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Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock
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Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition
frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper
excitation fraction, the cold-collision shift is canceled below the 5 × 10−18 fractional frequency level. We
report inelastic two-body loss rates for 3P0 -3P0 and 1S0 -3P0 scattering. We also measure interaction shifts
in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for
high-performance optical clocks as well as strongly interacting systems for quantum information and quantum
simulation applications.
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I. INTRODUCTION

Large ensembles of ultracold atoms offer atomic clocks
a measurement of the atomic state with high signal-to-noise
ratio. For clocks utilizing optical transitions, this has the
potential to yield time and frequency measurements with new
levels of precision and speed (e.g., [1,2]). However, large
ensembles of cold atoms can lead to high number density and
thus significant interatomic interactions. These interactions
can perturb the clock transition frequency, compromising the
accuracy of the atomic standard. For example, in cesium
fountain primary standards, cold-collision shifts can become
significant [3,4], influencing clock operation (e.g., [5–7]).

Optical lattice clocks, which probe the ultranarrow 1S0 -3P0

transition in two-valence-electron atoms held in an optical po-
tential, are also susceptible to cold collisions. Non-negligible
collision effects have been observed in lattice clocks using
nuclear-spin-polarized, fermionic samples of 87Sr [8,9] and
171Yb [10]. Measurement and control of these collisions
therefore play a key role in the continued development of these
standards. At the same time, the control of these interactions
is an integral part of proposals for quantum information
[11,12] and quantum simulation of solid-state-analog Hamilto-
nians [13–15]. Furthermore, measurement of these collisions
contribute to better knowledge of the interaction potentials
for these atomic systems. For 87Sr, the primary interaction
giving the cold-collision shift was identified as an s-wave
interaction between atoms in nonidentical superpositions of
the clock states [9,16,17]. It was recently observed that strong
interactions can isolate and suppress the shift [16,18].

For 171Yb, it was shown that a p-wave interaction between
atoms in the 1S0 and 3P0 electronic states was the dominant
mechanism responsible for the cold-collision shift [19]. Unlike
the s-wave case, such an interaction is less sensitive to small
particle-distinguishability between the ultracold fermions.
Consequently the observed shift exhibits roughly a linear de-
pendence on the 3P0 excitation fraction [Fig. 1(a)]. Moreover,
in the weakly interacting regime of the one-dimensional (1D)
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lattice, the cold-collision shift crossed zero at a mean excitation
fraction close to 0.5. In this work, we exploit this zero crossing
to demonstrate cancellation of the 171Yb cold-collision shift in
a 1D optical lattice below the 5 × 10−18 fractional frequency
level. The cancellation is enabled by the fact that near 50%
excitation, population of the two electronic states of one atom
induces equal collision shifts on the opposite states of another
atom, leaving zero net shift for the clock transition [20].
The collision-shift cancellation can thus be likened to the
Stark-shift cancellation, which optical lattice clocks exploit by
operating at the “magic” wavelength [21,22]. Our uncertainty
in this cancellation reaches below the smallest total uncertainty
levels reported to date for any type of atomic clock, making
it a powerful and pragmatic technique for mitigating the
collisional shift in a lattice clock.

II. COLD-COLLISION-SHIFT CANCELLATION

The 171Yb (I = 1/2) optical lattice clock is described in
detail elsewhere [10,19]. After dual laser-cooling stages, atoms
are loaded into a 1D optical lattice using a laser at λmagic �
759 nm. The atomic population, initially split between the
two ground magnetic substates, is optically pumped to a
single spin state using σ -polarized light resonant with the 1S0

(I = 1/2)-3P1 (I = 3/2) transition in the presence of a bias
magnetic field (5 G). We estimate the average atomic density
can reach 3 × 1011 atoms/cm3, with an atomic temperature
of ∼10 μK. The atoms are then spectroscopically probed
on the 1S0 -3P0 transition using Ramsey spectroscopy. The
Ramsey pulse times used here are 5–10 ms, while the dark
time is 80–150 ms. A cavity-stabilized probe laser is actively
stabilized to the center Ramsey fringe using an acousto-optic
modulator. The cold-collision shift is the measured frequency
difference between interleaved atomic samples of high and
low density.

