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Abstract We review advances in the field of coherent population
trapping (CPT) over the last decade with respect to the
application of this physical phenomenon to atomic
frequency references. We provide an overview of both the
basic phenomenon of CPT and how it has traditionally been
used in atomic clocks. We then describe a number of
advances made with the goal of improving the resonance
contrast, decreasing its line width, and reducing light shifts
that affect the long-term stability. We conclude with a
discussion of how these new approaches can impact future
generations of laboratory and commercial instruments.

1. COHERENT POPULATION TRAPPING

1.1 Introduction

Coherent population trapping (CPT) (Arimondo, 1996) refers to the pre-
paration of atoms in coherent superposition states by use of multimode
optical fields. This phenomenon, as investigated using hyperfine (Alzetta
et al., 1976; Arimondo & Orriols, 1976) and optical (Whitley & Stroud,
1976) transitions in 1976, has led to significant advances in a variety of
areas of optical and atomic physics including laser cooling (Aspect et al., |
1988), nonlinear optics (Hemmer et al., 1995), precision spectroscopy |
(Wynands & Nagel, 1999), slow light (Schmidt et al., 1996), atomic clocks |
(Kitching et al., 2000; Thomas et al., 1981, 1982; Vanier et al., 1998; Zanon

instrumentation (Nagel et al., 1998; Schwindt et al., 2004). The central
principle that underlies the value of CPT in this diverse set of applica-
tions is the idea that certain coherent superposition states do not absorb
light from the excitation field. This reduced absorption leads both to a
spectroscopic signal on the light field and to a modified atom-light
interaction.

The use of CPT in atomic clocks is a particularly important application
that has sustained interest over three decades. Early work to use micro-
wave CPT (Arimondo & Orriols, 1976; Orriols, 1979) in atomic beam
clocks (Thomas et al.,, 1981, 1982) has been adapted for application to
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vapor cell clocks (Cyr et al., 1993; Vanier et al., 1998) and led most recently
to microfabricated atomic clocks (Knappe et al., 2004). A previous review
of atomic microwave clocks based on CPT is given in the work of Vanier
(2005). Possible future application to optical clocks has also been consid-
ered (Hong et al., 2005; Santra et al., 2005). In these clock designs, the CPT
resonance is used to directly measure the atomic transition frequency.
The performance of the clock therefore depends intimately on the quality
of the CPT resonance, and most specifically on its line width and contrast.

This chapter reviews research over the last decade to understand and
extend the phenomenon of CPT with respect to its application to atomic
frequency standards. Special emphasis is placed on novel excitation and
detection schemes, and other new phenomena that improve the reso-
nance contrast, reduce its line width, or minimize the effect of the light
fields on the resonance frequency. In Section 1.2, we review the basic
phenomenon of CPT and describe how CPT resonances have traditionally
been excited and detected. In Section 2, we provide an introduction to
atomic clocks and discuss the differences between conventional atomic
clocks and those based on CPT. In Section 3, we consider the limitations
of the simplest CPT excitation schemes and describe several schemes that
have been recently developed to enhance the quality of the CPT reso-
nance for use in atomic clocks. In Section 4, we address a number of
outstanding issues including light shifts, light sources for CPT, and
unique experimental environments in which CPT is observed. Finally in
Section 5, we offer some conclusions and discuss how the new ideas
connected with CPT may ultimately impact the development of future
atomic frequency references.

1.2 Basic Principles

A two-level atom illuminated by a monochromatic electromagnetic field
is perhaps the simplest spectroscopic system. When the frequency of the
illumination field is tuned into resonance with the transition between the
atomic levels, radiation is scattered by the atom via spontaneous emis-
sion, causing fluorescence, and a corresponding change in the intensity
and phase of the transmitted radiation (see Figure 1a). The fluorescence
signal, combined with a measurement of the radiation wavelength or
frequency, often gives highly precise information about the internal
structure of the atom. In atoms with more than two energy levels, a
variety of more complex phenomena can occur. One example of this is
optical pumping, in which light resonant with one optical transition
causes atomic population to accumulate in a state not excited by the
light field (see Figure 1b). Once pumped into this third state, the atoms
stop scattering light to the extent that the third state is stable and not
resonant with the light field. Such a state is referred to as a dark state.
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Figure 1 Optically excited transitions in atoms. (a) Simple excitation of a two-level

atom. (b) Optical pumping in a three-level atom. Level 12> is an incoherent dark state.
(c) Bichromatic excitation of a three-level atom. A superposition of levels |1> and 12>
is a coherent dark state

CPT is a phenomenon that occurs in atoms with more than two energy
levels excited by coherent, multimode optical fields. Under the right
conditions, atoms are optically pumped into a superposition of two of
the levels that does not scatter light from the multimode field (see
Figure 1c). This coherent dark state has an electromagnetic moment that
oscillates at one of the beat frequencies of the multimode field. Its excita-
tion can be thought of as a nonlinear process: a nonlinear resonator (the
atom) is driven with a force with two spectral components (the light), and
through the nonlinearity, an oscillation at the sum or difference of the two
driving frequencies is established. The phase of this oscillation, with
respect to the phase of the driving fields, is such that no energy is
absorbed.

CPT between hyperfine atomic levels was first observed experimen-
tally in a seminal paper by Alzetta et al. (1976), in which a light field from
a multi-longitudinal-mode dye laser was sent into a vapor cell containing
saturated Na and a buffer gas. The laser mode spacing had a harmonic
near the frequency of the ground-state hyperfine splitting of Na. A long-
itudinal magnetic field gradient was applied to the cell, and the fluores-
cence from the cell was measured as a function of longitudinal position.
Dark lines were observed in the fluorescence at locations where the |
magnetic field had shifted magnetically sensitive hyperfine levels into
resonance with a mode spacing harmonic. Data from Alzetta et al. (1976)
are shown in Figure 2.

The observations were explained theoretically by use of a density |
matrix analysis, in which the excited-state population, and hence the
fluorescence rate, in the three-level system was calculated as a function
of the relative detuning of a pair of resonant optical fields (Arimondo &
Orriols, 1976; Gray et al., 1978; Whitley & Stroud, 1976;). The dark line in |
the fluorescence was identified as resulting from (destructive) interfer-
ence of absorption pathways in the coherently excited atomic system. |
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atoms. (a) Simple excitation of a two-level

| atom. Level 12> is an incoherent dark state.
atom. A superposition of levels [1> and 12>

Figure 2 Data showing the fluorescence from a Na vapor cell under illumination by a

multimode optical field. A magnetic field is applied with a gradient along the axis of the

ght propagation. Three dark lines are observed in the fluorescence spectrum.

Reprinted figure with permission from Alzetta et al. (1976); © 1976 of the Societa

- ltaliana de Fisica
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L was reported earlier by Bell and Bloom (1961), and a review of CPT is
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A key aspect of this phenomenon is that coherences in atoms
- at microwave frequencies can be excited even with no microwave fields
L being present at the location of the atoms. The hyperfine coherences are
i excited entirely by two-photon processes involving only optical fields
. and have a line width determined by the hyperfine relaxation rate. In
ddition, the presence of the coherence can be detected easily by mon-
toring the fluorescence (or absorption) by the atomic sample.
i  CPT can also be understood as a combination of quantum interference
and optical pumping. In the three-level model, a bichromatic optical field
ouples two long-lived states (denoted |1> and |2> in the Figure 1c) to a
ingle upper level (denoted |3>). The energy of the ith level is denoted E;
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and y; is the electric dipole moment between state |i> and state |3>.
It can be shown that when the two-photon resonance condition, wi—w, =
(E1—E»)/ h, is fulfilled, the transition amplitude from the state | NC> to the
excited state |3> is zero. The |NC> state is therefore a dark (or “non-
coupled”) state, because no light is scattered when the resonance condi-
tion is fulfilled. The suppression of the transition amplitude can be
interpreted as a result of quantum interference between transitions
from states |1> and |2> to state |3> under the influence of the exciting |
optical field (Alzetta et al., 1976; Arimondo, 1996; Lounis & Cohen-Tan-
noudji, 1992).

An atomic sample initially in a thermal state will develop coherences
when illuminated with a bichromatic field satisfying the resonance con-
dition. This can be thought of as an optical pumping effect: atoms in the
“bright” (or “coupled”) state |C> will be excited to level |3> and will
eventually fall into the dark state, where they no longer interact with the
optical field. Population therefore builds up in the dark state and the
absorption of the optical field (and fluorescence from the atomic sample)
is reduced. As a function of two-photon detuning, we therefore observe a
resonance in the absorption/fluorescence signal.

In the data shown in Figure 2, CPT resonances are observed in the
fluorescence spectrum of a cell subjected to a magnetic field gradient.
CPT resonances are also frequently observed in the transmission spec- |
trum of light passing through an atomic sample in the presence of a
uniform magnetic field, as shown in Figure 3. In this case the frequency
difference between the two excitation fields is scanned over the hyperfine
transition frequency and a spectrum containing a number of absorption
resonances can be observed as a function of difference frequency, corre-
sponding to transitions between different pairs of Zeeman-split hyperfine
levels. In the case of circularly polarized light and a longitudinal mag-
netic field, only transitions between Zeeman levels with Amg = 0 are
observed, resulting in a spectrum consisting of 2I lines for an atom with
nuclear spin I. For atoms with half-integer nuclear spin, the central line
(corresponding to mp=0—mp=0) occurs at a frequency close to the

f ok
l Magnetic field Full transmission
A4 e
Bichromatic | 87Rb vapor Photo
light source ! cell detector [

fi-fy

Figure 3 Coherent population trapping resonance spectrum observed in the
transmitted light through a vapor cell subject to a uniform magnetic field
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e zero-field hyperfine splitting of the atom. The other lines are separated
| from the central line by even multiples of the Larmor frequency f; = vB,,
i where v is the gyromagnetic ratio of the atoms. Atoms with higher
| nuclear spin have more Zeeman levels, and the CPT spectrum consists
E of correspondingly more lines. If the magnetic field is rotated so it has a
transverse component, the CPT spectrum displays additional lines half-
| way between the Amp=0 lines corresponding to Amp=1 transitions.
| Transitions with Amg=2 can also be excited. For a more complete
 description of the CPT spectrum, see Wynands and Nagel (1999) and
. Knappe (2001).

i The bichromatic light needed to excite the CPT resonance can be
| generated in a number of ways. The two most common methods are
| direct modulation of the injection current of a laser diode (Cyr et al,
- 1993) and phase-locking of two lasers (Nagel et al., 1998). Direct modula-
E tion is simpler to implement but results in an optical spectrum typically
 consisting of more than two frequencies with spectral amplitudes that are
 difficult to control. The use of injection-locked lasers requires more com-
4 plicated locking electronics but results in only two optical frequencies
f and allows a high degree of freedom in controlling the relative polariza-
 tion and amplitude of these components.

i 2. ATOMIC CLOCKS

2.1 Introduction

 Most atomic clocks are based on alkali atoms (in particular H, Rb, Cs),
| which have a single valence electron. In these atoms, the energy spectrum
| is relatively simple, and long-lived ground states result in slow relaxa-
| tion, narrow transition line widths, and correspondingly high precision.
 In addition to charge, both the atomic nucleus and the valence electron of
 all alkali atoms have spin angular momentum, and therefore a magnetic
i moment. Microwave frequency references are based on hyperfine transi-
tions between atomic states that differ in the relative orientation of the
 nuclear and electron magnetic moments. This difference in energies is on
the order of 1-10 GHz, when translated into frequency units by dividing
by Planck’s constant h.

