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A model  ensemble  specifying  the  distribution of clock  readings 
about  their  average is given  which  leads  to  an  integral  equation of 
renewal  type.  Renewal  processes  are  often  described by the  random 
times of replacement of mechanical  or  electrical  components.  In 
our  case,  clocks  in  the  ensemble  may  repeatedly  read  correctly 
and  "renew"  themselves.  Solutions of the  equation  are  discussed 
and are  related  to  other  error  statist ics.  

Introduction 

The  initial  purpose of this  paper  is  to  present  and  discuss a mathe- 
matical  description of the  probabilistic  behavior of a clock  subject  to 
random  influences;  such a clock  is  conveniently  regarded  as a typical 
member of a statistical  ensemble of identical  independently  running  clocks. 
A model of this  ensemble  may  be  specified  to  some  extent in te rms  of the 
probability  density  distribution  or  marginal  distribution of its  clock  read- 
ings  about  the  ensemble  average  and a conditional  transition  probability 
between  pairs of readings,  More  detailed  specifications  are  given  in  the 
next  sections.  The  model  was  suggested  in  part by certain  experimental 
studies  (Barnes and  Allan, 1966, Barnes, 1967, and  Barnes  and  Allan, 
1967),  but it is not  the  purpose of this  paper  to  discuss  or  present  details 
of these  experiments;  rather, it is the  purpose  simply  to  deduce  properties 
and  behaviors of the  model so suggested. 

The  time  indicated on a clock,  that  is,  its  reading, is simply  pro- 
portional  to  an  accumulation (following some  initial  epoch) of repetitive 
events,  called  cycles,  which  are  generated by the  clock. To get  the 
indicated  time,  one  divides  this  cycle  count by some  average  measure of 
frequency,  which  specifies  the  rate of occurrence of the  cycles.  Incor- 
porated  in a more  sophisticated  clock is a way of measuring its frequency 
(or  rate) in terms of a frequency  standard  and  constantly  adjusting  it 
(perhaps on paper) so that  its  time  reading is an  accumulation of cycles 
divided by frequency.  Or, i f  the  detailed  trend  during  each  cycle  can  be 
observed,  and  the  phase  measured  during  the  cycle,  then  the  reading of 
the  clock is expressed by 

where cp is  the'measured  phase,  or 2n times  the  number of elapsed  cycles, 
and W is the  measured  angular  frequency (2n times  the  cycle  repetition  rate), 
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The  integral is often  evaluated  continuously,  to  an  approximation, by the 
clock  mechanism  itself;  or  it  may  be  evaluated  "after  the  fact" by a computer 
process ,   as  is usually  the  case  for  the  most  accurate  clocks  (Barnes,  Allan 
and  Andrews,  1965). 

Now, i f  the  measurements of phase  (counting of cycles)  and  frequency 
were  perfectly  precise,  instantaneous, and  continuous,  and  the  frequency 
standard  were  perfectly  accurate,  and  the  integral  could  be  evaluated  with 
perfect  accuracy,  and  the  clock  were  read  with  perfect  precision,  then  the 
reading, 7, would be  exactly  the  local  proper,  or  inherent,  time for  the 
clock.  Moreover,  it is a basic  assumption of (non-quantum)  physics  that 
all such  clocks  in any local  neighborhood, if compared  with  perfect  precision, 
and  under  ideal  conditions,  would  read  the  same  proper  time  interval, T. 

None of these  conditions is, of course,  fulfilled  in  practice,  and  it is the 
random  errors  and  fluctuations  introduced  into T which  produce  the  proba- 
bilistic  behavior  treated  herein.  Because of these.  effects,  the  readings of 
two clocks  in  the  same  neighborhood  will  differ  even i f  set  to  read  the  same 
value  initially.  But it is conceivable  that,  from  time-to-time,  the  clocks 
might  again  exhibit  identical  readings,  though  the  interval  between  such 
coincidences would fluctuate  in a random  fashion.  Similarly, i f  one clock 
were  compared  with  an  indefinitely  large  number of clocks  (an  ensemble)  in 
its neighborhood  whose  initial  readings  were  all  equal, its later  reading 
might  agree  with  the  average  reading, t, of all these  clocks  occasionally, 
but  usually it would be  relatively  fast  or slow. When it agrees,  we  shall 
say that  the  clock is reading  "correctly. ' I  The  time,  T,  between  such 
correct  readings is known in  the  probabilistic  "theory of recurrent  events" 
a s  a "waiting  time"  (Feller,  1957a  and  1966a). It i s  often a bonafide 
random  variable  with a probability  distribution  function;  one of our  purposes 
is to determine  such  probability  distributions of T for  various  kinds of clock 
characteristics. We shall  see  that  this  function is directly  related  to  the 
transition  probability  rate  between  pairs of correct  readings on  the  condition 
that  the  clock  did  not  read  correctly  between  the  readings. 

It i s  known that  the  distributions of such  waiting  times  are  characteristic 
of what are  called  "renewal  processes1'  (Feller, 1966b and  Mandelbrot, 1967). 
This  general  class of processes  has  been  studied  often  in  connection  with  the 
use of equipment  items  which  age  randomly  and  need  to  be  replaced  or  renewed 
from  time  to  time. Well-known examples  are  light  bulbs,  employees,  elec- 
tronic  equipment,  automobiles,  and  baseball  players. A more  direct  analogy 
with  clock  statistics  may  be found in  processes  which  possess a measurable 
characteristic  that  may  recur  automatically  in a random way. The  average 
or  expected  time  between  successive  returns  to  par  value  for a given  stock 
is certainly  an  important  vital  statistic.  Similarly,  for  the  average  time 
between  successive  correct  clock  readings. 

During  any  given  small  interval  in  which a record is kept of the  perfor- 
mance of a clock  ensemble,  there is a probability  that a clock  will  have a 
reading  which  agrees  at  some  instant  with  the  ensemble  average.  The 
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limiting  value of the  ratios of this  quantity  to  the  interval  length  as  the  length 
approaches  zero  will be known as the  correct-reading  rate of the  ensemble. 
It is  exactly  analogous  to  the  probability  per  unit  time  that  the  fluctuating 
water  level behind a dam  accumulating  water  at a constant  average  rate, 
goes  through  the  expected  value. 

Such a description  as  this  will  be  seen  to  lead  to a certain  integral 
equation  (or  summation  equation,  in  the  discrete  case), a type of "renewal 
equation"  (Feller, 1957c  and 1966~) .  It relates  the two probabilistic  functions 
of time (i. e.,  the  correct-reading  rate,  and  the  probability  distribution  of 
time  between  successive  correct  readings)  whose  trends  are  deemed  signifi- 
cant  in  the  study  and  classification of clock  reading  statistics.  Hence,  either 
of these  functions  and  the  marginal  distribution  specify  the  model  for  our 
purposes, i. e. ,   to  arrive  at  a partial  statistical  description  which, it seems 
to  us,  should  be  incorporated  in  any  more  complete  study, A relation  between 
the  marginal  distribution  and  the  correct-reading  rate  could  lead  to  some 
important  information  about  the  cause of the  fluctuations. 

