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Cross-spectral analysis is a mathematical tool for extracting the power spectral density of a corre-

lated signal from two time series in the presence of uncorrelated interfering signals. We demonstrate

and explain a set of amplitude and phase conditions where the detection of the desired signal using

cross-spectral analysis fails partially or entirely in the presence of a second uncorrelated signal. Not

understanding when and how this effect occurs can lead to dramatic under-reporting of the desired

signal. Theoretical, simulated and experimental demonstrations of this effect as well as mitigating

methods are presented. [http://dx.doi.org/10.1063/1.4865715]

I. INTRODUCTION

The detection of a signal in the presence of interfering

noise always presents a challenge. The power spectral density

(PSD) of an ergodic and stationary signal can be determined

from the cross-spectrum even in the presence of interfering

noise. If one can create two reproductions of a desired sig-

nal and the interfering noise in each copy is not correlated,

the average of the cross-spectrum can be used to estimate the

PSD of the desired signal even when the intensity of the in-

terfering noise is dominant. Cross-spectral analysis has been

used to improve the sensitivity of measurements in the field of

modulation noise metrology for nearly fifty years.1–5 The last

twenty years have seen extensive use of cross-spectral anal-

ysis in the laboratory6–12 and it has even made its way into

commercial test equipment, at first with small companies8, 13

and now with major test equipment manufacturers. It is gen-

erally understood that when a desired signal has some level

of correlation with an interferer, occasionally some level of

cancellation of signals can be observed. We will demonstrate

and explain a set of conditions where the detection of the de-

sired signal using cross-spectral analysis collapses partially or

entirely in the presence of a second uncorrelated interfering

signal. This effect was first observed by Ivanov and Walls in

2000,14, 15 and in this paper we refine the previous discussion

by proposing that the failure to correctly detect the measured

noise occurs when a special phase condition exists between

the signals being presented to the cross-spectrum function.

Significantly, this paper’s findings may negate many overly

optimistic and untrue low-noise results of past measurements.

Unfortunately, there is no easy way to determine whether a

past cross-correlation measurement was affected by the cause

given in this paper.

II. THE CROSS-POWER SPECTRAL DENSITY

The cross-spectrum of two signals x(t) and y(t) is defined

as the Fourier transform of the cross-covariance function of

x and y. However, from the Wiener–Khinchin theorem, it can

be implemented far more practically by the metrologist as

X(f ) = F {x(t)},
Y (f ) = F {y(t)}, (1)

〈Sxy(f )〉m =
1

T
〈X(f )Y ∗(f )〉m,

where X( f ) and Y(f) are the truncated Fourier transforms of

x(t) and y(t) and 〈 〉m denotes an ensemble of m averages. T is

the measurement or truncation time normalizing the PSD to

1 Hz and “*” indicates complex conjugate. The cross-power

spectral density Sxy( f ) can thus be determined from the

ensemble average of the product of X( f ) and the complex

conjugate of Y( f ). Unlike a normal PSD, the cross-PSD is

a complex quantity. An excellent detailed description of the

cross-spectrum and its estimators is available from Rubiola

and Vernotte.16 In this section, we highlight different scenar-

ios of cross-spectrum analysis. Although two-sided Fourier

transforms and spectra are typically preferred for theoretical

discussions, we will be using single-sided representations ex-

clusively in this paper.

Case i: Suppose we have two signals x(t) and y(t), each

composed of three statistically independent, ergodic, and ran-

dom processes a(t), b(t), and c(t) such that

x(t) = a(t) + c(t),

y(t) = b(t) + c(t),
(2)

then we consider c(t) to be the desired signal that we wish to

recover, and a(t) and b(t) are the uncorrelated interfering sig-

nals. The Fourier transforms of these signals are represented

by the corresponding capitalized variables as

X(f ) = A(f ) + C(f ),

Y (f ) = B(f ) + C(f ),
(3)

and the cross-PSD is represented by

(4)

