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We investigate the temporal dynamics of Doppler cooling of an initially hot single trapped atom in the
weak-binding regime using a semiclassical approach. We develop an analytical model for the simplest case of
a single vibrational mode for a harmonic trap, and show how this model allows us to estimate the initial energy
of the trapped particle by observing the time-dependent fluorescence during the cooling process. The experi-
mental implementation of this temperature measurement provides a way to measure atom heating rates by
observing the temperature rise in the absence of cooling. This method is technically relatively simple compared
to conventional sideband detection methods, and the two methods are in reasonable agreement. We also discuss
the effects of rf micromotion, relevant for a trapped atomic ion, and the effect of coupling between the
vibrational modes on the cooling dynamics.
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I. INTRODUCTION

Laser cooling of trapped neutral atoms and atomic ions is
a well-established technique: for example, cooling to the mo-
tional ground state �1–3� and motional state tomography �4�
are routinely performed with resolved motional-sideband ex-
citation techniques. Sideband techniques require the natural
linewidth � of the cooling transition to be small compared to
the vibrational frequency of the trapped particle, in order to
allow the motional sidebands to be resolved. Many experi-
ments are, however, conducted in the “weak-binding re-
gime,” where � is larger than the oscillation frequency. Here,
the cooling process is essentially the same as Doppler cool-
ing of free atoms, because the spontaneous decay process is
short compared to the atom’s oscillation period �5�. Even in
experimental setups that implement sideband techniques, an
initial stage of such “Doppler cooling” is often employed.
The first examinations of Doppler cooling of trapped ions
�5–11� did not take into account the effects of micromotion
due to the trapping rf field. After cooling and heating effects
related to micromotion were observed, these effects were
explained theoretically �12–14� by including the effects of
micromotion.

Here, we consider Doppler cooling of a single trapped
atom or ion. While most previous work has focused on the
final stages of cooling, our focus will be on the temporal
dynamics of the cooling, particularly in the “hot regime”
where the Doppler shift due to atom motion is comparable to
or much larger than �. For the one-dimensional �1D� case we
find that the cooling rate can be calculated analytically in the
weak-binding regime without assuming the atom to be in the
Lamb-Dicke regime. For a trapped ion, when we take rf mi-
cromotion into consideration, stable, highly excited states

emerge when only one mode is considered �15�. When all
three vibrational modes of the ion are considered, we find
that couplings between the modes tend to break the stability
of such points, allowing cooling to reach the Doppler limit.

A practical application of our results is to estimate the
initial motional energy of an atom or ion from observations
of the time dependence of the fluorescence during the cool-
ing process. As mentioned above, sideband spectroscopy is
the conventional technique for characterizing motional
states, and it has been used to characterize the heating rate of
ions in the absence of cooling �1,2,16–20�. However, it is
more complicated to implement experimentally than Doppler
cooling, requiring more laser beams. Currently, considerable
effort is being devoted to understanding the heating observed
in ion traps �16–20�. This heating is anomalous in that it is
typically much higher than would be expected from thermal
electronic noise �Johnson noise� that results from resistance
associated with the trap electrodes. Because of its pervasive
nature and detrimental effects to quantum state manipulation,
it is important to understand and eliminate its cause. A less
complicated technique for measuring temperature could sim-
plify this work.

We note that cooling of a single ion is significantly dif-
ferent than cooling a large number of ions in the same trap
where the degrees of freedom are strongly mixed. However,
the cooling and heating of a single ion is interesting because
heating can only arise from external fields, not from the ef-
fects of ion-ion collisions that can lead to heating for two or
more ions �21�.

