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Abstract
We show how to create quantum gates of arbitrary speed between trapped ions
using a laser walking wave, with complete insensitivity to the drift of the optical
phase, and requiring cooling only to the Lamb–Dicke regime. We present pulse
sequences that satisfy the requirements and are easy to produce in the laboratory.

Keywords: ion trap, quantum gate, quantum computing, fast gate, pulse
sequence, fault tolerant

A variety of proposals exist for quantum logic gates between ions trapped in high vacuum
[1–14], several of which have been experimentally implemented [15–26]. For quantum
computing, the primary goal is fast, precise quantum logic. Methods are sought that are
insensitive to those experimental parameters h which are, in practice, harder to control [27–31].
Such methods still require accurate parameter settings, but only for e parameters whose precise
control is available in the laboratory. Examples of h are ion temperature T and optical phases
ϕ

o
; examples of e are rf frequencies and phases. An optical phase is the phase of a travelling- or

standing-wave of light which is sensitive to nm-scale changes in optical path lengths. Single-
qubit gate methods, such as stimulated Raman transitions, can use co-propagating laser beams
to avoid sensitivity to the slow drift of ϕ

o
, and this is extremely important for the realization of

the high degree of precision which is needed for quantum computing. Similar insensitivity is
available in some two-qubit gate methods, but at a cost in speed. We show how to construct
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simple laser pulse sequences which allow arbitrarily fast gates robust against T and having
complete insensitivity to the value of the optical phase ϕ

o
when the gate is applied.

The issues of gate speed and sensitivity to ϕ
o
have been addressed separately in recent

work. Methods broadly similar to those presented here have been used to perform gates on ions
in linear chains where the objective is spatial selection of a subset of the ions rather than gate
speed [32, 33]. Using the general concept of forced displacements in phase space [4, 5, 17],
García-Ripoll et al [6, 7] showed how to find the time-dependence f(t) of a spin-dependent force
which would allow a two-qubit gate of any speed in a given trap. The issue of optical phases
arises when the force is produced by a laser standing wave: if ϕ

o
were not controlled then the

ions would experience the wrong f(t) and the gate would not work in general. For ‘slow’ gates,
on the other hand, i.e. with ωτ π≫ 2c , where ωc is the centre of mass (COM) mode frequency,
and τ the gate time, one may use the simple laser pulse described in [17] and below, resulting in
an entangling gate insensitive to ϕ

o
. The method of Mølmer and Sørensen involving spin flips

[3, 4], as originally discovered, was sensitive to ϕ
o
even in the slow regime, and this was an

important limitation on its practical realizability. However, it was shown how to choose laser
beam propagation directions so that insensitivity to ϕ

o
is possible for a slow implementation of

the gate on a pair of ions [27]; see also [25]. Here we achieve both high speed and insensitivity
to ϕ

o
.
The gate methods mentioned above work by driving the system around a closed loop in

phase space, using an oscillating force whose magnitude or direction depends on the qubit state.
The closure and the loop area can depend on the initial phase of the force because for fast gates

with ωτ π≲ 2c , the rotating wave approximation is not valid. A given oscillation ω ϕ+( )tsin
o

appears as an oscillation at two frequencies ω ω±0 in an interaction picture. The phase ϕ
o
is half

the phase difference between these two oscillations at t = 0, and it has significant physical
consequences. Similar considerations arise in fast manipulation of spins by Rabi flopping.

A summary of our analysis is as follows. We consider a pair of ions subject to a laser
walking wave, of phase ϕ

o
at some arbitrary position and time, which produces a spin-dependent

oscillating force through the ac Stark shift. We extract the dependence of the dynamics on ϕ
o
,

and obtain four complex number conditions which suffice to ensure that all loops in the
motional phase space are closed for any value of ϕ

o
. We then extract a further two complex

number conditions which ensure that loop areas are independent of ϕ
o
, and another condition

which ensures that single-qubit rotations due to ac Stark shifts also vanish for all ϕ
o
. Next, we

search for pulse sequences that satisfy all the conditions. We show that some remarkably simple
pulse sequences can succeed at fast speeds ωτ π< 2c : for example, a symmetric five-pulse
sequence of fixed frequency and phase origin (as could be produced by a single oscillator gated
between zero and three output levels). Such a high speed requires high laser intensity, however,
and this may be impractical. We also present a very simple symmetric four-pulse sequence, with
all pulses at the same amplitude, which produces infidelity below −10 4 (averaged over a uniform
distribution of ϕ

o
) at gate speed ωτ π ≃2 1.76c .

