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Phase and coherence of optical microresonator frequency combs
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We use a combination of theoretical analysis, numerical simulation, and experimental measurement to
investigate the near-threshold phase and coherence properties of parametric optical frequency combs generated
in low-loss dielectric microresonators. Our analysis reveals that near threshold the phases of the comb lines do
not stabilize to a constant value across the spectrum, although well-defined phase relationships relative to the
pump laser do exist. Our results are supported by numerical simulations of two different microresonator combs
operated under varying conditions of input drive, dispersion, and detuning. These results are also experimentally
confirmed through phase measurements of the individual comb lines. We also investigate the processes leading
to the breakdown of the equidistant frequency spacing of the modes in a microresonator comb.
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I. INTRODUCTION

An optical frequency comb [1–3] consists of an array
of equidistant lines in frequency space with a well-defined
phase relation between each of the individual comb lines. This
phase relation can lead to the buildup of an optical pulse if
some of the comb lines constructively interfere at a single
instant of time. The optical frequency comb serves as the
essential enabler for a variety of applications in spectroscopy,
metrology [4], astronomy [5], sensing, and microwave signal
generation [6]. Although traditionally produced in the output
of a mode-locked laser, frequency combs have recently been
generated in microresonators due to the interplay of third-order
nonlinear optical processes [7–11].

Solitons [12] and ultrashort pulses [13] have been demon-
strated experimentally and predicted theoretically [14–17] as
a possible output of the microresonator comb. However, in
Ref. [18] it was determined experimentally that the phases
of the comb lines generated via four-wave mixing in a
microresonator could be stationary in time but not follow any
natural order and in many cases can be seemingly random.
Within this context, the goal of this work is to investigate the
phase relation between the comb lines using a combination
of theory, numerical simulation, and experiment. The comb
phase is important as it determines the properties of the
generated optical pulse train. The optical pulses are shortest
when all the phases are aligned, but when the phases are
stationary and random, the output is incoherently modulated
or even quasicontinuous. Our studies specifically focus on the
comb’s operation slightly above threshold, treating the case
of the pump mode and the first two comb lines generated
via degenerate four-wave mixing. We find the comb phases
in this case to be stationary but spectrally disordered under
ordinary operating conditions. This is significant since the
generation of the subsequent comb lines is dependent on these
initial comb modes and could therefore lead to a disordered
phase arrangement across the full comb. As a separate point of
study, we also explore the processes leading to nonequidistance
between the generated comb lines. Our results here show
the potential for violating equidistance when the secondary
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comb lines begin to form, as is often reported in experimental
measurement [19,20].

II. MICRORESONATOR COMB PHASE ANALYSIS

For our analysis, we consider the simplified configuration of
a microresonator comb shown in Fig. 1(a). The analysis of this
system follows traditional treatments of optical fields coupled
by the four-wave-mixing nonlinearity [21] but modified to
account for a microresonator oscillator having nonzero pump
detuning [22]. We begin with the coupled-mode equations
governing the evolution of the first three comb modes under
the excitation of the pump [22–24]
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Here A0 represents the normalized complex field of the mode
excited by the pump, while A±l denotes the mode pair on the
higher (+) and lower (–) frequency side l cavity resonances
away from A0. In Eq. (1), �ω denotes the linewidth of
the resonator modes, |F0|2 denotes the external drive of the
pump, and g0 = n2c�ω2

0/n2
0V0 denotes the gain parameter

of the Kerr nonlinearity. Here n2 is the Kerr nonlinear
refractive index of the medium, ω0 is the angular frequency of
the fundamental resonance, n0 is the real refractive index of
the medium, and V0 is the effective mode volume. The quantity
�l = 2ω0 − ωl − ω−l represents the frequency mismatch due
to dispersion between the fundamental resonance ω0 and
the frequency of the ±l resonances ω±l . Here σ = �0 − ω0

represents the detuning of the pump frequency �0 from
the fundamental cavity resonance. We consider the comb at
the onset of oscillation threshold with the Kerr interactions
existing primarily between three resonator modes. In Eq. (1)
we assume that the losses are approximately equal for the three
modes considered, that the intermodal coupling containing
the spatial overlap [22] is nearly unity for these three modes,
and that |A0| is significantly stronger than |A±l| so that the
nonlinear phase shifts are dominated by |A0|2.
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FIG. 1. (Color online) Diagram of (a) the microresonator comb
setup and (b) the frequency shift of the comb modes under the
transformation from A±l to B±l . The other parameters are defined
in the text.