Equation (4) shows that the cross-terms average to zero,

indicate by the X’s, and the expectation of the cross-

spectrum gives the power spectral density, Sc(f) of the signal

c(t). In practice, when the cross-spectrum is calculated, the

contributions of a(t) and b(t) are reduced by the square root

of the observation time.
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Case ii: If signal c(t) is presented to the cross-spectrum

function in an anti-correlated or phase inverted sense as in

Eq. (5), the magnitude of the averaged cross-spectrum still

gives the same result. However, the phase angle of the com-

plex quantity would average to π :

x(t) = a(t) + c(t),

y ′(t) = b(t) − c(t),
(5)

|〈Sxy(f )〉| = |〈Sxy ′ (f )〉|. (6)

Case iii: Now, we introduce a fourth random process,

d(t), another independent, ergodic variable as follows:

x(t) = a(t) + c(t) + d(t),

y(t) = b(t) + c(t) + d(t).
(7)

If d is also correlated in both x and y, then the cross-spectrum

converges to the sum of the average spectral densities of c

and d:

〈Sxy(f )〉 = Sc(f ) + Sd (f ). (8)

The cross-power spectral density is unable to discern between

the two correlated signals and converges to the combination

of both. This commonly occurs when amplitude modulation

(AM) noise from a source contaminates a phase modulation

(PM) measurement via an imperfect mixer.17–19

Case iv (collapse of the cross-spectral function): How-

ever, if c(t) is correlated in x(t) and y(t) and d(t) is anti-

correlated (phase inverted) in x and y an unexpected outcome

occurs:

x(t) = a(t) + c(t) + d(t),

y(t) = b(t) + c(t) − d(t).
(9)

The corresponding Fourier transforms and the cross-PSD are

represented by

X = A + C + D,

Y = B + C − D,
(10)

(11)

〈Sxy(f )〉 = 1
T

[〈CC∗(f )〉 − 〈DD∗(f )〉]. (12)

What (12) tells us is that at any frequency f where the aver-

age magnitude of signal C( f ) is equal to that of signal D( f ),

the cross-spectrum collapses to zero. Any contribution of the

desired signal c(t), or the interferer d(t), to the cross spectral

density is eliminated. This occurs even though signals c(t) and

d(t) are completely uncorrelated. If the PSDs of the two sig-

nals are exactly equal, the amount of observed cancellation is

limited to
√

m, where m is the number of averages. If C( f )

and D( f ) have the same shape or slope versus frequency, en-

tire octaves or decades of spectrum can be suppressed and be

grossly under-reported. If the PSD of C and D are not ex-

actly equal, a partial cancellation still occurs. The maximum

amount of suppression in the magnitude of the cross-spectrum

relative to the non-phase inverted measurement (Case iii) ap-

proaches

Sc(f ) + Sd (f )

abs(Sc(f ) − Sd (f ))
, (13)

at the rate of 1/
√

m. If the two signals have different

frequency-dependent noise slopes, a characteristic notch will

be observed in the magnitude of the cross spectrum. A differ-

ential delay between the two signals presented to the cross-

spectrum function will also create a similar notch located at

the reciprocal of the delay time.

III. SIMULATION RESULTS: CASE III AND CASE IV

Simulations of the collapse of the cross-spectral function

were created in Mathworks Simulink with the block diagram

shown in Fig. 1. The cross-spectrum is a complex quantity

and the optimal estimator for extracting the PSD of the signal

present at both x and y is the real part of the ensemble aver-

age, R{〈Sxy( f )〉m}. Unfortunately, at small m, before it con-

verges, this estimator can become negative. The desire to plot

the results in logarithmic format necessitates use of a positive

valued estimator. Biased, positive valued estimators are avail-

able, several versions using modifications of the real compo-

nent of Sxy or the magnitude of the ensemble average can be

used.16 The optimal positive estimator with the lowest bias is

typically not available on commercial laboratory equipment

and must implemented with a custom analyzer. The cross-

spectral collapse described in this paper occurs regardless of

the choice of estimator used. For the following numerical and

experimental sections we will use the biased magnitude es-

timator |〈Sxy( f )〉m|, as well as its pair arg{〈Sxy(f )〉m} for de-

scribing the amplitude and phase relationships. Although the

magnitude estimator has the slowest convergence due to a

substantial initial bias and may not optimal for accurate mea-

surements, we justify its use in these examples with its ease of

availability, the large number of averages used, and because

the choice of estimator is irrelevant in the demonstration of

the cross-spectral collapse.