Consider a walking wave of light interacting with two ions in the same trap. The light field
is produced by two laser beams of difference wavevector k directed along x, difference
frequency and phase ω ϕ,

o
. The internal qubit states of the ions will be labelled ↑ and ↓ and
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referred to as ‘spin states’; in practice they are usually a pair of levels in the ground state
hyperfine structure. We assume the light polarization is adjusted so that the ac Stark shift from
either laser beam acting alone is the same for ↑ ↓, . This is usually the case in experiments
and serves to eliminate an error source (random qubit rotations from laser intensity noise). The
laser–ion interaction Hamiltonian is then

∑ ∑ ω ϕ φ= ˆ − − −( )H C V kx t m mcos
m m j

m j j o m
,

j j

1 2

where m is shorthand for m m1 2 , =j 0, 1 counts the ions, = ↑ ↓m ,j indicates the internal

state, the C coefficients account for different coupling to different spin states, ( )V tj (real and

positive) is proportional to the product of the two laser beam electric field amplitudes at ion j at
time t, and φ

mj
depend on the light polarization.

In general, for each two-ion spin state, both the COM and stretch modes of motion of the

ions are excited, by differing amounts. After making the Lamb–Dicke approximation ≪kq 1
j

,

where = −q x x
j j j

0 are the excursions from equilibrium, we have

∑

∑

Ω ω ϕ ϕ

Ω ω ϕ ϕ

≃ + +

+ + + ˆ
=

⎡⎣
⎤⎦

 ( )

( )

H m m t

t kx

cos

sin (1)

m
m o m

l c

s

ml o ml l

LS LS

where Ω ϕ{ }( )t , gives the amplitudes and phases of the various contributions, and

≡ +( )x q q 2c 1 2
, ≡ −( )x q q 2s 1 2

are the COM and stretch coordinates. The equations

relating Ω ϕ, to φ −( )C V k x x, , , 2
0

1
0 are easily derived but lengthy to write down.

The first term in (1) is a time-dependent light shift (LS) (ac Stark shift) causing spin
precession about z. Although for slow gates it can be negligible, it will be important here. The
second term is a sum of time-dependent forces acting on the normal modes. It is well known
that the effect of such a uniform force on quantum simple harmonic motion is simply to displace
the motional state in its x–p phase space [34, 35]. Let α n, be a Fock state displaced by α, then
the total evolution has the form

Δα Δα→ Φm n n e m n n0, ; 0, , ; , . (2)c s
i

c
m

c s
m

s
m

The phases Φm have a contribution from the LS term, and a contribution proportional to the sum

of the (signed) areas enclosed by the phase space orbits α α( ) ( )t t,c
m

s
m . The desired two-qubit

phase gate is obtained when Ψ Φ Φ Φ Φ π≡ + − − =↑↑ ↓↓ ↑↓ ↓↑ . Δαc s
m
, are the net displacements at

the end of the gate operation. In an ideal case these would be zero so that the spin and motion

are disentangled. We calculate the infidelity ϵ ψ ψ= − †U U1 id id
2 where Uid is an

ideal operation and the outer brackets represent averaging over an initial thermal state, and over
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spin states3. For small errors we obtain

∑ | |ϵ Δα ΔΨ Δθ Δθ
≃

+ ¯ + +
+n1 2

4 9 5
, (3)

l m

l
l
m

,

2
2

1
2

2
2

where θ Φ Φ Φ Φ≡ − ± −↑↑ ↓↓ ↑↓ ↓↑( )( ) ( ) 21,2 are the single-qubit rotation angles, and

ΔΨ Ψ π= − , Δθ θ θ= − ¯
j j j.