This paper is structured as follows. In Sec. II we present a
semiclassical model of the Doppler cooling process for a
bound atom confined in one dimension in the weak-binding
regime in a static harmonic well �no micromotion�. In Secs.
III and IV we analyze the fluorescence vs time predicted by
the model. Here, we consider single cooling trajectories and
average over these with a given distribution of initial mo-
tional energies. We derive expressions useful for estimating
initial temperature from fluorescence observations in these
sections. Section V discusses how to minimize the total mea-
surement time required to estimate the mean initial energy.
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In Sec. VI we consider the effects of other motional
modes with and without taking into account any rf micromo-
tion experienced by such modes. The primary result of this
section is most relevant for ions confined in miniature linear
Paul traps �22,23�. In these traps, ions are bound along the
axis by a static harmonic well. In the transverse direction,
ions are bound by a ponderomotive pseudopotential where
the ions’ motion must also include the effects of rf micromo-
tion. Typically, these traps are operated under conditions
where the ions’ oscillation frequencies in the transverse di-
rection are much higher than along the axis. Moreover, it is
typically observed that the anomalous heating as a function
of oscillation frequency � drops off as 1 /� or faster. There-
fore, to a good approximation the ion heating is dominated
by that along the axis of the trap. In this case the results of
Secs. II–IV will be valid to a good approximation. These
conclusions are supported by a more complete solution of the
problem described in Sec. VI C. Section VII suggests pos-
sible modifications to the basic experimental protocol that
might provide improved sensitivity of the temperature mea-
surements. Section VIII concludes the paper.

II. MODEL

We consider a semiclassical model of Doppler cooling of
a single weakly trapped atom �5,11�. We will initially con-
sider only a single mode of motion, taken to be along the z
direction. We assume a harmonic potential with oscillation
frequency �z. In Sec. VI we consider a more detailed model
that includes three dimensions and micromotion relevant for
trapped ions.

The atom is Doppler cooled by a single laser beam of
angular frequency �laser and wave vector k, detuned by �
��laser−�ge from the resonance frequency �ge of a two-level,
or “cycling,” transition between two internal states �g� and
�e�, of the atom. We write the coupling Hamiltonian as

H�c� = ��Rabi��e�	g� + �g�	e��cos�k · x − �lasert� , �1�

where x is the atom position, 2�� is Planck’s constant, and
�Rabi is the resonant Rabi frequency.

We assume the atom is weakly bound in the z direction,
that is, �z is much smaller than the excited state decay rate �.
The atom’s level populations are then approximately in
steady state with respect to the instantaneous effective detun-
ing �eff��+�D, including the Doppler shift �D�−kzvz,
where vz and kz are the z components of the velocity and
wave vector. The excited state population is then �24�

�ee�vz� =
s/2

1 + s + �2�eff/��2 . �2�

Here s is the saturation parameter, proportional to the cooling
beam intensity, s�2��Rabi�2 /�2.

The excited state population is associated with the photon
scattering rate dN /dt by the relation dN /dt=��ee�vz�. While
the momentum kicks associated with photon emission are
assumed to average to zero over many absorption-emission
cycles, the absorbed photons will impart a velocity-
dependent momentum transfer due to the scattering that can
be described by a velocity-dependent force

Fz�vz� = m
dvz

dt
= �kz��ee�vz� , �3�

where m is the atom’s mass. This velocity-dependent force
will in general change the motional energy E of the atom. If
the relative change in energy over a motional cycle is small,
we can average the effect of Fz over the oscillatory motion to
find the evolution of E:

dE

dt
= 	vzFz�vz�� , �4�

where the average is over one motional cycle. The average
energy change per scattering event is dE /dN=�kzvz=−��D.

In addition to Fz, the atom will experience a stochastic
force due to photon recoil that, assuming isotropic emission,
will cause heating at a rate �11�


dE

dt
�

recoil
=

4

3

��kz�2

2m

dN

dt
, �5�

where ��kz�2 /2m is the recoil energy associated with the
scattering. We will mostly ignore the effects of recoil heating
in what follows, since it will be important only near the
cooling limit.

III. ANALYSIS

We will now analyze the time dependence of the atom
fluorescence during the Doppler cooling process, as pre-
dicted by the model introduced above.

To simplify the algebra, we will scale energies by � times
half the power-broadened linewidth, and time by the reso-
nant scattering rate:

	 = E/E0, E0 =
��

2
�1 + s , �6a�


 = ��/E0, �6b�

r =
��kz�2

2m  E0, �6c�

� = t/t0, t0 = 
�
s/2

1 + s
�−1

. �6d�

As an example of typical values, we consider a trapped
25Mg+ ion, where the 2S1/2-2P3/2 cooling transition at 279.6
nm has a natural linewidth of �=2��41.4 MHz. At a de-
tuning of �=−2��20 MHz with s=0.9 and kz /k=0.71, we
find that E0 /kB=1.4 mK, where kB is Boltzmann’s constant
and t0=16 ns. The detuning and recoil parameters are 

=−0.70 and r=0.0018.