The  second  purpose of the  paper  is  to  determine and  exhibit  for  illustra- 
tion  some  pairs  and  classes of solution  functions  satisfying  the  renewal 
equation  and  to  study  their  properties.  Cases of particular  importance, 
since  they  apparently  relate  to  types of clock  reading  behaviors  designated 
by the  terms  "white-phase  noise",'Irandom  walk of phase  noise",  and 

"flicker  walk of phase  noise"  (Allan, 1966 and  Cutler  and  Searle, 1966), a r e  
studied;  this  leads  to  explicit  formdas  describing  the  behavior of the 
ensemble  for  large  and  small  times. 

Difficulties of this  mode of description  associated  with  certain  cases of 
flicker  walk of phase  noise  and,  more  generally,  inverse  correct-reading 
rates  with  trends  which  are  proportional  to  powers of time  greater  than  or 
equal  to  unity, a r e  noted. In such  cases a more  general  mode of description 
involving  probability  densities  and  transition  probability  rates  for  clocks 
which a r e  not  reading  correctly is useful  in  clarifying  concepts. It is  intro- 
duced  in  more  detail  in  the  next  section.  Another  direction  for  generaliza- 
tion of the  description  utilizes a statistical  mechanical  representation of the 
ensemble  in a two-dimensional  phase  space,  in  which  the  initial  clock  running 
rate  and its reading  are  independent  random  variables.  This  has not yet 
been  thoroughly  investigated. 

The  results  and  methods of this  paper  should  be  regarded  as  preliminary 
steps  in  helping  establish a general  theory of clocks, a task now being  under- 
taken  in  many  laboratories  and  research  establishments.  Certain  results 
a r e  new, as   a re   the  point-of-view  and  suggestions  for  future  work.  Since  the 
integral  equation  studied is of standard  renewal  type,  many  consequences of 
studies of such  processes  are  immediately  applicable  (Feller, 1966e  and 
1966h). 



Formal  Specification of the  Ensemble  Type 

Let  us  consider a statistical  ensemble of identically  constructed  inde- 
pendently  running  clocks  contained  in a small enough spatial  region so that 
comparisons of their  simultaneous  readings, T, can  be  made,  effectively, 
in  an  instantaneous  fashion.  Assume  that,  at  any  instant,  the  average  read- 
ing, t, of the  ensemble  exists,  as  well as its variance, 02, As mentioned, 
we  shall  for  convenience  refer  to  the  ensemble  average  time, t, as  the 
"correct"  time.  Let S denote  the  random  clock  reading  variable,  whose 
values  are T. 

Then 
t = E {S} 

where  the  symbol, E { 1 , denotes  the  operation of forming  the  ensemble 
average,  or  expectation,  to  be  presently  specified,  explicitly.  Let  the 
random  variable, A, whose  values  are T, denote  the  deviation of an  ensemble 
clock  reading  from  the  average, so that 

a = s - t  
and,  hence 

E{A} = 0. 

We shall  also  suppose  in  general  that  the  dispersion, D, depends  on  "the 
time", t, 

o = D(t) .  (3a) 

It is  further  specified  that,  at  one  particular  instant,  all  the  clocks  are  set 
to  have  the  same  reading, t = 0, so that, at this  instant 

a(0) = 0. (3b) 

Moreover,  they  have  been  adjusted  prior  to  the  initial  instant,  to  run  at  the 
same  nominal  rates.  Nevertheless,  thereafter  each  diverges  from t in its 
readings,  because  each  reading  and  rate is subject  to  random  statistical 
fluctuations,  which  produce  the  hypothesized  distributions as well   as  other 
statistical  characteristics  to  be  described. 

Experiments  at  the  National  Bureau of Standards  in  which  the  frequencies 
of quartz  oscillators  were  measured  repeatedly  against a standard,  suggest 
an  empirical  model. When such  an  oscillator  was  used  to  drive a clock, it 
was shown that  the  statistical  ensemble of records of clock  readings  could 
be  described  empirically,  in  part, by the  probability  density  ("marginal 
distribution  density")  function 
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with  the  additional  condition  that,  since  all  sample  records  were  made  to 
agree  initially, 

For the  "white-phase  noise"  case,  rarely, i f  ever  encountered, 0 would  be a 
constant.  Figure 1 i l lustrates  how the  function, 4, describes  the  dispersion 
of an  ensemble  for a case  where CJ increases  with  time. 

The  quantity, g(<, t) should  be  considered as a basic  element  specifying 
the  ensemble  behavior. In fact, Q(!, t)d< is the  probability of finding a clock 
at time, t, with  its  reading  deviation  from t, or  error,   lying  between < and 
5 t d<.  That is, the  probability  distribution  for 5 is 

r F  

Similarly,  in  an  obvious  way, @ specifies  the  distribution  for  the  clock  read- 
ing, S. It is  c lear  how @ can be used  in  calculating  certain  expectation  values, 
and  has  the  properties  required by Equations (2). 

Other  probability  functions  are  needed  in  describing  the  ensemble  process. 
To  introduce  these  we  define a probability  associated  with  the  deviation  value, 
5 ,  at t ime t, and  the time interval  dt  following t. It i s  the  probability  that 
a clock  has  the  deviation  value 5 at least once  in  time  dt,  on  the  condition 
that it had  zero  deviation  at t = 0 and  that it did  not  deviate by < between  the 
initial  instant  and  time t. W e  shall  call  this  probability P(5, t I0,O;F)dt. To 
reiterate, this is the  probability  that,  given a zero  deviation  initially,  the 
first occurrence of the  given  value, <, for  the  deviation,  takes  place  in  the 
time  interval  dt,  following time t. 

P(<, t 10, 0; t )  is  a special   case of a conditional  probability  rate  function, 
P(<, t l!', t ';<); l ike g(<, t) this  more  general  quantity,  too, is fundamental 
in  specifying  the  ensemble  properties.  Eventually, it will  be  related  to  the 
probability  distribution of intervals  between  pairs of correct  readings.  So, 
for  present  completeness  and  later  use  we  explicitly  define 

exactly  to  be  the  conditional  transition  probability  that a clock,  which  had a 
given  deviation, < I ,  at time t', and  did  not  deviate by S between t1 and t, is 
later observed  between t and t t dt,  to  go  through  the  deviation, 5 .  
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Symbolically,  we  may  write 

where a, b represents  the  interval  from a to  b,  including b, but  not a. 
- 

Now, imagine  that, as the  ensemble  clocks  disperse  from  their   init ial  
&-function  density  distribution,  one of the  clocks is observed  to go through a 
given  deviation, 5 ,  in  the time interval  dt  following t.  It can  do  this  in  one 
of the  following  possible,  independent  ways:  (See  Figure 2. ) 

(1) its deviation  might  not  equal 5 between 0 and t; 

(2) its deviation  might  equal 5 just  once  between 0 and t; 

(3) its deviation  might  equal 5 exactly  twice  between 0 and t, etc. 