For an oscillator with mass M and natural frequency ω0, the coherent state parameter in the

laboratory frame is defined as α ω ω= +( ) ( )i t x ip M xexp 20 0 0, where ω= ( )x M20 0

1 2
. The

Argand diagram for α corresponds to an x–p phase space in which the motion can be
conveniently described. For a uniform driving force f(t), the evolution is given by [34, 35]

∫Δα α α
ω

≡ − = ′ ′ω ′( ) ( ) ( )t
i

M x
e f t t0

2
d . (4)

t
i t

0 0 0

0

Consider the force owing to any one of the terms in (1):

ω Ω ω ϕ= +( ) ( ) ( )f t M x t t4 sin ,0 0

where Ω ηΩ= − 2
l ml , ϕ ϕ ϕ= +

o ml
, with the Lamb–Dicke parameter η = kx

l l0 . One finds

Δα Δα Δα= +ϕ ϕ+ − −e e (5)i i

where ∫Δα Ω δ= ± ′ ′ ′± ±( ) ( )t i t texp d
t

0
with δ ω ω≡ ±±

0 . Therefore Δα describes an ellipse in

the Argand diagram as ϕ
o
is varied. In order to guarantee that Δα ϕ= ∀0

o
, it is sufficient and

necessary that Δα =± 0. If ϕ
o
is uniformly distributed between 0 and π2 then the mean value of

Δα 2 is Δα Δα Δα= ++ − .2 2 2

When Δα = 0 the orbit is closed, and the phase Φ acquired by the quantum state is twice
the enclosed area, Φ = [ ]IIm where

∫ α α= = + +* ϕ ϕ+ − −I I e I e Id (6)i i

path

0 2 2

with

∫ Ω Δα Δα= −′ * * ′δ δ+ ′ − − ′+ −( )( )I t e e td (7)
t

i t i t0

0

∫ Ω Δα= ± ′ * ′ ′δ± ∓ ′±

( ) ( )I t t e td . (8)
t

i t

0

In order that Φ is independent of ϕ
o
it is sufficient and necessary that = *+ −I I . When ϕ

o
is

uniformly distributed between 0 and π2 , the variance of Φ is ΔΦ = − *+ −I I 2.2 2
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Now consider the Ωm
LS term in (1). The contribution to Φm is θ ϕ θ≡ ++( )iexp c.c.m o m

LS

where ∫θ Ω ω ϕ= − ++ ( )( ) i t t2 exp dm m m
LS LS . This does not contribute to Ψ but produces

single-qubit rotations. When ϕ
o
is uniformly distributed, θm

LS has mean zero and variance θ+2 m
2.

Now consider a sequence of laser pulses, where in general the amplitude, frequency and
relative phases of the pulses may differ, although later we will restrict to all ωn and ϕ

n
the same.

The force on a given mode for a given spin state has the form

∑ τ ω ϕ= − +
=

( )( )( ) ( )f t T t t f tsin , (9)
n

N

n n n n n
1

where the ‘top hat’ function T(x) is 1 for < ⩽x0 1 and zero otherwise. Thus the nth pulse
begins at tn and has duration τn. Then during any given pulse the change in α is given by

Δα ϕ = +ϕ ϕ+ − −( ) ( ) ( )t A t e A t e,n o n
i

n
io o where

Ω δ= ± −δ Δϕ δ± ± − ±± ±( )( ) ( )A t i e e1 , (10)( )
n n

i t i t t
n

n n n n n

and Δϕ ϕ ϕ≡ −
n n o

. Δα ϕ( )t,n o
describes a cycloid.