For a given motional energy 	, the instantaneous Doppler
shift 
D���D /E0 has a maximal value of 
M �2�	r. In the
scaled units, the average change in energy per scattering
event is −
D, so 
M is also equal to the maximal change in
energy per scattering event. As explained below, the energy
at which the maximal Doppler shift is equal to the power-
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broadened linewidth, 	=1 /r, is of interest during the cooling
process. For reference we note that this energy corresponds
to

1

r
E0 = �1 + s�

�2�2

4

2m

�2kz
2 . �7�

For the typical experimental parameters considered above,
E0 /r is equal to kB�0.7 K or 3700 ��z for �z=2�
�4.0 MHz.

For harmonic oscillations, the instantaneous Doppler shift

D is distributed according to the probability density

PD�
M ;
D� = �
0

2�


Dirac�
D − 
M sin���
d

2�

= � 1

�

1

�
M
2 − 
D

2 if �
D� � 
M ,

0 otherwise,
� �8�

where 
Dirac is the Dirac 
 function. Examples of this prob-
ability distribution for two different values of 
M are shown
in the insets of Fig. 1. Since the average energy change per
scattering event is −
D, and the instantaneous scattering rate
is 1 / �1+
eff

2 �, where 
eff�
+
D, the rate of change of 	
averaged over the secular oscillations, given by Eq. �4�, takes
the form

d	

d�
=� − 
DPD�
M ;
D�

1

1 + �
 + 
D�2d
D. �9�

We can evaluate the integral as detailed in Appendix A, to
find that

d	

d�
=

1

2�	r
�Re�Z� + 
 Im�Z�� , �10a�

�



2�	r
, 	 � �1 + 
2�/r , �10b�

where Z=Z�
 ,
M�= i /�1− �
+ i�2 /4	r. The asymptotic ap-
proximation �10b� corresponds to approximating PD�
M ;
D�
by PD�
M ;0�, which is reasonable in the hot regime, where
the peaks of PD have small overlap with the Lorentzian line
profile. From Eqs. �10a� and �10b�, we can evaluate 	 as a
function of time; an example is shown in the lower part of
Fig. 1.

The scattering rate averaged over the motion is analogous
to Eqs. �10a� and �10b� and is given by

dN

d�
=� PD�
M ;
D�

1

1 + �
 + 
D�2d
D =
1

2�	r
Im�Z� ,

�11�

as illustrated in the upper part of Fig. 1. In the limit of
	� �1+
2� /r, we find dN /d��1 / �2�	r�, so that according
to Eq. �10b� we have in this limit d	 /dN�
. In physical
units, this corresponds to each photon on average extracting
an energy of ��. This can be understood by noting that, in
the limit of 	� �1+
2� /r, PD�
M ;
D� is to a good approxi-

mation uniform over the Lorentzian line profile �see, for ex-
ample, the upper left inset of Fig. 1�, and so the value of

eff=
+
D averaged over the scattering events will be nearly
zero. Since each scattering event extracts an energy of −
D,
the average cooling per scattering event should indeed be 
.

The time dependence of 	 is formally found by integrat-
ing d	 /d� as given by Eqs. �10a� and �10b�. For the
asymptotic approximation �10b� we find

	��� � 
	0
3/2 +

3
�

4�r
�2/3

, 	 � �1 + 
2�/r , �12�

where 	0 is the energy at �=0, as plotted in the lower part of
Fig. 1. For the exact expression derived from Eq. �10a�, we
must resort to numerical methods to find 	�t�. Nevertheless,
we do find analytically that the cooling rate is maximal for 	
related to 
 by

	 = 	c �
1 + 
2

2r
cos�1

3
arccos
1 − 
2

1 + 
2�� , �13�

which quantifies our previous observation that 1 /r is a typi-
cal energy scale of the cooling process.