FIG. 1. Block diagram for a Mathworks Simulink simulation. A negation

(gain = −1) is switch selectable for creating correlated and anti-correlated

inputs to the cross-spectrum.
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FIG. 2. Mathworks simulation results for the addition of two completely

independent noise sources, c(t) and d(t), each with power spectral density

of −153 dB/Hz relative to unity. The magnitude of the cross-spectrum for

(a) occurs when x(t) = y(t) = c(t) + d(t) (Case iii) and all three traces coin-

cide. The cross-spectrum for (b) occurs when x(t) = c(t) + d(t) and y(t) = c(t)

− d(t) (Case iv). Both figures are for a 1024-point FFT and 1000 averages.

The amount of cancellation is 15 dB and is proportional to the square root of

the number of averages.

Two noise generators, which can create white or

frequency-dependent noise slopes were summed and con-

nected to both inputs of the cross-spectral density function.

Two switches were provided to allow for the negation (gain

= −1) of either one or both signals to one input of the cross-

spectrum. Placing only one or the other switch, but not both,

into negation creates the collapse of the function (Fig. 2(b)).

If none or both signals are negated, a normal cross-spectrum

occurs (Fig. 2(a)). Finally, the collapse due to the interaction

of two differently sloped noise types creates a notch shown in

Fig. 3.

IV. CROSS-SPECTRUM PHASE NOISE
MEASUREMENTS

A two-channel cross-spectrum phase-noise measurement

system for measuring noise properties of an amplifier is

shown in Fig. 4.5, 16, 17 Each channel includes a phase shifter,

a double-balanced mixer as a phase detector, and an inter-

FIG. 3. Mathworks simulation results for the addition of two independent

noise sources, c(t) and d(t), with different frequency dependence. Signal

Sc( f ) has a power spectral density of −153 dB/Hz relative to unity. Signal

Sd( f ) has a f −1 slope and intersects signal Sc( f ) at a frequency of 0.164 Hz.

The cross-spectrum is calculated with x(t) = c(t) + d(t), and y(t) = c(t) − d(t)

(Case iv). Both figures are for a 1024-point FFT and 1000 averages.

FIG. 4. Block diagram of a two-channel cross-spectrum system for measur-

ing PM noise of an amplifier. DUT – Divider Under Test, IF AMP – Interme-

diate Frequency Amplifier, FFT – Fast Fourier Transform.

mediate frequency (IF) amplifier. The phase shifters estab-

lish phase quadrature between two signals at the mixer inputs.

AM and PM modulators are also included for evaluating the

sensitivities of the measurement system. The output of each

mixer, after amplification, is analyzed with a two-channel

cross-spectrum fast-Fourier-transform (FFT) spectrum ana-

lyzer. The voltage input signals to channel-1 and channel-2

of the FFT analyzer can be written, respectively, as

v1(t) = G1[kd1(81)ϕDUT (t) + β1(81)α(t) + vB1(t)],

v2(t) = G2[kd2(82)ϕDUT (t) + β2(82)α(t) + vB2(t)],
(14)

where vn(t) represents the voltage present at a given FFT

channel number (n), Gn is the gain of the baseband IF am-

plifier, kdn is the voltage-to-phase conversion factor of the

mixer, ϕDUT(t) represents the phase fluctuations of the device

under test (DUT), βn is the AM to voltage conversion factor

of the mixer, α(t) is the fractional amplitude fluctuations of

the driving oscillator and the DUT, and vBn(t) is the combined

baseband noise of the mixer and IF amplifier. The conversion

factors (kdn, βn) for each mixer are highly dependent on the

average phase shift (8n) between its two inputs.