Let τ≡± ± ( )A An n n . The orbit area calculation (6) gives

∑α α= + +* *+ + − −I A A B , (11)
n

n n n n n
0 0

∑α= +*± ∓ ± ±I A B (12)
n

n n n

where

∑α =±

=

−
±A , (13)n

j

n

j
1

1

Ω
ω τ

δ δ
δ

δ
δ

δ
= + ++ −

+

+

−

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )
B

i C C2
, (14)n n

n

n n

n n

n

n n

n

0 2 0

Ω ω δ δ= ± −ϕ± ± ˜ ± ∓( )( ) ( )B e C C2 . (15)n n
i

n n n n n
2 2

n

For brevity we introduced the circle function ω ωτ ω≡ −( )( )( )C i1 expn n , and phase

ϕ ω Δϕ˜ = +t
n n n n

. The LS term gives

∑θ Ω ϕ ω= − ˜+ ( ) ( ) ( )i i C2 exp . (16)m
n

m n n n n,
LS

We are interested in the case where Δϕ
n
are well-defined but ϕ

o
is not. Our problem is to

find a sequence of pulses such that ϵ ≪ 1 when ϕ
o
is uncontrolled, with the total time

τ τ≡ + −t tN N 1 small. Smaller pulse magnitudes and areas are preferred, to minimize the laser
intensity and decoherence from photon scattering. Also the number of parameters describing the
sequence should be small, to reduce the control problem.

To solve for general values of the coupling coefficients, it is sufficient to find a sequence
producing
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Δα Δα Δα Δα= = = =+ − + − 0, (17)c c s s

θ =+ 0, (18)

= =* *+ − + −I I I I, , (19)c c s s

for non-zero Ωml, because orbits of different spin states only differ by an amplitude factor and
phase origin. Therefore there are seven complex numbers that must be zero. By contrast, if we
only needed a solution at one value of ϕ

o
, there would be only two complex number conditions:

Δα = 0,c Δα = 0s . One can drop the condition on the LS term θ+ while doubling the total gate
time by applying a given pulse sequence twice, with a spin-flip in between (spin-echo
sequence). However θ+ must not be ignored altogether because for fast gates the LS phases are
greater than the orbit area phases by approximately η1 .

For each pulse, a change in ϕ
o

rotates and displaces the orbit along itself:

Δα ϕ θ Δα Δα= − + − +( ) ( )( ) ( ) ( )t i t t t t, exp , 0 , 0n o d n d n n d where θ ϕω ω=d o n0 , ϕ ω=td o n.

Therefore if it were possible to close both orbits αl with a single pulse, then the closure
would be guaranteed for all ϕ

o
, and also the areas would be independent of ϕ

o
. However, because

ω ω = 3s c is irrational, this is not possible4. We show in figure 1(a) the best that can be done
with a single pulse. There are two free parameters, ω, τ. The minimum infidelity ϵωmin was
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Figure 1. (a) Infidelity versus ω τ π2c for a gate using a single laser pulse. The case

η = 0.1
c

, ¯ ¯ ={ } { }n n, 1, 1c s is shown, for = −↑ ↓C C , =V V1 2, π− =( )k x x p22
0

1
0 (equal

and opposite light shifts, balanced intensities, ion separation an integer number p of
standing wave periods). At each τ, ω is optimized. Full curve: single pulse, dashed
curve: spin-echo sequence, with two pulses of duration τ 2 and θ ≠+ 0. (b) Near-exact
solutions: total pulse area versus total gate time, for example pulse sequences. The
examples shown are time-symmetric with fixed ω ω=n , Δϕ = 0

n
. + · □ ■, , , :

=N 6, 5, 4, 4 pulses; ■ has all pulses of the same amplitude.

4 One can have ω ωs c rational in an anharmonic trap, or in a trap with a potential ‘sculpted’ on the length scale of
the inter-ion separation (e.g. into a double well). In the former case the mode frequencies and the ion separation
become sensitive to stray dc electric fields.



calculated for durations in the range πω−( )1 20 2 c, at η = 0.1
c

, ¯ = ¯ =n n 1c s . It is seen that high
fidelity can be obtained when ωτ π2c is near to the denominator of a rational approximation to

