient HO₂ species was postulated nearly 50 years ago to explain the mechanism of the H₂/O₂ reaction, ¹ it was not detected in the gas phase until 1953 when the classic mass spectrometer experiment of Foner and Hudson² was reported. This work was later extended to determine the thermodynamic stability of HO₂.³

Walsh predicted in 1953 that the structure of HO_2 should be similar to that of HNO.⁴ Then, beginning in the 1960's, high speed computers were applied to the problems of the structure and stability of HO_2 . The quality of these calculations has clearly improved with time and will be discussed in some detail in a later section.

Spectroscopic work on HO₂ has increased at an accelerated rate since about 1970, stimulated largely by an interest in the gas chemistry of the radical. Milligan and Jacox⁵ and Smith and Andrews⁶ have studied HO₂ using matrix isolation techniques. In 1972 Paukert and Johnston⁷ reported detecting gaseous HO₂ in the ultraviolet (near 210 nm) and in the infrared, and Hochanadel et al.⁸ also: detected it in the uv. Recently, Radford et al.⁹ reported observing Zeeman components of HO_2 rotational transitions in the far infrared (near 100 μ m) and Hougen *et al.*¹⁰ gave an analysis of these spectra. Hunziker and Wendt¹¹ have first detected and reported a near infrared absorption spectrum for HO₂, which included the discovery of the low energy ${}^{2}A'$ excited state at 1.43 μ m. Becker *et al*.¹² observed similar transitions in emission. In 1975, Beers and Howard¹³ reported measurements of the microwave frequencies of the lowest HO₂ rotational transition at 65 GHz. Saito¹⁴ has measured these transitions with improved accuracy, as well as several other transitions at microwave frequencies.

We report here measurements of DO_2 spectral lines arising from the change in rotational quantum number, N=1-0. We have thus obtained a value for the sum of the DO_2 rotational constants, (B+C), which combined with the previously obtained rotational constants of HO₂, ^{10, 13, 14} allow us to calculate the structural parameters of the hydroperoxyl radical.

EXPERIMENTAL

The apparatus and procedure that were used are essentially the same as described earlier.¹³ Minor changes improved the sensitivity. The Zeeman modulation frequency was raised from 4 to 10 kHz. The time constant of the phase sensitive detector was increased from 10 to 30 sec. A specially selected detector crystal was used. Also the klystron used here gave higher power and had a superior frequency stability. Therefore, many of the measurements were made without the phase lock, and thus these could be made much more rapidly.

The DO₂ radicals were produced in a discharge-flow system by the reaction of fluorine atoms with D_2O_2 and DHO_2 similar to the method described earlier for HO_2 .¹³ The deuterated peroxide was prepared by mixing about 150 cm³ of 90% H_2O_2 solution with about 250 cm³ of 99.5% deuterated water. This mixture was allowed to stand for an hour or longer to permit the isotopic hydrogen species to exchange in solution. It was then reduced in volume to about 100 cm³ by vacuum pumping while the solution was heated to about 40 °C to reconcentrate the resulting mixture of peroxide compounds. Since the resulting concentration of deuterated peroxide was less than that of H_2O_2 , the signal-to-noise ratio in the DO_2 experiment was somewhat poorer than that in the HO_2 experiment.

RESULTS AND DISCUSSION

The N = 1 - 0 HO₂ spectrum consists of two groups of lines roughly 300 MHz apart resulting from transitions from a common N = 0, $J = \frac{1}{2}$ lower state to N = 1, $J = \frac{1}{2}$ and $\frac{3}{2}$ upper states. The splitting within each group is due to the hyperfine interaction of the hydrogen nucleus. With HO₂ there are three lines in each group with a spread of about 30 MHz. Because of its smaller nucelar magnetic moment the splitting would be only about one sixth as large if the deuteron were to have the same nuclear spin of $\frac{1}{2}$ of the proton. However, because the spin is 1, there are five lines with transitions to the $J = \frac{3}{2}$ upper state and four to the $J = \frac{1}{2}$ upper state. Experimentally these patterns were only partially resolved. In each case only a strong line and one weaker line were observed, but the shapes of the two stronger lines clearly indicated that they are due to two incompletely resolved lines. Zeeman components of the strong lines were observed in both pi and sigma polarizations (microwave electric field parallel and perpendicular to the Zeeman field, respectively), and the frequencies were extrapolated to zero field. However, the Zeeman components of the weak lines could be observed only in the sigma polarization. The slopes of the plots of the Zeeman patterns agreed approximately with those expected from the g_J values of the levels which have been assigned.