Measurement of the collision shift in a 1D lattice is shown
as solid points in Fig. 1(a) as a function of excitation fraction
(during the Ramsey dark time). The theoretical calculation of
the shift using a p-wave model is also shown (solid line). In
the model, the dominant interaction, Veg , is between 1S0 and
3P0 atoms, and a weaker interaction between two excited state
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FIG. 1. (Color online) (a) Cold-collision shift as a function of ex-
citation fraction for a polarized sample (density of 3 × 1011 cm−3) in
a 1D optical lattice oriented vertically (solid triangles) or horizontally
(solid circles). Open squares are with an unpolarized atomic sample.
(b) Cold-collision-shift cancellation: the measurement uncertainty
for this cancellation is shown, given by the total deviation (similar to
two-sample Allan deviation [23]). (c) Measurement of the residual
cold-collision shift when operating at 51% excitation and an atomic
density of ρ1d . The red dashed line indicates the weighted mean of
the seven measurements, +2.5 mHz, while the solid lines give the 1σ

error bars of ±2.4 mHz.

atoms, Vee = 0.1Veg , is also included [19]. The shift has a zero
value near 50% excitation, and this zero crossing is the focus
of our attention here. To determine the precise excitation cor-
responding to zero shift, we made frequent measurements of
the excitation fraction by turning off the second Ramsey pulse
and measuring the ground and excited atomic populations after
the dark time. These measurements were interspersed between
cycles of usual Ramsey spectroscopy. We then slightly adjusted
the probe-laser power to keep the mean measured excitation
fraction constant during each shift measurement.

The precision of the zero-crossing measurement is given by
the clock instability during interleaved measurements of high
and low atomic density. Our measurement stability benefits
from recent improvements to the cavity-stabilized laser used to
probe the clock transition [1]. Figure 1(b) shows the precision
of one such measurement, where we observed a collision shift
of −1.4 (3) mHz after 14 500 s of averaging. Figure 1(c)
shows the results of seven similar measurements, taken
sequentially over the course of several weeks and with different
measurement durations. For all but one measurement, the mean
excitation fraction was controlled to 51% ± 0.3% ± 1.3%,
where the first uncertainty is the statistical fluctuation in the
measured excitation fraction and the second is the systematic
uncertainty in the absolute excitation value (with uncertainty
contributors including repump efficiency, offsets in the detec-
tion system, and excitation decay during spectroscopy). [For
data point 2, the excitation fraction was set to 1% higher;

we thus applied a −5 (2.5) mHz correction to the measured
collision shift, as determined from the slope of the curve in
Fig. 1(a).] The weighted mean of the seven measurements (red
lines) is 2.5 (2.4) mHz (reduced χ2 = 1.04). This corresponds
to a fractional shift of 4.8 (4.6) ×10−18 of the transition
frequency and demonstrates the smallest measurement of a
collision shift in a lattice clock.

III. INELASTIC SCATTERING

In order to routinely implement this collision-shift can-
cellation, we consider the robustness of this technique to
relevant experimental conditions. For an operational density
of ρ1d � 3 × 1010 atoms/cm3, a 1% change in the excitation
fraction leads to a change in collision shift of ∼1 × 10−17. As
described above, it is straightforward to keep variations in the
excitation below the 1% level. However, a complication arises
from time-dependent excitation due to trap loss. Particularly,
we have observed inelastic two-body losses involving both
3P0-3P0 and 1S0 -3P0 interactions. With both 1S0 (g) and 3P0 (e)
populations present, the number density rate equations are

ṅg(t) = −�gng(t) − βegng(t)ne(t),

ṅe(t) = −βeene(t)2 − �ene(t) − βegng(t)ne(t).

For a single population (ng or ne) βeg loss can be ignored.
Figure 2(a) shows 1S0 trap loss (black triangles, for a pure
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FIG. 2. (Color online) (a) 1S0 trap loss (black triangles) with an
exponential fit (dashed curve). 3P0 trap loss (blue circles) with a one-
and two-body loss fit (solid curve). The inset shows 1S0 loss for a pure
1S0 sample (black triangles) and a mixed sample of 1S0 and 3P0 atoms
(blue circles). The former is fit with a simple exponential, and the
latter is fit with 3P0 -3P0 and 1S0 -3P0 two-body losses. (b) Two-body
loss rates as a function of temperature, calculated with pls = 1 (dashed
curves) and with pls = 0.8 and δ = 0.51 π (solid curves). Black is
for a nuclear-spin-polarized sample of 3P0 atoms (βee), and red is
for an unpolarized sample of 3P0 atoms ([βee + β̃ee]/2). Points give
experimental measurements; the black circle is for βee, and the blue
triangle is for βeg .
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sample of 1S0 atoms), with a one-body loss fit yielding a trap
lifetime of 1/�g = 480 (20) ms. Also shown is 3P0 trap loss
(blue circles, for a pure sample of 3P0 atoms). This population
experiences notably stronger decay at high densities, and good
fit requires both one-body (�e) and two-body (βee) losses.
After integrating the losses over the spatial extent of a single
lattice site as well as across the distribution of occupied sites,
we find 1/�e = 520 (28) ms and βee = 5 × 10−11 cm3/s,
somewhat larger than the 3P0-3P0 decay measured in 88Sr
[24,25]. Because the absolute atomic density is difficult to
calibrate, the uncertainty in βee is estimated as 60%.

