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1 Introduction

Most chapters of this monograph focus on trapping and manipulating neutral
atoms with magnetic and optical fields. In this chapter, we discuss the trapping
of atomic ions. This is of current high interest because individual ions can be
the physical representations of qubits for quantum information processing [1].
For recent reviews see [2, 3]. The goals are similar to those of neutral atom
traps in that we wish to create microfabricated structures to trap, transport, and
arrange ions in an array. Microfabrication holds the promise of forming large
arrays of traps that would allow the scaling of current quantum information
processing capabilities to the level needed to implement useful algorithms [4–
7].

There are two primary types of ion traps used in low energy atomic physics:
Penning traps and Paul traps. In a Penning trap, charged particles are trapped
by a combination of static electric and magnetic fields [8, 9]. In a Paul trap, a
spatially varying sinusoidally oscillating electric field, typically in the radio-
frequency (rf) domain, confines atomic or molecular ions in space [10]. In this
review only the Paul type will be considered.

Neutral atom traps operate by a coupling between external trapping fields
and atoms’ electric or magnetic moments. Trap depths of a few kelvins are
common. In ion traps, an ion is trapped by a coupling between the applied
electric trapping fields and the atom’s net (or overall) charge. Typical ion trap
depths are 1 eV. This coupling does not depend on the ion’s internal electronic
state, leaving it largely unperturbed.

We begin this chapter with an introduction to the dynamics of ions confined
in Paul traps based on the pseudopotential approximation. Subsequent topics
include numeric and analytic models for various Paul trap geometries, a list
of considerations for practical trap design and finally an overview of micro-
fabricated trapping structures. A discussion of future directions concludes this
chapter.

2 Radio-frequency (rf) ion traps

In this section we discuss the equations of motion of a charged particle in a spa-
tially inhomogeneous radio-frequency (rf) field based on the pseudopotential
approximation model. We then present examples of suitable electrode geome-
tries.
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2.1 Motion of ions in a spatially inhomogeneous rf field

Most schemes for quantum information processing with trapped ions are based
on a linear rf trap shown schematically in fig. 1a. This trap is essentially a lin-
ear quadrupole mass filter [10] with its ends plugged by static potentials [11].
The radial confinement (the x-y plane in fig. 1a) is provided by an rf potential
applied to two of the electrodes with the other electrodes held at rf ground. In
this linear geometry, the rf potential cannot generate full 3D confinement, so
static potentials V1 and V2 applied to control electrodes provide axial (z axis)
confinement. We will assume the axial trapping fields are relatively weak so
that the accompanying static radial fields do not significantly perturb the radial
trapping.

Applying a potential of V0 cos(Ωrft) to the rf electrodes while grounding the
other electrodes (V1 = V2 = 0), the rf potential near the geometric center of the
four rods takes the form

Φ ≈ 1
2
V0 cos(Ωrft)(1 +

x2 − y2

R2
), (1)

whereR is a distance scale that is approximately the distance from the trap axis
to the nearest surface of the electrodes [4, 10, 11]. The resulting electric field is
shown in fig. 1b. There is a field null at the trap center; the field magnitude
increases linearly with distance from the center.

We can think of the rf electric field as analogous to the electric field from the
trapping laser in an optical dipole trap [4, 12]. For a neutral atom, the laser’s
electric field induces a dipole moment. If the electric field is inhomogeneous,
the force on the dipole, averaged over one cycle of the radiation, can give a
trapping force. For detunings red of the atom’s resonant frequency ω0, the
resulting potential is a minimum at high fields, while for detunings blue of ω0

it is a minimum at low fields. An ion, however, is a free particle in the absence
of a trapping field and its eigenfrequency is zero. The rf trapping potential is
therefore analogous to a blue detuned light field and the ion seeks the position
of lowest intensity. In the case of eq. (1), that corresponds to x = y = 0.

The motion for an ion placed in this field is commonly treated in one of two
ways: as an exact solution of the Mathieu differential equation or as an approx-
imate solution of a static effective potential called the ‘pseudopotential’. The
Mathieu solutions provide insights on trap stability and high frequency mo-
tion; the pseudopotential approximation is more straightforward and is conve-
nient for the analysis of trap designs.

We define the pseudopotential that governs the secular motion as follows
[13]. The motion of an ion in the rf field is a combination of fast ‘micromotion’
at the rf frequency on top of a slower ‘secular’ motion. For a particle of charge
q and mass m in a uniform electric field E = E0 cos(Ωrft), the ion motion (ne-
glecting a drift term) takes the form

x(t) = −xµm cos(Ωrft), (2)

where xµm = qE0/(mΩ2
rf) is the amplitude of what we will call micromotion.