. With some notable exceptions (Post et al., 2003; Taichenachev et al.,
2005b), microwave atomic clocks are based on transitions between the
magnetically insensitive mr = 0 substates of different hyperfine mani-
£ folds. Clocks based on states for which my # 0 (but Amg = 0) require a
careful simultaneous measurement of the local magnetic field in order to
prevent variations in this parameter from resulting in variations of the
ock frequency. While this latter approach is not altogether prohibitive, it
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adds significant complications to the operation of the device and has not
found widespread popularity. On the other hand, optical clocks based on
fermionic alkaline earth atoms have a small linear Zeeman shift that is
effectively and routinely removed with appropriate interrogation techni-
ques (Akatsuka et al., 2008).

The measurement of transitions between these atomic states can be
accomplished in several ways. Perhaps the simplest measurement
method is the passive excitation method, where an oscillating magnetic
field is applied to the atoms at a frequency corresponding to the energy
difference. When the frequency of the applied field is close to the fre-
quency of the atomic transition, an oscillating moment (coherence) is
excited in the atom. Most frequently, magnetic dipole moments are
excited. This coherence allows energy to be transferred from the field
(atom) to the atom (field), and changes the internal state of the atom.

Because this energy transfer is a resonant effect, the internal state of the
atom can be monitored to determine when the frequency of the applied |
field corresponds to the energy splitting of the atomic states being
coupled. A typical atomic frequency reference can be thought of as a
series of steps. The atoms are first prepared in one specific atomic state |
(by magnetic state selection, optical pumping, or some other means). The
oscillating magnetic field, generated by a “local oscillator” (LO), is then
applied, causing some fraction of the atoms to change their state; this
fraction depends on whether the frequency of the oscillating field is on-
resonance with the atoms. Finally the number of atoms in the final state
(or the initial state) is detected, again by optical or magnetic means.
Because of the resonant nature of the interaction, the number of atoms
in the final state depends on the difference between the frequencies of the
oscillating field and the atomic transition, and a measurement of this
quantity can therefore be used in a feedback loop to lock the frequency of
the oscillating field to the atomic transition frequency. The output of the
clock is simply the frequency of the locked LO. The operation of a basic
passive atomic frequency reference is shown in Figure 4.

Atomic clocks based on alkali atoms can be divided into four main
categories. Fountain clocks (Clairon et al., 1991; Kasevich et al., 1989;
Zacharias, 1953), the most accurate atomic clocks at present, are large
devices that often take up the better part of an entire room and require
several hundred watts of power. There exist perhaps 10 such instruments
worldwide and each typically takes several person-years to construct and
evaluate. Hydrogen masers (Gordon et al., 1954), highly stable over long
time periods, are about the size of a large filing cabinet. Cs beam clocks
(Essen & Parry, 1955; Ramsey, 1950), based on beams of alkali atoms in a
vacuum, are also highly accurate and are manufactured in rack-mounted
enclosures. Vapor cell atomic clocks are based on atoms confined in a cell
with a buffer gas (Arditi, 1958; Carver, 1957; Dicke, 1953) or wall coating
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Figure 4 (a) The operation of a passive atomic frequency reference typically proceeds
in three steps. First the atom is prepared in some energy state, E;. The frequency from
the local oscillator is then applied, causing transitions to another state with energy E,.
The number of atoms in the final state is detected. (b) With this method, the frequency
of the local oscillator can be determined with respect to the atomic transition

(Goldenberg et al., 1961; Robinson et al.,, 1958). The highest-performance
vapor cell clocks are manufactured for installation on GPS satellites.
These clocks are typically stable to 10~ or better over long periods but
are intrinsically accurate (without calibration) only to about 10~°. Com-
pact vapor cell atomic clocks, developed for the telecommunications

industry, can be held in the palm of one hand and are stable to
about 107"

2.2 Vapor Cell Atomic Clocks

A schematic of a traditional Rb vapor cell frequency reference (Vanier &
Audoin, 1992) is shown in Figure 5. The heart of the frequency reference
is a vapor cell that contains the Rb vapor, along with an appropriate
density of buffer gas. The vapor cell is contained within a microwave
cavity into which a microwave field is injected. The microwave field is
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Figure 5 Schematic of the major components of a traditional vapor cell frequency
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generated by a LO, which is usually based on an electromechanical
resonator (such as a quartz crystal resonator). Because the LO is an
electromechanical device, it is typically rather unstable over long periods;
the atoms therefore provide a stable reference frequency to which the LO
can be locked. The atoms in the cell are illuminated by light generated by
a Rb lamp. The Rb lamp is a second glass cell, containing Rb, through
which an RF discharge is excited.

Light from the lamp, with appropriate filtering, serves to prepare the
atoms in the reference cell in one of the two hyperfine ground states via
optical pumping. Because of this optical pumping, the atoms in the
reference cell become less absorbing than they would in a thermal dis-
tribution. As the frequency of the RF field is tuned to near the atomic
resonance, the population distribution in the reference cell changes again
as the hyperfine populations are returned closer to their thermal distribu-
tion. This in turn increases the atomic absorption, and the increased
absorption can be detected by monitoring the optical power transmitted
through the cell with a photodiode. The transmitted optical power, as a
function of microwave frequency, therefore becomes the “signal” to
which the LO is locked.
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2.3 Coherent Population Trapping in Atomic Clocks 1077 \\/
CPT was first used in atomic clocks in the early 1980s (Ezekiel et al., 1983; 1081 " Y.
Hemmer et al., 1983a, 1984; Thomas et al., 1981, 1982). In these experi- o (7) S
ments, modulated dye lasers were used to excite microwave transitions in yio1o
a Na beam atomic clock. In effect, CPT zones replaced the microwave 10-10
cavities employed in a conventional beam clock based on Ramsey’s |
method of separated oscillatory fields: in the first CPT zone the atomic 107"
coherence was created, and in the second, its phase was compared to that 1012 —
of the drive signal. Although initial investigations focused on the hyperfine 1073 1

transition in Na at 1.77 GHz, the use of optical fields to excite the coherence
opened the door to the possibility of exciting atomic coherences in fre-
quency bands far beyond the gigahertz range. A Ramsey zone separation ;
of 15¢m led to a resonance line width of 2.6kHz (see Figure 6), and a
corresponding frequency instability of 8 x 107" at 1 second was measured,
as shown in Figure 7. A subsequent experiment using a Cs atomic beam,
excited by a modulated diode laser, demonstrated resonance widths of
1kHz and a projected instability of 6 x 107" at 1 second (Hemmer et al.,
1993). The signal-to-noise ratio was about 10 times worse than that pre-
dicted by photon shot noise and was limited by frequency noise on the
diode laser being translated into intensity noise on the measured atomic
fluorescence. The conversion of FM to AM noise continues to be an
important source of instability in the current generation of laser-pumped |}
atomic clocks (Camparo & Coffer, 1999; Kitching et al., 2000).
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Figure 7 Allan deviation of a frequency reference based on Raman-Ramsey excitation
i of CPT resonances in a Na atomic beam. Reprinted figure with permission from
i Hemmer et al. (1983b); © 1983 of the Optical Society of America

, CPTin atomic frequency references but also identified the major limitations
. to both the short-term frequency stability and the accuracy. Sources of
| frequency instability common to many types of CPT frequency references

| Sources of frequency instability associated specifically with the
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Figure 6 (a) and (b) Rabi fringes from a Na atomic beam excited by a modulated dye
laser. (c) Raman-Ramsey fringes with a width of 2.6 kHz. Reprinted figure with
permission from Thomas et al. (1982); © 1982 of the American Physical Society
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These early experiments not only demonstrated the viability of the use of

- include the FM-AM noise conversion mentioned above, atom and photon
shot noise, and instability arising from the light shift (Hemmer et al., 1989).
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Raman-Ramsey scheme include misalignment of the beams from a copro-
pagating configuration, birefringence, and polarization differences between
the beams and changes in the optical path length (Hemmer et al., 1986).

As mentioned above, semiconductor lasers have been used for CPT
excitation in atomic beam clocks (Hemmer et al., 1993). The advantages of
semiconductor lasers over dye lasers in this type of experiment are clear:
smaller size and simpler operation. In addition, it is possible to modulate
the optical field output of the laser by directly modulating the injection
current. Resonances of width 1 kHz were obtained in a *>*Cs beam by use
of an edge-emitting AlGaAs diode laser modulated at 4.6 GHz. The two
coherent first-order sidebands created the 9.2-GHz frequency difference
needed to excite the Raman-Ramsey fringes.

In 1993, Cyr, Tetu, and Breton described a method for exciting and
detecting CPT resonances in an alkali vapor cell by use of a single diode
laser (Cyr et al.,, 1993). The details of the experiment are shown in Figure 8.
The injection current of the laser was modulated near the sixth subharmo-
nic (1.139GHz) of the ®¥Rb hyperfine frequency (6.835GHz), creating
sidebands on the optical carrier, several of which are separated by approxi-
mately the atomic resonance frequency. When one of these sideband pairs
was tuned to be in optical resonance with the atomic transitions, and their

()
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Figure 8 Excitation of CPT resonances in an alkali vapor cell with a modulated diode
laser. (a) The atomic energy level spectrum and optical frequency spectrum of the
modulated diode laser. The CPT resonance is excited when the frequency splitting,
vo=nfy, between two components of the diode laser optical spectrum is equal to the
atomic ground-state hyperfine splitting, VegVer. (b} Experimental setup. LD, laser diode;
P, polarizer; S, solenoid; AN, polarization analyzer; PD, photodetector; )/4, quarter-
wave plate. (c) The photodetector signal as a function of the detuning of the laser
modulation frequency from the sixth subharmonic of the atomic resonance frequency.
Reprinted figure with permission from Cyr et al. (1993); © 1993 IEEE
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difference frequency (determined by the modulation frequency) made
equal to the microwave transition, a microwave coherence was excited in
the atoms. This coherence was detected by monitoring the polarization
rotation of a probe beam derived from the same laser (Figure 8¢).

