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This paper is intended to serve as an introduction to the use of the Kalmar filter in modeling atomic
clocks and obtaining maximum likelihood estimates of the model paramaters from data on an ensemble
of clocks. Fests for the validity of the model and confidence intervals for the parameter estimates are discussed.
Techniques for dealing with unequally spaced and partially or completely missing multivariate data are

described. The existence of deterministic frequency drifts in clocks is established and estimates of the drifts
are obtained.
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1. Introduction

The recursive updating of least squares estimates that would later become 2 special case of the Kalman “filter”
was apparently known to Gauss [1],' and published in the modern statistical literature by Plackett [2], Kalman’s
contribution [3] was the generalization to dynamic systems. Kalman’s filter has found immense application in diverse
areas of engineering. In classical applications, recursive estimates are obtained of the “state” of the system but
parameters appearing elsewhere in the state space representation for the system and the mathematical model for
the system must be considered known.

In our application, Kalman'’s recursive equations allow us to compute the likelihood function for given values
of parameters oceurring anywhere in the state space representation. Nonlinear optimization techniques. can then
be used to find the maximum likelihood estimates. The recursive residuals, or innovaticns, may be examined to
judge the adequacy-of-fit of the model, and generalized likelihood ratio tests may be used to test the significance
of model parameters such as frequency drifts and obtain confidence intervals for the estimated parameters. Kalman
filter technigues make it quite easy to deal with unequally spaced and completely or partially missing multivariate
data. We describe these methods in this paper.

The next article in this issue, ““Estimating Time from Atomie Clocks,” by Jones and Tryon [4] describes statistical
procedures for detecting clock errors and allowing for the insertion or deletion of clocks in the ensemble during the
parameter estimation process. It also describes the development of a time scale algorithm based on the model developed
inr this paper.

2. Models For Atomic Clocks

A cesium atomie clock is a feedback control device whose frequency locks onto the fundamental resonance of the
cesium atom at (ideally) 9,192,631,770 Hz, which defines the second. Frequency bias due to fundamental
instrumentation limitations and environmental effects are determined by calibration against primary frequency
standards. Stochastic fluctuations arise from shot noise in the cesium beam and the probabilistic nature of quantum
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mechanical transition rates which cause white noise in the frequency of the elock which is integrated into a random
walk in time. In addition, empirical studies have demonstrated that frequency wanders independently as a random
walk, introducing the integral of a random walk into time.

Finally, there is considerable international debate over the inclusion of linear drift in frequency to account for
break-in and aging. Such drifts could be strictly constant over a long time period, or allowed to change slowly as
a third random walk. The methods developed in this paper provide, for the first time, valid statistical tests of these
hypotheses.

The proposed stochastic model for a clock’s behavior is

xlt) ==t-1) + &) y(t-1) + L Fledwle-1) + <2}
ylt) = yie-1) + ° dlthwit-1) + niz) (2.1}
wlt) = wlt-1) + alt)

where

x(t) is the clock’s deviation from “perfect’” time at sample point ¢ in nanoseconds;

d(¢) is the lime interval in days between sample points ¢ and ¢-1;

y(t) is the clock’s frequency deviation from perfect frequency at sample point ¢ in nanoseconds/day;

wit) is the drift in frequency in nanoseconds/day*;

elt}, nit}, and oft) are mutually independent white zero mean Gaussian random variables with standard deviations
V' d{to,, /6iT)a,, and \/d{t)o., respectively, in nanoseconds, nanoseconds/day, and nanoseconds/day*. The
\/d(t) arises because the variance of a random walk is proportional to the time interval,

If 0, = 0, wit) is a constant, w, representing a deterministic linear trend. If both 6, = 0 and w = 0, the model
is drift-free. The purpose of this study is to evaluate the validity of these models, and to obtain generalized likelihood
ratio tests for the significance of the drift parameters and maximum likelihood estimates of the parameters o,, o,,
and w (or o,, if appropriate), for each clock in the ensemble.

3. The Kalman State Space Model for a Clock Ensemble

The combination of clocks into a Kalman state space model will be explained by considering the special case of
a three-clock model. The state transition equation is
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where subseripts indicate the clocks,



In more compact form this is

Xt)=o) Xt-1)+ Uit) ,t =1, 2, ..., {3.1)
where X(t) is the state vector and ®{¢) is the state transition matrix. The stochastic elements of the transition from
one state to the next are contained in Uf{z).