The time dependences of Eq. (1) can be removed if
one defines B0 = A0e

−iσ t and B±l = A±le
−i(σ+�l/2)t [22],

effectively mapping the original cavity modes onto a new set
of fields. Under this mapping, Eq. (1) becomes
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This transformation can be interpreted using the diagram
of the microresonator modes in Fig. 1(b). The complex
time-dependent field of the lth comb line can be formulated
as El(t) = Al(t)eiωl t , which yields El(t) = Ble

i(ωl+σ+�l/2)t

under the previous mapping scheme. For the case of anomalous
dispersion (as depicted in Fig. 1), �l is negative, causing the
comb lines at ±l to each become shifted by a dispersion
step towards the lower frequency side. This frequency shift
removes the asymmetry in the mode separation. Note that the
detuning towards lower frequencies (red detuning σ < 0) in
Fig. 1 provides a constant frequency shift for all the comb
lines. Physically, this picture says that the stationary solutions
of Eq. (1) are shifted versions of the cavity modes such that
equidistance is maintained. This picture of mode translation
will become important when we discuss the processes leading
to the formation of multiple free-spectral ranges (FSRs) within
the microresonator comb.

From Eq. (2) one can proceed along the lines of Ref. [22],
perturbing the system from equilibrium and determining the
solutions where the perturbations grow over time. These are
the solutions where net gain can be achieved with eigenvalues
given as

λ± =
−�ω ±

√
−4σ 2

l − 12g2
0 |B0|4 − 16σlg0|B0|2

2
, (3)

where σl = σ + �l/2. Note that Eq. (3) is derived under the
assumptions that the pump depletion is minimal. The mode
with the highest gain reaches oscillation first and steady state
is achieved when the gain eventually saturates to the level
of loss. To determine the combined detuning and dispersion
required for the largest gain, we differentiate λ+ with respect
to σl , setting the slope to zero. This operation yields

σl,opt = −2g0|B0|2, (4)

which agrees with the optimal detuning of Ref. [22] at
threshold.

Substituting Eq. (4) into Eq. (2), one finds that the optimal
detuning or dispersion occurs when −iσlB±l exactly cancels
the cross-phase modulation −2ig0|B0|2B±l . This allows for
the entirety of the four-wave mixing supplied by the pump
(−ig0B

2
0B∗

∓l) to be optimally used towards gain. However, as
the modes are spaced discretely across the frequency span of
the microresonator comb, it is not necessarily true that a pair of
modes exist with the exact σl for optimum gain. In these cases,
the mode pair closest to reaching this condition becomes the
oscillating modes of the system.

It can be seen from Eq. (2) that the gain of the four-
wave-mixing process is dependent on the phases of the three
interacting modes (φ0,φ±l). To show this, we first assume that
a mode exists where Eq. (4) is exactly satisfied such that the
coupled-mode equation for B±l simplifies to

dB±l

dt
= −1

2
�ωB±l − ig0B

2
0B∗

∓l . (5)

Next assuming the phases of B0 = |B0|eiφ0 and B±l =
|B±l|eiφ±l to be stationary with time, we find the corresponding
intensity equation for |B±l|2 to be

d|B±l|2
dt

= −�ω|B±l|2 + 2g0|B0|2 |B+l| |B−l|
× sin(2φ0 − φ+l − φ−l). (6)

From Eq. (6) it is clear that to achieve the largest gain, one
requires that the condition

2φ0 − φ+l − φ−l = π/2 (7)

be satisfied. This is the same phase relation required for
maximum gain in a conventional parametric amplifier [25].

Equation (7) shows that a solution where all three modes
have identical phase violates the condition for maximum gain.
Indeed, the gain is zero when the phases are aligned. Since
the modes of an oscillator tend to stabilize around the point
of maximum gain saturating the gain to the level of loss,
one can in principle expect the phases of the most basic
three-mode comb to stabilize to the condition of Eq. (7).
However, many approximations have gone into this analysis
and it is useful at this point to review the effects of some
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of these approximations. In setting up the coupled-mode
equations of Eq. (2), we assumed the presence of only three
interacting modes. Generally, the pump and the first pair of
generated modes are the strongest in a microresonator comb,
making this approximation fairly reasonable. However, as
more modes begin to form, the contributions of these modes
begin to accumulate. In Eq. (2) we also only account for the
cross-phase-modulation contribution of the pump. When other
modes become significant, the total nonlinear phase shift is
expected to translate the optimum gain condition to a point
where σl compensates the total phase shift. In Eq. (3) we
assumed that the pump was undepleted. A depleted pump is
expected only to lower the four-wave-mixing gain of Eq. (5),
leaving the condition of optimal gain relatively unaltered.