This idea is particularly noteworthy in the context of miniaturized
frequency references, because all components used in the experiment are
small. The use of a vapor cell lends itself well to miniaturization compared
to previous CPT experiments based on atomic beams because much smal-
ler cell sizes can be used to achieve a given short-term frequency stability,
due to the presence of the buffer gas. Some time later it was demonstrated
that a single laser beam could also be used, allowing for even further
simplification of the experimental setup (Levi et al., 1997).

Since then, there has been considerable study of CPT-excited vapor
cell frequency references. The noise processes in these instruments have
been identified (Kitching et al., 2000) and short-term instabilities as low

:, as 1.3x107'2//r have been demonstrated in large-scale systems

(Zhu & Cutler, 2000). Vapor cell CPT atomic clocks have been investi-

gated in some detail theoretically (Vanier et al., 1998, 2003a,c,d) and
: experimentally (Godone et al., 2002d; Knappe et al., 2001, 2002; Levi
[ et al, 2000; Merimaa et al., 2003; Stahler et al., 2002). They have also
L been compared both theoretically (Vanier, 2001b) and experimentally
l  (Lutwak et al., 2002) to conventional optically pumped vapor cell refer-
i ences with the conclusion that the short-term frequency stability of CPT-
i based instruments should be comparable to or better than conventional
I ones. A review of atomic clocks based on CPT is given in the work of
Vanier (2005).

In 2001, a compact physics package for CPT frequency reference was

I demonstrated by Kitching et al. (2001a,b). This device had a volume of
| about 14 cm?®, and the short-term stability of this device was 1.3x1071%/
I /7. A photograph of the device is shown in Figure 9a, and the CPT
. resonance and Allan deviation are shown in Figure 9b and c, respec-
tively. Similar work was being explored simultaneously (Delany et al.,
2001; Vanier, 2001a), connected with the ultimate development of com-
b pact, commercial CPT clocks (Deng, 2008; Vanier et al., 2005). These
f early efforts to use CPT to miniaturize atomic frequency standards
b used glass-blown vapor cells with a diameter of several millimeters
i or more. The cells were assembled as discrete components with a laser,
| optics, and photodetector to form the functioning physics package.

- Complete miniaturized CPT frequency references for use in a com-
. mercial setting have also been demonstrated (Deng, 2008; Vanier et al.,
| 2004, 2005). This work demonstrated integration of a compact CPT phy-
f sics package with a low-power LO and compact control electronics.

. The opportunities for atomic clock miniaturization afforded by the
f use of CPT led to some significant developments related to use of
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Figure 9 A miniaturized physics package for a CPT frequency reference.

(a) Photograph of the instrument with major components identified. (b) CPT resonance
and (c) fractional frequency instability (Allan deviation) as a function of integration
period. Reprinted figure with permission from Kitching et al. (2001b)

micromachining processes in atomic clocks. A preliminary analysis
suggested that CPT clocks based on millimeter-scale vapor cells
could achieve short-term frequency instabilities of a few parts in 10" at
1 second of integration (Kitching et al., 2002). While the stability
was expected to be worse than that of their larger counterparts, it was
recognized that these micromachined or “chip-scale” atomic clocks
could serve an important role in providing precise timing for portable,
battery-operated instruments. Because of the small size, the power
required to maintain the cell at its operating temperature could be
drastically reduced. When combined with similar improvements in
power resulting from the use of a laser, rather than a lamp, as the light
source, operation with small batteries could be envisioned. A review of
chip-scale atomic frequency references can be found in the work of
Knappe (2007).

Because CPT played an important role in many of these new micro-
machined clock designs, considerable research was carried out to
improve and optimize CPT techniques specifically for this new
development.
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2.4 Stability of Vapor Cell Atomic Clocks

The stability of an atomic clock is most often characterized by its Allan
deviation. The Allan deviation (Allan, 1966; Barnes et al., 1971), devel-
oped to quantify the fluctuations of nonstationary random variables, is a
measure of the frequency instability of the clock obtained after integrat-
ing a measurement of its frequency for a period 7 and is denoted o,(7).
For passive atomic clocks, in which white frequency noise is the domi-
nant noise source, the Allan deviation is given by

3

ay(7) = Q—(W’ (4)
where Q is the Q-factor of the atomic resonance, 7 is the integration
period, S/N is the measurement signal-to-noise ratio (in units of \/Hz),
and ¢ is a constant of order unity related to how the resonance is mea-
sured. The frequency instability is hence proportional to the resonance
line width, or relaxation rate, of the atoms and inversely proportional to
the signal strength.

In a conventional optical-microwave double-resonance (OMDR) fre-
quency reference, the optical transmission is high when the microwave
field is tuned away from resonance and decreases on resonance as the
atoms are repumped into an equilibrium state by the microwave field
(see Figure 10a). The OMDR resonance is characterized by its width W
and its transmission contrast A/B, according to Figure 10a.

The CPT resonance, shown in Figure 10b, has low transmission when
the frequency difference between the optical fields is off resonance; the
transmission increases on resonance when the dark state is populated.
The resonance can be characterized by its width and its absorption con-
trast, denoted by W and C, = A/B in Figure 10b in the limit that the
quantity B <<1. This Jast condition occurs when the cell temperature and
length are such that the cell is optically thin for a weak optical field tuned
to the center of the optical resonance. It implies that the quantity C, is a
characteristic of a single atom and the way it is excited and does not
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Figure 10 (a) Parameterization of conventional OMDR resonance.
(b) Parameterization of CPT resonance. See text for explanation
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depend on the atom density, the longitudinal location within the cell, or
the effects of propagation of light through the (possibly optically thick)
atomic sample.

The width of the resonance, W, is determined by relaxation processes
associated with the hyperfine coherence. There are many such processes,
but the ones that dominate in vapor cell atomic clocks are collisions of
alkali atoms with the cell walls, collisions with buffer gas atoms, colli-
sions with other alkali atoms, optical power broadening due to the pre-
sence of the optical field, and the relative phase stability of the excitation
optical fields. This width can be minimized through the correct choice of
buffer gas pressure and optical intensity. An analysis of these effects
under some assumptions can be found in the work of Kitching et al.
(2002).

Considering still optically thin vapor cells, we may associate the signal
S in Equation (4) with the change in optical power as the modulation
frequency is moved from off the CPT resonance to on resonance. The
fractional (off-resonance) absorption B can be written as

B=(1-e ") =noplL, (5)

where 7 is the density of atoms, oy is the (unpolarized) optical absorption
cross section, and L is the length of the cell. The signal S can therefore be
written

S = Apin = CATLO'QLPin, (6)

where Py, is the optical power incident on the cell. We therefore see that
the signal is proportional to the column density of atoms, the incident
optical power, and the absorption contrast. The typical absorption con-
trast for a CPT resonance is in the range of 0.1-10%; the physical effects
that limit this contrast are discussed below.

As the cell temperature is increased and the optically thick regime is
approached, the assumption B<<1 above breaks down. In this regime,
propagation effects must be considered, and propagation-induced nar-
rowing of the resonance and modification of the contrast occurs (Godone
et al., 2002d). Experimentally, it has been found that for centimeter-scale
cells, the optimal cell temperature is that for which the optical absorption
(away from the CPT resonance) is approximately 0.5 (Knappe et al., 2002).
At lower atomic densities, the signal is reduced due to the dependence
described in Equation (6) (because very few atoms contribute toward the
signal), while at higher densities, the strong optical absorption by the
atomic sample attenuates the signal. While a more complete treatment of
propagation effects may uncover ways to improve the clock performance
at high optical densities, these remain unclear at present. Ultimately,
increasing the atomic density will lead to increased hyperfine relaxation
due to alkali-alkali spin-exchange or spin-destruction collisions, and any
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improvements gained by the higher atom number may be offset by
collision-induced broadening of the resonance line width.

The noise on the signal comes from a number of sources. Of these, photon
shot noise and atom shot noise (spin projection noise) are the most funda-
mental. In most cases the photon shot noise is larger than the atom shot
noise for measurements of hyperfine resonances; the power spectral density
function of this (optical power) noise is given by (Yariv, 1997)

Sap = N? = 2hv(1 — B) Py = 2hv(1 — noglL) Py, (7)

with the last approximation again relying on the assumption that B <<1.
Additional noise sources include (a) AM noise on the laser, (b) FM laser
noise, converted to AM noise by the atomic absorption profile
(Camparo & Coffer, 1999), and (c) noise in the detection electronics.
Often it is possible to reduce these additional sources of noise to a level
close to the photon shot noise through the use of feedback techniques or
intrinsically low-noise lasers.

The signal-to-noise ratio can be expressed in terms of the CPT
resonance parameters above as

S B (1 — nooL)Pin
N = CATIUOL T . (8)

Expressed in this way, the signal-to-noise ratio is proportional to the
absorption contrast and the square root of the input power, but has a
somewhat complicated dependence on the alkali atom density and cell
length. To simplify this problem, the signal-to-noise ratio can be
expressed instead in terms of the transmission contrast Cr=A/(1 - B)
and the output power Py = (1 — B) Py

S _ Pout
N ~CTV 2hy” ®)

In this expression, all of the effects of the alkali density are contained
within the parameters P, and C, which can be measured experimen-
tally in a direct manner. We ~ee therefore that the characterization of the
CPT resonance in terms of the bsorption contrast C, allows for a den-
sity-independent measure of the CPT resonance parameters, while the
characterization in terms of the transmission contrast Cr allows for a
simple evaluation of the signal-to-noise ratio and clock stability. Both
measures of the CPT resonance contrast are used in the literature,
depending on the context of the discussion.

We therefore find that there are three major routes to improving the
short-term stability of the atomic clock: narrowing the resonance line
width, increasing the resonance contrast, and reducing the noise. In the
sections below, we describe a number of improvements and




38 Vishal Shah and John Kitching

modifications to the conventional CPT excitation scheme that result in
some combination of reduced line width and increased signal contrast.
These methods have been developed mostly within the last 10 years and
represent a significant enhancement of the understanding of CPT, as
applied to atomic frequency references.

2.5 Light Shifts

Shifts in the atomic energy levels due to the presence of optical fields,
known as AC Stark shifts or light shifts, are a major source of long-term
instability for atomic clocks (Arditi & Carver, 1961; Kastler, 1963; Vanier &
Audoin, 1992). The use of CPT provides some additional complications,
but also opportunities with respect to the light shift, compared to con-
ventional clocks based on OMDR.