The clocks are never read directly, but, using sophisticated electronics, the time differences between clocks can
be read with a precision of less than a nanosecond. “Perfect’ time, which we can never observe, cancels out, leaving
an observation of the clock error differences. z,{t) = x.(t) — x-(t) and z;(£) = x,(t) — x,(t). We write the observation
equation in matrix form as
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or

Zit) = Hy Xie) + Vi) ,t =1, 2, ... 3.2)
Zit) is the vector of observed clock time differences and H{t) is the observation matrix. F{z) is a vector of observational
errors. We write Hit) as a time-varying matrix because, in the multivariate case, partially missing data is represented
by deleting rows from H(t) thus changing the dimension of Z{t), H{t), and V(t). In some cases it is possible to recover
from a problem with the reference clock by defining a new (temporary) reference and changing the patterns of +
1 and zeros in Hit). This is described in detail in Jones and Tryon [4].

For small () the covariance matrix of the transition errors, Ulz}, is of the diagonal form diz)Q where { is
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Q= Oaz” (3.3)

Note that the matrix Q contains all the parameters to be estimated except w.

If the time offset of each clock is measured to the nearest nanosecond and is otherwise error free, the observational
error vector V(t) has covariance matrix

1712 0
Rit) = (3.4)
0 1/12 1},

since the variance of a uniformly distributed random variable from 0.5 to 0.5 is 1/12. The dimension of R{z} will
also vary with time if there are partially missing data.



4. The Kalman Recursion

First, we adopt some notation. By X({t|s), s € ¢ we denote the best estimate of the state vector at sample time
t, based on all the data up to and including sample time s. We define P(t|s) to be the covariance matrix of Xits).
Similarly, Z(zs) will be the predicted observation at time ¢ based on all the data up to time s.

The recursion proceeds through the following steps (Kalman [3]).

1. Given the state vector and its covariance matrix at any sample time, say t, we can predict the state vector one
observation interval into the future using the transition eq (3.1). The prediction is

Xit+1e) = @(e+1) Xieje) 4.1)
since the expected value of the stochastic component of the transition is zero. The covariance matrix of the prediction is
P(t+1]t) = le+1) Plele) &' (e+1) + o(e+1)Q, {4.2)

where the first term on the right is the covariance matrix of the linear operation in the state transition and the second
term is the covariance of the additive stochastic component.

2. From the observation matrix and the predicted state we can predict the next observation.
Zt+1lt) = He+1) Xie+1]2). (4.3)

3. We next compare the prediction with the actual data (when it becomes available in a real-time application). The
difference is the recursive residual, or innovation,

He+1) = Zt+1) - Ze+1lz), (4.4)

which has covariance matrix
Ci{t+1) = Hit+1) Pit+1|t) H'(t+1) + Riz+1). 4.5)

The residuals are critically important. Later, they will be used for checking the fit of the model and estimating
the parameters. For now, we will use the information in the residual to complete the recursion.

4, Let

Alt+1) = Ple+11t) H'(e+1) CHe4-1). (4.6}

This is sometimes called the Kalman gain.
Using the Kalman gain we can update the predicted state and its covariance

X+1)t+1) = X{e+1e) + A1) Te+1) {4.7)
and
Pi+1le+1) = Pli+1]t) - A+1) Hie+1) Ple+1]eh (4.8)

This completes the recursion.



5. Maximum Likelihood Modeling and Estimation

In this section we will compare the classic use of the Kalman filter with our method of application. In the classical
application, unknown parameters to be estimated can appear only in the state vector. All other quantities which
appear in the reeursion must be knewn. A single pass of the recursion through the data (often in real time) provides
the latest estimate of the state veetor and its covariance at each point in time. This is exactly how the Kalman filter
is applied to forming a time seale. Given the model and estimates of the parameters, the recursion gives the updated
state vector after each new observation. The first, fourth, and seventh, ete., elements of the state vector are estimates
of the clock errors, from which, along with their uncertainties from the state covariance matrix, we can estimate time.

Our interest, however, is in evalnating how well the cloek model fits real data, and in estimating the parameters.
To do this, we make use of twe facts concerning the residuals, I{t), r = 1, 2, ..., N.

1. H the model is correct, and the recursion is run through the data with the correct values of the unknown parameters,
the residuals will form Ganssian white noise series. Standard statistical tests can then be used to determine if the

residnals are in fact Gunassian white noise. If not, the structure of the residuals can often give some clues as to the
defects in the model.

2. From the residnals and their covariance matrix, obtained by running the recursion with any fixed values of the
unknown parameters, the likelihood function for those parameter values can be computed. Speeifically, the -2 In
likelihood function (ignoring the additive constant} is

L =73[n|Cte) | + I'te) C (o) Fe)l. (5.1)
t

The maximum likelihood estimates of the parameters are those for which L is minimized. Starting from initial
guesses, we can use iterative nonlinear function minimization methods to find the estimates. Evaluating the function

L for new trial values of the parameters requires one pass of the Kalman recursion through the data. Note that
the parameters to be estimated may appear anywhere in the structure of the Kalman recursion.

