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Numerical test of few-qubit clock protocols
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The stability of several clock protocols based on 2 to 20 entangled atoms is evaluated numerically
by a simulation that includes the effect of decoherence due to classical oscillator noise. In this
context the squeezed states discussed by André, Sørensen and Lukin [PRL 92, 239801 (2004)] offer
reduced instability compared to clocks based on Ramsey’s protocol with unentangled atoms. When
more than 15 atoms are simulated, the protocol of Bužek, Derka and Massar [PRL 82, 2207 (1999)]
has lower instability. A large-scale numerical search for optimal clock protocols with two to eight
qubits yields improved clock stability compared to Ramsey spectroscopy, and for two to three qubits
performance matches the analytical protocols. In the simulations, a laser local oscillator decoheres
due to flicker-frequency (1/f) noise. The oscillator frequency is repeatedly corrected, based on
projective measurements of the qubits, which are assumed not to decohere with one another.

INTRODUCTION

Atomic clocks are intrinsically quantum measurement
devices, and it is an open question to what degree
quantum many-body states can improve clock opera-
tion. Squeezed states were first discussed in the con-
text of optical interferometers with improved resolu-
tion [1]. Subsequently, spin-squeezed input states [2] were
considered for improved frequency resolution in atomic
clocks [3, 4]. Further studies simultaneously optimized
the initial quantum state with the clock’s measurement
basis [5] to achieve frequency resolution that scales as the
Heisenberg limit.

In atomic clocks, the highest accuracies are currently
reached in the optical frequency domain with pairs of
trapped ions [6] where the atom-number is difficult to in-
crease without loss of accuracy. Experiments of similar
construction have demonstrated arbitrary unitary trans-
formations of ion-qubit pairs [7]. Therefore, “quantum
gain”, where improved performance is extracted from a
small number of entangled atoms in clocks, may have
practical significance.

This study focuses on the projection-noise-limited fre-
quency stability of passive atomic clocks [8], where the
classical oscillator is the only source of decoherence, and
the atomic qubits are assumed not to decohere with one
another. This situation has been been addressed for the
case of squeezed states with large qubit numbers [9], and
for general quantum states and measurement bases, also
in the limit of large qubit numbers [5]. Experimental
trapped-atom optical clocks that are based on resonances
of metastable excitations share this decoherence mech-
anism when inter-atom decoherence from interactions,
spontaneous emission, and background-field fluctuations
can be neglected. In optical atomic clocks the oscillator
frequency is derived from laser-stabilization cavities that
have an intrinsic thermal noise floor [10] whose power-
spectrum of frequency-fluctuations scales as 1/f . This
fundamental thermal-noise floor serves as the model for
oscillator decoherence. Note that models of decoherence

and oscillator noise are essential ingredients for studies of
optical-clock stability, where the uncertainty of the atom-
oscillator phase difference is typically of order one radian.
In contrast, the atom-oscillator phase difference in many
microwave atomic clocks is of order one milliradian, and
oscillator noise plays a different role.

CLOCK MODEL

The simulated clocks are generalizations of Ramsey’s
clock protocol [11]. Each clock contains N qubits whose
states are the ground state |0〉 =

(

1
0

)

and the excited

state |1〉 =
(

0
1

)

. Ramsey’s protocol, as considered here,
consists of repeated application of the following steps
where π/2 rotations are assumed to be infinitesimally
short:

1. Prepare initial state. All qubits are placed in the
state ψ1 =

(

1
−i

)

/
√
2 which is the state

(

1
0

)

after
rotation by π/2 about the Bloch-sphere x-axis.

2. Free evolution for a period T where a phase differ-
ence of φ accumulates between the oscillator and
the qubits. ψ2 =

(

1 0
0 e−iφ

)

ψ1

3. Measure final state by rotating the qubits by π/2
about the Bloch-sphere y-axis, and counting the
number of excited-state qubits. This corresponds
to measuring ψ2 in the basis a1 =

(

1
−1

)

/
√
2, a2 =

(

1
1

)

/
√
2.