Table I compares the observed frequencies to those frequencies that have been calculated from the molecular constants given in Table II. These constants were derived from the spectra using the general methods described earlier.¹³ In principle the value of B + Cshould be corrected by adding the value of the centrifugal distortion constant Δ_N , but since its value¹⁴ is only 0.11 MHz, which is smaller than the assigned error, this effect has been neglected.

Table III gives the structural parameters of the hydroperoxyl radical. The first line of the Table gives parameters that were calculated on the basis of the following information: (1) B+C for $DO_2 = 60\,467.7$ ± 3 MHz (this work); (2) B+C for $HO_2 = 65\,185.40\pm0.11$ MHz (Ref. 14); and (3) A for $HO_2 = 610\,220\pm100$ MHz (average of values in Refs. 10 and 14). The structural parameters were calculated using the expressions of Gordy and Cook.¹⁵

The errors associated with these structural parameters which result from the experimental uncertainties in the molecular constants are very small, $\pm 0.0003 \times 10^{-10}$ m, $\pm 0.003 \times 10^{-10}$ m, and $\pm 0.02^{\circ}$ for r(H-O), r(O-O), and < H-O-O, respectively. A much larger uncertainty is introduced by our assumption that the structures of HO₂ and DO₂ are identical in their ground vibrational states. The differences in vibrational ground state H-O and D-O bond lengths in hydrogen and deuterium substituted hydroxyl and hydrogen peroxide molecules are 0.0035 and 0.015×10^{-10} m, respectively.¹⁶ In

TABLE I. Calculated and measured frequencies.

_						Calculated		Observed		
N'	J'	F'	N''	J''	F'	Freq. (MHz)	Rel. Int.	Freq. (MHz)	Rel. Int.	
1	ł		0	ł		60658.9 ± 2	No HfS			
1	ł	ł	0	1	ł	60653.3	10			
1	ł	32	0	1	1	60655.4	80	60655.4 ± 3	Weak	
1	12	ł	0	Ŧ	3	60659.6	80	CO.CCO 04 \ O C	a.	
1	ł	32	0	ł	32	60661.7	100	00000.04±0.0	Strong	
1	32		0	12		60372.1 ± 2	No HfS			
1	32	2	0	1	ł	60369.3	37	60368.17±1.5	Weak	
1	22	ł	0	ł	ł	60371.4	30 1	60.261 65 0 0	01	
1	2	<u>5</u> 2	0	ł	3	60372.1	100	00311.13±0.8	Strong	
1	32	32	0	ş	32	60375.6	30			
1	32	1	0	1	32	60377.7	4			

TABLE II. DO₂ molecular constants.

· · · · · · · · · · · · · · · · · · ·	
Quantity	Value
$\overline{(B+C)}$	60467.7±3 MHz
$(\epsilon_{bb} + \epsilon_{cc})/2$	-191 ± 3 MHz
σ	-4.2 ± 1.5 MHz

addition, there may be a difference in the HO₂ and DO₂ bond angles up to about 0.6° as found in H₂O₂ and D₂O₂.¹⁶ To determine the magnitude of the effect of these differences on our calculation, we have recomputed an HO₂ structure from the molecular constants given above and have allowed the D-Obond length to be 0.015×10^{-10} m shorter and the D-O-D angle to be 0.6° smaller than the appropriate HO₂ parameters. This calculation gave an HO₂ structure of $r(H-O) = 0.990 \times 10^{-10}$ m, $r(O-O) = 1.331 \times 10^{-10}$ m, and $< HO_2 = 106.3^{\circ}$. We feel this structure represents an upper limit and that the true HO₂ structure is somewhere between the two limits. It is interesting to note that r(O-O) is not seriously affected as in the case of H₂O₂ and D₂O₂.¹⁶