If the rf field amplitude has a spatial dependence E0(x) along the x direction,
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Figure 1: (a) Schematic drawing of the electrodes for a linear Paul trap. A
common rf potential V0 cos(Ωrft) is applied to the two continuous electrodes,
as indicated. The other electrodes are held at rf ground through capacitors (not
shown) connected to ground. In (b), we show the radial (x-y) instantaneous
electric fields from the applied rf potential. Contours of the pseudopotential
due to this rf-field are shown in (c). A static trapping potential is created along
the z-axis by applying a positive potential V1 > V2 (for positive ions) to the
outer segments relative to the center segments.

there is a nonzero net force on the ion when we average over an rf cycle:

Fnet = 〈qE(x)〉 ≈ −1
2
q
dE0(x)
dx

∣∣∣∣
x→xs

xµm = − q2

4mΩ2
rf

dE2
0(x)
dx

∣∣∣∣
x→xs

= − d

dx
(qΦpp),

(3)
where x is evaluated at what we designate as the secular position xs, and the
pseudopotential Φpp is defined by

Φpp(xs) ≡
1
4
qE2

0(xs)
mΩ2

rf

. (4)

We have made the approximation that the solution in eq. (2) holds over an rf
cycle and have dropped terms of higher order in the Taylor expansion of E0(x)
around xs. For regions near the center of the trapping potential, these approx-
imations hold. In three dimensions, we make the substitution E2

0 → |E|2 =
E2

0,x + E2
0,y + E2

0,z . Note that the pseudopotential depends on the magnitude
of the electric field, not its direction.

For the quadrupole field given in eq. (1), the pseudopotential is that of a 2D
harmonic potential (see fig. 1c):

qΦpp =
1
2
mω2

r(x2 + y2), (5)

where ωr ' qV0/(
√

2mΩR2) is the resonant frequency. As an example, for
24Mg+ in a Paul trap with V0 = 50 V, Ωrf/2π = 100 MHz and R = 50 µm,
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which are typical parameters for a microfabricated trap, the radial oscillation
frequency is ωr/2π = 14 MHz.

The rf pseudopotential provides confinement of the ion in the radial (x-y)
plane. Axial trapping is obtained by the addition of the static control potentials
V1 and V2, as shown in fig. 1a.

For ωz � ωr, multiple ions trapped in the same potential well will form a
linear ‘crystal’ along the trap axis due to a balance between the axial trapping
potential and the ions’ mutual Coulomb repulsion. The inter-ion spacing is
determined by the axial frequency (ωz). The characteristic length scale of ion-
ion spacing is

s =
(

q2

4πε0mω2
z

)1/3

. (6)

For a three-ion crystal the adjacent separation of the ions is s3 = (5/4)1/3s [4].
For example, s3 = 5.3 µm for 24Mg+ and ωz/2π = 1.0 MHz. For multiple ions
in a linear Paul trap, ωz is the frequency of the lowest vibrational mode (the
center of mass mode) along the trap axis.

A single ion’s radial motion in the potential given by eq. (5) can be decom-
posed into uncoupled harmonic motion in the x and y directions, both with the
same trap frequency ωr. Because the potential is cylindrically symmetric about
z, we could choose the decomposition about any two orthogonal directions,
called the principle axes. We will see in section 3.1 when discussing Doppler
cooling that we need to break this cylindrical symmetry by the application of
static electric fields. In that case, the choice of the principle axes becomes fixed
with corresponding radial trapping frequencies ω1 and ω2, one for each princi-
ple axis.

2.2 Electrode geometries for linear quadrupole traps

Designs for miniaturized ion traps conserve the basic features of the Paul trap
shown in fig. 1. Figure 2 shows a few geometries that have been experimentally
realized. All these geometries generate a radial quadratic potential near the
trap axis, though the extent of deviations from the ideal quadrupole potential
away from the axis will depend on the design.

In one particular geometry, the electrodes all lie in a single plane, as shown
in fig. 2d with the ion suspended above the plane [14–20]. Trapping in such
surface electrode (SE) traps is possible over a wide range of geometries, al-
beit with 1/6 to 1/3 the motional frequencies and 1/30 to 1/200 the trap depth
of more conventional quadrupolar geometries at comparable rf potentials and
ion-electrode distances [14].

Advantages of the SE trap geometry over the other geometries shown in
fig. 2 include easier fabrication and the possibility of integrating control elec-
tronics on the same trap wafer [6]. A SE trap at cryogenic temperature was
demonstrated at MIT in 2008 [19].

Research on SE trap designs is ongoing and holds promise to yield complex
geometries that would be difficult to realize in non-surface electrode designs.
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(b)(a) (c) (d)

Figure 2: Examples of microfabricated trap structures: (a) two wafers mechani-
cally clamped over a spacer [21–25], (b) two layers of electrodes fabricated onto
a single wafer [26], (c) three wafers clamped with spacers (not shown) [27], and
(d) surface electrode construction [14–20].

3 Design considerations for Paul traps

In this section, we will discuss the requirements that need to be addressed
when designing a practical ion trap.

3.1 Doppler cooling

For Doppler laser cooling of an ion in a trap, only a single laser beam is needed;
trap strengths far exceed the laser beam radiation pressure. The cooling is
offset by heating from photon recoil. Therefore, to cool in all directions, the
Doppler cooling beam k-vector must have a component along all three prin-
cipal axes of the trap [28]. This also implies that the trap frequencies are not
degenerate, otherwise one principal axis could be chosen normal to the laser
beam’s k-vector.

Meeting the first condition is usually straightforward for non-SE type traps,
where access for the laser beam is fairly open (see fig. 3). For SE traps, where
laser beams are typically constrained to run parallel to the chip surface, care
has to be taken in designing the trap so that neither radial principle axis is
perpendicular to the trap surface. Alternately, for SE traps, we could bring the
Doppler laser beam at an angle to the surface but the beam would have to strike
the surface. This can cause problems with scattered light affecting detection of
the ion and with charging of exposed dielectrics (see section 3.3).