The light shift of a two-level atom illuminated by a monochromatic
optical field is (Cohen-Tannoudji et al., 1992)

1@
4(r/2) + A

where Q is the Rabi frequency of the optical field-atom interaction, A is
the detuning of the optical field from the atomic resonance, and I' is the
radiative decay rate of the atom. The shift is therefore proportional to the
intensity of the optical field and traces a dispersive profile as a function of
detuning from the atomic resonance. For the light intensities typically
used in conventional OMDR clocks, the magnitude of the shift is on the
order of a few parts in 10° (Arditi & Carver, 1961), making it a significant
contribution to the instability of this type of clock at the level of 10~ for
1% changes in the light intensity.

In a system exhibiting CPT, the interplay between the coherence of
the atoms and the bichromatic nature of the light field leads to changes in
the properties of the light shift. The most dramatic of these changes is
the complete elimination of the light shift on Raman resonance for a
perfect three-level system illuminated by a light field in which the two
spectral components of the CPT field have equal Rabi frequencies. This
elimination is a consequence of the fact that a perfect coherent dark state
does not interact dissipatively with the light field and hence does not
experience a Stark shift. For unequal intensities, the Stark shift has
been calculated to be equal to (Arimondo, 1996; Kelley et al., 1994; Vanier
et al., 1998)

L (10)

oA
4 (r/2)* + A?

where €, and ), are the Rabi frequencies associated with the two spectral
components. The fact that the light shift can in principle be eliminated is

L (2 —3), (11)
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of high interest to the application of CPT to atomic clocks, as this major
source of long-term instability can potentially be eliminated. However, as
we will see below, the complications associated with the multiplicity of
levels, Doppler broadening, and other effects present in real atomic
systems limit the extent to which the cancellation of the light shift can
be accomplished in practice.

Measurements of the light shift in CPT systems were described by
Nagel et al. (1999) and Zhu and Cutler (2000), and a magnitude of the
light shift of approximately 1077/(mW/cm?) was obtained for cells with a
roughly optimal buffer gas pressure. This shift is comparable to that
obtained in conventional OMDR systems. The shift was found to be

roughly linear in the CPT intensity and was smaller for higher buffer
gas pressures.

3. ADVANCED CPT TECHNIQUES

In its simplest form, CPT can be excited in atoms with only three energy
levels by use of a single pair of coherent light fields. In principle under
these assumptions, and with sufficient light intensity, atoms can be
optically pumped into a coherent dark state with an efficiency of nearly
100%. Optically pumping a very large fraction of the atoms into a coher-
ent dark state even under ideal conditions requires the optical pumping
rate to be much greater than the ground-state relaxation rate. This results
in significant power broadening and is not ideal for clock operation, as it
reduces the resonance Q-factor. Typically, the optical intensity for normal
clock operation is chosen such that the power broadening rate is roughly
equal to the ground-state relaxation rate; under these circumstances,
about 50% of the atoms are optically pumped into the coherent state.
Laboratory CPT experiments are usually carried out with alkali
atoms, especially when the application is microwave atomic clocks.
The presence of additional energy levels in these atoms can interfere
with the efficient excitation of the coherent .- states and thereby
reduce the contrast of CPT resonances. As discussed above, the
reduced contrast results in higher instability for the clock. In addition,
unwanted energy levels introduce asymmetries in the CPT resonance
lineshape (Post, 2003) and produce AC Stark shifts, both of which
adversely affect the atomic clock performance by producing time-
dependent frequency shifts of the clock output. Some of these effects
are further amplified if a light field with more than two modes is used
for CPT excitation. Over the last several years, a number of advanced
interrogation techniques have been developed with the goal of mitigat-

ing some of these effects and thereby improving various aspects of the
atomic clock performance.
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The following section is not an exhaustive review of the literature but
seeks instead to provide an overview and the general direction of many
of the approaches.

3.1 Contrast Limitations due to Excited-State Hyperfine Structure

The existence of a magnetic moment in the nucleus of all stable alkali atoms
creates hyperfine structure not only the in the ground S, /, state but also in
the P states to which the S state is coupled by the optical fields. The
frequency separation of these excited-state hyperfine states (~500 MHz) is
often smaller than the homogeneous broadening of the optical transition
resulting from the buffer gas (2 GHz for a buffer gas pressure of 10kPa). As
a result, the optical fields used to excite the CPT resonance typically couple
to several excited-state hyperfine levels simultaneously. While some of the
transitions help optically prepare atoms in the coherent dark state, other
transitions can simultaneously depopulate the dark state through incoher-
ent optical pumping of atoms out of the dark state. For example, in Rb, the
F'=0and F’ = 3 excited-state hyperfine levels in the °P; , state are coupled
to only one of the two ground states, due to single-photon selection rules.
As a result, a coherence between the two ground states cannot be generated
by these levels via CPT, but single-photon transitions out of the CPT state to
these levels are allowed (Nagel et al., 2000).

In addition to incoherent optical pumping out of the dark state, another
important destructive mechanism occurs when multiple Lambda systems
are formed between a common pair of ground states and different excited
states. As described in the Equation (2), the phase of the dark state is
governed by the complex optical Rabi frequencies that depend on both
the phase of the optical fields and the coupling coefficients between the
light and atomic energy levels. When multiple Lambda systems are excited
between a common pair of ground states, the existence of an overall dark
state in the system is not guaranteed and depends on the relative phase
between the dark states of the individual Lambda systems. If the individual
dark states are out of phase, then the strength of the overall CPT resonance
can be reduced or even eliminated completely in the case of perfect destruc-
tive interference (Nagel et al., 2000; Stahler et al., 2002).

Consider, for example, transitions that are excited on the D1 and the D2
line of ®Rb between =0 ground states and the excited states by use of
circularly polarized light fields exciting 04 transitions (see level diagram
in Figure 11a). In addition, we assume that the buffer gas pressure in the
cell is high enough that the broadening of the optical transitions is larger
than the excited hyperfine splitting. On the D1 line, there are two Lambda
systems and no single-photon transitions. The two Lambda systems are

|F:1,mF=0>—»|F’:1,mp:1><—|F:2,mp:0>,
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Figure 11 Simplified energy level diagram of ®Rb, showing the (a) D2 and (b} D1
transitions. The gray lines show the original three-level CPT model, while the dark lines
show the additional transitions due to the presence of the excited-state hyperfine
structure. The solid lines indicate CPT transitions, while the dashed line indicates a
single-photon transition

F=1mg=0>—|F =2mp=1>c [F=2mp=0>.

. The transition amplitudes are such that the individual dark states are in

phase and therefore add constructively (Stahler et al., 2002).
On the D2 transition, the same two Lambda systems are again excited.

] However, due to the different Clebsch-Gordon coefficients, the phases of
the two dark states are quite misaligned, which results in a partial
E destruction of the CPT resonance. For example, apart from a constant
[ phase factor on the D2 ¥Rb line on the mp=0 ground states, the dark
! state/for F=1—-F=2—F=2is [NC) = %(]1) +12)), and for the F=1
| — F'=1<F=2 Lambda system, |NC)= = (51) +{2)). On the other
i hand, on the D1 line, the dark state is given by [NC) =L (|1) + |2)) for
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In addition, on the D2 line there is one single-photon transition that

depopulates the dark state:

leZ,mp:O>—>|F’:3,mF:1>.

b The combined influence of these two effects is that the strength of the

CPT resonance on the D2 transition is significantly smaller than that on
} the D1 transition.
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Figure 12 Comparison of CPT resonances excited using light resonant with the D1
(Trace A) and D2 (Trace B) optical transitions in 2Rb. An improvement in the

absorption contrast by a factor of ~10 is obtained by use of the D1 resonance. The line
width of the D1-excited resonance is also narrower. Reprinted figure with permission
from Stahler et al. (2002); © 2002 of the Optical Society of America

The influence of additional energy levels on CPT resonances becomes
clearly evident when CPT resonances using D1 and D2 transitions are
compared by use of the atomic vapor cell (Zhu, 2002). It is found
experimentally that CPT resonances excited by use of the D1 transition
are almost an order of magnitude stronger than those seen by use of the
D2 transition (Lutwak et al., 2003; Stahler et al., 2002). A comparison of
CPT resonances obtained using D1 and D2 excitation, but otherwise
under similar conditions, is shown in Figure 12. The discrepancy
between the strengths of the CPT resonances on the D1 and D2 transi-
tions is in contrast with microwave resonances seen in conventional
optically pumped clocks, in which efficient optical pumping can
be achieved by use of both D1 and D2 transitions. The reason CPT
resonances are so sensitive to excitation pathways is that CPT reso-
nances rely equally on both optical pumping and quantum interference.
This is contrasted with conventional microwave resonances that rely
only on optical pumping.

3.2 Contrast Limitations due to Zeeman Substructure

The multiplicity of Zeeman levels present in the ground states of alkali
atoms is another primary limitation to the signal strength. In the pre-
sence of a small magnetic field, the ground-state hyperfine levels are
Zeeman split into (2F + 1) magnetic ground states. In atomic clocks, a
small magnetic field is typically applied to separate the various ground
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states so that the magnetically insensitive my =0 ground states can be
uniquely interrogated without interference from the magnetically sen-
sitive transitions. However, the presence of the unwanted but closely
spaced mg # 0 states also influences the strength of the CPT resonance.
In thermal equilibrium, atoms populate all of the ground-state mag-
netic sublevels with roughly equal probability, as shown in Figure 13a.
In atomic clocks, the optimized light intensity used for CPT excitation
is generally weak enough that it causes some, but not significant,
redistribution of atomic population between the various magnetic sub-
levels. The useable CPT resonance signal (quantity A in Figure 10b) is
generated by atoms that are in the mp=0 states, but many atoms in
states with mp 70 contribute to absorption of the incident light (quan-
tity B in Figure 10b). The absorption contrast is therefore reduced by
roughly the ratio of the number of mp=0 ground states to the total
number of ground states, under the assumption that the light intensity
is weak enough that it does not significantly redistribute the level
populations.