FIG. 1. Scattering rate �top� and energy �bottom� as a function
of time during the Doppler cooling of a single atom from an initial
energy �in scaled units, see Eq. �6a�� of 10 /r, as given by Eqs. �11�,
�10a�, and �10b�, at a detuning of half the power-broadened line-
width �
=−1; see Eq. �6b��. The dotted curve in the lower plot
shows the energy as a function of time predicted by the asymptotic
approximation of Eq. �12�. Insets in the upper plot show �at two
different times� the two components appearing in the integral defin-
ing dN /d� in Eq. �11�, the probability density of the effective de-
tuning PD�
M ;
eff−
� �solid� and the Lorentzian line profile,
L�
eff�=1 / �1+
eff

2 � �dashed�, as functions of 
eff=
+
D at 	=8 /r
and 	=	s �Eq. �14��. Scattering events where the atom is moving
toward the laser so that 
D�0, corresponding to the rightmost peak
of PD, result in cooling, and vice versa. The energies of maximal
cooling and scattering rates, 	c and 	s, are given by Eqs. �13� and
�14�.
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The behavior of dN /d� is qualitatively different for 
 be-
ing smaller or larger than a critical detuning 
c�−1 /�3. For

�
c, dN /d� has a maximum at an energy

	 = 	s �
1

4r
�
 − �3��
 + 1/�3� . �14�

For the example parameters listed below Eqs. �6a�–�6d�, 
c
corresponds to a detuning of 
cE0 /�=−2��16.5 MHz. The
maximal scattering rate is reached when one of the peaks of
the Doppler distribution �8� is in resonance with the cooling
transition, as illustrated in the upper right-hand inset in Fig.
1. In the regime where a maximum exists, the maximal scat-
tering rate is found to exceed the steady state scattering rate
by a factor of

�dN

d�
�

	=	s

�dN

d�
�

	=0
=

�3�3

4

1 + 
2

��
�
. �15�

Closer to resonance, i.e., when 
c�
�0, no maximum oc-
curs, as illustrated in Fig. 2.

We emphasize that the only approximations made above
are the weak-binding approximation and the omission of re-
coil heating. In particular, the trapped particle is not assumed
to be in the Lamb-Dicke regime. For the weak-binding re-
gime, 
M �1 implies that the motion is outside the Lamb-
Dicke regime. To find the cooling rate predicted by Eqs.
�10a� and �10b� in the Lamb-Dicke limit, we note that to first
order in 	 we find d	 /d��4
	r / �1+
2�2. This corresponds
to 	 decreasing exponentially with �. Except for the omission
of recoil heating, the value of the decay time agrees with
previous work that assumed the atom was in the Lamb-Dicke
regime �5,25�.

In the above analysis, we have ignored recoil heating
�given by Eq. �5��. In the limit of 	�	c, the ratio of heating
to cooling is seen to be 4r / �3�
��, which is a small fraction
for typical experimental parameters. For 	�	c, the cooling
is less efficient and the contribution from recoil becomes
more significant, leading to a nonzero steady-state energy.

Nevertheless, ignoring recoil heating is reasonable when ob-
serving fluorescence scattering, since the scattering rate has
almost reached its steady state value when the effect of recoil
becomes important. Therefore we have omitted recoil heat-
ing in this analysis to make 
 the only free parameter and
simplify the discussion. Recoil can be included in calcula-
tions by combining Eqs. �5�, �10a�, and �11�.

IV. THERMAL AVERAGING

An application of the analysis presented above is to esti-
mate the initial motional energy of a trapped atom from the
time-dependent fluorescence observed during the cooling
process. Using this method, we can estimate the average rate
of heating experienced by a trapped atom in the absence of
cooling by first allowing the atom to heat up without cooling
for a certain period and then observing the time dependence
of the fluorescence as the atom is recooled. As discussed in
Sec. III, when 	� �1+
2� /r, the average cooling per scatter-
ing event is 
. The approximate total number of photons
scattered during the cooling of an atom with initial motional
energy 	initial can consequently be approximated by �	initial /
�.
For the example parameters given in Sec. III, this corre-
sponds to �3200 photons for 	initial=4 /r, corresponding to
kB�2.8 K. With typical photon detection efficiencies of less
than 10−3, very few photons are registered in a single experi-
ment. We must therefore repeat many experimental cycles
consisting of a heating period and a cooling period.