If any two trap frequencies are degenerate, then the trap axes in the plane
containing those modes are not well defined and the motion in a direction per-
pendicular to the Doppler laser beam k-vector will not be cooled and will be
heated due to photon recoil. The axial trap frequency can be set independently
of the radial frequencies and can be chosen to prevent a degeneracy with either
of the radial modes. However, the two radial modes could still be degenerate.
There are several ways to break this degeneracy, but usually the axial trapping
potential is sufficient. When we apply an axial trapping potential, Laplace’s
equation forces us to have a radial component to the electric field. In general,
this radial field is not cylindrically symmetric about z and will distort the net
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Figure 3: Doppler cooling with a single laser beam. The dashed lines are
equipotential curves for the pseudopotential. The overlap with the axial di-
rection (z) is fairly straightforward, as in (a), but care has to be taken that the
orientation of the two radial modes ω1 and ω2 does not place one of the mode
axes perpendicular to the laser beam, as shown in (b). For efficient cooling, the
axes must be at an angle with respect to the laser beam k-vector (c).

trapping potential, as shown in fig. 4, thereby lifting the degeneracy of the ra-
dial frequencies. If this is not sufficient, offsetting all the control electrodes by
a common potential with respect to the rf electrodes will result in a static field
that has the same spatial dependence (that is the same function of x and y) as
the field generated by the rf electrodes. This field, shown in fig. 1b, can be used
to split the radial frequencies. We will refer to the axes’ orientation resulting
from the offset of all control electrodes as the ‘intrinsic’ trap axes since it does
not depend on the segmentation of the control electrodes, but only on the over-
all geometry of the rf and control electrodes. The static axial potential might
or might not define trap axes aligned with the intrinsic axes, but, overall, the
control electrodes and axial potential can be configured to prevent either ra-
dial modes from being normal to the surface in an SE trap. Furthermore, in
some cases additional control electrodes are designed into the trap to lift the
degeneracy independent of both the axial potential and the intrinsic axes.

E
Φpp

E ω1

ω2

Φpp

(a) (b)

z

(axial) (radial)

(c)

Figure 4: The degeneracy in the radial trap modes can be lifted by the radial
component of the static axial confinement field. In (a), the quadrupole field
is shown overlaid on the cylindrically symmetric pseudopotential. The radial
component of the electric field (b) deforms the net potential seen by the ion (c),
breaking the cylindrical symmetry.
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3.2 Micromotion

If the pseudopotential at the equilibrium position of a trapped ion is nonzero,
then the ion motion will include a persistent micromotion component at fre-
quency Ωrf . There are two mechanisms that can generate a nonzero equilib-
rium pseudopotential. As the trapping structures become more complicated
and the symmetry of the simple Paul trap in fig. 1 is broken, there can be a
component of the rf field in the axial direction at the pseudopotential mini-
mum; that is, the pseudopotential minimum need not be a pseudopotential
zero. Since this effect is caused by the geometry of the trap, we refer to the
resulting micromotion as ‘intrinsic’ micromotion [29]. Secondly, if there is a
static electric field at the pseudopotential zero, the equilibrium position of an
ion will be shifted away from the pseudopotential minimum. Because shim
potentials can be applied to the control electrodes to null these fields [29], the
micromotion due to this mechanism is called ‘excess’ micromotion.

Both intrinsic and excess micromotion can cause problems with the laser-
ion interactions, such as Doppler cooling, ion fluorescence, and Raman tran-
sitions [4, 29]. An ion with micromotion experiences a frequency-modulated
laser field due to the Doppler shift. In the rest frame of the ion, this modula-
tion introduces sidebands to the laser frequency (as seen by the ion) at integer
multiples of Ωrf and reduces the laser beam’s intensity at the carrier frequency,
as shown in fig. 5. The strength of these sidebands is parametrized by the mod-
ulation index β, given by

β =
2πxµm
λ

cos θ (7)

where xµm is the micromotion amplitude, λ is the laser wavelength, and θ
is the angle the laser beam k-vector makes with the micromotion. For laser
beams tuned near resonance, ion fluorescence becomes weaker and can disap-
pear entirely. As another example, when β = 1.43, the carrier and first mi-
cromotion sideband have equal strength. For β < 1, the fractional loss of on-
resonance fluorescence is approximately β2/2. As a rule of thumb, we aim for
β < 0.25, which corresponds to a drop of less than five percent in on-resonant
fluorescence.

Ωrf 2Ωrf−Ωrf−2Ωrf Detuning

Fl
u

o
re

sc
en

ce β=0

β=1

0

Figure 5: In the rest frame of the ion, micromotion induces sidebands of a
probing laser. Here, the monochromatic laser spectrum has been convoluted
with the atomic linewidth.
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For a given static electric field Edc in the radial plane, an ion’s radial dis-
placement xd from the trap center and the resulting excess micromotion ampli-
tude xµm are

xd =
qEdc

mω2
r

, xµm '
√

2
wr
Ωrf

xd, (8)

where ωr is the radial trapping frequency.
Assume 24Mg+, Ωrf/2π = 100 MHz and ωr/2π = 10 MHz. A typical SE

trap with R ∼ 50 µm and an excess potential of 1 V on a control electrode
will produce a radial electric field at the ion of ∼ 500 V/m. The resulting
displacement is xd = 500 nm and the corresponding micromotion amplitude
is xµm = 70 nm. This results in a laser modulation index of β = 1.14.