As  we  have  seen,  there is  a probability, P(<, t IO ,  O;%)dt, for  the first way. 
Call  this podt. There is a lso a probability, p dt  (which  will  be  calculated  in 
AppendixI),  for  the  second  way,  and a probab' li ity, p dt,  for  the  third, etc. 
The  net  probability  that a clock  takes on, or  is read  to  have,  the  deviation p, 
at some  instant  in  the  interval  dt,following t defines  what  we  shall  call  the 
"error-reading  rate  function", R(?, t). In  symbols 

2 

After  evaluating p. it can  be  seen  that  the  series  in  Equation (7) converges  for 
all (7, t)$ (0, 0). $he  definition of R depends  also  on  the  fact  that  the  ensemble 
clocks  originally  were all set to  read  zero.  Because of this,  the  function, R, 
could  have  been  written $ ( c ,  t I O ,  0). If the  initial  deviation of a clock  had 
been 7' at t', then  we  would  write $ ( c ,  t I S ' ,  t') which  would  emphasize  that 
qdt is the  probability of transit ion  from S ' ,  t' to 5 ,  t without  the  condition of 
no  deviation  being  equal  to 5 between t' and t. Thus 

For  short ,   we  shall  call the  "error-reading  rate  beginning at ( T I ,  t'). ' l  

For  the  sake of more  complete   general i ty   we  a lso  general ize   the  error  
probability  density  function, H, at   this  point. Le t  a(? ,  t (0, O)d< = $ ( S ,  t)d<  be 
the  probability of a clock  deviation, A, being  between 5 and 5 t d5 at t ime t, 
given  that its in i t ia l   e r ror  at t' = 0 was  zero.  Then  we  define 
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The  "error  probability  density", 0, could  have  one of various  forms,  l ike 

for  example,  but  this is a matter  to  be  determined  empirically  or on  the  basis 
of theory,   or as a basic  statistical  hypothesis.  Obviously,  even  though all 
the  ensemble  clocks  are  specified  to  have  "paths"  proceeding  from  the  origin, 
they  would  not all read  5 sometime  during a given  range  dt at 5 ,  t. An example 
is  shown  marked "A" in Figure 2. But from  the  definition of the  time  told by 
a clock,  each  path  from  the  origin  must  proceed  to  the  right  (increasing t), 
be  single-valued  in 5 at each t, and  cross  each  "vertical"  line t = constant 
once,  for t > 0. 

These  are  rather  mouthfilling  probabilistic  definitions of the  conditional 
transition  probability  rate, P, the  error-reading rate, Jl, and  the  error  
probability  density, 0, all beginning at (X', t '), But,  they are really  needed 
in  order  to  develop  the  theory  sufficiently  and  carefully.  It  will  be  seen  that, 
in  spite of the  seeming  complication,  their  use assists in  understanding  the 
conditions of validity of a more  simplified,  yet  basically  important,  situation 
for  which 5 = 0, treated  in  the  next  section. 



A Basic  Relationship 

To foreshadow  the  later  development, it i s  instructive  to  derive, at this  
point,   an  important  relationship  which  i l lustrates  the  essential   simplicity of 
the  notions  involved.  Following  this, it wil l   then  be  necessary  to   re turn  to  
the  more  general  case  and  give  additional  detailed  and  carefully  reasoned 
arguments  to  support   the  further  development of the  theory.  According  to  an 
idea of one of u s  (J. A. B. ), many  features  of the  clock  ensemble of the kind 
considered  here   can  be  character ized  most   s imply  in   terms of two other 
functions, p ( t )  and r(t), specifically  defined  for  transit ions  between  correct 
readings,  as follows:  As  in  the  introduction,  assume  that  the  random 
deviations of the  clock  readings  from  their   average  are  t ime  varying  in  such 
a way  that   each  clock  might  read  the  correct  t ime,  again  and  again,   according 
to  some  probabili ty  law,  That is, i f  a clock  reads  the  value  t '   at   the  instant 
when  the  ensemble  average is t', there  is a conditional  probability  rate, 
p(t  I t ' ) > _ O  that  the  clock  will  again  read  the  "correct"  time, t, but  not  read 
the  correct   value at any  intervening  instant.  Moreover, it is convenient  for 
the  moment  to  assume  that   this  probabili ty rate is  stationary,  in  the  wide 
sense  that  p depends  only  on  the  difference, t - t', that  is, 

p(t It') = p ( t - t ' ) .  

Stochastically,  then,  we  shall  regard 

p ( t  - t ' )dt  

as the  conditional  probability  that a clock  in  the  ensemble  has a c o r r e c t  
reading  between  times t and t t dt,  on  the  condition  that it did  read  the 
co r rec t   t ime  t', at an   ear l ie r   t ime t', but  did  not  read  the  correct time 
between t' and  t. 

This  conditional  probability is re la ted   to  a probability  rate  function, 
r (t). The  differ  entia1 

is to   be  regarded as the  probability  that  an  ensemble  clock  has a c o r r e c t  
reading  when  the  ensemble is observed  between  the  t imes t '  and t' t dt. W e  
shall   call  r(t) the  "correct-reading" rate of the  ensemble. 

Because of the  hypothesized  initial  b-function  distribution, it is only 
after  the  instant t' = 0, that a clock  can  again  read  "correctly.  " Subse- 
quently,  the  probability  that a clock  reads  correct ly  at t ime t' and  again 
shows  the  correct   t ime t at a later moment, t, but  not  in  between, is 

r ( t ' ) p  (t-t')dtdt', t 3'. 



Now, at time t 2 0, the  total  probability  that  an  ensemble  clock  reads  correctly 
sometime  in  the  interval  dt  must  equal  the  probability 

that it reads  correctly  during  dt   after time t,having  also  read  zero at t = 0 
(but  not  in  between),  plus  the  probability  that it did  read  correctly  in  any of 
the  intervals  dt '  at all   t imes,  t', between 0 and t, but  did  not read  correct ly  
between t' and t, that is, 

I t r ( t t ) p  (t-t')dt'dt. 

Thus,  we  arrive at the  integral  equation  relating r(t) and p (t): 

t 
r(t) = p ( t )  t i r ( t ' ) p ( t - t l ) d t ' .  

This is the  simple result sought. It is one  form of a standard  "renewal 
equation", as in  the  theory of probability  (Feller,  1966c  and  1967). 

It is, of course,  possible to  proceed  from  this  point  strictly  analytically 
and  investigate  the  possible  solution  pairs, p ( t )  and r(t), of Equation  (13). 
But  in  order  to  be  able  to  use  this  basic  relation  with  more  assurance,  and 
not  make  unwarranted  inferences  about  extending its range of application, 
we first derive,  under less restrictive  conditions,  more  general  equations 
involving  the  functions, 0, 4,  and P introduced  previously. It will  then  be 
shown how Equation  (13)  may  be  made  to  follow;  we  shall  see  what  the 
conditions  are  under  which (13), its consequences,  and  the  assumptions 
leading  to it remain  valid. 
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Generalizations 

Difficulties  were  at  one  time  encountered  in  the  attempted  application of 
Equation (13) t o  some  cases  of considerable  importance.  One  such  case is 
characterized by a reading  rate, r(t), which is inversely  proportional to  the 
time, so that  the  convolution  integral  in  (13)  diverges. Many other,  even 
more  extremely  divergent  situations,  have  been  found  to  be-of  interest. 