Another issue that is frequently discussed is optical pumping loss to
,' the “trap state” (Renzoni & Arimondo, 1998; Vanier et al., 2003b). When
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< c
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Figure 13 (a) Reduction of the CPT resonance contrast due to the presence of ground-
state Zeeman structure. An even distribution of atoms among the Zeeman ground-
state sublevels implies that only a small fraction of atoms contribute to the
magnetically-insensitive mg=0 — me=0 transition. (b) Effects of the “trap” state
{population indicated by the dark bar), which does not form a CPT resonance and into
- which atoms are pumped by the optical fields
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circularly polarized light resonant with the D1 transition is used to excite
CPT resonance, for example, a significant fraction of the population can
be pumped to the magnetic end states (F=1+1/2, mg= + F). As seen in
Figure 13b, the magnetic end state is an incoherent state, which is dark
due to selection rules which prohibit excitation by circularly polarized
light fields (o+ transitions in this case). Atoms can therefore be “trapped”
in this end state (or even in other states, depending on the laser polariza-
tion) and stop interacting with the light fields. Because the optical con-
figuration described above is used in current generation of microwave
CPTclocks, the problem of the trap state has received significant attention
from the research community. This configuration in which a Lambda
system is excited in the presence of an incoherent dark state is often
referred to as an open Lambda system. '
The atoms that are trapped or lost to the end state contribute neither to
the CPT resonance signal nor to the optical absorption. They are simply
invisible to the incident light fields. To compensate for this loss of atomic
population, alkali density can be increased, but this also increases relaxa-
tion through alkali density dependent decoherence mechanisms such as
spin exchange (Happer, 1972), which increases the line width of the CPT
resonance. There have been a number of solutions that have been pro-
posed to depopulate the end state. Some of the approaches are outlined
below.

3.2.1 Depopulation Pumping Using n-Polarized Light

This idea involves use of an additional linearly polarized laser light
resonant with the F=1 + 1/2 ground state and the F'=1 + 1/2 excited
state (Kazakov et al., 2005b). The linearly-polarized light travels in a
direction perpendicular to the applied magnetic field such that it
excites m-transitions (Amg=0). This secondary light field is used to
depopulate the end state but does not depopulate the atomic population
in the F=1 + 1/2, mg=0 ground because of selection rules that prohibit
such a transition.

While this technique works well in theory, there are several difficulties
associated with using it in a practical device. Besides the technical diffi-
culties arising from the use of separate laser beams traveling in perpen-
dicular directions, this technique requires selective excitation of the
F=1I + 1/2 ground state by use of the F'=1I + 1/2 excited state. This
limits the amount of buffer gas that can be used in the vapor cell to
approximately below 1kPa in Rb and Cs such that the levels in the
excited state can be clearly resolved. This technique therefore presents |
difficulties for use with smaller cells, which typically use higher buffer
gas pressures to avoid broadening of the hyperfine transition due to wall
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collisions. In addition, the narrow optical line width resulting from the
low buffer gas pressure requires tighter restrictions on the amount of
laser drift and laser frequency noise that can be tolerated.

3.2.2 Excitation with Orthogonal o-Polarized Light Fields

Another approach that has been proposed to reduce the atomic
population in the unused Zeeman levels is simultaneous excitation of
the CPT resonance by use of a combination of o+ and o— light fields.
This technique addresses both the thermal population in all Zeeman
levels and the population build-up in the trap state due to optical
pumping. A linear light field traveling along the magnetic field is the
simplest example of o+ and o- light fields. The transitions that are
excited by a combination of o+ and o- light fields are shown in
Figure 14. The o+ and o- light fields independently excite Lambda
systems on the mp=0 states. As can be seen from the figure, there are
no end states that are dark in this optical configuration. Unfortunately,
simply using linearly polarized light to excite a closed Lambda system
between mr=0 levels does not work. The reason for this is that the
individual dark states excited by the o+ and the o- light are out of

Vopt
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Figure 14 Excitation of CPT resonances by use of a combination of 6+ and o— light
fields. Destructive interference can be avoided by independently adjusting the phase of
the modulation in each polarization component. Solid lines indicate optical fields with
o+ polarization that excite CPT transitions, while dashed lines indicate optical fields
with o- polarization. Dotted lines indicate depopulation pumping of “trap” states
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phase. In other words, the atoms that appear dark to the o+ polariza-
tion appear bright to the o- polarization, and vice versa. The result of
this destructive interference is that the overall CPT resonance is not
observed.

One solution to this problem is to introduce time delay between o+
and the o- light fields such that the individual dark states constructively
add together in phase. This principle has been successfully demonstrated
in two ways. Jau et al. (2004a), Taichenachev et al. (2004b), and Karga-
poltsev et al. (2004) have proposed splitting the light fields into two parts
with orthogonal polarization and recombining the fields after introdu-
cing a relative path delay between the ¢+ and o- components. The
relative path difference of half a microwave wavelength (ground-state
hyperfine splitting) shifts the phase of the dark state such that the reso-
nances constructively interfere. This path length difference can be intro-
duced by use of polarization filtering in a copropagating geometry or by
reflecting the light back through the cell. A significant gain in the CPT
contrast was reported by Jau et al. (2004a).

The difficulty in using additional optics in splitting and recombining
the light field after introducing the path delay led to development of
another similar approach (Shah et al, 2006b). In this approach two
separate lasers were used to avoid the difficulty in splitting and recom-
bining the light fields. Each of the two independent lasers had opposite
circular polarizations, and they independently excited CPT resonance on
the mg=0 ground states. The lasers were modulated by use of the same
microwave source, and an electronic microwave phase shifter was
inserted into the RF path to one laser to shift the relative phase of the
microwave modulation on the two lasers by 7. This technique works well
and can also be implemented in a miniature package; however, the use of
two separate lasers adds some complexity to the overall implementation
and to the control system in particular. Another strategy is to generate a
coherence on the mp=0— mp=0 transition using one polarization and
measure the resonant change in birefringence with a weak optical field
with an orthogonal polarization (Zhu, 2003).

3.2.3 CPT Excitation on Amr = 2 Transitions

A third approach that has been proposed involves the direct use of
linearly polarized light and excitation of CPT resonance between mg = +1
and mg = —1 (Taichenachev et al., 2005b). This scheme, often referred to as
"lin // lin" since two optical fields with parallel linear polarization are
used, is by far the simplest way of exciting a closed Lambda transition by
use of a combination of o+ and o- light fields. The transitions that are
excited are shown in Figure 15. The relative phase between the dark
states excited between mp=+1—mr=-1 and mg=-1—mpr=+1 is no
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Figure 15 Excitation of CPT resonance on Ame=2 transitions between hyperfine
levels

longer of concern, because the dark states are excited between two
independent sets of ground states.

In this scheme, the transitions have an interesting dependence on
magnetic field. Because of the slightly different g-factors for states in
each of the two hyperfine levels, there is a small first-order magnetic
field sensitivity for each of the mg=+1—-mp=-1and mg=-1— mp=+1
transitions. In "Rb for example, individual mg = 41 states are shifted by
over 300 kHz in 50 uT magnetic field. However, the difference frequency
between the states |F = 2, mp = +1) and |F = 2, mg = —1) shifts by only a
few hundred hertz because of their much smaller linear magnetic field
dependence. In addition, the sign of this residual linear sensitivity is
negative for one transition (|F =2, mp = +1) — |F =2,mp = —1)) and
positive for the other (|F = 2, mp = ~1) — |F =2, mp = +1)). As a result,
when the resonance is excited using both pairs of ground states simulta-
neously, the linear dependence on magnetic field of the center point of
the resonance vanishes. The presence of a small magnetic field therefore
produces only a broadening of the overall resonance. Kazakov et al.
(2005a) have proposed using this mechanism to produce a pseudoreso-
nance by applying a magnetic field large enough that the resonances on
the individual pairs of ground states are shifted such that there is a dip in
the center to which an LO can be stabilized.

The main perceived drawback of this technique is that it was predicted
to be effective only in ®Rb (or other atoms that have a nuclear spin of
3/2) atoms but not in "**Cs (which has nuclear spin 7/2). Atoms with
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larger nuclear spin have a greater number of levels in the excited state,
which cause additional Lambda systems to be excited that destroy the
CPT resonance through destructive interference. This is due to the fact
that it requires selective excitation of the Lambda system by use of the
F’ =1 excited state. This requires the use of very low buffer gas pressures,
possibly in combination with a wall coating to reduce the wall-induced
relaxation. Interestingly, high-contrast resonances have been observed
using a similar scheme in a cell containing 13Cs and a low buffer gas
pressure (Watabe et al., 2009). This experimental result suggests that the
excitation of multiple Lambda systems affects the resonance contrast
only modestly.

3.2.4 The Use of End Resonances

The diluted atomic population participating in the clock transition can be
improved by use of optical pumping, for example, with 7-polarized light,
as mentioned in Section 3.2.1 above. Ideally, the population accumulates
in the mg =0 states, which are first-order magnetically insensitive. How-
ever, population can also be pumped into the “end” mg = F states, which
can then be used to measure the hyperfine frequency. Because transitions
between end states are first-order sensitive to magnetic fields, the local
magnetic field must be measured simultaneously in a precise manner in
order to reduce the field dependence of the clock output frequency. This
can be done by measuring the Zeeman resonance frequency simulta-
neously with the hyperfine end-resonance frequency.

An additional advantage gained by the use of end resonances is the
suppression of spin-exchange broadening. At high alkali atom densities,
spin-exchange collisions can be the dominant source of hyperfine relaxa-
tion (Walter & Happer, 2002). An atomic sample perfectly polarized in the
end state does not undergo spin-exchange relaxation because all atoms are
oriented in the same direction, and therefore no angular momentum can be
exchanged between any two colliding atoms. However, a small population
in other states creates some relaxation, and hence only a partial suppression
of the spin-exchange relaxation can be achieved in real atomic systems.

A final advantage of this scheme is that atoms can be optically
pumped even at very high buffer gas pressures where the optical transi-
tions from the ground-state hyperfine levels are broadened far beyond
the state frequency splitting. The traditional OMDR configuration has
considerably degraded performance in the presence of high buffer gas
pressure, because the hyperfine optical pumping is very inefficient.

This proposal and accompanying experiments in 87Rb are described by
Jau et al. (2004b) and shown schematically in Figure 16. Microwave
excitation of the hyperfine transitions was used in the experiment, as
opposed to CPT transitions, although the enhanced contrast and narrow
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Figure 16 “End-resonance” method for increasing the absorption contrast and
decreasing the line width of CPT resonances. (a) Atoms are optically pumped into the
“end” state with maximal angular momentum, resulting in high transmission of the
pumping light through the cell. A microwave field @, and RF field wgr are applied
simultaneously and the pump light transmission monitored as a function of (b) @,
and (c) wgr, providing a simultaneous measurement of @ and Angs -3 @, (for Rb)

line width should be equally present in CPT resonances. Line width
suppression by a factor of about three was measured, as was considerably
enhanced signal contrast (Post et al., 2003). Simultaneous measurement of
a magnetically sensitive hyperfine transition frequency and Larmor pre-
cession frequency by use of a “tilted 0-0 state” was demonstrated by Jau
and Happer (2005). When the system was operated as an atomic clock, a

short-term instability of 6 x 10~ 1! /+/T was obtained in a compact physics
package (Braun et al., 2007).