We now consider the form of the fluorescence signal
when averaged over many such experimental cycles. Here,
we will assume that the heating is stochastic and take the
distribution P0�	� of the motional energies at the beginning
of each cooling period to be the Maxwell-Boltzmann distri-
bution with mean energy 	̄,

P0�	� =
1

	̄
e−	/	̄. �16�

However, the results below hold for any form of P0�	�.
The thermally averaged scattering rate is conveniently

written in terms of the propagator � of 	: Let ��	0 ,�� de-
note the energy at time � of an atom with initial energy
	��=0�=	0. We can then write the thermally averaged scat-
tering rate at time � as

� dN

d�
�

	̄

= �
0

�

P0�	���dN

d�
�

	=��	�,��
d	�. �17�

This can be efficiently computed numerically by noting that
�(��	 ,�1� ,�2)=��	 ,�1+�2�, as detailed in Appendix B.
Figure 3 shows the thermally averaged scattering rate for a
few different parameters.

The fluorescence predicted by Eq. �17� has been found to
be in agreement with experimentally observed fluorescence.
We show one experimental data set for comparison in Fig. 4;
the experiments are more fully described in Ref. �20�. Fur-
thermore, the resulting estimated heating rates have been
found to agree reasonably well with results obtained using
the Raman sideband technique �17,20�. This agreement may
at first seem surprising, given that the two methods probe

20 40 60 80 100
Τ r

0.2
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0.4

0.5

0.6

0.7

0.8
dN
�d
Τ

∆��
1
�������������������

3

∆��1

∆��
�����

3

FIG. 2. Scattering rate dN /d� vs time during Doppler cooling of
a single atom with initial energy 	=10 /r for different laser detun-
ings. For 
�
c=−1 /�3, a maximal scattering rate occurs at 	=	s,
as given by Eq. �14�. The maximal value of the scattering rate is
given by Eq. �15�. Closer to resonance �
c�
�0�, the scattering
rate increases monotonically during the cooling.

WESENBERG et al. PHYSICAL REVIEW A 76, 053416 �2007�

053416-4



very different energy scales and that the Raman sideband
technique is not sensitive to collisional heating. For the mea-
surements based on the Raman sideband technique the ion
was allowed to heat for only a few milliseconds, thereby
gaining a few motional quanta. In contrast, the measurement
results presented in Fig. 4 are based on 25 s heating periods,
allowing the ion to gain many motional quanta. However, the
results should agree if, as is currently believed, the heating
rate is dominated by the effects of stochastic field fluctua-
tions originating at the electrodes �16�. In this case, we
would not expect any thermalization effects before the ion
temperature is comparable to that of the electrodes. We
would also not expect the effective temperature of the elec-
trodes to be below the ambient temperature ��300 K�.

V. OPTIMAL EXPERIMENTAL PARAMETERS

We now examine how the total measurement time re-
quired to reach a given accuracy in the heating rate estimate
depends on the choice of experimental parameters. As the
recoil parameter r will be fixed by the choice of atom, we
consider only the choice of optimal values for initial ion
energy 	̄, cooling laser detuning 
, and saturation parameter
s.

The experimental signal during a single recooling cycle
will consist of an initial deviation from the steady state scat-
tering rate. For a given initial motional energy, both the size
and duration of this deviation increase with decreasing de-
tuning, as illustrated by Fig. 2. For a given experimental
setup, the optimal detuning is decided as a compromise be-

tween recooling signal and ability to recool atoms that have
been highly excited by, e.g., collisions.

For a given value of 	̄, the experimental signal, in terms
of the number of photons scattered before steady state is
reached, does not depend on the laser beam intensity. Since 	̄
is the average initial energy relative to E0, which is propor-
tional to the power-broadened linewidth, a lower laser beam
intensity will give a larger signal for a given heating period.
This suggests using the smallest feasible laser intensity, re-
quiring a compromise with respect to robust cooling and
detector dark counts. From this standpoint we want to keep
the saturation parameter below, but probably close to, 1.