A way  out of these  difficulties  has  been found,  but at   the  cost  of a some- 
what  more  complex  formulation.  Yet, as was  asserted,   this  too is compen- 
sated by a greater  generality  yielding a clarification of the  "setting" of the 
description. 

The  derivation  in the preceding  section  offers  us a guide  when  viewed 
in  the  context of the  definitions of the  various  probability  functions, P, $, 
and 0. The  quantity 

P (0 ,  t IO, tl;O)dt 

according to the  section  before  the last is the  probability of finding a n  
ensemble  clock  to  have a correct  reading  during  the  time  interval  dt  following 
t on  the  conditions  that it read  correct ly   a t   the  earlier t ime t', but  did  not 
read  correctly  between t' and  t.  But  the  statements  already  made  about  the' 
probability,  p(t I t ' )dt  {without  the  specializatibn  to  stationarity),  show  that 

p(t It', = P(0, t io, t';O). 

Similarly,  one  notes  that 

is an  equally  valid  identification.  This  formally  establishes a connection 
and furnishes  more  motivation  to  generalize  the  basic  idea  summed  up  in 
Equation  (13).  Briefly,  the  direction of this  generalization  may  be  indicated 
in  the  form of a question:  "What  has  the  fact  that  clocks a r e  often  read  to 
have  the  same or different  errors  many  t imes  between  different  moments 
to  do  with its conditional  probabilistic  description? l '  

Final  motivation  comes  from  thinking  about  the  obvious  but  important 
fact  that  clocks  ordinarily  run  continuously.  Again,  we  ask: "How can 
this  property be described  probabilistically? ' l  

A simple  answer has recently  been found for  the last question.  Consider 
the  probability  that a clock,  which  had a deviation 5' at t ime t: is l a t e r  
found  to  have  the  error 5 in a time  interval  dt,  following t. As we know, 
this is the  error-reading  probability, $ ( S ,  t Is', t')dt.  But  the fact is that  any 
clock  in  its  transition  from  the  reading (SI ,  t ') to  the  reading ( S ,  t) must   a lso 
be  found at   an  intermediate  t ime, t"(t'<t"<t), with  some  error  in  the  range 
d5" near  ? l f .  But  the  probability of the  transition  from ( S ' ,  t ') t o  (cl', t") in  
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the  range, dT", and  thence  to  the  error 5 sometime  in  the  interval  dt  following 
t i s  

"Adding" all possibilities  yields  the  fundamental  relation 

between  the  error-reading  rate  and  the  error  probability  density,  beginning 
at any  reading. If one  sets ( { l ,  t ')  = (0,  0), so  that  initially  the  clock  read 
correctly,  as depicted  in  Figure 3, we  find the  more  special  relation 

R(5, t) =Lm@(5If, t")JI(s, t I T f f ,  t")dsIf, (Oct"<t) (16) 

between  the  error-reading  rate,  the  error-reading  rate  beginning 
at any  reading,  and  the  marginal  distribution  density.  In  view of the  relation 
between R and $(S, t I O ,  0), it may  best  be regarded as an  equation  restricting 
H, given Jl, although,  under  certain  conditions,  the  converse  problem  might 
be  posed.  Equation  (15)  answers,  in a general  way,  the  question  concerning 
continuity. 

An answer  to  the first motivating  question  may  also  be  developed. As 
before,  consider  the  probability of a transit ion  from  an  arbitrary  init ial  
moment, t', with  error c ' ,  to   the  error  5 observed  in  dt,  after t. This is, 
of course,  $(S, t IT', t ')dt. Now such a transition  can  come  about  in two ways: 
First, the  clock  may  not  assume  the  deviation 5 between t' and t, with 
probability P(<, t ) 5 ' ,  t ' ; t)dt.  Or,  second, it may  read 5 once,  or  twice,  or 
thrice,   etc. ,   during  the  range of t imes t' to t. But  in  this  case,  there is 
some  time, t", after  which,  during  dt", it may  be  observed  to  read 5 ,  and 
then  does  not  read 5 until  the  interval  dt  following t. (See Figure 4, where, 
however, 5' = t' = 0.) The  probability of this  second  occurrence is clearly 

Forming  the  total  probability of the  union of all such  possible  events at 
t", together  with  that of the first way,  gives  us  the  second  fundamental  equation 

If one is furnished  with  information  leading  to P, so  that it satisfies  certain 
conditions  (Lovitt,  1950),  Equation (17) may  be  solved  to  yield Jl, from which 
in  turn a probability  density, Q, should  be found which  satisfies (16). Such a 
general  solution of (17),  along  the  lines of the  discussion  leading  to  the 

394 



Specializations 

Equations (15) and (17) are  necessarily  valid  provided  one  assumes  the 
existence of the  functions 0, $, and P for  the  stochastic  processes of interest, 
because  the  equations follow directly  from  the  definitions.  Consequently, 
they  are  also of great  generality  and  subsume  many,  many  more  specialized 
situations.  For  example,  we  see  immediately  that  Equations 14 (a  and  b) 
lead  to  the  correct-reading  renewal  Equation  (13), i f  one  additionally  imposes 
the  wide-sense  stationarity  property of Equation (lla). 

Other  assumed  identifications,  like 

- 
S- P(0, t) = R(0, t) = r(t) (18a) 

where S is a dimensionless  proportionality  constant,  lead  to  important  conse- 
quences.  This  relation is suggested by the  intuition  that, if a clock is likely 
to  be  reading  nearly  correctly,  then it might  be  proportionately.likely  that it 
will  read  correctly  in any short  period  thereafter. An investigation by Rice 
(Rice,  1944  and  1945)  points  to the reasonableness of such  an  assumption. 
An immediate  result is that  the  dispersion, W, for  the  normal  Gaussian 
diffusion  case  is  related  to  the  correct-reading  rate, r(t) in  the  simple 
fashion: 

- 

- 
a(t) = S 

VZirr(t) (1 8b) 

One can show explicitly that this  relation is not inconsistent  with  the 
conditions  (15)  and  (16);  nor is  the  more  general  possibility 

The  detailed  investigation of the  not  unreasonable  conditions  under  which 
Equations (18) are  valid is, however,  left  for a later  paper,  in  which  the 
situation  for  transitions  between  incorrect  readings is investigated  more 
extensively. We assume  in  the  remainder of this  paper  the  applicabilty of (18). 

The  use of (18b) does  raise  some  problems,  however, as was  mentioned 
in  the  introduction,  For i f  the  dispersion,  o(t) , is  proportional  to a power of 
t, say  tl'B, then,  when PCO, and  we  use  the  relation of a( t )  to  the  correct- 
reading  rate,  r(t),  the  convolution  integral in Equation (13) has no  meaning. 