4. Adjust the oscillator frequency by an amount that
depends on the measurement outcome in step 3.

5. Add a random variable to the oscillator frequency
to model its 1/f noise floor. The oscillator fre-
quency has a probe cycle to probe cycle variance
of 2 Hz2, independent of T , corresponding to a flat
Allan deviation of 1 Hz. This noise level is chosen
for convenience, and is of similar magnitude to the
experimental oscillator noise in optical clocks.
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In this description the Bloch-sphere rotation directions
are defined by the oscillator phase. Thus, when the oscil-
lator accumulates a phase error during the free evolution
period, this is modeled as the phase φ that is applied
differentially to the two states of each qubit in step 2.
The above sequence can be understood as a measure-

ment of the atom-oscillator frequency difference in steps
1 to 3, followed by a correction of the oscillator frequency.
Atomic projection noise in step 3 limits the measurement
stability to [12]

σf (τ) =
1

2π
√
NTτ

, (1)

where σf (τ) is the standard deviation of the clock fre-
quency after it has been averaged over the period τ , with
respect to the true frequency of the N atoms. In order
to minimize σf , one should maximize the free evolution
period T . However, when T is too large, it is possible
for frequency errors of ±2π/T to accumulate undetected,
because the atomic signal is periodic. Such occurrences,
called “fringe hops,” limit the duration of T . Note that
clock protocols with variable T may avoid fringe hops and
allow for improved stability. Beam clocks naturally avoid
this difficulty due to their thermal velocity spread [13].
Ramsey’s protocol can be generalized in two ways. The

first is the use of arbitrary multi-qubit states for ψ1.
When these states reduce the phase measurement uncer-
tainty in the limit of small T , the states are considered
spin-squeezed [2, 3]. André et al. [9] suggest the states

ψ1 = N (κ)
∑N/2

m=−N/2(−1)me−(m/κ)2 |N,m+N/2〉,
where κ parameterizes the degree of spin-squeezing,N (κ)
provides normalization, and the states |N,m〉 are the
fully-symmetrized states of N qubits containing m exci-
tations. For example, |4, 3〉 = (|0111〉+ |1011〉+ |1101〉+
|1110〉)/2. These initial states improve the stability of
simulated clocks (see RESULTS). The second general-
ization consists of the use of other measurement bases.
Only initial states and measurement bases in the sym-
metric subspace spanned by the states |N,m〉 are consid-
ered [5]. Such protocols consist of repeated application
of these steps:

1. Prepare initial state ψ1.

2. Free evolution for a time-period T . |N,m〉 →
e−imφ |N,m〉

3. Measure final state by projecting into a measure-
ment basis {|aj〉}.

4. Adjust the oscillator frequency by an amount that
depends on which |aj〉 was measured in step 3.

Oscillator noise is simulated as before. This protocol
could be further generalized to include the possibility of
partial measurements, ancilla qubits, and frequency cor-
rections that depend also on the measurement outcomes

from prior cycles. However, such extensions are not con-
sidered here. Furthermore, the free-evolution period T is
fixed for each protocol instance.
Bužek et al. have optimized analytically the initial

state ψ1 and basis {|aj〉} for phase measurements in the
limit of large N . The authors find

|ψ1〉 =
N
∑

m=0

√

2

N + 1
sin

π(m+ 1/2)

N + 1
|N,m〉 (2)

and

|aj〉 =
1√
N + 1

N
∑

m=0

eimφ(j) |N,m〉 , (3)

where φ(j) = 2πj
N+1 . Simulated clocks based on this pro-

tocol achieve Heisenberg-limited scaling (see RESULTS).