Inelastic two-body loss for 3P0 atoms can be considered
with a single atom-atom channel, time-independent quan-
tum formalism similar to [26,27]. Lacking an accurate Yb2

potential, the short-range physics is described here by a
boundary condition at an interatomic separation R0 = 20
a0 (a0 is the Bohr radius), represented by two parameters:
(i) an accumulated phase shift, 0 � δ � π , due to the unknown
short-range potential from R = 0 to R = R0 and (ii) a loss
probability, 0 � pls � 1 at R = R0. The long-range physics
is accurately described by a van der Waals interaction, with
C6 = 3886 a.u. given by [28]. The Schrödinger equation is
numerically solved from R0 to R → ∞, and the cross section is
computed as a function of the collision energy. The thermalized
rate coefficients are found by averaging the cross sections with
a Maxwell-Boltzmann distribution of collision energies for a
given temperature.

With full loss probability (pls = 1), βee is shown in Fig. 2(b)
(black dashed curve) as a function of temperature. Here the
rates are universal, independent of δ [26,27]. The interaction
involves two identical fermions, and thus quantum statistics
dictates that the interactions must be odd partial waves, notably
p-wave at these ultracold temperatures. As two excited atoms
approach each other, those that successfully tunnel through the
p-wave barrier are assumed to inelastically scatter with unit
probability, a reasonable assumption due to the large number
of exit collision channels available to a pair of atoms with high
internal energy. For an unpolarized sample of 3P0 atoms (here
with equal mI = ±1/2 populations), interactions between
distinguishable atoms also include an s-wave term, and the
loss rate for distinguishable 3P0 atoms is labeled β̃ee. The total
loss rate for the unpolarized sample, given by the average of βee

and β̃ee, is shown in Fig. 2(b) as a red (color online) dashed
curve (pls = 1). Experimentally, we observed identical loss
rates within 10% for a polarized and an unpolarized sample
at 10 μK [Fig. 2(b), black circle]. Since full loss predicts
unequal loss rates for polarized and unpolarized samples at
10 μK, 3P0 atoms may not be lost with full unit probability at
short range. Instead, using short-range parameters of pls = 0.8
and δ = 0.51 π , the loss rates are shown as solid curves in
Fig. 2(b) for polarized (black) and unpolarized (red) cases.
Here we found better agreement with the experimental data,
suggesting a deviation from the universal regime.

For a mixed population of 1S0 and 3P0 atoms, we observed
additional loss through βeg . The inset in Fig. 2(a) highlights
this by comparing 1S0 trap loss for two different atomic
samples: with (blue circles) and without (black triangles)
the presence of 3P0 atoms. The additional loss is particularly
notable at short times where both 1S0 and 3P0 populations are

large and is consistent with a 1S0 -3P0 two-body loss rate at
the level of βeg = 3 × 10−11 cm3/s. The 3P0 population is
excited coherently from the 1S0 state, but due to excitation
inhomogeneity, the lossy collisions are between partially
distinguishable atoms [19]. The magnitude of the inelastic
loss is noteworthy because, at long range, only the 1
+

g ground
state (correlating to the 1S0-1S0 state) lies at lower energy than
molecular states correlating to a 1S0 and 3P0 atom pair, and
long-range coupling to this state is spin forbidden.

In general, all of these loss processes lead to a time-
dependent excitation fraction during the Ramsey dark time.
This, in turn, affects the balance between 1S0 and 3P0 colli-
sionally induced energy shifts. For simplicity, we can easily
operate at a lower atom number density, reducing not only
the collisionally induced shifts but also the two-body inelastic
losses. At the same time, the number of quantum absorbers
remains well in excess of 1000 in order to accommodate a
high signal-to-noise ratio. At a density of ρ1d , the excitation
fraction over a dark time of T = 150 ms changes by only
several percent. We therefore take the dark-time-averaged
excitation value to indicate the excitation fraction where the
shift is canceled.