6. Computational Procedures

It is not necessary to invert the residual covariance matrix, C(t), when computing the likelihood function or updating
the predicted state vector and its covariance. If the upper triangular portion of Ciz+1) is angmented by
H(t+1)}P(t+1]t), and I{t+1) to form the partitioned matrix

[C(e+1) | He+1) Ple+1]e) § Ie+1)], (6.1}
a single call to a Choleskey factorization routine {Graybill [5}, p. 232} which factors

CG+1) = T'(t+1) Tt-+1), (6.2}

where Tit+1) is upper triangular, will replace the partitioned matrix by
(Te+1) | [T'+1)]" He+1) Pe+1e) | (T e+0)* He+1)] (6.3)
If we eall the parts of the new partitioned matrix

[T(+1) | Ble+1) |[D(e+1)], (6.4)

the updated state and state covariance matrices become



Xie+1jt+1) = X(¢+1[z) + B'{¢+1} Dle-+1) (6.5}

and
Ple+1]e+1) = Ple+1jz) - B'(e+1} Blz+1). {6.6)
The -2 In likelihood function becomes

L =3 (2 W2 + D) D)) (6.7)
t i

where t,(t) are the diagonal elements of T{t).

Missing data are easily handled by the Kalman filter procedure. However, there are two distinct situations. First,
all the data may be missing at one or several successive observation times, and second, occurring only in multivariate
data, only part of the data may be available on a given occasion. For example, one or more, but not all, of the
clock differences are missing on that occasion.

The first case is most easily dealt with. In the present model, the unequal spacing feature can account for any
size gap in the data by proper choice of diz). This, however, is a feature of random walk based models and may
not apply to other models. A more general procedure for missing data is the following: Suppose k > 1 successive
cbservations are missing., Simply repeat step one in the recursion k additional times to obtain the predicted state,
X(t+k-+1[t), and its covariance, P(t+k-+1|t), for the next observation time for which there is data. Then proceed
with the remainder of the recursion. There is no residual and no contribution to the likelihood function when there
is no data (Jones [6]).

In the second case, partial loss of data, i.e., missing elements of the data vector Z{(t), can be represented by eliminating
the corresponding rows of the observation matrix, H(t}. Similarly, rows of the observational error vector ¥{t} and
rows and columns of the error covariance matrix R(¢) causes no problem with the remaining steps of the recursion,
which proceed normally. The information available in the data is propagated through the recursion to correctly update
the state vector prediction and its estimated covariance matrix.

The matrix operations in the recursion are, for reasons of efficiency, best coded to take advantage of the specific
structure (many zeros) of each matrix. Using available general purpose subroutines to perform the required matrix
operations would increase the cost of computer resources enormously. These calculations can be adapted to a
time-varying H(z). One approach is to use indicator variables for missing data to form the various reduced matrices
directly. Another approach is to note that pre- and/or post-multiplying by Hiz) with rows missing is equivalent to
performing the operation with the original H matrix and then eliminating the appropriate rows and/or columns of
the produet matrix and closing it up. For example, the residual covariance matrix

Cle+1) = HG+1) Pe+1t) H'(e+1) + R(t+1)

with, say, the second and fourth elements of the data vector missing can be obtained by using the original H and
R but then eliminating the second and fourth rows and columns from Cl¢4-1). It is straightforward to write general
purpose subroutines to eliminate rows and/or columns of a matrix and close up the spaces. Again, this can be done
in response to indicator variables denoting missing observations.

To start the recursion the initial state X(0|0) and its covariance P(0|0) are needed. Both depend on the application.
The time states could be set to zero and the cloeks set to agree with International Atomic Time as defined by the
BIH. The corresponding variances on the diagonal of P(0|0) would be determined by the accuracy of the
intercomparison. If a strictly internal application such as parameter estimation or a time interval measurement was
desired, the time states could be set to agree with the difference readings at ¢t = 0, with observational error variances
set to the appropriate value for roundoff error. The frequency states might be measured by intercomparison with
the frequency standards and the variance determined from the measurement uncertainty. When a measurement is
not possible a best guess at the frequency offset can be used with a corresponding guess at its uncertainty used for
the variance.



7. Data Anadlysis

The data used for this analysis were collected over a perioci of 333 days beginning on February 16, 1979, during
which seven clocks listed below were in essentially uninterrupted normal operation. Clock differences were recorded
daily to the nearest nanosecond.

Clock Number Identification

601 {Reference} HP model 5061A option 004 serial #601

167 HP model 5060A serial #167

137 HP model 5060A serial #137
1316 HP model S061A option 004 serial #1316

323 HP model 5061A 004 serial #323

324 HP model 5061A 004 serial #324

8 Frequency and Time System model 400 serial #8

In addition to occasional variability in the time of data collection, two successive days were missing entirely, On
three other occasions, single clocks had obvious read errors which when discarded resulted in partially missing data.
Several dozen other observations which had been flagged as possible errors by the ad hoc procedure then in use
were examined visually, judged to be not serious, and retained in the analysis.