The results of a number of other predictions of the structure of the HO₂ radical are also shown in Table III. Most of these estimates are based on theoretical computations. Obviously there has been a significant improvement in quality with time from the oldest work in 1962 at the bottom of the table to the latest near the top. The work of Boyd was carried out by the SCF-LCAO-MO method using the Roothaan technique. She fixed the (H–O) bond length at 0.958×10⁻¹⁰m and the (O–O) bond length at 1.3×10^{-10} m and then computed the energy of the system for H-O-O angles of 180°, 110°, and 90° . These results were compared to a similar calculation by Furlong and Griffing¹⁸ for an isosceles triangle structure with an angle of 47°. Boyd found that the isosceles structure had the lowest energy and was, therefore, preferred.

Next, Gordon and Pople¹⁹ calculated the equilibrium geometry of the HO₂ radical based upon the approximate SCF-MO theory, INDO. The minimum in the energy surface was computed while allowing the bond lengths to vary by increments of 0.01×10^{-10} m and the angle by increments of 0.1° .

In 1971 Liskow et al.²⁰ made a very thorough inves-

TABLE III. Structure of HO₂.

r(H-O) ^a		r(O-O)ª	< (H O O)	Reference	
0.977	+0.015	1.335 ± 0.005	104.1° {+2° -1°	This work	
0.96		1,33	104°	McLean and Yoshimine ²³	
		$\textbf{1.34} \pm \textbf{0.02}$		Hunziker and Wendt ¹¹	
		1.36		Blint and Newton ²²	
			113°±5°	Gole and Hayes ²¹	
0.96		1.3	108°	Paukert and Johnston ⁷	
0.968		1.384	106.8° (SCF)	Liskow et al. ²⁰	
0.973		1.458	104.6° (Cl)	Liskow et al. ²⁰	
1.05		1.19	110.7°	Gordon and Pople ¹⁹	
			~ 47°	Boyd ¹⁷	

^aBond lengths in units of 10⁻¹⁰m (formerly Å).

TABLE IV.	Individual	rotational	constants.
-----------	------------	------------	------------

	A MHz	B MHz	C MHz	к
HO ₂	610 221	33 462	31723	-0.994
DO ₂	333 184	31602	28864	-0.982

tigation of the geometry and electronic structure of HO_2 using *ab initio* SCF and Cl calculations. Both results are given in Table III and agree well with our results.

The structure given by Paukert and Johnston⁷ was not determined uniquely but is consistent with the observed rotation-vibration band structure, which was only crudely resolved in their experiment.

Gole and Hayes²¹ also computed the structure of HO₂ with an *ab initio* LCAO-MO-SCF and Cl calculations. The (H-O) bond length was fixed at 0.96×10^{-10} m and the (O-O) bond at 1.23×10^{-10} m. The calculations were carried out at angle increments of 10° near the minimum, and an angle of about $113 \pm 5^{\circ}$ is consistent with all their computations.

Blint and Newton²² in 1973 reported *ab initio* LCAO-MO calculations of the bonding and structure of HO₂.²² They started with a fixed (H–O) bond length of 0.968 $\times 10^{-10}$ m and a fixed angle of 106.8° then calculated the energy of the system at (O–O) bond length increments of 0.01×10⁻¹⁰m.

Hunziker and Wendt¹¹ also estimated the (O-O) bond length based on their measurement of the (O-O) vibrational frequency in HO₂ and literature vibrational frequency and bond length data for O₂, O₂, and H₂O₂ using Badger's rule.