For a given detuning and laser intensity, an additional
choice of the length of the heating period in each experimen-
tal cycle has to be made: Should we perform a relatively low
number of cycles with long heating periods or more cycles
with shorter heating periods? To answer this question, we
estimate the total measurement time Ttot required to reach a
certain relative accuracy in the estimate of the heating rate.
We assume a constant heating rate and assume that the total
time is dominated by the heating periods, so that Ttot is pro-

portional to the average initial energy Ē�	̄�1+s, and to the
number of runs.

We consider a setup where the observed fluorescence is
collected in sequential time bins that are short compared to
the total time required for the cooling process. In the limit
where the distribution of the integrated number of counts ni
in time bin i is described by a normal distribution with vari-
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0.35
�d

N
�d
Τ�

∆��
�����

3

20 40 60 80
Τ r

0.40

0.50

0.60
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FIG. 3. �Color online� Thermally averaged scattering rate vs
time, for 
=−�3 �top� and −1 /�3=
c �bottom�. In both figures, P0

is assumed to be a thermal distribution �Eq. �16�� with 	̄ equal to
one, two, and four times 	c for the solid, dashed, and dash-dotted
lines, respectively. Note that, for 
�
c=−1 /�3, the initial fluores-
cence is larger than the steady state fluorescence for low values of
	̄; this is attributed to the local maximum in the fluorescence vs
time as illustrated in Fig. 2.
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FIG. 4. Experimentally observed fluorescence during Doppler
cooling of a single 25Mg+ ion �20� compared with the fluorescence
predicted by the simple 1D model. Data points �triangles� indicate
the observed scattering rates, obtained by integrating over many
experiments. In each experiment, the time-resolved fluorescence is
recorded during ion recooling, after the ion has been allowed to heat
up for a period of 25 s. The experimental parameters are those given
after Eqs. �6a�–�6d�. Error bars are based on counting statistics. The
solid curve is the scattering rate predicted by Eq. �17�, assuming the
motional energy of the ion after the heating period to be given by
the Maxwell-Boltzmann distribution �16� with 	̄=5.1 /r, corre-
sponding to a temperature of 3.9 K. Since 	̄ is the only free param-
eter of Eq. �17�, the estimated value was extracted by a single-
parameter fit, and agrees reasonably well with an independent
temperature estimate of 3.4±0.3 K extrapolated from heating rates
measured in the same trap by use of the Raman sideband technique
�20�.
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ance �i, we can estimate the uncertainty on the maximum-
likelihood estimate of 	̄ for a given data set by �26�

1/��	̄�2 = �
i

 �ni

� 	̄
�2 �i

2. �18�

It follows from Eqs. �10a�, �11�, and �17�, that in the 1D case
the cooling dynamics can be rewritten in a form independent
of r by reparametrizing in terms of Nr, 	r, and �r. We will
denote the reparametrized scattering rate by

R̄
�	̄r,�r� = � ��Nr�
���r� � 	̄r

. �19�

Since the relative uncertainty on the heating rate estimate is
equal to ��	̄� / 	̄ and �i=�ni, Eqs. �18� and �19� allow us to
estimate the time required to obtain a given relative uncer-
tainty on the heating rate:

Ttot

�1 + s
� �	̄r�

0

� 
 �R̄
�	̄r,q�
� 	̄r

�2
dq

R̄
�	̄r,q�
�−1

. �20�

Note that the right-hand side depends only on 
 and 	̄r.
Figure 5 shows Ttot /�1+s calculated for different detunings.
The figure confirms that a low detuning is indeed favorable,
and also shows that, for a given detuning, Ttot decreases with
increasing 	̄. This is not surprising, given that the time to
extract a certain amount of energy increases with atom tem-
perature, as illustrated by Fig. 1. From Fig. 5 and the defini-
tion of 	c �Eq. �13��, we can see that the heating period
should be chosen long enough to get a significant signal, i.e.,
	̄�	c, but the optimal heating period must be decided based
on other experimental parameters such as trap depth and
background gas collision rate.

VI. COOLING IN THREE DIMENSIONS

So far, we have considered only cooling in one dimen-
sion. In this section we will consider the effect of the vibra-
tional modes in other directions on the cooling process. Our

goal is to gain a qualitative understanding of the effects of
the transverse modes on the cooling dynamics of the z mode,
with the intent of establishing to what extent the simple 1D
model presented above is a reasonable approximation.

