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Some Causes of Resonant Frequency Shifts in Atomic Beam Machines. 
I. Shifts Due to Other Frequencies of Excitation 
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The quantum theory of an atomic beam machine is set up in matrix form. A new method is then used to 
derive the Bloch-Siegert shift in the resonance. The results are extended to the case of Ramsey-type excita- 
tion. Finally the Bloch-Siegert shift is computed for the present atomic beam frequency standards and found 
to be well below the accuracy of measurement. 

1. INTRODUCTION 

N the analysis of line shapes to be expected from I atomic beam resonance experiments it has been 
customary to assume a special form for the matrix of 
the interaction which makes the resulting equations 
easy to solve [reference 1, Eq. V. 21. These equations 
lead to expressions for the line shape agreeing with 
experiment. The effects of including other terms in the 
actual interaction have been discussed by Bloch and 
Siegert? Stevenson: and others14 and summarized in 
Ramsey's book.' In the case of magnetic resonance the 
usual approximation corresponds to a rotating (circu- 
larly polarized) excitation field, although oscillating 
(linearly polarized) fields are used in experiments. The 
effect of the antirotating component of an oscillating 
field has been found to be a normally negligible shift in 
the resonance frequency. A similar shift would be ex- 
pected in observing the resonance in cesium used as a 
standard of frequency. Because of the high accuracy to 
which this frequency can be determined, the present 
calculations were undertaken to determine this shift 
quantitatively for the cesium beam machine now used 
as the U. S. standard of frequency. 

Although the analytical results here reported have 
been obtained by others, the methods are somewhat dif- 
ferent from those in the literature. In Sec. 2 the approxi- 
mate equations for the state amplitudes are obtained 
from the exact ones by a simple, but general, method. 
A concise, but readily interpretable notation is used. 
The Rabi line shape is obtained quickly from these 
equations. Section 3 outlines a general method for 
treating rapidly oscillating perturbations and applies 
it to the equations of Sec. 2. This method is shorter than 
that of Bloch and Siegert? but about comparable to the 
method of Stevenson3 in labor required. Another method 
is indicated in the Appendix. The first-order solution 
for the amplitude is given in full. Section 4 derives the 
Ramsey line shape for separated oscillating fields, 
showing what happens to shifts present in the Rabi 
line shape. The physical situation treated corresponds 

N. F. Ramsey, Molecular Beams (Oxford University Press, 
London, 1956). 

F. Bloch and .4. Siegert, Phys. Rev. 57, 522 (1940). 
A. F. Stevenson, Phys. Rev. 58, 1061 (1940). 
S. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955). 

more closely to the experimental case than that treated 
by Ramsey5 but is no more difficult to work out. 
Finally, the resonant frequency shifts due to the anti- 
rotating field are evaluated numerically for the two 
cesium beam standards a t  the National Bureau of 
Standards. 

2. THE RABI LINE SHAPE 

Consider a quantum-mechanical system having two 
states of energies El and Ez. Let all uz be the respective 
probability amplitudes that the system is in one of 
these states. Let an oscillatory perturbation propor- 
tional to coswt be applied to the system from time t o  to 
time  to+^. Call the matrix elements of the perturbation 
connecting the two states 2c and the diagonal elements 
2d and 2f. Assume that the matrix elements to any 
other states are zero. The Hamiltonian of the system 
is then : 

El=("' ")+( 2d 2c )coswt. 

0 E2 2~ 2f 

Since factors of the form e iv t  in the amplitudes have 
no effect on the probabilities it is convenient to factor 
them out ahead of time so they do not clutter our 
equations later on. We define new probability ampli- 
tudes a=uleipt, ,8=uzeiYt. Using these as a basis the 
Hamiltonian becomes6 : 

(ei"t+e-i"t) .  ) 
d Cei(r-v)t 

f 
O )+( 0 &-v Ce-i(r--v)t 

By choosing p--v=w part of the perturbation matrix 
becomes time-independent. By choosing p+v= El+ E2 
the time-independent part of the Hamiltonian H O  
becomes traceless, and hence has eigenvalues A$. The 
remaining time-dependent part of the Hamiltonian 
HI is treated as a perturbation. Substituting 
p=+(EI+Ez+w) and v=+(E1+E2-w) and the ab- 

6 N .  F. Ramsey, Phys. Rev. 100, 1191 (1955). Compare,dso 
N. F. Ramsey, "Shapes of Molecular Beam Resonances, in 
Recent Research in Molecular Beams, edited by I. Estermann 
(Academic Press Inc., New York, 1959), pp. 115-117. 