The  range of validity of the  stationarity  condition  (lla) is another  question 
for  investigation.  Let  us  first  extend it, a s  follows: In Equation  (17), set  
5 '  = t '  = 0, use  (18c)  and  assume  that  the  conditional  probability  rate, P, has 
the  wide-sense  stationarity  property,  and is expressible in te rms  of a new 
function, P 5 1 1 1 .  
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(1 9 )  

This  specialization  leads  to  the  "stationary  proportional  error-reading rate" 
equation 

rt 

Now, P , (t I5)dt is the  probability  that a t ime  interval  t is taken  for  the 
e r ro r   t r ansg ion  

( A  = { ' ) + ( A  = S)(sometime in dt), 

given  that A 4 5 during  the  interval t. The  corresponding  random  variable, 
T, the  time  taken  for  the  transition 5 ' 3 ,  could  therefore  possess a probabil- 
ity  distribution,  specified by the  density P (t 15); o r  it may  be a "defective" 
random  variable  (Feller,  1966d).  (See EqSHtions 21c and d. ). In  any  event, 
it is reasonable  to  assume  that  

exists,  and is less  than or,  equal  to  unity.  This  assumption  can  be  regarded 
as par t  of the  specification of a "stationary  proportional  error-reading  rate" 
process.   Here f(5'15) is  a new  function. 

Equation  (20)  itself is in  the  form of the  general  renewal  equation  with a 
parameter ,  5 .  As such, it is still very  general.  Some of its properties  will  
be  investigated in  the  later  paper,   There  are  excellent  indications,   because 
of the  exponential  "convergence"  factor  in  the  Gaussian  form of @ (Equation 

(4a))  that  this  equation  will  be  applicable  to  situations  where r(t) diverges 
badly as t 4 .  

Naturally, as 5-0, we  identify P (t IO) with p ( t ) ,  the  probability  density 
that T = t for  transit ions  between  successive  correct  readings.   For  this  case,  
Equation  (20)  reduces  to  the  correct-reading  renewal  Equation  (13).  Because 
p ( t )  is a probability  density,  the  condition (ala) specializes  to  the  form 

0 

/%,(t 1O)dt = k:(t)dt = f ( O  1 0 ) l l  
0 

so that, by definition, if T is  a proper  random  variable 

f(O10) = 1 



while, i f  it  is a defective  random  variable, 

In this  last   case,  one interprets  the  quantity ( l - f ( O  IO)) as  the  probability  that 
a clock  never  again  reads  correctly  after  the  initial  setting. 

W e  do  not present,  in  this  paper,  certain  discrete  summation  equations, 
or  their  solutions,  which  approximate  (13).  These  matters  are  discussed 
elsewhere  (Feller,  1957b);  some  pertinent  results  we  have  obtained  will  be 
forwarded on request. 

Our  immediate  goal  will be to  treat  those  special  cases  for  which  the 
dispersion, cr(t), has a particular  form of time  dependence,  namely 

where k, 5 ,  and B are  constants,  and l? is  Euler's  r-function. A reason 
for  this is that  several  noise  types of considerable  interest  (many of 
electronic  origin)  exhibit  stochastic  behaviors  included  in  this  range.  Later, 
we  shall  be  interested  in  comparing  their  power  spectral  behaviors  in  the 
Fourier  frequency  domain,  as  classified  in  the  literature  (Cutler  and  Searle, 
19661, with  corresponding  temporal  characteristics  specified by (22). 

Noise  types  have  come  to  be  called by special  names,  in  analogy  to 
general  "random  walk"  phenomena. We propagate  this  convenient  tesminol- 
ogy (see  Table I) by referring  to  the  cases: 

f3 = 1 as  White 

B = z a s  Random Walk 

B = 0 as Flicker Walk 

p = -2 a s  Random  Run 

= -1  as  Flicker Run 

1 

1 

where  the  terms  specifically  apply  to  the  type of noise,  in  this  case to 
fluctuations  in  the  clock-reading  error, A ,  i. e. , its  relative  "phase" 
(Barnes  and  Allan, 1966). 

This  completes  our  discussion of some  specializations of the  general 
theory,  and  forms  the  setting  for  the  discussions  and  solutions  presented  in 
the  next  sections. 
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Renewal  Process  Properties  for  Correct-Reading  Situations 

We now turn  to  a consideration of some of the  implications of the  renewal 
Equation  (13)  taken  in  conjunction  with  the  "normalization"  condition  (21b). 
The  correct-reading  statist ics  associated  with  this  equation  are  therefore 
representat ive of a self-renewing  process,  and  accordingly  can  be  classified 
into two types.  Equation  (21c)  specifies  the first type,  so-called  ordinary 
or   non-terminat ing  processes .   The  dispers ion  behaviors   character ized by 
Equation (22) are  representat ive of this  kind, as we  shall   see  immediately,  
and  in  the  analytic  treatment  in  the  next  section.  Additional  cases,  termed 

t ransient   or   terminat ing  processes ,   are   specif ied by the  inequality  (21d). 
A clock  which  exhibited  such a transient  correct-reading  behavior  would  have 
a probability 

of never  again  reading  correctly,   after  the  init ial   instant.  

Space  precludes  any  attempt  here  to  discuss  or  even  l ist   al l   the  renewal 
theorems  which  might  be  invoked;  in  any  event,  they  are  readily  available 
(Feller,  1966e  and 19661.1). It is  desirable,  however,  to  quote  some  results. 
Many of the  theorems  refer  to  the  asymptotic  behaviors of solutions of (1 3) 
and  (21b).  Our  analytic  treatment,  utilizing  perhaps  more  familiar  methods, 
wil l   then  serve  as  a confirmation  and  amplification of some of the  probabil- 
is t ic   resul ts .  

Of par t icular   importance is the  quantity U(t) ,  defined by 

(23a) 

Since it is greater  than  unity,  it  is certainly  not a probability  distribution. 
It is interpreted  consistently,  however, as the  expected  number of co r rec t  
readings  up  to  t ime t, including  the  original  setting  (Feller,  1966e). Now, 
integration of both  sides of Equation  (13)  from 0 tom,  with  an  interchange 
of the  order  of integration  on t' and t, and  using  (21c)  leads  easily  to  the 
resu l t  

charac te r i s t ic  of non-terminating  renewal  processes.  W e  immediately  check 
that  this is valid  for  the  dispersion  trends  in  Equation (22), in  view of the 
assumed  relation  (18b).   For  terminating  processes,  
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and  the  probability is unity  that a clock  behaving  this  way  fails  to  read 
correctly  after a finite  interval of time.  Moreover,  in  this  case  the  expected 
number of correct  readings  (renewal  epochs)  including  the  initial  one, is 
finite  and  equal,  in  fact  to U(00); thus,  we  see  the  probabilistic  significance of 
Equation  (21c) o r  Equation (23b) in  differentiating  terminating  from  non-termin- 
ating  processes. Again, for a terminating  process  (Feller,  1966g),  the  proba- 
bility  distribution of the  "time  until no more  correct  readings  occur",  that is, 
the  total  duration of the  process  (denoted by the  random  variable, D )  is 

U ( t )  may  be a useful  measure of the  quality of clocks,  even though for  the 
non-terminating  situations  for  which (23)  holds,  there is no  probability  distri- 
bution  for D. This  should not be  too  surprising. As we  have  seen  in  earlier 
sections, r(t) is a probability  rate;  r(t)dt is the  probability of a correct  reading 
in  the  interval  dt  following  the  epoch t after  any  number of correct  readings 
could  have  occurred  previously,  given  an  initially  correct  one at t = 0. So, 
for  ordinary  processes  the  expectation of correct-reading is so great, 
that  there is no distribution of time until no more  correct  readings  occur.  The 
interpretation of U (t) is correct  and of general  use,  however. 