3 (i.e. the values 4,11,15), but ϵ ⩽ −10 4 is not available for ωτ π <2 15c .
We performed a numerical search for fast pulse sequences that solve the problem. A

sequence was deemed a ‘solution’5 if ϵ < −10 8 at η = 0.1
c

, ¯ = ¯ =n n 1c s , or if ϵ < × −3 10 5 in the

case of a pulse sequence with fewer than seven parameters. A sequence of N pulses has −N5 3
parameters, since the start time and phase origin are arbitrary, and the absolute amplitude is
fixed by the requirementΨ π= . This suggests that solutions might be possible with few pulses.
However to simplify the experimental requirements we assumed fixed ω ω=n and restricted the
values of Δϕ

n
. For example, useful solutions were found with Δϕ

n
restricted to multiples of π 2,

and also with Δϕ = 0
n

. For Δϕ = 0
n

and fixed ωn the number of parameters is −N3 1. We found

that by further restricting to time-symmetric sequences ⎡⎢ ⎤⎥( )N3 2 parameters , the rapidity with

which solutions were found increased. This is because the parameter space is smaller, but it
shows that the symmetric space contains a good density of solutions. Another possibility is to
remove the gaps between the pulses, so that the sequence describes a single shaped pulse, with
N2 parameters if all sections of the pulse have the same frequency and phase origin. We find
there are solutions at ωτ π ≃2 2.93c for a shaped pulse with three sections, and symmetric
shaped pulses with five sections can give faster solutions (see for example figure 3).

More generally, one may parametrize essentially any functional form (e.g. Gaussian,
Blackman, etc) in terms of some modest numbers of parameters, and then seek solutions in the
parameter space. In order to compute the effect of some such more general pulse shape, one
may treat it for example by Fourier analysis, or simply model it numerically as a continuous
sequence of a large number of short pulses, and then the equations of this paper apply.

Here we report examples using small numbers of square pulses. To find a solution, we
searched among values of ω τt, ,n n from a random starting point, for each case solving a set of
linear equations for the −N 1 amplitudes Ω >n 1, and using the Nelder–Mead simplex method
and simulated annealing to find a minimum of ϵ. The linear equations were a subset of (18),
(17). We found that =N 4 can give some quite fast pulse sequences (τ π ω≃ 4 c) at

ϵ = −( )O 10 5 , see figure 2, and N = 5 was sufficient and necessary to get fast solutions

(τ π ω< 2 c, ϵ < −10 8). In figure 1(b) we show the total pulse area ∫ Ω ( )t td versus length of the

pulse sequence, for sequences of minimal area at given τ. The area is important because the
unwanted photon scattering is proportional to it. With a single (slow) pulse the area is
approximately π. For ωτ π <2 2c we find the same τ−3 2 scaling law as was described in [7].

We studied the effect of experimental imprecision by evaluating ϵ as a function of all the
parameter values, for small departures from the optimum, for each of several interesting pulse
sequences. The terms in (16) contribute single-qubit phases that are each of order π η( )N . They
cancel when the frequency and timing are accurate, but in the presence of timing errors these are
the main source of infidelity. However their influence can be reduced by employing a spin-echo,
and as long as any timing error is constant, the value of θ+

m can be adjusted to high accuracy in
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practice by tweaking the pulse frequency ω. Once this is done, we found that the dependence of
infidelity ϵ on the fractional inaccuracy σ Δ= p p of other parameters p (such as pulse duration

or height) is of order ϵ σ∼ 10 2. For example, to achieve ϵ ⩽ −10 3 would typically require pulse
areas accurate to one percent. The method does not require that the pulses be square; in practice
one would seek solutions for whatever shape is conveniently produced in the laboratory; the
examples given in this paper can serve as starting points of such a search.

For a fast gate the orbits have to be large to enable the required phase difference to be
acquired rapidly (cf figure 2(b)). Eventually the motion goes outside the Lamb–Dicke regime
and then equations (1)–(10) must be replaced by a more general analysis or numerical
integration.

A fast gate with low photon scattering leads to high laser power requirements, and this
may in practice limit what speed one would aim to achieve. As an example case, consider the
pulse sequence in figure 3(b), applied to a pair of calcium ions in a trap with COM frequency
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Figure 2. Behaviour of two example symmetric pulse sequences: (a) moderately fast
and simple, (b) very fast. The orbit α is shown for COM (top) and stretch (bottom)
modes, for two values of ϕ = 0

o
(left) and π 2 (right), with pulse amplitude versus t at

the bottom, in units of the COM period, π ω2 c. Case (a) has ω ω≃ 4.0376 c, pulse

durations and gaps τ τ τ− …≃t, , ,1 2 1 2 ω{ }0.524696, 2.60288, 1.02264, 2.60407 c.