Table 1 gives the results of the computations. First we note that the inclusion of deterministic trends (model 1)
results in a drop of 4] in the -2 In likelihood function value over the no-trend model (model I). The reduction is
distributed as X*{6) under the hypothesis of model I, so this is highly significant, There is less than one chance in
a thousand that this is a spurious result. Three of the seven clocks had significant trends. The inclusion of random
walk drifts (model 111), however, makes no improvement. Furthermore, the estimated values for the o,’s are all
approximately zero and the estimated initial values of the drift, t(0), are about the same as the deterministic drifts.
The conclusion is that several frequency trends are present in this data and that they are constant over the year,
rather than wandering as a random walk. It should be noted that one of the drifting clocks had just begun operation
while the remaining two were nearing their end of life and failed shortly after the test period. The remaining clocks
were in their “middle years.” The standard errors of the parameter estimates given in the table are obtained from
the estimated covariance matrix as approximated by twice the inverse of the Hessian of the -2 In likeliho~4 function, L.

In model II it is necessary to constrain the solution so that the sum of the drifts is zero. This means that we cannot
detect a common drift from clock difference readings. Because of this constraint, a standard error for clock #8 is
not available. Due to the large cost of computing the 28 x 28 Hessian for model IT1, which we have rejected anyway,
the standard errors of the estimates have not been computed.

Figures la-f are integrated periodograms of the six series of residuals. The parallel lines represent five percent
significance test limits for white noise. That is, only five percent of actual white noise series so tested will wander
outside the lines. In this data set, only one pair of clocks {601 minus 167) two) show a slight deviation from white
noise. We conclude that this model fits very well. Figures 2a-f are histograms of the six residual series. Also given
are three different tests for normality. All the series are well approximated by the normal (Gaussian} distribution
which verifies that the assumed likelihood function was reasonable.

We note in conclusion that, having selected the constant drift model, we could reduce the dimension of the state
space model by one-third by rewriting the clock model as

x(¢) 1 dlek x(t-1) d*(t)/2 elz)
ylt) 0 1 y(t-1) 4(t) nlz)

The state prediction in the first step of the recursion then becomes

X(e+1t) = ole+1) X(z[e) + Ale+1)



where

[ s4e) w,
2

dlehw,

Alt) = a*{t) w, ,
2

d(t]uh

and X(¢) and ®(z) are redefined from the clock model in the obvious way. This model would be suitable for estimation
purposes but not for a time scale algorithm. With the drift in the state vector we can enter the uncertainty of its

estimation in the initial state covariance matrix. It is then propagated through to the uncertainty in time. The simplified
model above assumes w is known without error.

TABLE 1. Results of data analysis.

Model I Model 11 Model I
No Trend Deterministic Trend Random Walk Drift
L = 10609.1 L = 10567.8 L = 10567.7
Clock
Number Param. Est.* S.E Param. Est.* S.E. Param. Est.*
601 3 = 142 32 a. = 146 .32 a, = T.47
5, = .B6 .24 a, = M 2 a, = 48
w = 152 038 wid) = 152
B, o= 41x107
167 o = 13.45 .56 o, = 13.45 .56 o, = 13.46
o, = 115 .39 5 = L1l .36 5 = 107
w = 052 .061 wi0) = .04
5, = 3.7x107
137 o, = 10,03 .45 O = 16.04 .45 O, = 10,06
o, = L71 .36 a, = 160 .36 a, = 157
e = 170 081 wldr = 178
B, = 2.2x307"
1316 o = 361 .24 a, = 3.62 .25 O, = 3.59
5, = 129 .24 5, = 136 .24 5, = 138
w = 017 .070 w(0) = -.015
5, = L3xio™
323 g, = 3.27 .24 a, = 3.5 .22 o, = 3.52
5, = 154 .21 & = .13 .20 5, = .10
w = =313 .M6 v = =314
5, = 4%
324 g, = 330 .25 &, = 3.3 .25 G = 3.30
5, = 142 .23 5, = L40 .22 5, = 1.4l
w = 035 .072 wid) = .035
b, o= TOxI¢C
8 o, = 908 .43 0, = 909 43 O, = 9.09
8, = 268 .39 6, = 265 .39 ¥, = 2.66
i = -088 - widp = -.090
& = 39107

*Units are in panoseconds.
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8. Conclusion

The Kalman filter is a powerful tool for maximum likelihoed model fitting and parameter estimation in time series
analysis. We have established the validity of the proposed models for clock behavior and obiained precise estimates
of clock parameters. The existence of deterministic frequency drifts over a period of a year has been demonstrated
in clocks at the beginning and end of their life span.