Although r(t) is not a probability  density  over  the  sample  space of values 
of its argument,  the  function, p ( t )  is such a density.  Indeed,  the  probability 
distribution rt 

F(t) = l p(t')dt' 

measures  the  probability  that  the  random  variable T (the  time  between  succes- 
sive  correct  readings) is less  than or equal  to t. Clearly,  the  average  time 
between  correct  readings 

E {T} = l ? p ( t ) d t  = T 

is an  important  statistic. 

There  are  some  special  processes,  termed  "arithmetic",  such  that  all 
points of increase of F a r e  among  integral  multiples of some  interval.  The 
largest  interval  value  with this property, t is called  the  span of F. A' 

The  basic  renewal  theorem  (Feller,  1966e)  states  that i f  F is not  arith- 
metic,  then, as t 3 a, 

U(t) - U(t-h) l ; r ( t l )d tbh /T  ( 2 6 4  

for  every  fixed h. If F is arithmetic,  this is true  provided h is a multiple 
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of the  span, t It can  be  shown  that  (26a) is  equivalent  to  stating  that,  for 
the  non-arithmetic  case: 

A' 

r ( t )4$  L; ( t )d t  = f ( o , I  T 0 )  

a s  t + m .  The  power of application of the  renewal  theory  becomes  immediately 
obvious.   For  our  special   cases of interest,  except  for  "white"  phase  noise 
for  which B = 1 ,  a(t)-, m ,  and  hence ( i f  S is finite), r(t)+ 0, a s   t *  m (see 
Equation  (18b)).  Then,  the  form  (26b)of  the  basic  theorem  shows  that 

In  words,  "The  expected  length of t ime  between  successive  correct   c lock 
readings is infinite  except  for  the  case of white  phase  noise.  In  this  case, 

since r (t) = -+; is a constant,  and f ( O  IO) = 1 ,  
- 

In  view of the  interpretation of U( t ) ,  the   basic   renewal   theorem  asser ts  
also  that ,  i f  F is non-arithmetic,  the  expected  number of cor rec t   read ings  
within  any  time  interval of fixed  length, h, approaches  h/T,  in  the limit of 
very  long times. Since,  for  white  deviation  noise, r is a constant,  this 
limit is already  reached  in  any  f inite  t ime, But this  statement  then  coincides 
with  the  definition of a simple  Poisson  process.   Thus,   the  probabili ty of an 
interval  value, t, between  successive  correct   readings  for   white   correct-  
reading  noise  should  vary  exponentially. We shall   verify  this  in  the  next 
section. 

Finally,  it  is of interest   to  note  without  discussion  two  further  important 
resu l t s  of renewal  theory. We first   define  the  variance of the  times  between 
successive  correct   readings:  

O 2  T = l ? p ( t ) d t  - -2  T . 

Then,  one  can  show  (Feller,  1966f)  that 
2 -2 

t aT t T 
0 5 U ( t )  -T-+ 

2 5  

as t +m.  Thus, i f  D and T exist ,   then  for  long  t imes  the  number of c o r r e c t  
readings,  N , up  to  t ime t (excluding  the  initial  moment),  has a normal-  

400 

- 
T 

t 



Gaussian  distribution  with  expectation  t/T and variance  equal  to 

t aT/T . 2 - 3  

Unfortunately,  we  seem  to  be  often  faced  with  situations  for  which T and 
OT do not  exist.  There  have  been  investigations of such  cases,  some of 
which  we  have  not  yet  had  time  to  assimilate  (Feller, 1949  and  Mandelbrot, 
1967). Others  have  used  alternative  approaches and approximations  to  noise 
processes  which  involve  statistical  procedures  where only  finite  samples 
and  statistics  occur  (Halford, 1968). At any  rate,  we now turn  to  an 
analytic  treatment of Equation (13). This  will  amplify  and  verify  some of 
the  statements  made  in  this  section. 
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Some  Solutions  and  Their  Properties 

We have  specified  the  dispersion of our  ensemble  clocks  according 
to  Equation (22), and  the  correct-reading  rate is determined by (18b).  Thus, 
we  are   lef t   wi th   the  problem of determining  p(t)  given 

The magnitudes of the  proportionali ty  constants  are  ei ther  to  be  determined 
empir ical ly ,   or  by a more  detailed  physical   theory.  

Of course,   the   converse  theoret ical   problem is often  encountered.  Indeed, 
we  have  indicated a quite  general   form of solution  for  the  general   error-read- 
ing  rate R(<, t) in  Equation (7) ,  as explicitly  developed  in  Appendix I. Simi- 
lar ly ,   one  can  express  r(t) a s  a sum of repeated  autoconvolutions of p ( t ) :  

t 
r(t) = p(t) t dt 'p( t - t ' )p( t ' )  t dt"p(t'-t")p(t") t .(31) 

The  interpretation of the  nth  term of t h i s   s e r i e s  is  obvious  in  view of what 
is  said  in  Appendix I. It is  the  probability  density of a correct   reading 
f o l l o w i n e i m e  t given a correct   one  ini t ia l ly   and  (n- l )   correct   ones   in   the 
interval  O t .  Hence,  (31)  simply is a formal  statement of the  definition  of 
r (t)  and is the  unique  solution of (13),  given p ( t ) .  

Even so, it is instructive  to  verify  (31) by analytic  methods,  for  this 
points  the  way  toward  finding p ( t )  explicitly,  given r(t). Therefore,   take 
the  one-sided  Laplace  transform of both  sides of Equation  (13),  using  the 
general   property  that   the   Laplace  t ransform of the  convolution of two 
functions is the  product of their   Laplace  transforms,  Denote by ?(X) the 
ordinary  Laplace  t ransform 

a0 
L1 

r(X) = 1 emXtr  (t)dt 
0 

of r(t). Similarly,  for F(A). Then,  we  have 

- P  r =  
1 -F 

o r  5 r F =  - 
l t? 
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The  connection of (33a)  with  (31) is  quickly  grasped.  Expansion of (33a)  in 
powers of F yields 

n= 1 

But  this is just   the  Laplace-transform of (31)  and  supplies its formal  
confirmation.  Given  r(t), yfi) can  be  found,  from  which F follows,  using 
(33b).  The  complex  inverse  Laplace  transformation  (Churchill,  1944) 

(as   in  Appendix 11) or  some  equivalent  more  convenient  procedure  yields  the 
probability  density  that  the  time is t between  correct  readings. A few 
solution  pairs  have  been  determined  in  this  way;  they  are  available on request. 