3.2.5 Amplitude-Modulated Versus Frequency-Modulated CPT
Excitation Sources

CPT resonances are often excited in alkali vapor cells with dimensions on
the order of 1cm. In order to prevent rapid relaxation of the hyperfine
coherence due to wall collisions, a buffer gas is usually added to the cell.
The buffer gas species can be chosen so that its effect on the hyperfine
relaxation rate is rather small. The optimal buffer gas pressure varies
roughly as the inverse of the smallest cell dimension and balances colli-
sion-induced relaxation with relaxation caused by residual diffusion
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through the buffer gas to the walls of the cell (Kitching et al., 2002;
Knappe, 2007).

The buffer gas also significantly broadens the optical transitions
involved in the CPT resonance. As the buffer gas pressure is increased,
the optical transitions from the ground-state hyperfine levels can go from
being completely resolved to being completely unresolved. When a single
modulated laser is used to excite the resonances, the number of modula-
tion sidebands that interact with the atoms can vary from two to many. In
Figure 17a, the spectrum from the optical transitions is plotted in these
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Figure 17 (a) Comparison of atomic optical absorption spectrum with laser
modulation spectrum for two qualitatively different buffer gas pressures. Trace A is for
a low buffer gas pressure, for which the optical transitions from each hyperfine level
are well resolved, while Trace B is for a higher buffer gas pressure, for which the
transitions are not resolved. For the case of Trace A, only two of the frequencies in the
optical spectrum interact with the atoms, while for the case of Trace B, almost all do.
{b) Experimental data comparing the strength of the CPT resonance (identified with the
saturation parameter S) as a function of buffer gas pressure for FM- and AM-
modulated light fields. Reprinted figure with permission from Post et al. (2005); © 2005
of the American Physical Society
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two limits and compared with the spectrum of a light field modulated at
one-half the hyperfine splitting.

When the transitions are resolved and only two optical field frequencies
interact with the atoms (Trace A in Figure 17a), a dark state is created with
a phase defined by the relative phase of the two relevant optical fields, and
the absorption contrast can be quite large. However, when the transitions
are not resolved, many optical frequencies interact with the atoms (Trace B
in Figure 17), and the dark state tries to adjust its phase to correspond to
the phase of each pair of sidebands separated by the hyperfine splitting. If
the light source is amplitude modulated, the beatnote between each pair of
sidebands has the same phase and the dark states created by each pair
independently add constructively to form a single dark state with high
contrast. If, on the other hand, the light source is frequency modulated,
some pairs of sidebands are out of phase with the other pairs, and the dark
states add destructively. For the high buffer gas pressures required for
small vapor cells, therefore, the modulation properties of the light source
are critically important. A careful study of this phenomenon is presented
by Post et al. (2005), largely supporting the intuitive reasoning presented
here. Data from Post et al. (2005) are shown in Figure 17b.

3.3 High-Contrast Resonances Using Four-Wave Mixing

One of the issues associated with microwave CPT atomic clocks is that the
transmission contrast of the CPT resonance is typically small (in the range
of a few percent) when the atomic clock is fully optimized. This is due to
several reasons, including the presence of modes generated by micro-
wave laser modulation that do not participate in the formation of CPT
resonances. A very large fraction of the laser noise that affects the CPT
clock performance can be eliminated by removing the background light.
Shah et al. (2007) demonstrated a novel technique based on four-wave
mixing in a double-Lambda system, shown in Figure 18a, to eliminate
most of the background light falling on the photodetector.

The experimental setup from Shah et al. (2007) is shown in Figure 18b.
In this experiment, the o-+ light is used to create a dark state (coherence)
in atoms by use of conventional CPT laser modulation. By use of a second
single-frequency laser with opposite circular polarization, the coherence
generated in the atoms is gently probed to stimulate emission of a con-
jugate light field whose frequency is separated from that of the original
probe beam by the ground-state splitting. Through a combination of
spectral and polarization filtering, the power in all of the incident light
fields other than the conjugate field is then largely eliminated. When
the pump beams satisfy the two-photon resonance condition, there is
brightness observed on the photodetector from the incident conjugate
field. When the two-photon condition is not satisfied, the conjugate field
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Figure 18 (a) Level diagram showing the polarizations and tunings of the optical fields
for CPT resonance contrast enhancement using four-wave mixing and a filter cell.

(b) Experimental setup and contrast measurement. From Shah et al. (2007); reproduced
with permission from the Optical Society of America

is not generated, and therefore there is no light incident on the photo-
detector. Experimentally the transmission contrast seen in this way
approaches 95% and is limited only by the efficiency of the optical filter-
ing in the setup.

3.4 Push-Pull Laser Atomic Oscillator

Jau and Happer (2007) have demonstrated a novel technique in which
they show a “mode-locking” type behavior in a laser cavity in the pre-
sence of alkali atoms. In this self-oscillating system, the frequency
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Reprinted figure with permission from Jau and Happer (2007); © 2007 of the American
Physical Society

separation of the spontaneously generated modes is given by the ground
state mp=0— mp=0 transition frequency, introducing the prospects of
operating the system as an atomic clock. The schematic of their experi-
mental setup is shown in Figure 19a.

The basic idea is the following: imagine that all the atoms are initially
prepared in a dark state between the my= 0 hyperfine ground states. The
atoms in the dark state precess at the hyperfine frequency and appear
continuously transparent only to light fields that excite a Lambda system.
Two or more optical modes that are separated by the hyperfine frequency
and have a constant phase relation between them suitable for exciting a
Lambda system are thus the “allowed” cavity modes in the system.
Because of the fixed phase relationship between the optical modes, the
cavity operation is analogous to that in a mode-locked laser. The result is
that the light coupled out of the cavity has a frequency spectrum similar
to that of a frequency comb (see Figure 19b).
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Through the use of two A\/4 wave plates, the optical arrangement in the
cavity was such that the light excites o+ transitions traveling along one
direction and o- transitions when traveling in the opposite direction. The
purpose of this was to prepare atoms in a pure superposition of mg=0
states without the usual fraction in the end state. The length of the cavity
was chosen to be an odd integral multiple of half the hyperfine wave-
length, such that the dark state due to oppositely traveling light fields
remained in phase. This system has the important feature that no LO is
needed to excite the resonance; the system here is an active system and
oscillates at the hyperfine frequency.

A related experiment was described by Akulshin and Ohtsu (1994), in
which an alkali cell was placed in an external cavity providing optical
feedback to a distributed feedback (DBF) laser. A second laser beam,
separated in frequency by approximately the alkali ground-state hyper-
fine frequency, was sent through the cell parallel to the first laser beam. It
was found that the laser with feedback optically locked to the second
laser with a frequency difference exactly equal to the ground-state hyper-
fine splitting. CPT-induced polarization rotation has also been used in a
similar context (Liu et al., 1996).

A number of other self-oscillating systems based on CPT have been
developed (Strekalov et al., 2003, 2004; Vukicevic et al., 2000), in which RF
rather than optical feedback was used to sustain the oscillation.

3.5 The CPT Maser

A CPT maser (Godone et al., 1999; Vukicevic et al., 2000) is an active
frequency standard in which a coherent microwave signal is directly
recovered from the atoms instead of an indirect signal in the form of
change in optical transmission. This approach can also eliminate the need
for an external microwave oscillator for laser modulation. Once the
microwave oscillation is started, it can be sustained indefinitely by use
of the microwaves obtained directly from the atoms in a feedback
configuration.

In a CPT maser, atoms are enclosed in a microwave cavity whose
frequency is tuned close to the difference frequency between the mp=0
hyperfine ground states (see Figure 20). The coherence generated in the
atoms through dark-state excitation couples with one of the cavity modes
to stimulate emission of microwaves by the atoms at the hyperfine
frequency. The microwaves emitted by the atoms can, in turn, be used
to modulate the laser to sustain the maser operation.

A complete CPT maser prototype was demonstrated and evaluated
and an instability of 3x10"'?/,/7 was measured, integrating down to
below 10~ "% at 1 hour, once the linear drift had been removed (Levi et al,,
2004). A variety of noise contributions were also measured, with thermal
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Figure 20 The CPT maser, in which a ground-state atomic coherence is generated
using CPT and the power radiated by the corresponding magnetic moment, is captured
in a microwave cavity. Experimental setup. Reprinted figure with permission from
Vanier et al. (1998); © 1998 of the American Physical Society

noise being the most important at short integration times

and temperature-related effects dominating at long integration times.
Considerable theoretical work was also carried out to understand the
operation of the CPT maser in detail (Godone et al., 2000; Vanier et al.,
1998), as well as a number of interesting independent phenomena related
to its operation and underlying physics (Godone et al., 2002a,b,c,d)

3.6 N-Resonance

A novel alternative to CPT, the N-resonance, was proposed (Zibrov et al.,
2005) and studied subsequently (Novikova et al., 2006a,b). This scheme,
which has its origins in earlier work on multiphoton resonances in alkali
atoms (Zibrov et al., 2002), can be thought of as a modification of the
conventional OMDR technique. Just as in the OMDR technique, atoms
are optically pumped into one hyperfine level with an optical “probe”
field resonant with a transition from the other hyperfine level.

However, instead of exciting the microwave transition by use of a
microwave field, a bichromatic optical field is used, close to Raman
resonance with the microwave transition, but detuned from the optical
transition. When the Raman resonance condition is achieved, atoms are
optically pumped back into the depleted hyperfine level, leading to
increased optical absorption of the pump field. This absorptive resonance
is in contrast with the conventional CPT resonance, in which reduced
absorption is seen when the two-photon condition is satisfied.

Among the advantages of the N-resonance scheme is that unlike CPT
resonance, this scheme produces signals of high contrast (as high as 30%
transmission contrast) on both the D1 and the D2 transitions. Clock in
stabilities of 1.5 x 10719/ \/ 7 have been obtained in *’Rb confined in a cell
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of diameter 2.5 cm. It has also been shown that despite the inherently off-
resonant operation of N-resonance-based atomic clocks, the light shifts
can be canceled to first order by appropriately choosing the intensity in
the pump and the probe beams, allowing the possibility of building an
atomic clock with good long-term stability based on N-resonances. This
scheme still requires that the excited-state hyperfine resonances be
resolved, and hence has the same limitations with respect to buffer gas
pressure as some of the techniques discussed above.