The primary disadvantage of these methods is the cost of function evaluation in the nonlinear optimization process.
The analysis of a year of data on seven clocks takes 10 minutes on a CDC Cyber 170/750 computer and 10 hours
on the DEC 11/70. Use of state-of-the-art optimization codes is essential. We use an optimization package especially
designed for maximum likelihood applications, It is adapted from the package written by Weiss [7], based on algorithms
by Dennis and Schnabel [8]. The code used on the CDC Cyber 170/750 is part of a preliminary version of the National
Bureau of Standard’s STARPAC library [9].

The authors would like to thank James A. Barnes and David W. Allan of the National Bureau of Standaxds,
Time and Frequency Division. They not only brought the problem to our attention and suggested the mathematical
model, but collaborated with us on a continuous basis. This study was partially supported by the NBS Nationral
Engineering Laboratory,
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bt L i b R it L bt bt 8 bt et it it |t i it by 1 L bttt e e bt | it i gt |

- 1 I 4 I z I t 1 t
FREC 0. 0000 «a500 21000 1500 +2000 225¢0 43600 «3500 + 4000 +4500 +3000
PERTON INF 0. 16. LELLT-1 LN L 33331 2.857% 242 2.2222 2.

FIGURE 1d. Residuals from clock 601 minus clock 323.
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INTEGRATED SAMPLF PFRIODOGPAM (+) WITH 9% PER CENT TEST LIMITS FOR WHITF HOLSE (.}
H

—1-n [-==me-=m=1 1 I 1 1 -
11 ¥ Dive J20000E=0) AN 1 % NIVe .50000E-07 1
1.0000 = 2v -
1 2+ 1
1 . +e2 1
1 . . 1
t . 2 1
H . (23 » I
1 . + . 1
t « 42 . H
I . +T+20 . 1
I . 4 . 1
6000 -~ . +2 . -
I . +4 . 1
I + 2 . 1
T . z ‘ 1
I . 2+ . I
I » 22 . 1
T . + . 1
I , + . I
1 . 2 . I
1 . 2y . t
vh000 = . 2eZ . -
T . + . 1
T N e 1
I . 2+ 1
I . 5L 1
I . 2+ . 1
T . 32 . 1
I . 2+ . 1
I . 2+ . 1
T . aZet . 1
4000 - - 282240 a -
I . +2 . 1
T . 22 . 1
4 . 2+ . 1
1 . + . 4
1 + 22+ . I
! . * . 1
I . +2 . H
T . o4 . 1
t . 224 . 1
12000 = . + . -
1 ‘. + N 1
1 . 2 . 1
1 . 22424 . 1
1 . e . 1
LI . . 1
1 242+ . 1
1 242 . 1
1 42 . 1
To2e . 1
+0000 - ¢ -
T 1
-1-= 1 T I=-- - 1 H I I=
FREQ 0.0400 0500 «1000 1500 2000 2500 3000 +3300 4000 «4300 3000
PERTOD INF 0. 104 LI ¥ G L) 3.3333 2.8%11 2.9 2222 2.
FIGURE le. Residuals from clock 601 minus clock 324.
INTEGRATED SAMPLE RERIONNGRAM {+) wITH 95 PEG CENT TEST LINITS FO® WHIVE KOISE (.} '
T R it Sttt =] - 1 T T 1 1-
T 7Y GIVe L200G0F-D1 AHD 1 X DI¥s ,3OM0CF-D2 1
1,0000 = + -
i . 2 1
1] . . i
t . +*2 I
t . e T
1 . zet .1
1 2 PO ¢
I . 422 . b
I . el . 1
T . had a 1
8000 = + + . -
1 . . . 1
1 . 2+ . 1
1 . 2+ . 1
3 . 4 . 1
L N 2 . I
I . . . 1
T . 2 . 1
T . 2+2 . 1
L . 2242 . H
16000 - . e . -
I . *22e24 . I
I . 2 . I
1 Ly . 1
1 . 242 . I
T . . !
I - +24 . I
T 4 2%+ . I
! - . T
I . . . 1
44000 - . 22 . -
T . 1
I . 22 . 1
I . 2+ . I
T . 2 . 1
I . *2 . 1
T . . 1
4 . 22 . I
I . +2 . I
I . 22 + 1
«2000 - . + - -
1 z+ . 1
I +422+ . 1
T . LL¥X) » 4
1 . . 1
1. 2+ . I
T . . 14
3 +24 . 1
I 22 . 1
T 42e . I
20000 = s -
1 1
-1 1 T 1 [=eommmmmm [mmmmamen I----=-= mwm]m——————— l-memmmte s [ w e -
FRFQ 0,.0000 0500 J1000 1500 «200Q 2300 »1000 3300 4000 «#300 25000
PERIOD NF 20. 10. EYETLY 5. “, 3.3133) 2,8571 2.5 2.2222 2+