Fig. 5 shows the dependence of the conversion factors

(kd, β) on the phase shift between the input signals to an

FIG. 5. Shows the dependence of the conversion factors (kd, β) on average

phase shift (8) for an ideal mixer operating linearly. The DC output voltage

of the mixer will also follow the β(8) curve.
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TABLE I. Sign of conversions factors vs. mixer operating quadrant.

Quadrant Range Sign of kd Sign of β

I (0–π /2) + −
II (π /2–π ) + +
III (π–3π /2) − +
IV (3π /2–2π ) − −

ideal mixer. We can clearly see that that the two sensitivities

are orthogonal, and one or the other sensitivity is exclusive

at the quadrant boundaries (Table I). Implementing a non-

ideal mixer will typically distort the curves, introduce a phase

offset, and disrupt the orthogonality of the two sensitivities.

These aberrations from the ideal double-balanced mixer can

be attributed to saturation and non-identically matched diodes

and may be highly dependent on operating and environmental

conditions. Operating a PM noise measurement with a high

level of AM noise rejection can be challenging, and without

careful tuning and control of the mixer phase shift, 8, the

measurement system will typically show levels of AM rejec-

tion around 15–30 dB. One would like to operate the mixer in

a PM noise measurement at what we call “true quadrature,” a

phase shift usually near π /2 or 3π /2, where the sensitivity to

AM (β) goes through zero.18, 19 Finding this exact phase shift

typically involves introduction of a sinusoidal AM modula-

tion and tuning the phase shift to minimize the amount of AM

leakage into the PM measurement. It is important to note that

the sensitivity to AM and its minimum may be different for

the RF and LO ports of a non-ideal mixer.19

Analyzing Eq. (14), we observe that ϕDUT(t) is correlated

in both v1(t) and v2(t), albeit via different conversion factors.

The same is true for α(t), while the two baseband signals,

vBn(t) are uncorrelated from each other. Furthermore, the two

sets of conversion factors (kd1, β1) and (kd2, β2), which de-

pendent on their respective mixer phase shifts, 81 and 82,

can be set to 16 different quadrant combinations with vary-

ing correlation sense, half of which can create correlated/anti-

correlated pairs as indicated in Table II.

When high levels of AM rejection are required and thus

operating near the AM null, environmental and signal power

changes may cause the location of the null or operating point

to drift, causing the sign of β to flip. This may cause the noise

cancellation effect to appear and disappear temporally, further

masking its presence during an average. Measuring low lev-

TABLE II. Mixer quadrants pairs that may cause undesired cross-spectral

cancellation. “OK” indicates that each conversion factor has the same sign

of correlation in both mixers. “X” indicates a correlated and anti-correlated

(Case iv) pair of conversion factors (kd, β).

Mixer 1 quadrant

Mixer 2 quadrant I II III IV

I OK X OK X

II X OK X OK

III OK X OK X

IV X OK X OK

els of PM noise in the presence of much higher AM levels

requires continuous operation near the bottom of the null and

may require pure AM modulators20, 21 and an active control

servo to maintain a high level of AM suppression.

V. EXPERIMENTAL RESULTS

In order to experimentally demonstrate the collapse of the

cross-power spectral function, the setup described in Fig. 4

is used. An amplifier with high gain and low input power is

used as the DUT to generate a signal with a high white PM

noise level. The DUT has 42 dB of gain, and a noise figure of

7 dB, and is operating with an input power of −25 dBm cre-

ating a single-sideband white PM noise level of L (>10 kHz)

= −145 dBc/Hz. Under these conditions, the noise of DUT

dominates and the mixer’s residual noises are negligible. The

PM noise of the DUT is shown as trace (4) in Fig. 6. An

AM modulator is driven with white noise from a direct digital

synthesizer (DDS), producing an AM level of −130 dBc/Hz

shown as trace (2). The phase shifters of both mixers are

detuned from “true quadrature” so that the relative level of

AM suppression (kd/β) of 15 dB is achieved. The amount of

AM leakage into the PM noise measurement is measured and

shown as trace (5). If we perform a cross-spectrum PM noise

measurement with both mixers in the same quadrant (Case

iii), we observe the expected result shown in trace (3). In this

case the measured white PM noise is twice that of the DUT

due to the presence of an equal amount of leakage white AM

noise. If we now adjust the mixers to have the same amount of

AM leakage, but place them in different quadrants (I and II)