Finally, in Eq. (5) we assumed that a cavity mode exists
where the condition of Eq. (4) is satisfied. Under typical
operating conditions this cannot be achieved and the closest
mode instead undergoes oscillation. This creates a residual
imaginary term such that Eq. (5) becomes

dB±l

dt
= −1

2
�ωB±l − ig0B

2
0B∗

∓l + iKB±l , (8)

where K = −σl − 2g0|B0|2. Because the condition of steady
state requires both the real and imaginary contributions to be
compensated, the phases of B0 and B±l must shift so as to
prevent phase rotation over time. Depending on the relative
magnitudes of �ω/2 and K , the phase can stabilize across a
range of values.

Our previous analysis shows that many conditions (such as
the presence of other interacting modes or the influence of a
residual phase) prevent Eq. (7) from becoming a universal law
of the microresonator comb. Nevertheless, from this simple
three-mode picture, we see that the basic operation of the comb
in most cases will not intrinsically stabilize around modes
with identical phase. However, we note that in the anomalous
dispersion case under the condition of extreme pump red
detuning, it is possible for Eq. (4) to become violated when
the combined detuning and dispersion overcompensates the
cross-phase modulation of the system. Under these conditions,
a residual phase shift exists in Eq. (5) causing the comb phase
to stabilize into a different optimum configuration.

Because of additional four-wave-mixing contributions,
higher-order modes of the comb no longer satisfy Eq. (7).
Note that the combined dispersion and detuning of these
higher-order modes can also no longer exactly compensate the
cross-phase modulation. In principle, one can perform a similar
coupled-mode analysis with higher orders of comb modes in-
cluded so that the phase relation of the higher-order modes may
be determined. However, the inclusion of even the next two
modes greatly increases the complexity of the problem, making
an analytical solution difficult to formulate. Instead, we
determine the phase relationships of the higher-order modes
through an observation of the symmetry between comb modes.
We begin with the coupled-mode equations for modes ±2l with
only its dominant four-wave-mixing contributions included

dA±2l
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= −1

2
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2
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∗
∓2le
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∗
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× ei(ω±l+ω0−ω∓l−ω±2l )t . (9)

Here A±2l denotes the complex fields of the next higher-order
mode pair excited by the pump, ω±2l denotes their
associated frequencies, and �±2l is defined through
�±2l = 2ω0 − ω2l − ω−2l .

Our goal now is to map A±2l onto a new set of fields such
that the time dependence of Eq. (9) can be effectively removed.
The result of this mapping determines the steady-state frequen-
cies associated with the ±2l comb lines. With the original
mapping scheme for A0 and A±l in place (see Fig. 1) and
assuming higher-order dispersion processes (beyond second
order) to be negligible, we find that modes ±2l are constrained
such that B±2l = A±2le

−i[σ+(2ω0−ω2l−ω−2l )/2]t . Thus, the fields
at ±2l are again translated by a single dispersion step into
equidistance dictated by the positions of the original three
comb modes. With this mapping scheme, Eq. (9) transforms
into
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Equation (10) is similar in form to Eq. (2) for modes ±l but also
includes two additional contributions from four-wave mixing.

Defining B0 = |B0|eiφ0 , B±l = |B±l|eiφ±l , and B±2l =
|B±2l|eiφ±2l , one can expand Eq. (10) into two separate
equations that collectively describe the phase and amplitude
evolution of modes ±2l,

d|B±2l|
dt

= −1

2
�ω|B±2l| + g0|B0|2|B∓2l|

× sin(2φ0 − φ2l − φ−2l)

+ g0|B±l|2|B0| sin(2φ±l − φ0 − φ±2l)

+ 2g0|B±l||B0| |B∓l| sin(φ±l + φ0 − φ∓l − φ±2l),

dφ±2l
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= −
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σ + 1

2
�2l

)
− 2g0|B0|2

− g0
|B0|2|B∓2l|

|B±2l| cos(2φ0 − φ2l − φ−2l)

− g0
|B±l|2|B0|

|B±2l| cos(2φ±l − φ0 − φ±2l)

− 2g0
|B±l||B0||B∓l|

|B±2l| cos(φ±l + φ0 − φ∓l − φ±2l).

(11)

Note that the dispersion and detuning of Eq. (2), which
originally compensated the cross-phase modulation of modes
±l [see Eq. (4)], now overcompensate the cross-phase modu-
lation of modes ±2l, yielding a residual phase contribution in
Eq. (11).