Stray electric fields can be nulled if the control electrode geometry permits
application of independent compensation fields along each radial principle
axis. For the Paul trap in fig. 1, a common potential applied to the control
electrodes can only generate a field at the trap center that is along the diagonal
connecting the electrodes. We can compensate for other directions by apply-
ing, for example, a static potential offset to one of the rf electrodes or by adding
extra compensation electrodes.

There are several experimental approaches to detecting and minimizing ex-
cess micromotion [29]. One technique uses the dependence of the fluorescence
from a cooling laser beam on the micromotion modulation index. The micro-
motion can be minimized by maximizing the fluorescence when the laser is
near resonance and minimizing the fluorescence when tuned to the rf side-
bands.

Intrinsic micromotion can also be caused by an rf phase difference φrf be-
tween the two rf electrodes. A phase difference can arise due to a path length
difference or a differential capacitive coupling to ground for the leads supply-
ing the electrodes with rf potential [20,29]. We aim for β < 0.25 (see section 3.2)
for typical parameters, which requires φrf < 0.5◦.

3.3 Exposed dielectrics

Exposed dielectric surfaces near the trapping region can pose a problem due
to charging of these surfaces and resulting stray electric fields. Charging can
be caused by photo-emission by the probe laser or from electron sources such
as those used for loading ions into the traps. Depending on the resistivity of
the dielectric, these charges can remain on the surfaces for minutes or longer,
requiring time-dependent micromotion nulling or waiting a sufficient time for
the charge to dissipate.

Surface electrode traps can be particularly prone to this problem. The metal-
lic trapping electrodes are often supported by an insulating substrate and the
spaces between the electrodes expose the substrate. The effect of charging these
regions can be mitigated by increasing the ratio of electrode conductor thick-
ness to the inter-electrode spacing.

9
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Figure 6: Model used for estimating the effect of stray charging. We assume
that R� a and t ≥ a/π.

Figure 6 illustrates a model for estimating how thick electrodes can sup-
press the field from a strip of exposed substrate charged to a potential Vs. The
sidewalls are assumed conducting and grounded. Along the midpoint of the
trench the potential drops exponentially with height [30]. Using this solution
to relate Vs to the potential at the top of the trench, and employing the tech-
niques described in section 6.2 to relate the surface potential to a field at the
ions, we obtain an approximate expression for the field seen by the ion:

|E| ' aV

πR2
×
{

1, t = 0
4
π e
−πt/a, t ≥ a

π ,
(9)

where a is the width of the exposed strip of substrate, t is the electrode thick-
ness, R is the distance from the trap surface to the ion, and we have assumed
R � a. Thus, the effect of the stray charges drops off rapidly with the ratio of
electrode thickness to gap spacing.

3.4 Loading ions

Ions are loaded into traps by ionizing neutral atoms as they pass through the
trapping region. The neutral atoms are usually supplied by a heated oven but
can also come from background vapor in the vacuum or laser ablation of a
sample.

It is necessary that the neutral atom flux reach the trapping region but not
deposit on insulating spacers, which might cause shorting between adjacent
trap electrodes. In practice, this is accomplished by careful shielding and, in
some SE traps, undercutting of electrodes to form a shadow mask (see fig. 18).
Alternately, for SE traps, a hole machined through the substrate can be used to
direct neutral flux from an oven on the back side of the wafer to a small region
of the trap, preventing coating of the surface. This is called backside loading
and has been demonstrated in several traps (see section 7).
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Figure 7: Figure showing typical filtering and grounding of a trap control elec-
trode. Inside the vacuum system are low pass RC filters which reduce noise
from the control potential source and provide low impedance shorts to ground
for the rf coupled to the control electrodes by stray capacitances Cs � Cf . The
RC filters typically lie inside the vacuum system, within 2 cm of the trap elec-
trodes. The control potential is referenced to the trap rf ground and is supplied
over a properly shielded wire.

3.5 Electrical connections

The control potentials and rf trapping potentials are delivered to the trap elec-
trodes by wiring that includes conducting traces on the trap substrate. Care is
needed to avoid several pitfalls.

The high-voltage rf potential is typically produced with resonant rf trans-
formers [31–33]. Rf losses in a microtrap’s electrodes or insulating substrate
can degrade the resonator (loaded) quality factor (QL) and can cause ohmic
heating of the microtrap itself. This can be be mitigated by use of low-loss insu-
lators (for example, quartz or alumina) and decreasing the capacitive coupling
of the rf electrodes to ground through the insulators. Typical rf parameters are
Ωrf/2π = 10 to 100 MHz, Vrf ' 100 V and QL ' 200.

The rf electrodes have a small capacitive coupling Cs to each control elec-
trode (typically less than 0.1 pF), which can result in rf potential on the control
electrodes. This rf potential needs to be shunted to ground by a capacitor Cf
as shown in fig. 7. A low-pass RC filter (typically R = 1 kΩ and Cf = 1 nF )
on each control electrode is used to filter noise introduced by the externally-
applied control electrode potentials. The impedance of the lines between the
control electrodes and Cf should be low or the rf shunting to ground will be
compromised. Proper grounding, shielding and filtering of the electronics sup-
plying the control electrode potentials are also important to suppress pickup
and ground loops (which can cause motional heating; see section 3.6).