The phase-shifted basis states where φ(j) = 2π(j+1/2)
N+1 are

also considered, because they offer reduced clock insta-
bility when N is odd.
The above optimization is for a uniform distribution

of oscillator phase errors on the interval [−π, π), while
in experimental clocks the phase error has a distribu-
tion that is peaked at φ = 0 and drops near zero as
φ approaches ±π. The authors also assume that phase
errors can be considered modulo 2π but when the free-
evolution period T is optimized in optical clocks, phase
errors beyond 2π must also be taken into account. In this
work the frequency corrections associated with each basis
state |aj〉 are numerically optimized, to account for the
non-uniform distribution at the correction stage. Other
studies explicitly optimize phase estimation protocols as
a function of the prior distribution of phases [14, 15], and
this approach is likely to result in more stable few-qubit
clock protocols.

NUMERICAL SEARCH

The generalized protocol described above can be pa-
rameterized by an array of real numbers. For each pro-
tocol, the expected instability can then be calculated in
a Monte Carlo simulation. In the present study, a nu-
merical optimizer adjusts the protocol parameters to find
the best performance. This is a difficult numerical prob-
lem, because the dimensionality grows quickly with qubit
number N , and numerical optimizers are not well suited
to optimize the results of Monte Carlo simulations, which
contain noise from the randomization process. Perfor-
mance estimates based on Markov chains would avoid
the problem of randomization noise, but because the 1/f
noise process is non-stationary, a very large state space
may be needed for accurate estimates of long-term sta-
bility. Nevertheless, the present numerical search yields
protocols whose performance exceeds that of Ramsey’s
protocol for two to eight qubits.
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Minimization of the search-space dimensionality is crit-
ical. As noted above, only initial states and measurement
bases in the symmetric subspace (spanned by the |N,m〉
states) are considered. For the numerical search, 2N + 1
real numbers (reals) parameterize the initial state and
N2 + N reals parameterize the measurement basis. Be-
cause both unitary operations and measurement bases
can be written as orthonormal matrices, their parame-
terization is nearly identical. Efficient parameterization
of unitary operations is described by Tilma and Sudar-
shan [16]. For the present calculation, extraneous phase
degrees of freedom have been removed from the basis
states. In addition, N + 1 reals parameterize the fre-
quency corrections, and one real parameterizes the free-
evolution period T . In total, N2 + 4N + 3 reals param-
eterize an N -qubit clock. It is believed that this exceeds
the minimal parameterization by one real.

Clock performance is measured as the long-term insta-
bility. That is, if the clock runs for many interrogation
cycles, how close is the average oscillator-frequency to
that of the atomic qubits? The Monte Carlo simulator
propagates the clock through 105 cycles, and calculates
the variance of 100-cycle frequency-averages. Additional
steps are taken to ensure that this variance reflects the
long-term clock instability. The oscillator noise is pre-
computed to have a 1/f power spectrum of frequency
noise [10, 17] with an Allan deviation [18] of 1 Hz.

It should be noted that for a fixed free-evolution pe-
riod T , the frequency of all clocks with finite N diverges
as a random walk, because undetectable 2π phase jumps
(fringe hops) cannot be avoided entirely. Nevertheless the
probability of fringe hops can be made small for large but
finite numbers of clock cycles. This regime of a large, but
finite number of clock cycles describes both real clocks,
which do not run forever, and the Monte Carlo simula-
tions in this work.

The search was performed via Nelder-Mead optimiza-
tion [19] of randomized protocols that meet a perfor-
mance threshold. All N2 + 4N + 3 parameters were
randomly varied for the general search, so that all pos-
sible initial states and measurement bases were within
the search space. When initial tests yielded good sta-
bility, the protocol was run through the optimizer for
further refinement. For known protocols, only the fre-
quency corrections and free-evolution period T were var-
ied, as well as the squeezing parameter κ, where applica-
ble. For all protocols, optimal frequency corrections were
initialized by assuming a prior Gaussian distribution of
frequency errors, and computing the mean frequency as-
sociated with each possible measurement outcome |aj〉.
To these estimates random offsets were added before test-
ing the protocol. In the case of known protocols, certain
symmetries are evident, and these symmetries were also
enforced for the frequency corrections.