A. 3D cooling of neutral atoms

For a neutral atom, the confinement transverse to z is not
associated with micromotion, as it is for ions in a linear Paul
trap, and the 1D weak-binding model extends immediately to
three dimensions. Following Sec. III, let 	i, i= �x ,y ,z�, de-
note the motional energy in mode i, 
D

�i�=−�kivi /E0 the Dop-
pler shift, and 
M

�i�=2�	iri the maximum Doppler shift. Al-
though the cooling of all modes is formally identical in the
absence of micromotion, we will discuss the cooling dynam-
ics with a focus on the z mode.

In experiments it is typically easy to make the frequencies
of the three modes incommensurate, which we will assume
here. In that case, we can write the rate of change of 	z as

d	z

d�
=� − 
D

�z�

1 + �
 + �
j


D
�j��2

�
l

PD�
M
�l�;
D

�l��d3�D

=� − 
D
�z�PD�
M

�z�;
D
�z��Rz�
 + 
D

�z��d
D
�z�, �21�

where Rz is the effective line profile experienced by the z
mode, obtained by convolving the Lorentzian line profile
with the distribution PD

�x,y� of the combined Doppler shift

D� �
D

�x�+
D
�y� due to the x and y “spectator” modes,

PD
�x,y��
D� � =� PD�
M

�x�;u�PD�
M
�y�;
D� − u�du . �22�

For the 3D case, Rz replaces the Lorentzian factor 1 / �1+ �

+
D�2� of Eq. �9�. As illustrated in Figs. 6 and 7�a�, PD

�x,y� is
peaked �diverges� at 
D� = ± �
M

�x�−
M
�y��. If �
M

�x�−
M
�y���2, the

peaks are separated by more than the width of the Lorentzian
profile, and Rz will be double peaked, as illustrated by the
solid line in Fig. 7�b�. It follows from Eq. �21� that the cool-
ing rate in the limit of small 
M

�z� is proportional to the slope
of Rz at 
, and that the rate of change of 	z is positive if the
slope is negative. If −�
M

�x�−
M
�y���
�0, this will result in

heating of the z mode, at least as long as 
±
M
�z� are both

inside the peaks of Rz, that is, when 
M
�z�� �
M

�x�−
M
�y��+
, as

illustrated by the solid curve in Fig. 7�c� for �
M
�x� ,
M

�y��
= �0,4� and �1,3� �13,15�. The figure also shows that this
thermalization or energy equilibration effect is not present if
�
M

�x�−
M
�y���1, as Rz is not double peaked in this case. Math-

ematically, d	z /dt, Rz, and PD
�x,y� are all conveniently ex-

pressed as convolution integrals of functions with known
Fourier transforms.

The dashed lines in Fig. 8 show the cooling rates pre-
dicted by Eq. �21� for the case of the x spectator mode ex-
cited, for various energies of the two modes. When 
M

�z� is
large compared to 
M

�x�, we see from the right-hand side of
Fig. 8�b� that the z cooling rate is almost unaffected by the x
spectator mode. This can be understood by noting that, in the
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FIG. 5. �Color online� Total measurement time required to es-
tablish the heating rate with a given accuracy, assuming this time is
dominated by time for reheating. A local maximum is observed for
all detunings, but for 
=−1 /�3 it is located outside the range cov-
ered by the plot.
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limit where PD�
M
�z� ;
D

�z�� is uniform over the values of 
D
�z�

where Rz�
+
D
�z�� is nonzero, the symmetry of Rz implies that

the average energy change per scattering event is 
, as also
discussed in Sec. III. Since Rz�
eff��0 for 
eff�1+
M

�x�

+
M
�y�, this implies that the temperature of the spectator

modes will not affect the cooling rate in this limit. At lower
values of 
M

�z�, we generally see a decrease in the cooling rate
in a gradual approach to the thermalization regime discussed
above.

The consequences of thermalization and equilibration pro-
cess are complex, when considering the full 3D cooling
problem. Consider for instance the case where only one
mode is initially hot. According to the discussion above, this
will result in heating of the two remaining modes, until the
fastest-heating mode has reached a value of 
M similar to
that of the initially hot mode. After this thermalization, the
modes will be cooled simultaneously at a cooling rate sig-
nificantly lower than the cooling rate for a single hot mode.