FicURE Hf. Residuals from clock 601 minus elock 8.
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NU®BFR NF DRASERVATICNS = 332
HINIMUM ORSERYATICN = = 4332A9T1AF N2
MAYTHUM DBSFRVATINN *  L,4285R3010E+07

HISTAGRAM LOWER AOUKD = -,450000000F+02
HISTAGRAM UPPER ROUND = L 45000N000F 02

OBSFIVATINNS USED

- 332 25 PLT TRIHMED MEAM = =,3337149R5E+00
MIN. DASFRYATION USED » =,43337%718E402 STaNDaRD DEVIATION & L,140738350E+02
HMAaX, DRSERVATION USED =  L42FS5AI0T0E+02 MEAN DEY./S5TD. DEV, » .BO54IBTLZE«QD
ME&N VALUF = =, 153504202F400 Ales0,5 = +145358914E=02
MEDTAN VALUE " =~ 6913P10A2F 400 B2 = L279156T26E+0)

FOR & NORMAL OFSTRIRUTION, THE VALUES (MEEN DEVIATINN/STANOARD DEVIATINN), ALle*0,5 AND B2 ARE APPROXIMATELY
04Ay 0.0 AND 3.0y RESPECTIVELY, TO TEST THE NULL HYPDTHFSIS OF ND2MALITY, SEE TABLES OF CRITICAL YALYES
°p, 207-208, RIOMETRIKA TARLES FOR STATISTICIANSs ¥OL. I. SEE PP, $7-68 FOR A DISCUSSION OF THESE TESTS.

INTFRVAL CuM, 1-CuH. CFLL ND, CELL FRACTIOHN
NIF ®OINT  FRACT, FRACT, FRACT, DNAS., 0,00 .05 11 P15 W20 .25
——b e . *
=40.0000 015 1,000 015 5 a4
-30.0000 o042 385 027 S LR
=-20.0000 L1801 958 .139 bk L TRy
=10,0000 «335 «R19 214 71 L Ry R R R R R L
0. WhA6 505 L2481 arn R Ry Y T R Y Y R Y
10,0000 «31fA 364 «lBl 1) L R X AL A s
20,0000 L9121 104 114 I8 P N
30.0000 +991 069 4060 20 AEAEEARARER L]
40,0000 1.000 2003 2009 k] 34

FiGURE Za. Histogram—residuals from clock 601 minus clock 167.

NUMAE® MF OASERYATICNS = 312
MIRIMUM NASFRVATIPN = -.4133I9T1RF402
MAXTHMUM JRASERVATION " LG2ASB3I010F+D2

HISTORRAM LAWER AQUND = -,450000000F*Q2
HISTOGEAM UPRFR AOQUNE +  ,450000000F+02

DRIERYATITNG USFD - 33T 29 PLT TRIWMED MEAN = —.333716995(+00
BTN, NASEGVATION USED = «.43333GT1ARE+02 STANDARN DEVIATION « ,160738390[+02
MA%, NASECVWATICN USFD = L42ACRIQIOF+OZ MEAN DFY,/5TDR. DEV. = .BO5496712E+00
MEAN VALUF = —.153504202E+00 Bl*e0.5 = (1453RBIL4E~02
MENTAN VALUE 2 =,hTLI710B2F+00 a2 . L279156726F401

FAP A NORMAL DESTRIBUTINM, THE VALUFS (FFAN DEVIATION/STANDARD DEVIATIAN), B1#*0.5 AND B2 ARE APPROXTMATELY
0.R, 0.0 &ND 3.0y RESPECTIVELY. TR TEST THE HWULL HMYPDTHESLS M7 NORMAL[TY, SEE TABLES OF CRITICAL VALUES
PP. 207-208, RINMETRI¥A TARLES FO8 STATISTICIaWSs VvOL. 1, SEE PP, H7-48 FOR & DISCUSSION OF THESE TESTS.

INTFeval fuH, 1=Cum, CeLL K0, CELL FRACTION
MtD POTNT  FRACT. FRACT, FRaft, DAS, 0,00 05 .10 .15 20 .25
__________________________________________ fmmm e pmmm——am——t—— _———— -
-40.0000 019 1.000 A5 k3 Aaad
=30.9000 s047 LL 027 k] abbd
=20.0000 RES «95R s139 Ak R R L T T PN R
=lc.oern 395 Rle a2l4 71 L R AR LR ]
. eBA 2405 L34 RO B R R AR R R R L A A
10, 000A WB18 RIL] L1891 0 IR A L L T T N N R L R LR Y )
20.0000 + 911 PRLLY 114 L e Y RN
30.000Q0 #3291 hLL «0=0 20 PEEbEE et
40,0000 1.000 009 009 3 4+

FIGURE 2b. Histogram—residuals from clock 601 minus clock 137.