6 To avoid unnecessary letters in the equations, It= 1 throughout 
this report, Thus energy and frequency have the same dimensions, 
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breviations wc=E1-EEz, A= ( ~ - ~ ~ ) / 2 :  

Ha=(:" i), 
2d coswt ceizWc 

Ce-i2wt 2 f coswt 
H I =  ( 

Note that Ha contains part of the effects of the pertur- 
bation, in fact the major part. For w>>c the effect of H I  
is very small. Neglecting H1 is equivalent to the so- 
called rotating field approximation.' However, the 
present formulation is independent of whether or not 
the concept of a rotating excitation field has any physi- 
cal meaning. 

Neglecting H 1  the solution of the Schrodinger equa- 
tion is 

where 
*(t) = e-iHo(t-to)qf(t,) 

e-iHo(t-to) = cosp(t-t0)l- (i/p) sinp(t-to)Ho. 

If a t  t = to  the system is in the state 1, a(to)= 1 and 
P(to)=O. Then the solution is: 

1 [cosp(t-io)+i-sinp(t-tn) 
A 

line shape. This form of solution is suggested by 
Floquet's theorem* for second-order differential equa- 
tions with periodic coefficients such as are satisfied by 
a,  p, where iq  corresponds to the characteristic exponent. 

To determine an approximate solution when H1 is 
included, we use an iteration method similar to ordinary 
perturbation theory, but modified to permit the shift 
from p to q in the slowly varying part of the solution. 
We write the Schrodinger equation as 

i (d/dt)\k=Ho(l+X)\k+ (Hl-XHo)\k 

and take the second half to be of smaller order. Write 
9=90+91+92+ . . . and X=X2+Xa+ . . . . Sub- 
stitute and equate parts of the equation of the same 
order (order equals the sum of subscripts in any one 
term) 

i(d/dt)qo= Ho( l+X)*o, 
i (d/dt)Si=Ho( 1+X)*i+Hl*o, 

d n - 2  

dt 7=O 

i-*%= Ho ( l+A)*%+Hl*,-l- A,-,Ho*,. 

Since Ho is independent of t ,  the formal solution for a 
first-order linear equation can be used for these matrix 
equations. Let 

Note that a and p oscillate with frequency p .  
probability that a transition has occurred by the 
t 0 + ~  is l/3I2= (c2/pz) sin2pT. From det Ho we 
pz=c2+A2. Hence, 

"I 

U ( T )  = e-iHo(l+h)r= cospl-  (i/p) sinqrHo. 

Then a t  to+ T : 

find J o  

sin2[ ( 2 ~ ) ~ +  (w - ~O)~]f(7/2) 
x [H1\Iln-1 (t+to) - E- X,-,Ho*,(t+to)]dt. 

r=O 

1+ (w - woY/ ( 2 C l 2  
1 

the usual formula for the Rabi line shape [reference 1, 
Eq. V. lo]. For appreciable transition probability 
A=order of c, so w>>p; i.e., H I  oscillates rapidly com- 
pared to the solution neglecting it. I ts  effect on a,P 
should be slight when averaged over a few cycles of wt. 

3. EFFECT OF RAPIDLY VARYING PERTURBATION 

The inclusion of H1 in the Schrodinger equation has 
two effects. One is the production of a Fourier series in 
at. The rapidly oscillating terms are not observed ex- 
perimentally and they average to zero. The second effect 
is a change in the frequency of the unperturbed solution 
from p to q=p(l+X). This effect is important, as i t  
may result in a shift of the maximum of the resonance 
' For a spin 3 particle in a rotating magnetic field, Ho here is 

identical with X' in H. Salwen, Phys. Rev. 99, 1274 (1955). 

The A; are chosen such that no secular terms (terms 
proportional to t )  appear upon integration. Thus q is 
initially undetermined, but becomes determined to 
higher orders as the iteration progresses. The integration 
of H 1 9 0  where H1 is purely oscillatory leads to no secular 
terms, so X1=0. The concept of changing a dominant 
frequency to eliminate secular terms is essedtially the 
same as that used in Lindstedt's method for finding 
periodic solutions of nonlinear differential equations. 