McLean and Yoshimine²³ have determined the HO_2 potential energy surface from a large scale Cl calculation including all single and double excitations from the basic Hartree-Fock wavefunction using a "double-zeta plus polarization" basis set of contracted Gaussian functions.

It can be seen from Table III that the latest calculations of the structure of HO_2 provide excellent agreement with our result.

Using the structural parameters in the first line of Table III, we have computed individual rotational constants and Ray's asymmetry parameter $\kappa = (2A - B - C)/(A - C)$. These are listed in Table IV.

ACKNOWLEDGMENTS

We wish to thank Dr. Jon Hougen for providing accurate predictions of the DO_2 rotational frequencies and other advice and assistance. This work was supported in part by the National Bureau of Standards Office of Air and Water Measurements. Some of the measurements were made by Mark W. Kinsey, who was supported by a grant by the Explorers Club, the Boy Scouts, and the TRW Corporation.

- ¹A. L. Marshall, J. Phys. Chem. 30, 1078 (1926); H. S. Taylor, Trans. Faraday Soc. 31, 560 (1926).
- ²S. N. Foner and R. L. Hudson, J. Chem. Phys. **21**, 1608 (1953).
- ³S. N. Foner and R. L. Hudson, J. Chem. Phys. 36, 2681 (1962).
- ⁴A. D. Walsh, J. Chem. Soc. (London) 1953, 2288.
- ⁵D. E. Milligan and M. E. Jacox, J. Chem. Phys. 38, 2627 (1963); M. E. Jacox and D. E. Milligan, J. Mol. Spectrosc. 42, 495 (1972).
- ⁶D. W. Smith and L. Andrews, J. Chem. Phys. 60, 81 (1974).
- ⁷T. T. Paukert and H. S. Johnston, J. Chem. Phys. 56, 2824 (1972).
- ⁸C. J. Hochanadel, J. A. Ghormley, and P. J. Ogren, J. Chem. Phys. 56, 4426 (1972).
- ⁹H. E. Radford, K. M. Evenson, and C. J. Howard, J. Chem. Phys. 60, 3178 (1974).
- ¹⁰J. T. Hougen, H. E. Radford, K. M. Evenson, and C. J. Howard, J. Mol. Spectrosc. 56, 210 (1975).
- ¹¹H. E. Hunziker and H. R. Wendt, J. Chem. Phys. 60, 4622 (1974).
- ¹²K. H. Becker, E. H. Fink, P. Langen, and U. Schurath, J. Chem. Phys. 60, 4623 (1974).
- ¹³Y. Beers and C. J. Howard, J. Chem. Phys. **63**, 4212 (1975).
- ¹⁴S. Saito, Astrophys. J. (private communication).
- ¹⁵W. Gordy and R. L. Cook, *Microwave Molecular Spectra* (Wiley-Interscience, New York, 1970), pp. 502, 498, and 499.
- ¹⁶Data for OH obtained from G. H. Dieke and H. M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1961) for OD from J. A. Coxon, J. Mol. Spectrosc. 58, 1 (1975), and H₂O₂ and D₂O₂ from É. Prince, S. F. Trevino, C. S. Choi, and M. K. Farr, J. Chem. Phys. 63, 2620 (1975).
- ¹⁷M. E. Boyd, J. Chem. Phys. 37, 1317 (1962).
- ¹⁸L. R. Furlong and V. Griffing, Report AFOSR-TN-60-92 on U. S. Air Force Contract AF-18(600)-1537, Catholic University of America.
- ¹⁹M. S. Gordon and J. A. Pople, J. Chem. Phys. 49, 4643 (1968).
- ²⁰D. H. Liskow, H. F. Schaefer III, and C. F. Bender, J. Am. Chem. Soc. 93, 6734 (1971).
- ²¹J. L. Gole and E. F. Hayes, J. Chem. Phys. 57, 360 (1972).
- ²²R. J. Blint and M. D. Newton, J. Chem. Phys. 59, 6220 (1973).
- ²³D. McLean and M. Yoshimine (private communication).