NUMBER AF NBSEPVATIFNG = 137
MINTHUM MBSERVATION = =2 4173I071BE+D2
HAMIHUM DRSFRYATION = L L2BRBIVIDESOD

HISTOGRAM LOWER ROUND = —,450000000FE+02
BISTAGRAM NBCED BAUKD &, &50000ND00E +07

DBSERVATIONS USED . 332 25 PCT TOUNMED MEAN = =,333714085E+00
MIN, NRSFRVATION USED « =,43339G71AF+07 STANNARD DEVIATION » ,140T3R3QCE+02
MaX, NESERVATION USFD = ,42R5B3010F+02 ME&N DEV./STD, DEV. = ,BQS496712E400
MEAH VALLUE " =.1935042N2E 400 Alesn,S = «145368914E-02
MENTAN WALUE = —.ARL1IZ10R2F 400 B2 = W2791536726F+01

FOR A NARMAL NESTRIBUTION: THE VALUES (MEAN DEVIATIPN/STANDARD NDEVIATION), BLl*®#0.5 AND A2 ARE APPROXIMATELY
0.8y 0.0 GND 3,00 RESPECTIVELY. TO TEST THE WULL HYPOTHFSTS NF NNRMALITY, SEF TABLES OF CRITICAL YALUES
PP, 207-2008, RINMETRIKA TARLES FCP STATISTICT&NSs VOL. 1. SEE PP, A7=4A FOR & DISCUSSION OF THESE TESTS.

INTFayaL Cus.  1-CuW,  CELL KO, CELL FRACTINN
MIN POTHT  FRACT, FeACT. FRACT. 0OPS. 0,00 05 19 15 .20 .29
e ok e e P T — b mmaee LT e LRSS e
—40.0000 LMS 1.000 019 g LS
=3i0.0c00 «Ne? + 3RS an27 o IRy
=20,0000 181 « 950 2139 (3] P L I R
=-10,0000 395 P19 2214 7l L N NN I L R Ry R e N
0. LR h05 P 241 a0 P Ty N T R R TR AR L L T R )
1040000 816 184 J16L 60 D R LI TR T RN
20,0000 9L 184 J11e L L R Y]
30,0000 PRL 1089 060 e FhrEe bbbt
40,0000 1.000 . 009 « 09 3 +4

FI1GURE 2e. Histogram—residuals from clock 601 minus clock 1316,
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NUMAER NF MNASERVATIONS = 332
MINTHUM DASERVATINN * =,43331197BE+0D2
HAYTHUN NASERVATION = L4PAS93010F407

HISTOGRAM LOWFF ANUNE e =.450000000F+02
HISTNGRAY YPPER AROUMOD = L450N0C000E+02

OBSERVATIONS USED » 332 2% PCT TRIMMED MEAN = =-,3331716985E+00
MIM, NASFRVATINN USED » -,433319718(402 STANNARD DEVIATION = L160736390640Q2
MAY, OBSERVATINN USED = ,<28583010F+02 HEAN DFV,/5TD. DEV. » 4BO3496T12E+400
MEBN VALUE » —.1%3%04202E+00 Blven,d = .145368914E-02
MEDIAN VALUE e «,6F13210R2E400 52 * L2T9L56T26E+U]

FN® A& NORMAL OESTRIBUTION, THE VALUES (MEAN NEVIATION/STANDARD DEVIATION), B1+#D.5 AND BZ ARE APPROAIHATELY
Q.85 0.0 AND 3.0, RESPECTIVELY, Tn TEST THWE NULL HYPDTHESES OF NOFMALITY, SEF TABLES DF C{RITICAL VALUES
PP, 207-208, RIDMETZ{KA TABLES FOR STATISTICIANS, VOL. L. SEE PP, 67=6A FOR & CISCUSSTON AF THESE TESTS.

INTERVAL CUM, 1=CUH. CELL NO. CELL FRACTION
H1D POINT FRACT., FRACT, FRACT, DES. O©,80 +05 10 215 +20 .23
-
—40.0000 201% 1,000 +0l5 5 (a4
-30.0000 w047 +9B5 w027 g EXT X
-20.0000 181 «958 139 4h L R R R R LRI RY P )
=10.0000 395 819 1214 71 T T P T PP e
0. «638 505 741 60 D T g
10,0000 «816 64 «181 60 P
20.0000 +931 «1B4 o114 kL] St EE LAt E PP PR bR
30.0000 29391 «069 20H0 70 LRSS RS R R L]
40.0000 1.000 008 4008 ] 44

FIGURE 2d. Histogram—residuals from elock 601 minus clock 323.