so that kd1 = kd2 and β1 = −β2, a correlated/anti-correlated

pair of conversion factors are created (Case iv) and we now

observe that the cross-spectrum approaches zero in the white

region, as shown in trace (6). This annihilation occurs in the

cross-spectrum even though the white PM noise of the am-

plifier and the leaked injected AM noise are entirely uncorre-

lated. The phase of the cross-spectrum, trace (1), shows that

in the region where the cross-spectrum is still average-limited,

the phase is random.

Another example is demonstrated in Fig. 7 where we re-

duced the amount of AM rejection in the mixer so that the

level of leakage AM noise is slightly higher than the thermal

FIG. 6. Experimental results demonstrating the annihilation of DUT PM

noise in a cross-spectrum measurement due to AM leakage.
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FIG. 7. Experimental results demonstrating the notch that occurs when two

noise processes with different slopes intersect while one is correlated and the

other is anti-correlated in the cross-spectrum.

noise of the amplifier. This causes the two noise signals to

cross at an offset frequency around 10 kHz, creating a notch

and grossly underestimated the noise from 300 Hz and above.

The phase of the cross-spectrum in Fig. 7 clearly shows

that the AM noise, dominant above 10 kHz, which is anti-

correlated with a phase angle of π , and the PM noise, dom-

inant below 10 kHz, have an angle of zero. In the region

where the cross-spectrum is still average-limited, the phase is

random.

The cancellation of noise is not limited to just AM and

PM noise interactions. Any two noise sources that present

themselves to both inputs of the cross-spectrum function as

correlated and anti-correlated can cause this effect. A final

experimental case was found where AC power line noise was

coupling into the IF amplifier noise floors and interacting with

an anti-correlated phase noise from the DUT. The coupled

power supply noise was at a similar level as the DUT noise,

producing a notch between 10 kHz and 50 kHz offset frequen-

cies, as indicated in Fig. 8.

The correlation null has also been observed in the

datasheets of commercial devices. A particular example is

shown in Fig. 9 where f−1 AM noise leakage interacts with

the f−3 and thermal noise corner.

FIG. 8. Cross-spectral null observed between 10 kHz and 50 kHz offset fre-

quencies when correlated/anti-correlated power supply noise interacts with

an amplifier measurement.

FIG. 9. Observance of a partial cross-spectral null between 3 kHz and

100 kHz. This plot is obtained from the datasheet of a commercial oscilla-

tor measured with a commercial cross-spectrum phase noise test set.

VI. MITIGATION OF THE COLLAPSE IN
CROSS-SPECTRAL PHASE NOISE MEASUREMENTS

The detection of the cross-spectral collapse after a mea-

surement can be difficult. If an interfering signal has a phase

inversion relative to the desired signal in one channel of the

cross-spectrum, and has an average magnitude within ±10 dB

of the desired signal, a collapse of at least 1 dB will be ob-

served. This can be as high as
√

m if the magnitudes are

closely matched. Observing the phase of the cross-spectrum

of the final measurement data can be of little help. If the mea-

surement of the cross-spectrum is still average-limited, its

phase will be random. When the interfering signal is higher

than the desired signal in a region of the spectrum as in Fig. 7,

a phase transition will be observed in addition to the notch in

the magnitude. If the desired signal and the interfering signal

have the same frequency dependent slope, it can be difficult

to determine whether or not a collapse has occurred. The best

method of mitigation is to analyze the interfering signals and

the conversion factors prior to a measurement with the fol-

lowing steps:

1. Measure the AM noise of the source.

2. Adjust mixer phase shift to ensure AM leakage is suffi-

ciently low for both mixers.