In our case where H1 oscillates with frequency w>>p 
and magnitude c, the integration of Hl\ko will result in 
a factor c /w in \kl, thus making it small. However, H191 

contains terms in which the oscillatory factors have 
cancelled and upon integration yield a factor c/q which 
is not small. Thus to obtain all terms in the solution of 

8E.  T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1927), 4th 
ed., p. 412. 
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- [ ao ( t ) -e in t~o ( t ) ]  
f2 

b2 

. a  

Hi*i(t+to)= 

--( l + e - i n c t + 2 t o ) ) p  ( 0 0 

order c /w part of \k2 must be computed. This peculiarity 
of the iteration procedure arises from the fact that we 
have equated orders in a differential equation and the 
orders of terms change upon integration. However, 
this does not invalidate the iteration procedure for no 
more c/w terms occur beyond q 2 .  In general, * Z n  is of 
order ( ~ / w ) ~  and higher. The same phenomenon occurs 
in the iteration procedure used by Bloch and Siegert, 
disguised by the algebra. 

As an example we compute the lowest-order effects 
of two simple Hi’s. To first order the effects of several 
such perturbations combine linearly, so it is only neces- 
sary to consider one at  a time. Consider 

A2 c2 -+- cos2qt 
b2 P2 P 2  -_ - 

and 

D 
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Ac Ac ic 
--+- cos2qt+- sin2qt 

This is a generalization of the H1 of Sec. 2, which allows 
us to consider perturbations a t  other frequencies. 

Let 
a0(7)  = cosq~+iA/p  sinq7, P o ( T )  = - i c / p  sinp.  

Then 

U ( 0 )  = 1, 

where the bar denotes complex conjugate. 

The exact integration of the equation for q1 is tedious 
and yields terms of all orders. However, we can easily 
integrate by parts such that the remaining integral is of 
higher order and is neglected. 

t+t0 

\ k 1 ( 7 + t 0 ) =  - l q r ) [  U-’(t)/ Hl(t’)dt’PO(t+tO) +o - , 1: (3 

= I  
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The constant terms yield unwanted secular terms upon 
integration. Therefore, we choose Xz such that 

U commutes with Ho, hence 

Then 
X z =  - b2A/Dp2. 

After some more work 

\ k z ( ~ + t O ) =  (b2/Dp2)( A .>po(~). 

To first order the complete solution is 

and 
q = p -  (b2A/Dp).  

In  the physical situation of an atomic beam machine 
the observed transition probability includes molecules 
entering the radiation field region a t  all initial times to, 
so that an average must be performed over to (or 
equivalently over the phase of radiation seen by enter- 
ing atoms). This averaging eliminates the contributions 
of \kl to \k. The resultant \k can be written 

I C 7  

Actually the probabilities rather than amplitudes 
should be averaged, but the error is of second order. 

The transition probability is now 

1 p I 2 =  1 - ( i c / p )  (I -A )  sinq7 12, (c2/qz) sin2qt 

to first order. To this order the effect of H I  has been to 
replace p by q. The central maximum of \pol2 as a 
function of A occurs where dq/dA=O. Remembering 
that p depends on A 

dp/dA= ( A l p ) -  (b2/s2p)+ (b2A2/s2p3). 

Neglecting the last term the maximum is at  

Ares= b2/D. 

The Bloch-Siegert shift is obtained by setting 6= c, 
D= 2w : 

For the case of an additional perturbation a t  frequency 
w1 with amplitude b :  

are, - wo = c2/w. 

s2 = W -  WI, urea- wo= 2b2/ (WO- ai), 

in agreement with Ramsey [reference 1, Eq. V. 171. 
Note that if w1 is a sideband caused by frequency modu- 
lation of w ,  its effect is exactly canceled by the corre- 
sponding sideband on the other side of the carrier, pro- 
vided the power spectrum is symmetric. 

Next we look for a shift due to 

H i = (  d O  ) 2  coswt. 

O f  
Such diagonal elements of the perturbation matrix are 
usually assumed to be zero. However, this is not the 
case for a ( A m =  0 )  transitions induced by an oscillating 
field parallel to the constant magnetic field. For then 
the Hamiltonian is 

where 
H , =  H,+H,  comt. 

But the transitions observed are not between the zero 
field levels El, E2, but between the levels with H ,  
diagonal. Diagonalizing the time independent part of 
the Hamiltonian and then performing the phase factor- 
ing as in Sec. 2 gives 

where 
A = (W - W O ) /  2, 

wo= [ ( E i - E ~ ) ~ + p ~ g ~ H c 2 ] ~ ,  
C =  (Ez-Ei)p&I,/&o, 
b = pgH,pgH,/&o. 