NUMRE® QOF NBSFRYATTOHS =
HINIWUHM QASFPVATIOM = —,41331STIAE402
BAXTHUM ORSFEVATICH = L4ZR5RIOL0F402

HISTNGP M LDWER BOUND » -, 45000C000FE+02
HISTOGRAM URPFR BCUND = ,450030C00F+027

NBSERVATIONS USED . 132 2% PLT TRIWKED MEAN = —,332714985E+30
MIN, MASEPVATION USED = =, 433339718E+02 STANDARD DEVIATION = ,1607383506+02
HAY, NASERVATIAN [SEQ = ,L4283B3010F+02 MEAN DEV./STD. DEV, = .BOSLSETL2ESOQ
MFAN VaALUF a +153904207€ 400 Blex0,5 = L1453408914E=-02
MEDTAN VALUE « -~ 6?13210R2F 400 nz v L2TILGHT2HEHDL

FOP & NORMAL OFSTRIBUTION, THE VALUES [MEAN DEVIATION/STANDARD DEVIAVION), P1##0,5 AND B2 ARE APPROXIMATELY
04fs 0,0 AND .04 RESPFCTIVELY, TO TEST THE HULL HWYPOTRHESIS OF NNRNALITY, SEE TABLES OF CRITICAL VALUES
PP, 207-20R, BINMETRIXA TAALFS FO® STATISTICIANS: VOL. 1. SEE PP, &7-6B FDR & DISCUSSION ¢ THESE TESTS.

INTERVAL [ 1LY 1-Ctm, CELL Hil, CELL FRACTION
#ID POINT  FRACT, FRACT, F74CT, OBS, N.00 .05 .10 .19 .70 .25
———— P - .
-40.0000 LS 1.000 215 5 e
=30.0000 042 «GAS 2027 9 dreas
=20.0000 L1481 LG5R +139 ah L IR T Ry
=10.0000 + 195 «819 215 71 R YR YT R PR PR T T P
[+ X1 605 261 L4 LR Y T TS
10.0000 FLAE- 3064 «1B1 Hhd PR e Y TRy
20,0000 L9131 L1684 L114 38 Y I L r T Ty yypupey
10.0000 «9%1 069 060 2¢ drtdsbbatare
40,0000 1.000 « 200 .009 3 LA

FIGURE Ze. Histogram—residuals from clock 601 minus clock 324,

NUMAF® [F NASFRVATICNS » 132
MiNTRUK MASFRVATION = =,433329T2RE+Q2
MartmM MSERVATIAN o LAZASAI0IOF 407

HISTAGREM LNWER BOUND = —,&50000000F ¢02
HIGTNGRAM UPBER AMUKNLE ¢ L45000%000F+07

NASFRVATINNG USFD - 112 25 PCT TRIMMED MEAN & =.33371550%E+00
WIN, PASFOVATIAN USED = =,43333971RF+r2 STENNBERN JEVTATION » ,160738390F+02
MAY, TASERVATINN USFL =  J47RA%A301MF402 MEAN TMEV,/STM. DEV. = ,805496712F+00
REAN VALUE B = 153%04202F+00 aye40.5 = .145368914£-02
HEDTAN VALUE = -, AQ13710A2F 400 Az = 279154720401

FNR A NDRHAL DESTRIRUTINH, THF WALUFS (MFAN NFYIATTOK/STAHRARD DFVIATINNI, RIweQ.5 AND B2 ARE LGPROXIMATELY
O.As D40 AND 3,0, RESCECTIVELY, TN TEST THF MULL HYPOIHESTS 1F NOUMALITY, SFf TABLES OF CRITICAL VALUES
PP, 707~20A, RTOMFTPTHA TAALES FOP STATISYTCTANS, ¥AL. 1. S5FF PP, AT=6A FOR & DISCUSSION DF THESE TESTS.

INTERVAL Cum, 1-CUN,. CFLL L 1LY CFLL FraCTION
NID PAINT FesCT, FRACT, FPACI, DAS. 0.00 05 210 W15 20 W23
MemwwE e mmeeem e —————— B T et $mm—————— [, brmm————— R ——
-40,0000 =017 1.000 =115 5 tee
=30.,0000 «042 985 «027 1 (X222
=-2G.0000 #1281 + 958 139 b I Y Y Y
-19.00090 » 365 819 =214 7 BEE P et P E P E ARSIt bR bbb P bR b
0, 2638 «605 a241 [:1e] Dy Y R PR R S
10.0000 = 81F %111 «1A1 &0 R R A A A A R L R )
20,0000 4931 184 w114 IR PEAELEEERE ORI IR R
30,0000 991 069 «05H0 29 R AR
40,0000 1.000 009 . 00 3 ‘4

FIGUuRE 2f. Histogram—residuals from clock 601 minus clock 8.

16