Although in its most general form requiring optical fields at three
unique frequencies, this scheme can be implemented by use of only two
optical fields by allowing a single field to do double duty, both as the
probe field and as one of the legs of the Raman field. An energy-level
diagram of the N-resonance excitation mechanism is shown in
Figure 21a, and the experimental implementation using a single modu-
lated diode laser is shown in Figure 21b. One of the weak sidebands
generated by the modulator serves as the probe and one of the Raman
fields, while the strong optical carrier provides the second Raman field.
An etalon is placed after the cell to attenuate the strong Raman field and
therefore increase the resonance contrast.

3.7 Raman-Ramsey Pulsed CPT

As described above, light shifts play a major role in determining the long-
term stability of vapor cell atomic clocks. In CPT clocks, the presence of the
off-resonant optical modes and an imbalance between the intensities in the
two arms of the Lambda system can cause significant light shifts. A com-
monly used technique to avoid light shifts is to pulse the light fields and
allow the atoms to evolve in the dark. An additional advantage of pulsing
the light fields is that atoms can be prepared in a coherent superposition state
with higher efficiency by use of strong light fields while avoiding power
broadening to a large extent. A pulsed technique for CPTclocks has also been
recently proposed (Zanon et al., 2004b, 2005) and demonstrated (Guerandel
etal., 2007), and it has shown excellent both stability (Boudot et al., 2009) and
a high degree of insensitivity to light shifts (Castagna et al., 2009).

In this technique, the light fields are switched on and off at regular
intervals. The operation of the clock can be understood as follows: during
the first pulse, CPT light fields prepare atoms in a coherent dark state.
After the state preparation is nearly complete, the light fields are turned
off for a period roughly equal to the ground-state relaxation time. During
this period, the atoms freely evolve at the ground-state hyperfine fre-
quency without being perturbed by the light fields.

When the second light pulse is turned on, the hyperfine frequency of
the atoms in the dark is inferred from the initial absorption signal of the light
by the atoms. If the frequency of the microwave oscillator used to modulate
the light fields is the same as that of the atomic hyperfine frequency (in the
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dark), then the atoms appear transparent to the light fields the instant they
are turned on. This is because the microwave modulation on the laser and
the atomic evolution in the dark remain in phase; as a result, the atoms
continue to appear transparent to the light fields. The later part of the second
pulse repumps the fraction of the atoms that relaxed during the period
when the light fields were turned off. The pulsed excitation scheme and
atomic energy level diagram are shown in Figure 22a. Figure 22b shows
experimentally observed Ramsey fringes when the CPT clock is operated in
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Figure 22 Raman-Ramsey excitation of hyperfine clock transitions. (a) Pulsed
excitation scheme and atomic energy spectrum. (b) Raman-Ramsey pulses. Reprinted
figure with permission from Zanon et al. (2005); © 2005 of the American Physical Society

the pulsed mode. The individual fringe width can be narrower than the
width of a zero-intensity continuously-excited CPT resonance if the delay
between successive pulses is greater than the ground-state relaxation time.

The pulsed CPT interrogation scheme has been operated as an atomic
frequency reference and studied in some detail. It was shown that both
the short-term frequency stability and the light shift could be improved
considerably compared to continuous interrogation in the pulsed config-
uration (Castagna et al., 2007). A short-term instability of 7x10~ %/ /7
was obtained, integrating down to 2x107™* at 1000 seconds when
the linear frequency drift was removed. Dominant contributions to the
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short-term instability were amplitude noise on the laser and electronic
noise in the photodetection system.

Recently, “pulsed” vapor cell atomic clocks, conventional OMDR
clocks in which the optical pumping field and microwave field are
applied at different times, have also been the subject of some research
(Godone et al., 2004, 2006a,b). In addition, there has been some considera-
tion of pulsed CPT excitation of cold atom systems in order to eliminate
the buffer gas shifts present in vapor cell clocks (Farkas et al., 2009; Zanon
et al., 2003, 2004a). A novel system based on transient excitation of a
hyperfine coherence and feedforward to correct the LO frequency has
also been investigated (Guo et al., 2009).

3.8 CPT in Optical Clocks

So far we have focused on the role of CPT resonances in microwave
clocks. In recent years, CPT-based atomic clocks operating in the optical
or the terahertz regime have been proposed (Hong et al., 2005; Santra
et al., 2005; Yoon, 2007). Optical clocks have the great advantage over
microwave clocks that the transition frequencies, and hence the Q-factors
of the resonances, are orders of magnitude higher. In order to obtain
narrow line widths, forbidden transitions such as the intercombination
lines in alkaline earth atoms are often used. Some of these transitions,
such as the 'Sy« P, line at 698 nm in bosonic 188Gy are forbidden to any
order and cannot be accessed by use of single-photon excitation. It is,
however, possible to observe the transition indirectly by use of two-
photon (CPT) excitation as shown in Figure 23. The line width of the

Percentage in ground-state
population transfer

Raman detuning ér/2x (Hz

Figure 23 CPT excitation of intercombination transitions in alkaline earth atoms.

{a) Atomic level structure and optical fields. (b} Predicted Raman lineshape. Reprinted
figure with permission from Zanon-Willette et al. (2006); © 2006 of the American
Physical Society
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transition can be conveniently tuned from megahertz to below 1Hz by
controlling the power broadening of this transition. It has been predicted
that the accuracy of such a clock can be better than 107", To eliminate
light shifts, a pulsed CPT scheme similar to the scheme proposed for
microwave clocks (see pulsed CPT section above) has been proposed and
demonstrated (Zanon-Willette et al., 2006).

4. ADDITIONAL CONSIDERATIONS

4.1 Light-Shift Suppression

Several interesting techniques have been developed to reduce the effects
of light shift on the long-term instability of vapor cell atomic clocks. One
such scheme involves the use of the multiplicity of sidebands created
when the injection current of a diode laser is modulated (Zhu & Cutler,
2000). Current modulation of a diode laser results in both AM and FM
modulation of the output optical field. As the modulation index is
increased, a comb of optical frequencies is therefore produced, separated
from the carrier by multiples of the modulation frequency. Each of these
optical frequencies produces a light shift for each of the ground-state
hyperfine frequencies, and each shift can be either positive or negative,
depending on the detuning of the specific frequency from the relevant
transition. By adjusting the modulation index, it is therefore possible to
modify the light shift and reduce it to near zero. A calculation from Zhu
and Cutler (2000) is shown in Figure 24a, indicating that for two different
operating conditions, the first-order light shift is reduced to zero at a
modulation index of about 2.5. Measurements shown in Figure 24b con-
firm the effect. A frequency instability of about 10~"> was obtained at an
integration period of 1000 seconds by use of this technique (Zhu & Cutler,
2000). It should be noted that, in principle, this same technique can be
used to reduce or eliminate the light shift in OMDR clocks (Affolderbach
et al., 2003). However, the required modulation of the laser injection
current would have to be added to this configuration, while this is
present quite naturally in the CPT configuration.

The technique above allows for the modulation index to be set such
that small changes in the light intensity do not (to first order) affect the
clock frequency. Such changes in light intensity can occur, for example, if
the laser generating the optical fields ages in some way. However, this
aging can also result in a change in the electrical impedance of the laser. If
the laser impedance changes, the coupling of the RF modulation field to
modulation on the optical field in general changes. As shown in
Figure 24b, a change in the coupled RF power by 1 dB can result in a
frequency shift on the order of 1077,
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Figure 24 Suppression of light shifts using optimized modulation of a diode laser.
(a) Theoretical predictions of the light shift as a function of madulation index.

(b) Measurements of the frequency shift as a function of laser beam intensity for
several values of the modulation index. A local minimum is observed for 3 ~ 2.33 and
I~ 40 p}go:goW/ecm?. Operation of the clock at this setpoint should result in improved
long-term frequency stability when light shifts dominate. Reprinted figure with
permission from Zhu and Cutler (2000)

In order to address the effects of such changes in laser impedance, a
modification of the RF modulation technique was suggested (Shah et al.,
2006a). After adjusting the RF power to the zero-light-shift point, the
power of the light field is modulated at a low frequency (17 Hz in this
experiment) by use of a variable attenuator. This modulation in intensity
will cause a corresponding change in the frequency of the CPT resonance if
the zero-light-shift condition is not satisfied. Assuming that the synthesizer
frequency is more stable than the CPT resonance at the modulation fre-
quency, the modulated frequency shift can be detected through the normal
comparison of synthesizer frequency to CPT resonance frequency. The RF
power can then be corrected to maintain the zero-light-shift condition. A
schematic of the optical/electronic arrangement is shown in Figure 25.
Under exaggerated conditions, an improvement in the insensitivity of the
output frequency to RF impedance (as adjusted by modulating the laser
temperature) by a factor of 10 is obtained (Shah et al., 2006a).

4.2 Laser Noise Cancellation

One of the problems frequently encountered in laser-based atomic inter-
rogation is the conversion of laser frequency noise to current noise in the
detector output by the optical resonance. The laser frequency noise,
which otherwise cannot be seen by the photodetector, appears because
the atoms act as a sharp discriminator of the optical frequency in the
vicinity of the optical resonance. The amount of noise that appears on
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Figure 25 Schematic of a technique to maintain the RF power at the zero-light-shift
point as the laser impedance ages. Reprinted figure with permission from Shah et al.
(2006a); © 2006 of the Optical Society of America

the photodetector signal depends on the amount of frequency noise
present on the light (the laser line width), the width of the optical
resonance, and the tuning of the laser frequency.

There are several solutions with varying complexity that can be used to
reduce this excess laser frequency to photodetector current noise. Among
the simplest is to choose a laser with a narrow line width. However, this is
not always feasible for commercial or other technical reasons. Another
simple alternative is to broaden the optical resonance using higher buffer
gas pressure which reduces the slope of frequency discrimination by the
optical resonance. Here again, there are limitations since buffer gas pressure
cannot be arbitrarily increased without affecting the clock performance. For
example, in the regime in which most CPT/OMDR clocks operate, one of
the immediate consequences of using higher buffer gas pressure is that the
optical depth of the atomic medium at a given temperature is correspond-
ingly reduced. To compensate for the loss in the optical depth, the atomic
vapor pressure can be increased by increasing the cell temperature. But this
increases the width of the ground-state resonance by increasing alka-
li-alkali spin-exchange contribution to the ground-state relaxation.