3.6 Motional heating

Doppler and Raman cooling can place a trapped ion’s harmonic motion into
the ground state with high probability [4, 34–36]. If we are to use the internal
states of an ion to store information, we must turn off the cooling laser beams
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during that period. Unfortunately, the ions do not remain in the motional
ground state and this heating can reduce the fidelity of operations performed
with the ions. One source of heating comes from laser interactions used to
manipulate the electronic states [37]. Another source is ambient electric fields
that have a frequency component at the ion’s motional frequencies. We expect
such fields from the Johnson noise on the electrodes [4, 38–40], but the heating
rates observed experimentally are typically several orders of magnitude larger
than the Johnson noise can account for. Currently, the source of this anomalous
heating is not explained, but recent experiments [19,39] indicate it is thermally
activated and consistent with patches of fluctuating potentials with a size scale
smaller than the ion-electrode spacing [38].

The spectral density of electric field fluctuations SE at the ion’s position
inferred from ion heating measurements in a number of traps is plotted versus
the minimum ion-electrode separation R in fig. 8. The dependence of SE on
R and on the trap frequency ω follows a roughly R−αω−β scaling, where α ≈
3.5 [38, 39] and β ≈ 0.8 to 1.4 [16, 19, 38, 39]. In addition to being too small
to account for these measured heating rates, Johnson noise scales as R−2 [4,
38]. One candidate mechanism that does scale as R−4 is noise caused by small
fluctuating patch potentials on the electrode surfaces [38]. The potentials on
these patches fluctuate at megahertz frequencies and generate a corresponding
fluctuating electric field at the ion’s equilibrium position. This field can lead to
heating of the ion [38–43].

In the context of ion quantum information processing, microtraps are ad-
vantageous because quantum logic gate speeds and ion packing densities in-
crease as the trap size decreases [4–6, 44]. However, these gains are at odds
with the highly unfavorable dependence of motional heating on ion-electrode
distance. For example, extrapolating from the room temperature heating re-
sults of [16], a R = 10 µm trap might exceed 106 quanta per second. Heating
between gate operations can also be problematic because hot ions require more
time to recool to the motional ground state.

4 Measuring heating rates

Heating rates have often been measured by observing an ion’s energy increase
after cooling to the motional ground state, a relatively complicated and techni-
cally challenging undertaking [34, 35]. This section outlines a method to mea-
sure ion motional heating with a single low power laser beam [23,50,51]. Near
resonance, an atom’s fluorescence rate is influenced by its motion due to the
Doppler effect. This can be exploited in the following way:

1. Cool a trapped ion to its Doppler limit.

2. Let it remain in the dark for some time. Ambient electric fields couple to
the ion’s motion and heat it.

12
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Figure 8: Spectral density of electric-field fluctuations inferred from observed
ion motional heating rates. Data points show heating measurements in ion
traps observed in different ion species by several research groups [19–21, 25,
26, 34, 35, 38, 39, 45–50]. Unless specified, the data was taken with the trap at
room temperature. The dashed line shows a R−4 trend for ion heating vs ion-
electrode separation R.

3. Turn on the Doppler cooling laser and measure the ion’s time-resolved
fluorescence, as shown in fig. 9.

4. A fit to a theoretical model of the ion fluorescence rate versus time (dur-
ing recooling) [51] gives an estimate of the ion’s temperature at the end
of step 2.

The theoretical model in [51] explored cooling of hot ions where the aver-
age modulus of the Doppler shift is on the order of, or greater than, the cool-
ing transition line width Γ. The model is a one-dimensional semiclassical the-
ory of Doppler cooling in the weak binding limit where ωzllΓ. It is assumed
that hot ions undergo harmonic oscillations with amplitudes corresponding to
the Maxwell-Boltzman energy distribution when averaged over many experi-
ments.

As a one-dimensional (1D) model, only a single motional mode is assumed
to be hot. Since the electric field spectral density SE at the ion is observed
to scale approximately as SE ∝ ω−β , where β ≈ 0.8 to 1.4 [16, 19, 38, 39], the
heating is effectively 1D if ωz << ωx, ωy . This is also important experimentally
because efficient Doppler cooling requires laser beam overlap with all modes
simultaneously: a change in ion fluorescence can arise from heating of any
mode.

Heating rates measured with the recooling technique were found to be in
reasonable agreement with rates measured starting from the ground state and
allowing heating to only a few average motional quanta [34, 35]. In these com-
parisons, heating seems to be approximately linear from the ground state to at
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Figure 9: Plot showing normalized fluorescence rate dN/dt during Doppler
cooling of a hot ion versus the time the cooling laser is turned off (dark time).
The experimental data averaged over many experiments is fit to the 1D model
[51] briefly discussed in the text. The fit has a single free parameter: the ion’s
temperature at the outset of cooling. The error bars are based on counting
statistics. Data taken on 25Mg+ with a dark time of 25 s [51].

least 10000 motional quanta. The disadvantage of the recooling technique is
that for small heating rates, the duration of step 2 can become quite long.

5 Multiple trapping zones

Much of the emphasis in the recent generation of ion traps is towards traps that
can store ions in multiple trapping zones and can transport ions between the
zones.