Now, more  specially,  from  (30),  (32)  and  (33b),  we  have 

where p = S (kP- l  /T). The  general  inversion  integral,  Equation (34) , can  be 
evaluated  to  find p( t ) .  This  leads,  as shown  in  Appendix 11, to  the  repre- 
sentation of p(t) in  various  integral  form s: 

- 

I useful  for  large t (i. e., t +  m), and /3 * 1, o r  

I useful  for small t (i, e. , t - + o ) ,  or  
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It is helpful  to  discuss a few  limiting  situations. 

First, consider  the  asymptotic  form  for  very  large  t-values.  Using 
Equation  (36a)  and  expanding  the  integrand  in  powers of (v/t)B, followed by 
integration  with  respect  to v (justifiable by applying a suitable  form of 
Watson's  Lemma),  we  f ind,   for  large t, 

which  even  yields p ( t )  E O  for = 1 (and  large  t,  of course).   This  asymptotic 
resu l t  is of consideqable  interest ,   in  particular  for B = T ,  which  corresponds 
to  r(t) varying as t;", so that  the  standard  deviation  or  dispersion of clock 
e r r o r s   v a r i e s   a s  t t ;  we  see  that   p( t )   var ies  as t-3/2 in  agreement  with 
Chandrasekhar  (Chandrasekhar,  1943).  This is the   case  known as "random 
walk", or  "Brownian  motion. ' I  Other   ca ses   a r e   a l so  of interest ;   current ly ,  
the  case  in  which 840, known as "flicker  noise" of c lock  ra te   or   "f l icker  
walk" of c lock   e r ro r ,  is receiving a great   deal  of attention  (Cutler  and 
Searle ,  l966 and  Cutler,  1967). As mentioned  before,  the  case = 1 c o r r e s -  
ponds  to  "white  noise"  and  (36c)  confirms  the  remarks  concerning  i ts   relation 
to the  Poisson  process ,   made  in   the  previous  sect ion.  

1 

For  large  t -values ,   the   ra t io  p / r  has  the  asymptotic  behavior 

fo r  @ $: 1;  explicitly  we  have 

for B = 1. 

Next,  consider  the  behavior of p ( t )  for small values of t. F r o m  
Equation  (36b)  we  find,  after  expansion of the  integrands  in  powers of 
(t/v)B and  integration  with  respect  to v, that  

The  ser ies   converges  even  for  B = 1 to  the  correct  value,  and shoys the 
behavior  near = 0. The  t rend of p ( t )  near  t = 0 for B = 2 is a s  t-2 jus t  1 
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as   fo r  r(t). Indeed,  the  ratio ( p / r )  has  the  interesting  behavior 

This  is  not so for   large t, and  should  only  be  applied  for B>O, a s  t approaches 
zero.  

Note  that  the  function  describing  the  behavior of p for small t and  small B 
also  gives  the  correct  asymptotic  behavior  for  large t and small @ - -  hence 
one  guesses  that  it m a y  be a close  approximation  for all t. This  statement is 
strengthened by the  observation  that  

in agreement  with  (21c). 

As a mat te r  of fact,  the  expression  given  in (39) 

is a fair ly  good approximation  to p ,  even  for  values of B approaching  unity. 
It has   the  correct   behavior ,   for   both  large  and small t, for @ = z, and  for 
small  t, with = 1. An even  better  expression,  since it yields a more   re f ined  
approximation to p (t) for  positive B 51, and all t, is 

1 

with  an  adjustable  parameter,  n. It is  easy  to   see  that   Fdt  = 1. This   may 

( 3 0 ) ,  one  should  remember  that  p = T((k@'l /F). 
bear  further  investigation.  In  using  formulas ( 3 6 )  - (42)  conjuntion  with 

Table  I summarizes   the  l imit ing  t rends  for   large  and small t-values,  
with  other  entries  corresponding  to  important  special  fluctuation  or  noise  types. 
It shows a comparison of these  t rends  with  power  spectral   behaviors  of cer ta in  
common  noise  processes.   Assuming  ergodicity,   the  power  spectral   density,  
S,(f), is  defined  in  terms of the  temporal   t rend of a s ample   e r ro r   p rocess ,  

A b ) ,  by 
/-m 

Sa(f) = 2 joRA(t)  cos 2TTft dt  
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where R (t) is the  auto-correlation  function of the  sample,  computed  from a 
m 

Lim 1 
I 

RA(t) = T+oo E L A(t')A(tl+t)dtl. 

In the  present  paper, no statistical  relation  has  been  established by logical 
derivation  between  the  power  spectral  density  functions so defined and the 
quantities D, p, and r, of primary  interest  here.  However,  other  studies 
(Allan, 1966) have  delved  into  this  question,  and  have  related  the  trends  of 
SA(f)  to  those of a(t).  Some  results  are  summarized in Table I, and enable 
the  comparisons of trends  to  be  made.  The  correspondences shown depend 
specifically on  the  "stationary  proportional  correct-reading  rate"  process 
hypothesis.  In  many  cases of interest, as the  Table  indicates,  the  power 
spectral  density  in the Fourier  frequency  domain  has  been a statistic  applicable 
to  processes  otherwise found difficult  to  analyze. 

In the  Table  the  exponents, a, of the  absolute  Fourier  frequency If  I ,  in 
the  expressions  listed  for  the  power  spectral  density, SA(f), and  the  corres- 
ponding temporal  exponents, 8 ,  are  apparently  related by 

a =  28 - 3 (44) 

for a I -2. This  may,  however,  be  fortuitous.  Analogous  relations  between 
Fourier  frequency  and  temporal  (averaging  time)  behaviors  were  obtained by 
D. Allan  in  the  foregoing  reference  in  connection  with  the  statistical  analysis 
of atomic  clock and oscillator  data. 

Conclusions 

From the  foregoing  analyses  we  conclude  that  the  renewal  Equation  (13) 
relating  the  distribution of times  between  correct  readings  to  the  correct- 
reading  rate,  leads  to a theoretical  description of use  for  white-noise and 
random-walk-noise  clock  reading  processes. It is indicative of the  correct 
relationship  for  the  limiting  case of flicker-walk of phase,  but is  inadequate 
to  describe  lower  orde-r  noises,  that is, B <  0, whose  dispersion  rates 
accelerate  from  zero.  It is likely  that a more  general  approach,  utilizing 
more  fully  the  general  probability  functions JI, P, and 0, introduced  initially, 
will  be  needed. As a minimum  requirement,  investigation of the more  general 
renewal  Equation (20), applicable  to  non-zero  reading  deviations,  seems  in 
order.  Perhaps  the  most  important  result of the  present  investigation is the 
recognition  that  many  important  clock  processes  are  stochastic  processes of 
standard  renewal  type. 