The four evolution equations of Eq. (11) must all inde-
pendently yield the value of zero at steady state. To proceed
further, it becomes necessary to assume that the higher and
lower frequency (+ and −) modes of each order are similar
in amplitude. This amplitude equality is typical of combs
generated in both experimental measurement and numerical
simulation, but can also be reasoned to be the configuration
that maximizes the gain for each respective mode. In addition,
one may also justify this assumption from an argument based
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on the symmetry in the coupled-mode equations. Note that it
would appear from Eq. (11) that because the phases of the
modes are asymmetric, the coupled-mode equations then are
asymmetric between the ± modes. At this stage of analysis,
careful attention to this point is certainly warranted. Our
strategy then is to first begin our analysis assuming equality of
amplitudes between the ± modes in each order. By the end, we
will show that our solution does not contradict the symmetry
of the coupled-mode equations, even with an asymmetry in the
comb phase.

Assuming the ± mode amplitudes to be equal, one finds that
the first two terms of the amplitude equation and the first three
terms of the phase equation are common to modes ±2l. For
all four equations to independently yield zero, the remaining
terms of each equation in the +2l mode must balance their
counterparts in the −2l mode. We therefore require

sin(2φ+l − φ0 − φ+2l) + 2 sin(φ+l + φ0 − φ−l − φ+2l)

= sin(2φ−l − φ0 − φ−2l) + 2 sin(φ−l + φ0 − φ+l − φ−2l)

(12)

from the amplitude equations and

cos(2φ+l − φ0 − φ+2l) + 2 cos(φ+l + φ0 − φ−l − φ+2l)

= cos(2φ−l − φ0 − φ−2l) + 2 cos(φ−l + φ0 − φ+l − φ−2l)

(13)

from the phase equations.
Equations (12) and (13) provide general relations between

the phases of the first five comb lines provided the dominant
contributions to modes ±2l have been effectively captured
in Eqs. (9) and (10) and the amplitudes of the ± modes are
approximately equal. If one takes the phases for modes 0 and
±l to be known, then Eqs. (12) and (13) become relations
for the remaining unknown phases φ±2l . For these equations
to be simultaneously true across any general φ0 and φ±l , one
requires that

2φ+l − φ0 − φ+2l = 2φ−l − φ0 − φ−2l . (14)

This can be seen by equating the first (or second) terms of the
left- and right-hand sides for either Eq. (12) or (13).

Equation (14) is a statement that the individual four-wave-
mixing terms for the +2l mode must separately balance their
−2l counterparts in the steady state, even if the individual
φ±l and φ±2l are asymmetric. The formulation of Eq. (14) is
powerful as it can be applied to any higher-order mode. After
going through analogous arguments, one finds a variety of four-
wave-mixing contributions whose strengths vary greatly from
one to the next. However, to satisfy the resulting equations of
amplitude and phase for both the + and − modes, one requires
the individual four-wave-mixing contributions between the ±
modes to separately balance. This can be expressed generally
as

φal + φbl − φcl − φ(a+b−c)l

= φ−al + φ−bl − φ−cl − φ−(a+b−c)l , (15)

where a, b, and c are integers. Note that Eq. (15) provides
a general relationship between the phases of comb modes
assuming a symmetric distribution of the mode amplitudes.

However, within these constraints, the actual comb phase
chosen will be the one that also maximizes the gain for each
comb mode that forms. These results readily extend to all
orders of the primary comb; however, care must be taken when
applying Eq. (15) to the case of secondary bunched combs [19]
whose characteristics are not currently fully understood.

We now return to our earlier discussion regarding the
symmetry of the coupled-mode equations. As we have shown
through Eqs. (14) and (15), even though the individual phases
are asymmetric, the balance of the four-wave-mixing contribu-
tions maintains symmetry of the combined phases between the
± modes in Eq. (11). Since the coupled-mode equations cannot
distinguish the individual + and − modes, the amplitudes of
these modes must then also be equal in steady state. However,
in practice, differences between the ± modes (e.g., the optical
loss) prevent full symmetry between these modes.

III. NUMERICAL SIMULATIONS OF THE COMB PHASE

In this section we employ numerical simulation tech-
niques for the purposes of understanding the complex phase
behavior of the microresonator comb modes. Here we
model the microresonator comb using the Lugiato-Lefever
equation [15,17,26]. Compared to the modal expansion ap-
proach [22], the Lugiato-Lefever technique offers the advan-
tage of lower computation times. The primary benefit of the
modal expansion method is that it allows for greater control
over each mode (in terms of specifying intermodal coupling,
variations in loss, etc). However, this additional control is not
necessary for our demonstrations here.