We can modify the basic Paul trap in fig. 1 to support multiple zones and ion
transport by dividing the control electrodes into a series of segments as shown
in fig. 10a. By applying appropriate potentials [21–23,52–56] to these segments,
an axial harmonic well can be moved along the length of the trap carrying ions
along with it (fig. 10b). In the adiabatic limit (with respect to ω−1

z ), ions have
been transported a distance of 1.2 mm in 50 µs with undetectable heating or
internal-state decoherence [21].

As an example relevant to quantum information processing, we need to be
able to take pairs of ions in a single zone (for example, zone 2 in fig. 10c) and
separate them into independent zones (one ion in zone 1 and a second in zone
3) without excessive heating. Likewise, we need to reverse this process and
combine the ions into a single well. Separating and recombining are more diffi-
cult tasks than ion transport; the theory is discussed in [53] and experimentally
demonstrated in [21, 52]. The basis for these potentials is the quadratic and
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Figure 10: (a) Example of a multizone trap. By applying appropriate wave-
forms to the segmented control electrodes, ions can be (b) shuttled from zone
to zone or (c) pairs of ions can be merged into a single zone or split into sepa-
rate zones.

quartic terms of the axial potential. Proper design of the trap electrodes can
increase the strength of the quartic term and facilitate faster ion separation and
merging with less heating. Groups of two and three ions have been separated
while heating the center of mass mode to less than 10 quanta and the higher
order modes to less than 2 quanta [52].

The segmented Paul trap in fig. 10 forms a linear series of trapping zones,
but other geometries are desirable. Of particular interest are junctions with
linear trapping regions extending from each leg. Specific junction geometries
are discussed in section 7. The broad goal is to create large interconnected
trapping structures that can store, transport and reorder ions so that any two
ions can be brought together in a common zone [4, 5].

6 Trap modeling

Calculation of trap depth, secular frequencies, and transport and separation
waveforms requires detailed knowledge of the potential and electric fields near
the trap axis. In the pseudopotential approximation, the general time-dependent
problem is simplified to a slowly varying electrostatic one. For simple four-rod
type traps, good trap design is not difficult using numerical simulation owing
to their symmetry. However, SE trap design is more complicated since the po-
tential may have large anharmonic terms and highly asymmetric designs are
common. Fortunately, for certain SE trap geometries, analytic solutions exist.
These closed-form expressions permit efficient parametric optimization of elec-
trode geometries not practical by numerical methods. In this section, we will
first discuss the full 3D calculations and then introduce the analytic solutions.
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6.1 Modeling 3D geometries

There are several numerical methods for solving the general electrostatic prob-
lem. In our trap simulations, we use the boundary element method imple-
mented in a commercial software package. In contrast to the finite element
method, the solutions from the boundary element method are in principle dif-
ferentiable to all orders. A simulation consists of calculating the potential due
to each control electrode when that electrode is set to a fixed non-zero potential
and all others are grounded. The solution for an arbitrary set of potentials on
the control electrodes is then a linear combination of these particular solutions.
Similarly, the pseudopotential is obtained by scaling the field calculated for a
finite potential on the rf electrodes and ground on the control electrodes and
then squaring the field according to eq. (4).

6.2 Analytic solutions for surface electrode traps

Numerical calculations work for any electrode geometry, but they are are slow
and not well suited to automatic optimization of SE trap electrode shapes. For
the special case of SE traps, an analytic solution exists subject to a few realistic
geometric constraints. Electrodes are modeled as a collection of separately bi-
ased regions embedded in an infinite ground plane (see fig. 11) without gaps
between the electrodes. The electric field that would be observed from a bi-
ased region is proportional to the magnetic field produced by a current flowing
along its perimeter [57]. The problem is then reduced from solving Laplace’s
equation to integrating a Biot-Savart type integral around the patch boundary.
Furthermore, for patches that have boundaries composed of straight line seg-
ments, the integrals have analytic solutions. The application of this technique
to SE traps is given in [58].

(a)

0 V 0 V1 V 1 V

(b)

d d

Trap center

z

x

y

Figure 11: Surface electrode trap composed of two rf electrodes embedded in
a ground plane (four-wire trap) (a). The field lines from the Biot-Savart type
integral are shown in (b).

The main shortcoming of this method is the requirement that there be no
gaps between the electrodes. Typical SE trap fabrication techniques produce
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1 to 5 µm gaps which can only be accounted for at the level important to ion
dynamics by full numerical simulations.

Fields for arbitrarily shaped patches can be calculated using this Biot-Savart
technique, but for simplicity we restrict ourselves to strips that extend to infin-
ity in the z-direction of fig. 11. For this particular case, we can also derive
potentials from the calculated fields. A strip extending from x = a to x = b
with a < b held at potential Us leads to a spatial potential

Φs(a, b) =
Us
π
×


tan−1

(
x−a
y

)
− tan−1

(
x−b
y

)
, −∞ < a < b <∞

π
2 − tan−1

(
x−b
y

)
, a = −∞

π
2 + tan−1

(
x−a
y

)
. b =∞

(10)

The potentials of multiple, non-overlapping strips can then be summed for
more complex structures.