The  writers  express  their  appreciation  to  Professor W. Feller,  to 
Dr. D. Halford,  and  to  Dr. S. Jarvis  for  many  useful  and  stimulating 
suggestions  and  discussions.  They  also  express  thanks  to  Mrs. J. West 
for  secretarial   assistance  in  preparing  the  paper,  
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APPENDIX I 

Solution of the  Error-Reading  Rate  Equation (17) 

We find a solution  for $ ( S ,  t l g ' ,  t ')  by the  method  of  iteration  and  succes- 
sive  approximations.  Let  the  zeroth  approximation  be 

Then,  let  the  next  approximation  be 

Proof  that Jrn converges  to a unique  solution, Jr, a s   n d m ,  i f  P sat isf ies   cer-  
tain  conditions,  will  be  omitted  here  for  brevity  (Lovitt,   1950). If we  set  
{ I  = t' = 0, then, as n -  00, 1$~(5 ,  t l0,O) approaches  the  error-reading  rate 
function, R(<, t), as defined  in (7). We see  that  the  probability,  pldt,  has  the 
form t 

pldt = 1 P(<, t 15, t";{)dt"P(?, t" ( 0 ,  0;s)dt. 

It is the  probability  that a clock,  initially  reading  correctly,  will  have a devia- 
tion, 5 ,  in  the  time  interval,  dt,  following t, having  had  the  error, 5 ,  just  once 
between 0 and t. From  this  statement,   the  interpretation of each of the  terms  in 
the  infinite  series  for $ ( S ,  t IT', t') becomes  obvious.  The  meaning of each of the 
conditional  probabilities, $,(I, t Is1,  t ')dt is also  c lear .  
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APPENDIX II 

The  Laplace  Inversion  Integral  for p ( t )  (Equations (34) and (35)) 

If we  substitute  the  expression  for ?(h) from  Equation (35) into  the  inver- 
sion  integral of Equation (34), and  allow X to be a complex  variable z whose 
argument is res t r ic ted  to  its principal  value 

- n < a r g   z l n ,  

then  we  are  faced  with  the  problem of evaluating 

U Lim 
F \"I - 2rri 

I -" 

The  zeros  of the  denominator  in  the  integrand  occur at 

* ( I / s )   * in(2nt l ) /g  z = z  = p  n e 

for n = 0, 1, 2, * . But  the  restriction  on  the  argument of z means  that  
only  those  n-values  (or  poles)  need  be  considered  for  which 

2 n t  1 < B .  

Two cases  arise, which  will  be  considered  separately: 

(A) p = 2m t 1, an odd integer,  and 

(B) B is  not  an odd integer. 

Case (A) B = 2m t 1. . .  . 

The  number of poles of the  integrand is 2m t 1, since  for n = m,  only 
the   rea l   zero  at 

l ies  in  the  z-plane as defined,  while 
B - 1  O ~ n ~ - = m .  2 

Choose a rectangular  contour C 

(1) a line  segment L , parallel  t 

z = y t iy, -6s y s  6 ,  

z does not. For  the  other  poles, 
m 

consisting of: 

to  the  imaginary axis on  which 
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where (y, y', 6 )  are all positive  and  large enough so that C contains all 
the  poles of the  integrand  in its interior. W e  know that the contour  integral 

equals  the  sum of the  residues of the  integrand at its  (2mtl)  poles. 

all clearly  vanish,  as 6, y t  approach m .  Hence,  we  have,  in  this  limit, 

p ( t )  = p x r e s i d u e s   a t   t h e  (2m t 1 ) -poles. 

The  residue  at Z* is n 

so in  this  case 

-n (2n t1 ) (~ -1 ) /~}  . J 
For B = 1, we  have  the  "white  noise  situation", 
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Case (B). (2m - 1 < B 2m + 1) 

The  number of poles of the  integrand is 2m, where (m - 1) is the 
largest  value of n for  which 2n t 1 < 8 .  Clearly 0 9 n I m - 1 . 

e 

Let  us  introduce a cut  along  the  negative  real axis of the  z-plane, 
even  though  the  integrand is continuous  across  this  cut  when fl is a positive 
even  integer. 

The new integration  contour, C, consists  of  the  previous  rectangle 
(except  that L-is cut  at y = 0) plus  the  following: 

(1) two line  segments, Q parallel  to  the  x-axis, on which, for f 

sufficiently small c >0, 

where 
y ' S  0 2 a, 

and 

(2) a circular  contour, A, of radius  rlalr  around  the  origin  (cut  at  the 
negative  axis) on which 

i e  
z = ae 

where q is chosen so as  to  connect  the  circle  with Q . Again,  the  contour 
integral 

f 

equals  the s u m  of the  polar  residues. 

The  integral: L = l:>(aeiet) aieiedO 
p+ aP eip 9 

clearly  vanishes  as  a+0. 



The  integrals  along Q are: f 

As .S approaches  zero,  these  integrals  become  equal  to 

and  the  integral  along  L-  has its former value. 

Let y' and 6 become  infinite as  before,  and let "a" approach  zero, 

Then,  in  this  limit 

p(t) = p c (residues at the  2m-poles) t I(t) 

where 

as  in  the  text,  Equation (36a),  while a simple  rearrangement of factors 
in the  split  terms  leads  immediately,  with  this  substitution,  to  Equation (36b). 
In this  we  assume  that O <  8<1 , so that  the  residue s u m  does  not  contribute. 
When @ = 1, we  get  the  white  noise  form  for p ( t ) ,  Equation  (36c),  and i f  
B>1 and  not an odd integer, we  have  the  formula 

CI p ( t )  = 2- cos (n-) 2n t l  cos 1 pi sin (n- 2ntl) 
8 B 

Note that  the  constant, p, equals ;kp'l /F. 
The  writers  express  their  thanks  to Dr.  S, Jarvis  for  assistance  with  the 

contour  integrations  in  this Appendix. 
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E r r o r   o r  
Deviation 

f 
a 
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.- 
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Initial  State 

Time + 

Qd 

R(5, t )dt  = $(<,t(O,O)dt = Pr{A=<  at  least  once  in dtlA=O a t  t=o}  =c p.dt 
~- 

l 
i=o 

Figure 2. The  Definition of the  Error-Reading  Rate,  R(<, t), i l lustrated by 
clock-reading  paths.  Each  path is  assumed  continuous  and  single-valued 
on t. The  reading of a clock  with  deviation 5 at  t is, of course,  5 t t. Most 
clocks  have a sample  path  like  that of "A", which  does  not  cross  the  given 
value 5 during  the  interval  dt. 

- 



definition of R (Equation (7)), is presented  in Appendix I. Equation  (17) is a 
generalization of (13); it answers  the  question  concerning $, the   "e r ror -  
reading  rate,  beginning at <', t' ", and  the  conditional  transition  probability 
ra te ,  P. 

3- 
E r r o r  

n p" 
5 -  

C 

7 L 

-t " t Time 

Figure  3. The  Continuity of Clock-Readings  relates  the  marginal  distribution 
to  the  error-reading  rate  and  the  error-reading  rate  beginning  at  an  arbitrary 
reading. 
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Figure  4. Types of Clock Transitions  beginning  with a correct   in i t ia l  
reading. 
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