In terms of previous variable definitions, the Lugiato-
Lefever equation can be expressed as [17]

∂A

∂t
= −1

2
�ωA − iσA + 1

2
�ωF0 − ig0 |A|2 A − i

ζ2

2

∂2A

∂θ2
,

(16)

where A denotes the total field consisting of the superposition
of all excited cavity modes. Here ζ2 denotes the coefficient
of second-order dispersion with mode number (or angular
momentum eigenvalue) and θ denotes the azimuthal angle
along the resonator’s circumference. Figure 2(a) shows the
normalized optical spectrum |A(ω)|2 of a microresonator
comb simulated using Eq. (16). The simulations were carried
out using the split-step Fourier method with the parameters
�ω = 5.0 × 106 rad/s, σ = 0 rad/s, F0 = 5.5 × 104, g0 =
2.4 × 10−3 1/s, and ζ2 = 3.1 × 104 1/s. Note that the value
of |F0|2 in photons can be suitably converted into intracavity
optical power once the cavity length and group velocity are
specified. The buildup of the comb is initialized through noise
injection, while the comb’s steady-state operation corresponds
to a mode spacing of 19 FSRs. The optical power decreases
with increasing mode separation from ω0, as is typical of comb
states found through experimental measurement [11].

Figure 2(b) shows the corresponding phases of the individ-
ual comb lines. The phases are stationary as can be readily
verified by computing the change in phase for each of the
modes over time and showing this change to be approximately
zero. Note that the group velocity motion has been translated
out from Eq. (16) [17]. From Eq. (7) we expect that mode
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(a) (b)

FIG. 2. (Color online) Simulated (a) optical spectrum and (b) phases of the modes for a microresonator comb with �ω = 5.0 × 106 rad/s,
σ = 0 rad/s, F0 = 5.5 × 104, g0 = 2.4 × 10−3 1/s, and ζ2 = 3.1 × 104 1/s.

0 and its first two adjacent comb lines jointly share a phase
relationship that maximizes the gain of modes ±l. However,
we identified earlier that the presence of other interacting
modes or the influence of a residual phase shift can spoil the
phase relation between these modes. In Fig. 2(a) the higher-
order comb lines are greatly attenuated (>20 dB) compared to
the modes at ±l and thus are not expected to significantly alter
the phase relationship of these modes. With one significant
obstacle removed, Fig. 2(b) yields 2φ0 − φl − φ−l = 1.61 rad,
which is close to the optimum value of π/2 rad. Note, however,
that the phases of the higher-order modes do not satisfy Eq. (7)
due to the contributions of the modes at ±l, as can also be
observed in Fig. 2(b). One can instead verify the phase sum
on the left- and right-hand sides of Eq. (14). For the left-hand
side, one finds a collective phase of −1.092 rad, while for
the right-hand side, one find −1.092 rad. The agreement is
excellent here and one can find similar levels of agreement
(<1 × 10−5 rad phase difference) after testing all possible
combinations according to Eq. (15).

Figure 3 shows one additional example of a microres-
onator comb simulated under a different set of operating
conditions. The parameters used are �ω = 5.0 × 106 rad/s,
σ = 2.1 × 106 rad/s, F0 = 8.8 × 104, g0 = 2.4 × 10−3 1/s,
and ζ2 = 1.5 × 104 1/s. In this example, the laser is blue
detuned and the anomalous dispersion is lower, so the modes
reaching threshold must be located further away from the pump
in order to cancel the cross-phase modulation. As a result,
the mode spacing increases to 34 FSRs in this example. In
the normalized optical spectrum of Fig. 3(a), the higher-order
comb lines are again suppressed by >20 dB compared to the
modes at ±l.

Figure 3(b) shows the simulated phases corresponding to
each of the individual comb lines. The variations in phase
appear more chaotic than those found in Fig. 2(b). However,
we can once again verify that 2φ0 − φl − φ−l =1.57 rad here,
nearly exactly reproducing the optimum value of π/2 rad. As in
Fig. 2(b), the higher-order comb modes do not satisfy Eq. (7).
Instead, we can determine the collective phases corresponding
to the left- and right-hand sides of Eq. (14). The phase sum on
the left-hand side evaluates to 5.214 rad, while the phase sum

on the right-hand side yields 5.214 rad. Excellent agreement is
again found here. After evaluating all possible combinations
of modes [Eq. (15)], we determined the difference in phase to
be < 2.5 × 10−5 rad from the expected phase relationship.

IV. EXPERIMENTAL MEASUREMENTS
OF THE COMB PHASE

In this section we provide independent experimental verifi-
cation of the microcomb phase [Eq. (7)] by directly measuring
the phase relationship among the central three comb lines. The
phases of the higher-order comb lines become more difficult
to analyze in our setup configuration due to their significantly
lower optical power. The setup for the phase measurement is
illustrated in Fig. 4. A tunable laser source set to 1553 nm
is first sent through a circulator, which directs �60 mW
of optical power through a tapered fiber. The tapered fiber
allows for efficient coupling of the optical power into a fused
silica microrod resonator (diameter equal to 2.6 mm, FSR of
25.6 GHz, and loaded Q = 1.85 × 108). Through the Kerr
nonlinearity of the resonator, a comb is generated that can
be analyzed in transmission on an optical spectrum analyzer
(OSA). Because the comb output of the resonator mixes with
the fraction of the laser pump that passes by the resonator,
the phase of the fundamental comb line cannot be accurately
determined.