Another alternative to reducing the laser noise is to use external means
such as real-time laser noise cancellation using differential detection. This
was accomplished, for example, by Gerginov et al. (2008). Here, a split
wave plate was used such that light in one half of the vapor cell was
circularly polarized and light in the other half was linearly polarized (see
Figure 26). The circular and the linear components of the light beam were
collected on two spatially separated photodetectors. While the CPT
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Rb cell + shield

Figure 26 Experimental setup used to reduce the laser noise. VCSEL: L, lens; P,
polarizer; ND, neutral density filter; M4, quarter-wave plate; G, glass plate ¢+; PD,
photodiode. Reprinted figure with permission from Gerginov et al. (2008); © 2008 of
IEEE

resonance is excited in only the first part of the vapor cell and thus seen
only by PD1, the laser noise appears in both the channels. Subtracting the
signals from the two photodetectors thus removes the laser noise without
affecting the CPT resonance seen using PD1. Similar techniques have also
been developed for OMDR clocks (Deng, 2001; Mileti et al., 1998; Rosen-
bluh et al., 2006).

Yet another technique for laser noise cancellation was proposed and
demonstrated by Rosenbluh et al. (2006). In this technique, the noise
originating with the laser was reduced and the effects of optical pumping
to the dark end state were simultaneously eliminated. A CPT resonance
was excited using a combination of copropagating left and right circu-
larly polarized light obtained from a common laser. A relative path delay,
equal to one quarter of the microwave wavelength, was introduced
between the right and the left circular components of the light beam.
After propagating the light through the vapor cell, the two components
were separated using an arrangement of a quarter-wave plate (\/4) and a
polarizing beam splitter; each of the components was separately moni-
tored using photodetectors. Due to the A/4 path delay between the two
polarization components of the light beam that excite the CPT resonance,
the phase of the coherent dark state that is excited by the two beams
combined is partially shifted in phase with respect to the individual
polarization components of the beam. This phase shift, which has equal
but opposite signs for the two light components, introduces an asymme-
try into the CPT resonance lineshape by adding a dispersive component
to an otherwise Lorenztian profile. While the CPT resonance seen by
adding the signals from both photodetectors still has a purely Lorenztian
lineshape (Figure 27a), the difference signal is purely dispersive
(Figure 27b). Because differential detection is employed in the latter
case, the common mode laser noise is removed, without any effect on
the overall strength of the CPT resonance signal. It can be seen even from
the oscilloscope traces of the CPT resonances that the trace in Figure 27b
has lower noise compared to Figure 27a, in which differential detection is
not employed.
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Figure 27 Lineshapes of atomic-coherence-induced resonances for phase-shifted,
two-beam excitation. (a) One beam blocked, conventional CPT resonance, (b) both
beams present, signals from balanced photodetectors subtracted. Reprinted figure
with permission from Rosenbluh et al. (2006); © 2006 of the Optical Society of America

4.3 Light Sources for Coherent Population Trapping

A number of types of light sources have been used to generate the
bichromatic optical field needed to excite hyperfine CPT resonances.
Although the coherence requirements of the light source are not nearly
as stringent as in optical spectroscopy, the lamps currently used in con-
ventional atomic clocks appear to be too incoherent to generate CPT
resonances of any reasonable contrast. The requirement on the coherence
is nominally that the line width of the light source be smaller than the
buffer gas broadened optical transitions in the alkali atoms, typically
ranging from a few hundred megahertz to several tens of gigahertz.
Most lasers satisfy this requirement, which allows great latitude in laser
choice to optimize the system with respect to other criteria.

The earliest experiments on CPT were carried out using multimode
dye lasers (Alzetta et al., 1976). Since then, a variety of more sophisticated
light sources have been used, including acousto-optically modulated dye
lasers (Thomas et al., 1982); injection-current-modulated edge-emitting
diode lasers (Hemmer et al., 1993; Levi et al., 1997); phase-locked external
cavity diode lasers (ECDLs) (Brandt et al., 1997; Zanon et al., 2005) or
edge-emitting lasers (Zhu & Cutler, 2000); injection-current-modulated
vertical-cavity surface-emitting lasers (VCSELs) (Affolderbach et al,
2000; Braun et al., 2007; DeNatale et al., 2008; Kitching et al., 2000; Lutwak
et al., 2003; Serkland et al., 2007; Youngner et al., 2007); and electro-
optically modulated ECDLs (Jau et al., 2004a). Each of these light sources
has relative merits and detriments. For example, VCSELs have very low
threshold currents, making them ideal for low-power instruments based
on CPT, but suffer from inflexibility with respect to the modulation side-
band spectrum. The spectrum of phase-locked ECDLs can be controlled
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very precisely, but the locking is difficult to implement experimentally.
Acousto- and electro-optically modulated sources can have nearly perfect
amplitude modulation with no associated phase modulation, but are
large, cumbersome, and expensive.

Novel lasers, developed for CPT experiments, include VCSELs in an
extended cavity (Gavra et al., 2008), and very short edge emitting lasers
with a low-reflectivity coating on one facet (Kargapoltsev et al., 2009).
These lasers were developed to have high modulation bandwidths without
the need for even a modest amount of output power (in many experiments
10uW of optical power is sufficient to excite high-contrast resonances).

4.4 Dark Resonances in Thin Cells

Considerable recent work has focused on the optical properties of alkali
atoms confined in cells for which the longitudinal dimension is such that
the transit time across the cell is shorter than the optical relaxation period
(Briaudeau et al., 1996). In these cells, atoms in velocity classes perpendi-
cular to the cell walls do not build up appreciable optical coherence
before the wall-induced relaxation and therefore do not contribute to
the optical absorption. By contrast, atoms in velocity classes parallel to
the cell walls do not collide with the walls as frequently and hence do
build up coherence and exhibit corresponding absorption. Some recent
work in this area has focused on the understanding of CPT resonances
that are observed in these media (Failache et al., 2007; Fukuda et al., 2005;
Petrosyan & Malakyan, 2000; Sargsyan et al., 2006). While the CPT line
widths are typically very large (greater than 1MHz), some work is
proceeding to evaluate how these systems might be used in compact
atomic clocks (Lenci et al., 2009).

4.5 The Lineshape of CPT Resonances: Narrowing Effects

The simplest theories of the CPT resonance lineshape typically involve
collisional or diffusion-induced relaxation processes or radiative relaxa-
tion. These relaxation mechanisms result in the typical Lorentzian line
width found for most spectroscopic signals. However, there are a number
of physical effects that occur in real experiments that can distort the CPT
resonance lineshape. It has been found, for example, that if the transverse
intensity distribution of the excitation light field is non-uniform, or if the
beam diameter is smaller than the diffusion length of the atoms over the
ground-state relaxation time scales, then a narrowing of the resonance
near its center can result (Levi et al., 2000; Taichenachev et al., 2004a,
2005a) to form a pointed resonance lineshape. This lineshape can also be
explained by diffusion-induced narrowing (Xiao et al., 2006, 2008) based
on the Ramsey effect, in which atoms diffuse out and then re-enter the
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excitation beam before relaxing. Finally, propagation effects are known to
cause modifications of the resonance line width compared to that
observed in an optically thin medium (Godone et al., 2002d). The optical
absorption coefficient is smaller when the CPT resonance condition is
satisfied, and because the absorption in an optically dense medium is
nonlinear as a function of propagation length, significantly more light
may be transmitted when on resonance compared to when away from
resonance, producing an artificial narrowing effect. However, it remains
unclear whether these unusual lineshapes can be effectively used to
improve the performance of a CPT atomic clock in some way.

5. CONCLUSIONS AND OUTLOOK

After considering the many possibilities for improving CPT resonances
for use in atomic clocks, it is perhaps important to ask to what extent
these techniques have impacted the design and performance of actual
devices. To some extent this question is premature, as it often takes
considerable time for new knowledge, even if it allows clear performance
improvements, to find its way into realized systems implemented in the
laboratory or in a commercial setting. The cost, time, and risk associated
with implementing a new technique to replace, for example, an already
proven commercial instrument or an already-operating laboratory instru-
ment are often considered too high. In addition, until experiments are
engineered at a level that their importance emerges, issues believed to be
ultimately important, such as the effects of the light shift on the long-term

stability of the clock, are often masked by other more technical effects, |

such as temperature-induced shifts. It is therefore often difficult to estab-
lish a clear measure of the improvements certain techniques will allow
[see, for example, the work by Shah et al. (2006a)].

However, CPT as a whole has now been not just successful for labora-
tory instruments, but appears to be on the verge of commercial success
(DeNatale et al., 2008; Deng, 2008; Lutwak et al., 2007; Vanier et al., 2005;
Youngner et al., 2007). In particular, CPT has been shown to be the
method of choice for microfabricated vapor cell frequency standards.
This is interesting because comparisons of CPT techniques to conven-
tional OMDR techniques for vapor cell frequency references (Kitching
et al., 2002; Lutwak et al., 2002; Vanier, 2001b, 2005) have suggested that
there is no clear advantage to be gained through the use of CPT with
respect to short-term stability. From a technical viewpoint, the biggest
strengths of the CPT approach at present therefore appear to be that

(a) the physics package design is simple to implement, and (b) that the |

considerable work over the last 10 years on miniaturized CPT frequency
references has clearly established the technical viability of this approach.
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While it remains possible that highly miniaturized frequency references
based on OMDR will ultimately be competitive with their CPT counter-
parts, considerable work is needed to develop the OMDR approach
further for miniaturized devices. One additional, and perhaps over-
looked, advantage of CPT is that the resonances can be excited by use
of modulation at a subharmonic of the hyperfine frequency. This allows
the LO to be placed in close proximity to the physics package without
having radiated RF power interfere with the atomic transition.

Probably the most important improvement among the techniques
described above has been the use of the D1 line rather than the D2 line
to excite the resonances. The D2 line was used initially because of the
availability of commercial diode lasers at the 852 nm D2 transition of Cs.
The improvements gained by using the D1 line have, to some extent,
motivated the development of new lasers, and it now appears that (a) the
use of the D1 line is clearly superior with respect to the short-term
stability and (b) that there is no significant disadvantage to this approach.
Certain other design improvements focused on improving the resonance
contrast, such as the end-resonance technique, push-pull optical pump-
ing, and the linear polarization techniques, continue to appear promising
in principle, but work is needed to quantify the level of improvement in a
real clock experiment. The additional system complexity and correspond-
ing impact on reliability will also be a factor in determining the extent to
which these techniques will be used in real-world instruments. Techni-
ques to reduce the light shift, such as pulsed CPT and sideband spectrum
engineering, are expected to be important for future generations of CPT
clocks, for which the engineering has progressed to the point where
technical limitations to the long-term instability have been suppressed.

Whatever the outcome from an instrumentation perspective, it is clear
that the understanding of CPT as it applies to atomic clocks has advanced
considerably over the last decade.
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