Two basic SE trap geometries are the ‘four-wire’ trap and the ‘five-wire’
trap. An example four-wire trap consists of an rf electrode from x = −d to
x = 0 and another semi-infinite rf electrode from x = d to x = ∞ (see fig. 11a
and fig. 16). An example five-wire trap consists of two symmetric rf electrodes
from x = −3/2d to x = −1/2d and x = 1/2d to x = 3/2d. Their respective
potentials are given by

Φ4w = Φs(−d, 0) + Φs(d,∞); Φ5w = Φs

(
−3d

2
,−d

2

)
+ Φs

(
d

2
,

3d
2

)
. (11)

From the electric fields and eq. (4) we can derive the pseudopotential. Note
that the potential minima coincide with the points of zero electric field that lie
in the line of symmetry around x = 0 at y4w = d and y5w =

√
3d/2, respec-

tively. For an ion of mass m and charge q, the trap frequencies along the two
degenerate radial directions are

ω4w =
qUs√

2mπΩrfd2
; ω5w =

√
2
3

qUs
mπΩrfd2

, (12)

where Ωrf is the rf-drive frequency. Figure 12 shows the general shape of the
pseudopotential well along the y-axis at x = 0 for the four-wire trap (for the
five-wire trap the potential looks very similar). The potential is zero at y = d
where the ion is trapped, then rises to a maximum and finally asymptotically
drops towards zero for y →∞. The positions of the maxima are at

s4w = d

√
2 +
√

5; s5w = d

√
3/4 +

√
3, (13)

and the pseudopotential well depth (in eV) is

W4w =
(

qU2
s

4mΩ2
rf

)
2

π2d2(11 + 5
√

5)
; W5w =

(
qU2

s

4mΩ2
rf

)
1

π2d2(7 + 4
√

3)
. (14)
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To get an idea of practical parameters, we can calculate the radial frequency
and pseudopotential well depth of a four-wire trap with a geometry similar to
the trap described in [16]. For Ωrf/2π = 87 MHz, Us = 103.2 V, d = 40 µm and
m the mass of a 24Mg+ ion, we get ω4w/2π =16.9 MHz and W4w =203 meV.

7 Trap examples

Having covered the general principles for Paul trap designs, we now give spe-
cific examples of microfabricated ion traps. A number of fabrication techniques
have been used for micro-traps, starting with assembling multiple wafers to
form a traditional Paul trap type design [20–25, 27]. Recently, trap fabrication
has been extended to monolithic designs using substrate materials such as Si,
GaAs, quartz, and printed circuit board [15–20, 26, 59]. The fabrication process
includes such microfabrication standards as photolithography, metalization,
and chemical vapor deposition as well as other less used techniques such as
laser machining.

The microfabricated equivalent to the prototypical four-rod Paul trap can
use two insulating substrates patterned with electrodes that are then clamped
or bonded together with an insulating spacer. This approach has been imple-
mented in a number of traps [20–22, 24, 25, 52] using two substrates, as shown
in fig. 13a. Alternatively, it is possible to build this structure into a single mono-
lithic device [26], as indicated schematically in fig. 14a.

Reference [27] describes a three-wafer trap design like that shown in fig. 13b
incorporating a ‘T’ shaped junction. At NIST, a two-layer trap with an ‘X’
junction has recently been implemented [25] and is shown in fig. 15. Such
two-dimensional geometries will be important in order to combine arbitrarily
selected qubits from an array together in the same trap zone.

Another approach demonstrated recently used two patterned substrates,
without slots, that are mounted with the conducting layers facing each other
[60] (see fig. 14b). The array of conducting gold electrode strips is driven with rf
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Figure 13: Multiwafer traps can be formed by mechanically clamping or bond-
ing multiple substrates to form (a) a four-rod quadrupolar Paul trap type struc-
ture or (b) a modified Paul trap using a three-layer structure [27]. The segmen-
tation of the control electrodes on the bottom substrate is similar to that of the
top substrate.

that alternates between a phase of 0 ◦ and 180 ◦ from one strip to the next. This
creates a pseudopotential that is near zero for much of the space between the
wafers but which rises sharply near the substrates. When combined with static
potentials at the edges of the wafers, this trap generates a near field-free region
bounded by ‘hard’ potential walls (fig. 14b). Arrays of cylindrical Paul type
traps have been microfabricated on silicon for use as mass spectrometers [59].

Surface electrode (SE) traps have the benefit of using standard microfabrica-
tion methods where layers of metal and insulator are deposited on the surface
of the wafer without the need for milling of the substrate itself. There are two
general versions of the surface trap electrode geometry, as described in section
6.2 and shown in fig. 16. The four-wire geometry has the intrinsic trap axes
rotated at 45◦ to the substrate plane, which allows for efficient laser cooling of
the ion. The five-wire geometry has one intrinsic trap axis perpendicular to
the surface, which can make that axis difficult to Doppler cool (see section 3.1).
To enable Doppler cooling, additional control electrodes can be added to the
design to rotate the trap axes away from the intrinsic direction. Alternately, a
hybrid between the four- and five-wire designs where the rf strips are of un-
equal widths (an ‘asymmetric’ five-wire trap) will rotate the intrinsic axes and
enable cooling.