FIG. 1. (color online) Long-term statistical variance of entan-
gled clocks that contain different numbers of qubits, compared
to the standard quantum limit (SQL). The most stable clocks
found by the large-scale search are shown as black points.
Each point is based on several hours of runtime on NISTs
computing cluster, where typically 2000 processor cores were
utilized in parallel. Also shown is the simulated performance
of analytically optimized clock protocols. Approximately 15
qubits are required to improve upon the SQL by a factor of
two.

RESULTS

Numerical simulations of the clock protocols consid-
ered here are summarized in Figure 1. Ramsey’s pro-
tocol defines the standard quantum limit (SQL), and it
is evident that entangled states of two or more qubits
can reduce clock instability, although the GHZ states [4]
yield no gain for the noise model considered here, as has
been noted previously [20, 21]. The spin-squeezed states
suggested by André et al. yield the best performance for
3 to 15 qubits, and improve upon the SQL variance by a
factor of N−1/3. For more qubits, the protocol of Bužek
et al. further reduces clock variance, because this proto-
col scales as N−1. The numerical search was run in many
parellel threads to find protocols that surpass these an-
alytical protocols, but for two qubits, the clock-variance
is only reduced by 1 %, within the margin of error for
this calculation. An example of the search result for two
qubits is

U =





−0.486− 0.039i 0.708− 0.132i 0.335 + 0.363i
0.470 + 0.106i 0.687− 0.082i −0.364− 0.395i
−0.570 + 0.454i −0.043 + 0.000i −0.684 + 0.000i





ψ1 =





−0.572 + 0.000i
−0.220− 0.580i
−0.458− 0.282i





where Fig. 3 (bottom-left) includes the corrections and
probe period, and probability amplitudes for the dif-
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FIG. 2. (color) Numerically optimized free-evolution period
T for some of clock protocols considered here, when the oscil-
lator noise has an Allan deviation of 1 Hz.

ferent possible measurement outcomes can be written

as Ue−iĤT/h̄ψ1. Although the analytical protocols are
within the search space, their performance is not reached
by the general search program for N > 3, due to the size
of the problem. The optimized free-evolution period T
for different protocols is shown in Fig. 2. The behavior
of the different types of clocks is illustrated in Fig. 3,
where it can be seen that the protocol of Bužek et al.

gains frequency resolution as 1/N , because each basis
state coprreponds to a range of phases that shrinks as
1/N . The squeezed-state protocols are similar to Ram-
sey’s protocol, but gain frequency resolution near φ = 0
at the expense of decreased resolution near φ = ±π/2.
For N = 2 the “Search” protocol is very similar to that
of André et al.

CONCLUSION

For accurate ion clocks, further experimental improve-
ments are required to achieve full quantum control of two
clock qubits, where the available “quantum gain” appears
to be 15 % to 20 %. It is likely that gains of similar mag-
nitude can be derived from easier to implement classical
improvements, where the free-evolution period is varied
to prevent fringe hops. Such classical protocols will de-
fine a new standard quantum limit with which to com-
pare variable probe time, entanglement-based, protocols.
It remains an open question how much quantum gain is
possible in variable probe-time clocks. Recent theoreti-
cal work on efficient quantum-phase estimation [14, 15]
may improve upon the protocols considered here [5, 9],
especially for three or more qubits.
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FIG. 3. (color) Probability (P) of measuring each basis state as a function of the atom-oscillator phase difference (φ). Shown are
the various protocols for two and five atoms. Each differently colored curve corresponds to a basis state that ψ1 is projected onto
after free evolution. Vertical text near the curves’ peaks indicates the optimized phase estimate (φEst). In the simulations, the
frequency corrections are φEst/(2πT ). Shaded in the background is the Gaussian distribution whose variance 〈φ2〉 represents
the atom-oscillator phase differences that occur in the simulation. Also listed is the optimized probe period T , squeezing
parameter κ where applicable, and long-term frequency variance of the clock extrapolated to 1 second. For long-term averages
of n seconds, the variance is 〈f2〉/n.