We instead analyze the comb lines in reflection, amplifying
the reflected signal and sending the resulting signal through
a liquid-crystal programmable waveshaper. The waveshaper
allows for both amplitude and phase control of each of the
individual comb lines and thus is the essential component
enabling the measurement of phase. The output of the
waveshaper is amplified a second time and finally is sent into
a second-order intensity autocorrelator and oscilloscope for
measurement of the time-domain pulse. Note that care must
be taken when analyzing the phases of the backreflected comb.
If the backreflection is due to multiple randomly distributed
scattering sites rather than to one dominant source of reflection,
then the amplitude and phase of the comb lines will become
imbalanced due to the interference of the backscattered fields.
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(a) (b)

FIG. 3. (Color online) Simulated (a) optical spectrum and (b) phases of the modes for a microresonator comb with �ω = 5.0 × 106 rad/s,
σ = 2.1 × 106 rad/s, F0 = 8.8 × 104, g0 = 2.4 × 10−3 1/s, and ζ2 = 1.5 × 104 1/s.

However, in our measurements, we observed no significant
asymmetry of the three central comb lines.

By adjusting the phase of each individual comb line, one
can determine the optimum arrangement of phase so that the
peak of the autocorrelation trace is maximized [11,18,27].
It can be shown that the maximum in the autocorrelation
occurs when the phases of the individual comb lines are
aligned. However, we note that this optimum configuration
of phase is not unique. For example, the translation of each
comb line by a constant but arbitrary phase shift yields the
same autocorrelation. Furthermore, a linear slope in phase
corresponds to an additional group delay and thus also does
not distort the pulse waveform. Fortunately, the operation
2φ0 − φl − φ−l is insensitive to both of these cases.

Figure 5(a) shows the spectrum of a microresonator comb
in transmission centered on the pump wavelength at 1553 nm.
The comb was specifically operated such that the higher-order
comb modes are significantly lower in power (>12 dB)
compared to modes 0,±l. This minimizes the impact of these
higher-order modes on the phase measurement.

cw Laser Circulator

MicroresonatorOptical
Amplifier

Waveshaper 

Optical
Amplifier

OSA 

Autocorrelator

Oscilloscope

FIG. 4. (Color online) Illustration of the experimental setup used
for measuring the phases of the individual comb lines.

Figure 5(b) shows measurements of 2φ0 − φl − φ−l (in
reflection) for the microresonator comb state shown in
Fig. 5(a). We disconnect all equipment from the taper coupler
in the forward direction, leaving only an unterminated angle-
polished interface. This minimizes the effect of spurious
backreflections. The dispersion of the measurement setup was
separately measured and accounted for by application of a
test pulse through the entirety of our measurement system.
By measuring the pulse autocorrelation before and after the
setup, one can then determine the necessary dispersion map
applied by the waveshaper to cancel the dispersion of the
setup. Our measurements consist of nine trials varying both
the initial starting amplitudes and phases of modes 0,±l.
The phase is then sequentially scanned for each of the three
modes from 0 to (2π × 13)/14 in 14 steps. The optimum
applied phase that maximizes the peak of the autocorrelation
trace can be inverted to determine the actual phase of each
mode. Because the optimum phase is not unique (see previous
discussion), the phase for each mode changes from one trial to
the next. However, the operation 2φ0 − φl − φ−l consistently
yields near π/2 rad as predicted by Eq. (7). Note that the
average phase of 2φ0 − φl − φ−l over all nine measurements is
1.69 rad with a standard deviation of the mean of 0.13 rad. The
theoretical phase of π/2 rad is within these bounds. Coupled
with the limitations from a relatively large scan step size of
0.45 rad, which yields a maximum phase error of 0.225 rad
[18], we see that the theory, simulations, and experimental
measurement are all in good agreement. Note in addition that
if σl does not exactly compensate −2g0|B0|2 as in Eq. (8),
it also becomes possible for 2φ0 − φl − φ−l to deviate from
π/2 rad (see Sec. II).