Use an AM modulator to inject an AM tone into the PM

measurement and adjust the mixer quadrature point (8)

for minimum leakage for both mixers. Realize that the

point of minimum AM leakage is also the point of high-

est sensitivity; small changes in phase can lead to large

changes in magnitude as well as the sign of the β conver-

sion factor. Environmental and operating point changes

can also affect β. Using a non-pure AM modulator can

lead to an underestimation of the AM suppression factor

and an incorrect determination of the location of “true

quadrature.” A DC bias current can also be injected into

the IF port of a mixer to reduce β or change the loca-

tion of its minimum. If high levels of AM rejection are

required, pure AM modulators20, 21 and an active servo
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control of the quadrature phase shift may be a necessity.

If active control is not employed, it may be beneficial to

sacrifice some suppression by operating at an offset from

the minimum and ensuring that changes in the sign of β

will not occur due to operating-point fluctuations.

3. Measure the amount of AM-to-PM leakage and ensure

that the AM source noise leakage is at least 10 dB below

the expected PM level.

4. Ensure that both mixers are in the same operating

quadrant.

Measure the amplitude and phase conversion factors for

both mixers and confirm that both mixers are operating

in the same quadrant. It is important that the conversion

factors for any signals presented to the cross-spectrum

analyzer have the same sign in both inputs. Tuning the

phase shift and observing the direction of change in the

DC output voltage of the mixers can determine whether

the mixer is in quadrant set (I, II) or (III, IV). Using

AM and PM modulators and detecting the cross-spectral

phase of the modulated tones can also determine whether

the mixers are creating phase-inverted pairs or not. This

can be a powerful tool for setting up a correct cross-

spectral analysis.

5. Change the quadrant for one mixer so that β changes

sign but has the same absolute value while kd remains

the same, and observe the change in the cross-spectrum.

If there is a dramatic change, one of the two quadrants

may be creating a collapse.

6. NEVER use a low measured noise level as an indicator

for finding “true quadrature.”

The discussion in this paper focuses on the case where

the desired and interfering signal are independent; however, it

is also important to consider that for multiplicative, or non-

thermal noise types, AM and PM noise may be correlated

even if they have non-identical frequency-dependent slopes22

and may cause an entirely different set of problems when

cross-spectrum analysis is used.

VII. DISCUSSION AND CONCLUSION

We demonstrate and explain a set of conditions where the

detection of a desired signal in cross-spectral analysis fails

partially or entirely. If two time series, each composed of the

summation of two fully independent signals, are correlated in

the first time signal and anti-correlated (phase inverted) in the

second, and have the same average spectral magnitude, the

cross-spectrum power density between two time series col-

lapses to zero. These two conditions may occur only at local-

ized offset frequencies or over a wide range of frequency of

the cross-spectrum. The anti-correlation of one of the signals

relative to the other may be caused by phase inversion, nega-

tion, time-delay, or some other mechanism. This condition

initially seems counter-intuitive because the introduction of

a new, independent noise signal typically does not cause a re-

duction of total measured noise. The simultaneous presence of

correlated and anti-correlated signals can lead to gross under-

estimation of the total signal in cross-spectral analysis. Partial

collapse of the functions still occurs when the spectral densi-

ties are close in magnitude but not equal. Cross-spectral PM

noise measurements suffering from AM leakage can be par-

ticularly sensitive to these underestimations because adjust-

ment of the mixer phase shift can easily generate correlation/

anti-correlation pairs, and the level of AM leakage is

widely variable and dependent on phase shift. Also, cross-

spectrum analysis is commonly used in all-digital measure-

ment systems13 to reject the relatively high level of uncor-

related quantization noise in the analog-to-digital converters

by 20–30 dB. This same quantization noise can also produce

AM-to-PM conversion in the digital quadrature/in-phase de-

tectors. We believe that cross-spectrum collapse may occur

less frequently in digital systems because the level of AM

leakage is not as prominent, and more predictable, in hetero-

dyne digital down-converters. However, cancellation notches

have still been observed in digital measurement systems after

long averaging times. Finally, the photonic microwave gen-

eration from optical stabilized sources can lead to extremely

low PM noise in the presence of much higher AM noise.23, 24

Under these conditions the probability of collapse may be

high and the cross-spectrum must be evaluated and used very

carefully.
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