Surface electrode traps are relatively new and only a few designs have
been demonstrated [15–19]. An SE trap was first demonstrated with charged
polystyrene balls using standard PC board fabrication techniques [15]. The
first SE trap for atomic ions was constructed on a fused quartz substrate with
electroplated gold electrodes [16, 20]. In addition, meander-line resistors were
fabricated on the chip as part of the control electrode filtering. Surface-mount
capacitors were gap welded to the chip to complete the filters (see section 3.5).
The fabrication process sequence is shown in fig. 18. The bonding pads and the
thin meander-line resistors were formed by liftoff of evaporated gold. Charg-
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Figure 14: (a) Four-rod Paul trap realized by successively deposited layers of
GaAs and AlGaAs on a GaAs wafer [26]. In (b), conducting gold strips de-
posited on two glass substrates and alternately driven at opposite phases of an
rf source (phases denoted by ‘+’ and ‘-’) generates a trapping volume between
the substrates [60]. Static potentials at the edges of the trap along the z axis, ap-
plied with electrodes that are not shown, confine the ions to the central region
of the trap.

ing of the exposed substrate between the electrodes was a concern, so the trap
electrodes were made of 6 µm thick electroplated gold with 8 µm gaps so as to
shield the ion somewhat from the charges on the quartz surface.

A similar design was built by a group at MIT for low-temperature testing
using 1 µm evaporated silver on quartz [19]. They reported a strong depen-
dence of the anomalous ion heating on temperature (see section 3.6).

The construction of the traps in [16] and [19] was based on adding con-
ducting layers to an insulating substrate. An alternate fabrication method
used boron-doped Si wafers anodically bonded to a glass substrate [17] and
boron-doped silicon-on-insulator (SOI) wafers [20]. In both cases trenches were
etched through the silicon layer to the glass or embedded insulating layer to
define the trap electrodes. The SOI design demonstrated multiple trapping
zones in a SE trap and backside loading of ions.

Surface electrode traps allow for complex arrangements of trapping zones,
but making electrical connections to these electrodes quickly becomes intractable
as the complexity grows. This problem can be addressed by incorporating mul-
tiple conducting layers into the design with only the field from the top layer
affecting the ion [6, 61]. An example of such a multilayer trap fabricated on an
amorphous quartz substrate at NIST is shown in fig. 19. The metal layers are
separated by chemical vapor deposited (CVD) silicon dioxide and connections
between metal layers are made by vias that are plasma etched through the ox-
ide, as shown in fig. 20. The fabrication process for the surface gold layer is
similar to the electroplating shown in fig. 18.

In the last three years, microfabricated traps have also been produced by
Sandia National Laboratory (contact: M. Blaine, SNL) and Lucent Technologies
(contact: R. Slusher, Georgia Tech Research Institute) and distributed to several
ion trap groups in the framework of a "trap foundry" initiated by DTO (now
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Figure 15: Example of a two-wafer trap with an ‘X’ junction [25]. The trap elec-
trodes are fabricated with evaporated and electroplated gold that is deposited
on laser-machined alumina substrates.
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Figure 16: (a) Four-wire SE trap geometry and (b) symmetric five-wire SE trap
geometry. In practice, the symmetric five-wire geometry is typically not used
because of the difficulty of cooling the vertical motion of the trapped ions.

IARPA). Several groups have seen trapping in the Lucent trap, a 17-zone SE
trap. The Sandia trap, a 5-zone planar trap where the ions reside in-plane with
the electrodes, has also been used to trap ions in two laboratories.

8 Future

As ion traps become smaller, trap complexity increases and features such as
junctions promise to expand the capabilities of such traps. The two experi-
mentally demonstrated atomic ion traps with junctions (see [27] and fig. 15)
are based on multilayer designs. The slots and difficulty of alignment and
bonding in multiwafer traps make it difficult to scale such structures.

Figure 21a shows an example design of a ‘Y’ version of an SE trap junction.
The shape of the rf junction is an example of the optimization that is possi-
ble with SE traps because of the efficient methods described in section 6.2 to
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Figure 18: Fabrication steps for the example SE trap in fig. 17 [16]. The cop-
per seed layer could not be used under the meander line resistors because the
final step of etching the seed layer would fully undercut the narrow meander
pattern.

calculate the fields. The electrode geometry has been optomized to generate
a pseudopotential that has minimal axial ‘bumps’ so that rf micromotion dur-
ing ion transport will be minimized (see section 3.2). Components such as this
‘Y’ could then be assembled into larger structures as shown in fig. 21b. Sur-
face electrode traps fabricated using standard recipes in a foundry and using
standard patterns may eventually make ion traps more accessible to research
groups that do not have the resources needed to develop their own.

With increased trap complexity, several other issues arise. One of these is
the question of how to package traps and provide all the electrical connections
needed to operate them. Another issue is that of corresponding complexity of
the lasers used in manipulating the ions. Beyond cooling, state preparation,
and detection, lasers are needed to coherently manipulate the internal states
of the ions and couple pairs or groups of ions. Multiplexing sets of lasers to
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Figure 19: Multilayer, multi-zone, linear SE trap mounted in its carrier and an
enlargement of the active region [61].

address multiple trapping zones for parallel processing will be difficult. Al-
ternatives to laser optical field state manipulation have been proposed [62–66]
where magnetic structures, both active wire loops and passive magnetic layers,
replace laser beams. If proven to be viable, this would transfer much of the ex-
perimental complexity from large laser systems to electronic packages, which
can be more reliably engineered and should be scalable [6].
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