Case (b) has ω ω≃ 20.4761 c, τ τ τ− …t, , , ,1 2 1 2 τ = {0.0953071, 0.0305622,3

ω}0.288972, 0.272151, 0.269998 ,c relative pulse amplitudes Ω =1,2,3

{ }1, 2.91057, 3.59685 .



ω π =2 2c MHz, giving a COM Lamb–Dicke parameter η = 0.12 for the Raman transition at
397 nm laser wavelength. With 350 mW power in a beam waist of μ17 m, the Rabi frequency
on the = = ↔ = =S F M P F M, 4, 4 , 5, 5F1 2 3 2 transition is 20 GHz. At a detuning of
3 THz the effective Rabi frequency for the ‘stretched state’ Raman transition
( = = ↔ = =F M F M4, 4 3, 3 in S1 2) is 15MHz on the carrier, and therefore 1.8 MHz on
the first sideband. The gate time is 1.33 oscillation periods in the trap, which is μ0.67 s. The total
Raman scattering rate from both ions during the gate is ∼ −750 s 1, so the number of scattered
photons is × −5 10 4. The infidelity including the effect of Rayleigh scattering is approximately
twice this. The sequence shown in figure 3(a) has a total pulse area smaller by a factor of two and
hence requires approximately four times less laser power, at the same scattering error, to obtain a
gate time of μ0.9 s in the same trap. Overall, we have achieved a simple, practical solution which
offers to increase gate speed by an order of magnitude, while maintaining insensitivity to optical
phase drift, with the cost in photon scattering as expected for this general type of gate.
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Figure 3. Behaviour of two further examples, both moderately fast and simple. (a) Has a
small total pulse area, (b) illustrates a single shaped pulse. Case (a) has ω ω≃ 1.36603 c,
pulse durations and gaps τ τ τ− … ≃t, , , [0.984464, 1.6124, 1.04219, 0.00028,1 2 1 2

ω1.10990, 1.7475] c; pulse amplitudes Ω = − −{ }0.6786, 0.4002, 0.55281,2,3 . Case

(b) has ω ω≃ 2.60258 c, segment durations τ ω= { }1.0168, 2.3997, 1.5416 ,c1,2,3

amplitudes Ω = {0.5415,1,2,3 }0.9561, 1.1280 .



The gate method we have analyzed has the disadvantage that the qubits must be stored, for
the duration of the gate, in levels whose energy difference has a first-order Zeeman effect.
Supposing the qubits are ordinarily in ‘clock’ states, this can easily be achieved by fast
microwave pulses before and after the gate, but it is natural to enquire whether this aspect can
be avoided altogether, for example by exploiting the Mølmer–Sørensen gate [3, 4]. The latter
does not require a first-order Zeeman effect. However, for running-wave-driven
Mølmer–Sørensen gates, carrier transitions are only detuned on the order of the motional
frequencies and cannot be neglected for the timescales anticipated in our method. The carrier
terms do not commute with the sideband terms under the Mølmer–Sørensen interaction,
therefore it is not straightforward to integrate the equations of motion [4]. The situation is
different for Mølmer–Sørensen gates induced by standing waves or microwave near-fields
where the fields can be designed so that the carrier term, which is proportional to the field
strength, vanishes to first order and also commutes with the sideband terms [13, 23, 36]. Still, to
produce standing wave fields with precise indexing to the position of single ions and high
enough microwave gradients to drive sidebands with Rabi-frequencies sufficient for our method
is very challenging with existing technology. It would be interesting to discover whether the
simpler strategy of allowing a Zeeman effect during the gate would in fact be acceptable in the
lab, because the gate is fast enough to make the accumulated phase owing to a magnetic field
fluctuation sufficiently small.
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