V. UNIFORMITY OF THE COMB
FREE SPECTRAL RANGE

In the previous sections we showed that the operation of the
microresonator comb does not necessitate the comb lines to
have equal phase. Here we utilize this understanding of phase
to investigate one additional property related to the coherence
of the microresonator comb, namely, the uniformity of the
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(a) (b)

FIG. 5. (Color online) Experimentally measured (a) optical spectrum in transmission and (b) phase difference of modes 0,±l in reflection
for a microresonator comb.

comb FSR (also known as mode offsets). It is well known
when the secondary bunched comb lines form in between
the modes of the primary comb, they can be offset from
being a subharmonic of the original FSR [19,20] (see Fig. 6).
Considerable analysis on the formation of secondary comb
lines has been previously performed in Ref. [19]. Here we use
the diagram of Fig. 1 to further supplement the current state of
knowledge regarding the origin of these shifts. In particular,
unlike previous treatments of the secondary comb, our analysis
introduces the possibility of a variable frequency shift during
the formation of the secondary comb lines.

To simplify the more general Eq. (1) to that of Eq. (2),
we introduced a change of variables B0 = A0e

−iσ t and B±l =
A±le

−i(σ+�l/2)t such that the comb lines were translated into
equidistance. Here the frequency shifts were identical for the
lines at ±l; however, in theory these shifts can be asymmetric.
That is, ignoring detuning for simplicity, any combined shift
of both comb lines that sums to �l (e.g., �l/2 + δ and
�l/2 − δ with frequency offset δ) not only would translate
these lines to equidistance and satisfy energy conservation,
but also would remove the time dependence of Eq. (1). Yet we
have chosen the symmetric arrangement in Eq. (2) with each
comb line translated by a single dispersion step. The essential
point is that any asymmetric configuration of translations
would yield asymmetry in the phase shifts accumulated for

FIG. 6. (Color online) Illustration of the FSR shift between a
primary comb and a secondary comb.

modes ±l [Eq. (2), second term on the right-hand side of the
second equation]. This asymmetry prevents both modes from
simultaneously compensating the cross-phase modulation of
the pump wave [Eq. (4)].

Such a situation is unstable, as can be seen from Eq. (8) with
K replaced by K±l = −(σl ± δ) − 2g0|B0|2. Next, defining
B±l = |B±l|eiφ±l and B0 = |B0|eiφ0 , one can reduce Eq. (8)
into the following set of evolution equations for amplitude and
phase:

d|B±l|
dt

= −1

2
�ω|B±l| + g0|B0|2 |B∓l| sin(2φ0 − φl − φ−l),

dφ±l

dt
= −g0

|B0|2 |B∓l|
|B±l| cos(2φ0 − φl − φ−l) + K±l . (17)

From the phase equation, it is clear that no steady-state solution
is possible if the sign of K±l flips between modes ±l as
would be the case if δ �= 0 and the detuning and dispersion
exactly balanced the cross-phase modulation for modes ±l.
This results because only one source of gain is available to
simultaneously compensate for two distinct phase rotations.
If the two modes are chosen such that the values of K±l are
the same sign, then one could possibly vary the individual
amplitudes of |B±l| such that with the appropriate combination
of phases, dφ±l/dt becomes zero for modes ±l. However,
this steady-state solution would then prevent both modes
from simultaneously reaching d|B±l|/dt = 0. Therefore, the
symmetry of the system forces δ = 0 for the first two ±l modes
that form.

One can readily extend Eq. (17) to the higher-order comb
lines generated beyond modes ±l. However, such an analysis
was already performed in Eqs. (9) and (10) with the resulting
frequency shift of the modes constrained by the previous comb
lines. This occurs because with all the other comb lines of
the cascaded four-wave-mixing process already set, the only
frequency translation that maintains energy conservation and
removes the time dependence in the coupled-mode equations
is the one where the FSR of the primary comb is maintained.
In other words, the original comb lines act as a mold for where
the subsequent primary comb lines must fall.
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We now apply the same procedure to the generation of the
secondary bunched comb lines. We do this for mode +l′′ (see
Fig. 6), identifying its time evolution to follow the form of

dA±l′′

dt
= −1

2
�ωA±l′′ − 2ig0 |A0|2 A±l′′

− ig0A
2
0A

∗
∓l′′e

i(2ω0−ω−l′′−ωl′′ )t

− 2ig0A0A±lA
∗
±l′e

i(ω0+ω±l−ω±l′−ω±l′′ )t , (18)

where A±l′ ,A±l′′ and ω±l′ ,ω±l′′ denote the complex amplitudes
and angular frequencies of modes ±l′,±l′′. Equation (18)
assumes for simplicity that the pump wave dominates the
cross-phase modulation contribution and also includes only
the strongest interactions between modes. Note that Eq. (18) is
comparable to Eq. (1) for modes ±l, but with an additional term
denoting the four-wave-mixing contribution from higher-order
modes.