In actual practice b<<c. 

the integration finding 
Returning to the d and f case we again approximate 

\ k l ( t O + T )  

1 d[sinwT cowto+ (COSWT- 1) sinwto]ao(.r) 
2i I 

Averaged over to ,  \k1 vanishes. 

d2 (sinwt- sinwto) cowtolo 

Hi\kl= -- d 
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Integration of this gives no secular terms and 

So X2=0 and thus H I  is seen to have no effect other 
than small high frequency oscillations. 

Variations of this method are possible, such as trans- 
forming to a representation in which Ho is diagonal. 
The latter makes the integrations easier, but the trans- 
formation must be inverted a t  the end of the 
computation. 

92= Od2/u2. 

4. EFFECT ON RAMSEY LINE SHAPE 

The preceding derivations apply to the single oscil- 
lating field method of atomic beam spectroscopy. The 
first-order effect is equivalent to replacing A by 
A’= A-6w/2, where 6w is the Rabi resonance frequency 
minus the Bohr frequency. We can easily use this solu- 
tion to determine the shift observed with the separated 
oscillating field method of Ramsey. Let primes denote 
that A has been replaced by A’ wherever it appears. 
Within each oscillating field region of length Z= vr, 9 is 
transformed by 

(Yo’ - 
u.(’)=(80’ 

In the distance L= VT between the two oscillating field 
regions, b=c=bw=0 and 0’ becomes simply 

V ( T ) = r A T  0 e-iAT ). 
Then for an atom traversing the entire apparatus, we 
have 

\E (r+ T+r+to) = U’(7) V(T)U’(T)\E(tO), 
(Y012eiAT+@012e-iAT 

( Y o ’ / 3 0 1 e i A T + ~ o l p 0 ~ e - ~ A T  

for 

The transition probability is : 

1 p \ 2 =  (4c2/q2) sin2qr[cosqr cosAT 
- (A’/p’) sinqr sinATJ2. 

Near the center of the Ramsey pattern A<<c so q = p ’ = c  

1/31 2=sin22c~[cosAT- (A’/c) tancr sinATy. 

X [- T sinAT- (l/c) tancr sinAT 
- (A’T/c) tancr cosAT]. 

For the central maximum we set the last factor equal 
to zero: 
tanAT/ tancr\ A’ 

dlP 12/dA= (sin22cr)2[cosAT- (A’/c) tancr sinAT] 

-(1+--)= T -cT tancr 

A 6w 

CT 2cT 
- - -- tancr+- tancr. 

For appreciable probability of transition 2cr = 7r/2. 
Also L>>Z or T>>r, hence cT>>1. For small shifts 
(6w<<c) AT<<l and the left side becomes just A. With 
these simplifying assumptions the shift in the peak of 
the Ramsey pattern is : 

tancr 1 

cr L 
u,,,-wo=- -6w. 

Unlike the shift of the Rabi peak, the shift of the 
Ramsey peak depends on the velocity of the atom. 
However, for optimum value of G and the most probable 
velocities, the velocity dependent factor is about 1.2 
and not strongly dependent on velocity, so about this 
value can be expected if a velocity average were per- 
formed. This derivation also holds for any other cause 
of a shift in the Rabi peak, such as that caused by 
matrix elements to other far away states, as long as the 
cause is effective only in the oscillating field regions 
and does not make the line asymmetric. 

5. BLOCH-SIEGERT SHIFT FOR THE CESIUM 
BEAM FREQUENCY STANDARD 

As a numerical example the Bloch-Siegert shift is 
estimated for the two cesium beam frequency standards 
currently operated a t  the National Bureau of Standards. 
There are actually sixteen hyperfine structure lines in 
cesium. However, in the frequency standards the oscil- 
lating field is parallel to the C field, which provides the 
Zeeman splitting. Under these conditions only the u 
transitions are excited. All matrix elements between 
states with different m values v a n i ~ h . ~  For each pair 
of states with the same m value the two-state analysis 
of this paper is valid. The observed spectrum is just 
the superposition of the seven lines for the seven pos- 
sible Q transitions. In  practice these lines are well 
separated by the order of one hundred times the 
Ramsey linewidth. As long as they are symmetrical 
about the center line, which is used as the standard, 
these other lines should not affect the position of the 
standard frequency resonance. 

The Bloch-Siegert shift in the Rabi line is from 
Sec. 3, 6w=c2/wo. The fractional shift in the Ramsey 
peak is then: 

F.S. = (w,,-wo)/wo= (tancrlcr) (Z/L) (c2/wo2). 