IV. ATOMIC POLARIZATION

Any degree of imperfect polarization of the nuclear-spin
state introduces a host of other possible atomic interactions. In
p-wave, the V −

eg interaction, which shifts the singlet state, be-
comes allowed [19]. Furthermore, distinguishability between
different nuclear-spin states allows s-wave interactions Ugg ,
Uee, and U+

eg . In 171Yb, both the s- and p-wave |gg〉 interaction
terms are small [29]. However, the remaining interactions
can alter the observed collision shift from the spin-polarized
case. For this reason, high polarization purity is important
for optical lattice clocks. Here we benefit from the simple
structure (I = 1/2) of 171Yb and can readily optically pump
to a single spin ground state with 99% purity. The polarization
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FIG. 3. (Color online) Cold-collision shift as a function of
excitation and for different Ramsey times. These data are for a
polarized sample in a 2D lattice with a density ρ2d corresponding
to 25% of the atoms doubly occupied in a lattice site with a
density of 4 × 1012 atoms/cm3. Points correspond to experimental
measurements, and solid curves are theoretical calculations [19]. Blue
(circles) is a Ramsey time of T = 10 ms, red (diamonds) is 40 ms,
black (squares) is 80 ms, green (triangles) is 160 ms, and orange
(inverted triangle) is 210 ms.
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purity is directly measured by observing the absence of a clock
excitation spectrum for the unpopulated spin state.

To quantify the effect of imperfect polarization, we measure
the collision shift as a function of excitation for unpolarized
atoms [open squares in Fig. 1(a), equal mixture of both spin
states]. Since, during spectroscopy, a weak bias field (1 G)
lifts the degeneracy of the π transitions from the two spin
states, here the excitation fraction is defined as that for the
particular spin state being resonantly excited, not accounting
for the other “spectator” spin state. In general, the measured
shifts are smaller than for the spin-polarized case, implying
that competing interactions have the opposite sign as those
in the polarized case. Notably, the measured zero crossing in
the shift occurs at a lower excitation fraction (around 40%),
leaving a net positive shift at 51%, where the shift is zero for
the spin-polarized case. Based upon these measurements, we
determine a 1% polarization impurity will not affect the shift
zero-crossing at or above the level measured in Fig. 1(c).

V. DISCUSSION

We have shown that the cold-collision shift can be canceled
at the 5 × 10−18 level in a 171Yb optical lattice clock. The
excitation fraction required to achieve this cancellation is
compatible with high signal contrast. It is noteworthy that
this cancellation is achieved in a 1D optical lattice, where
polarization and intensity control at a particular lattice site are
simpler than for a three-dimensional (3D) lattice implemen-
tation, thus benefitting lattice shifts that depend on the vector
or tensor polarizability and hyperpolarizability. As well, the
large trapping volume of the 1D lattice sites generally yields
weaker elastic and inelastic interactions at multiple-occupancy

sites. On the other hand, other lattice implementations may be
suitable for reducing the clock shift at or below the level shown
here. In a two-dimensional (2D) optical lattice clock, strong
interactions can lead to a decay of the collision shift [19,30].
In particular, longer Ramsey dark times lead to smaller shifts
and can reduce the shift dependence on excitation fraction
(Fig. 3), making it attractive for shift reduction. Care must be
taken since, as we have observed both experimentally and the-
oretically, the interactions can also reduce the Ramsey fringe
contrast. Alternatively, the 2D lattice system also exhibits a
zero crossing in the shift versus excitation. However, strong
interactions can move the zero-crossing excitation with a
nonlinear dependence on interaction strength (Fig. 3), and thus
the weak interactions of the 1D lattice may be easier to control.

The 3D optical lattice continues to be an interesting choice
[21], where it is straightforward to achieve a high atom number
with an average of �1 atom per lattice site. The small
fraction of lattice sites with double occupancy will exhibit
very strong interactions. Doubly occupied sites could also
be eliminated using photoassociation losses [31] or directly
via the two-body losses observed here. Furthermore, the 3D
optical lattice system may exhibit kinematic suppression of
the atomic interactions that yield the shifts [32]. Indeed, these
rich atomic systems will undoubtedly continue to offer many
interesting phenomena in 1D, 2D, and 3D confinement.
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