We now introduce the mapping B0 = A0e
−iσ t , B±l =

A±le
−i(σ+�l/2)t , B±l′ = A±l′e

−i(σ+�l′ /2∓δ)t , and B±l′′ =
A±l′′e

−i(σ+�l′′ /2±δ)t into Eq. (18) with δ serving the role of
a variation in the frequency translation. Here �l′ = 2ω0 −
ωl′ − ω−l′ and �l′′ = 2ω0 − ωl′′ − ω−l′′ . Thus δ appears as an
adjustable frequency shift on the modes ±l′,±l′′ similar to
that shown in Fig. 1. With this mapping scheme and assuming
negligible influence from higher-order dispersion processes
(beyond second order), Eq. (18) transforms into

dB±l′′

dt
= −i

(
σ + 1

2
�l′′ ± δ

)
B±l′′ − 1

2
�ωB±l′′

− 2ig0|B0|2B±l′′ − ig0B
2
0B∗

∓l′′ − 2ig0B0B±lB
∗
±l′ .

(19)

Unlike the higher-order modes of the primary comb, the modes
of the secondary comb admit the possibility of a frequency
shift as long as the sign of δ is carefully chosen in the mapping
so that comb lines ±l′,±l′′ shift together in synchrony. Our
previous analysis of modes ±l also showed that a frequency
shift δ was possible in the coupled-mode equations. However,
we later found this frequency shift to be unstable in the steady
state (Eq. 17).

Continuing with our analysis, we define B0 = |B0|eiφ0 ,
B±l = |B±l|eiφ±l , B±l′ = |B±l′ |eiφ±l′ , and B±l′′ = |B±l′′ |eiφ±l′′ ,
thereby separating Eq. (19) into its evolution equations for
amplitude and phase

d|B±l′′ |
dt

= −1

2
�ω|B±l′′ | + g0|B0|2|B∓l′′ |

× sin(2φ0 − φ−l′′ − φl′′ )

+ 2g0|B0||B±l||B±l′ | sin(φ0 + φ±l − φ±l′ − φ±l′′ ),

dφ±l′′

dt
= −

(
σ + 1

2
�l′′ ± δ

)
− 2g0|B0|2

− g0
|B0|2|B∓l′′ |

|B±l′′ | cos(2φ0 − φ−l′′ − φl′′ )

− 2g0
|B0||B±l||B±l′ |

|B±l′′ | cos(φ0 + φ±l − φ±l′ −φ±l′′ ).

(20)

There are two possible scenarios worth consideration in
Eq. (20). The first scenario is that the phases of the l′′ mode
(φ0 + φl − φl′ − φl′′) exactly balance the phases of the −l′′
mode (φ0 + φ−l − φ−l′ − φ−l′′ ), as would normally be the case
for the primary comb lines. If the phases of the ±l′ evolution
equations (not shown) are also balanced, the symmetry in the
amplitude equations then forces equality in the amplitudes of
the ±l′′ modes and also of the ±l′ modes. With both the phase
and amplitude balanced, the steady state for the evolution of
phase in Eq. (20) requires that δ = 0. Thus, we see that no shift
in frequency is present for this scenario and the secondary
modes that form are at a subharmonic of the primary comb
spacing.

The second case we consider here is that the phases are
unbalanced between the ±l′′ modes. Unlike our analysis of
the primary comb earlier [Eq. (11)], a phase imbalance appears
possible here as the frequency shift δ can absorb the differences
that arise in the four-wave-mixing contributions. However,
we note that the amplitude evolution equations predict at
least some degree of amplitude asymmetry for this case. The
optimum configuration is the one where the gain is maximized
for modes ±l′ and ±l′′. This will in general depend on the
operating conditions (pump power and detuning) and system
material parameters (dispersion and strength of optical non-
linearity). The mode translation picture of Fig. 1 is therefore
expected to serve as a useful tool for analyzing the spacing
and equidistance of the lines generated from a microresonator
comb.

VI. CONCLUSION

In this work we discussed the fundamental operation of
the microresonator comb, analyzing in particular the phase
and coherence of the comb spectrum. Our main goal was to
show that even with a coherent nonlinear process, the comb
modes in many cases do not stabilize around identical phase.
Through symmetry arguments, one finds instead specific
phase relationships that the fields of the primary comb must
satisfy. Under ordinary operating conditions, these phase
relationships lead to a symmetrical spectral arrangement in
amplitude but a disordered arrangement in phase. We used
a combination of numerical simulation and experimental
measurement to support our theoretical analysis. As a sec-
ondary point of study, we applied our discussion of comb
phase to the investigation of the multiple FSRs generated
within a secondary comb spectrum. Our results therefore
reveal the complexities in the operation of a microresonator
comb that require further understanding before mode-locked
comb states producing short pulses can be consistently
generated.
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