Assuming the optimum value of c we have from 
[reference 1, Eqs. V. 42, 42al: 

2 4 0 1  = 0.600~ 

and the linewidth 
Av= 0.65a/L. 

Combining 
C= 0.3007r01/1= 1.45 (L / l )Av  

gH.  C. Torrey, Phys. Rev. 59, 293 (1940), Sec. 11. 
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and 
CT = 0.300?ra/v = 0.725 

F.S.= 1 . 2 + - - - - ~ = O . O 6 5 ~ ( ~ , ' -  1 1.45LAv 

L 12lrvc 

In  this form we can use the experimental linewidths 
and need not compute c .  For both machines Z=1 cm, 
YO= 9.2X lo9 cps. For NBS I : 

L=55 cm, 
Av=300 cps, 

F.S. = 3 . 8 ~  10-15. 

For NBS 11: 
L= 164 cm, 

Av= 120 cps, 
F.s.= 1.8~10-15. 

These figures are to be compared with the present accu- 
racy of measuring the cesium resonance frequency of 
1.7X10-11.10 

APPENDIX 

Another, less general method for obtaining the solu- 
tion to the Bloch-Siegert problem is one which requires 
deducing the form of the solution, and then solving for 
some undetermined coefficients. The equations are 
(cf. Sec. 3)  

ik= - Aa+c@+beint@, 
ib= A@+ca+be-io6a, 

and the initial conditions a(to) = 1 ,  @ ( t o )  =O. Letting the 
subscript "0" represent the functions in Sec. 3 with 
argument f -  t o ,  they satisfy : 

iko= (- Aao+c@o) (1+A), 
ibo= (cao+ APo) (1i-A). 

We wish to add to a,,, Po terms with small coefficients 
which make the equations satisfied except for small 
terms. We note that when a function such as Aeinta(t) 
is differentiated, the result contains a term with a 
factor 3, that is, a term with a larger order coefficient. 
Thus, to generate beiQt@ when a is differentiated, let us 
add to a. a term AeiotPo. The derivative of this times 
i gives A [ - ~ @ o +  ( C ~ ~ + A @ ~ )  (l+A)]ei". Neglecting c 

10 R. C. Mockler, R. E.  Beehler, and C. S. Snider, IRE Trans. 
Instrumentation 1-9, 120 (1960). 

and A compared to D we see that if A =  -b& we 
obtain beint@o+smaller terms. Since @=@o+smaller 
terms, we have thus satisfied the equation for a to 
lowest order. 

However, we have several small terms left over. 
Those containing factors e*int can be canceled by intro- 
ducing terms of higher order. But the terms without 
this factor must be canceled by introducing similar 
terms with small coefficients into the approximate ex- 
pressions for a and @. Thus we could add B@o to a and 
perhaps adjust B to cancel the other terms. We cannot 
add Cao, because this would violate the initial 
conditions. 

After mulling over such considerations we are led to 
a trial solution in the form : 

a =au+A@oei"+ B@o, 
@ = PO+ c (aoe-iot oe -iQto )+D@o, 

where A ,  B ,  C, D are undetermined coefficients of order 
b/Q and the initial conditions are satisfied. We substi- 
tute these expressions into the differential equations 
and equate the coefficients of terms of each order and 
functional type. In the a equation equating zero-order 
coefficients of @,eint gives -DA= b or A= -b /3  as 
noted previously. In the @ equation from terms aoecint 
we find similarly 3C= b or C= b/D. Now equating the 
first-order coefficients of a. and Po in the two equations 
we obtain 

- AA+ Bc= bC- cCe-i"o, 
cA+BA= -AB+cD, 

cA+Ace-iQtO+cD= - ACe-iQtO, 

AA- cCe-ioto+ AD= Ab+ Bc+ AD. 

All told we have six equations in five unknown. How- 
ever, these equations are consistent, with solutions : 

A =  - b2A/Qp2, 
B= (c /Q)  (b2/p2)- (b/3)e-ioto, 

D= (Ab2/Dp2)- ( 2 A b / ~ Q ) e - ~ ~ ~ o .  

These values give the same solution as in Sec. 3.  Note 
that the first-order coefficients of aoefiot, etc., do not 
cancel. This method, like the others, can be carried to 
higher order only with greatly increased labor as more 
undetermined coefficients must be inserted and more 
cross terms appear in the expansion. 

and 