At this point, it is worth reconsidering the validity of our
omission of recoil heating. The recoil heating rate as given
by Eq. �5� is seen to have a maximum value of 4r /3 at the
resonant scattering rate. It is clear from Fig. 8 that for typical
values of r on the order of 10−3, recoil is insignificant at high
energies.

B. 3D cooling of ions including the effects of micromotion

For an ion in a linear Paul trap, if we take the z direction
to be the axis, confinement in the transverse x and y direc-
tions is provided by the ponderomotive potential of a rf
quadrupole field. The full 3D cooling problem including mi-
cromotion on the transverse modes is very complex even in

the Lamb-Dicke regime �13,14,21�. At low saturation, the
effects of the micromotion caused by a rf field of frequency
� can be modeled by including micromotion sidebands in
the line profile �13�. Micromotion with peak amplitude
a(x̄�t�), where x̄ is the ion position averaged over one period
of the rf field, can be described by the line profile

R��
eff,�� = �
n=−�

�

Jn
2���

1

1 + �
eff − n�̃�2
, �23�

where 
eff=
+� j
D
�j� is the effective detuning, �= �a�x̄� ·k� is

the micromotion modulation index, �̃=�� /E0 is the scaled
rf frequency, and Jn is the nth Bessel function.
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FIG. 6. �Color online� Probability density Eq. �22� for the com-
bined Doppler shift 
D� =
D

�x�+
D
�y� due to two excited modes �curve

on left wall� is a marginal distribution of the joint probability den-
sity PD�
M

�x� ,
D
�x��PD�
M

�y� ,
D
�y�� of �
D

�x� ,
D
�y�� �3D surface�. Note that

only two of the peaks in the joint probability distribution lead to
peaks in the marginal distribution. Plot is drawn for 
M

�x�=3 and

M

�y�=1, as the dash-dotted line in Fig. 7�a�, and the joint distribution
is truncated to �
D

�i���0.95 
M
�i� for illustrational purposes.

FIG. 7. �Color online� Cooling of the z mode with two excited
spectator modes in the absence of micromotion. �a� shows the prob-
ability density PD

�x,y� of the combined Doppler shift due to the x and
y modes for �
M

�x� ,
M
�y�� equal to �0,4� �solid�, �2,2� �dashed�, and

�3,1� �dash-dotted�. �b� shows the effective line profile Rz�
eff
�z�� ob-

tained by convolving PD
�x,y� with the Lorentzian line profile. Here


eff
�z�=
+
D

�z�. The spectator mode parameters are the same as for �a�,
and the different curves correspond to the same values of �
M

�x� ,
M
�y��

as in �a�. The dotted line shows the Lorentzian line profile, corre-
sponding to the spectator modes being cold, essentially the 1D cool-
ing case. �c� shows the z mode cooling rate for 
=−1 as a function
of 
M

�z� for the line profiles of �b�.
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In contrast to the situation in Ref. �13�, we are considering
a case where � changes during the secular motion. Since �

and 
eff depend on x̄ and ẋ̄, respectively, we parametrize the
secular motion by the instantaneous phases i, where x̄i

= x̄i
�0� cos�i�t��, and where x̄i

�0� is slowly varying and ̇i

��i. Choosing the x and y axes so that the rf field is pro-
portional to �x̄x̂− ȳŷ�cos��t�, we find that 
D

�i�=
M
�i� sin�i�. In

the limit where the transverse confinement is modified only
weakly by static potentials �22,23�, so that �x��y, we find
in the pseudopotential approximation that �

=�2�
M
�x� cos�x�−
M

�y� cos�y�� /�̃, which we note to be inde-
pendent of the secular frequencies. In this case we have

d	i

d�
= −� 
iR�„
eff���,��x,y�…

d3�

�2��3 , �24�

where the integral is over �0,2�� in all dimensions. Note
that, since the modulation index depends only on the trans-
verse components of the motion, the effect of excited trans-
verse modes on the cooling of the z mode can still be de-
scribed in terms of an effective line profile similar to Rz in
Eq. �21�.

For the cooling of the transverse modes, the effects of
micromotion on the cooling rates are pronounced, as illus-
trated by the solid curves in Fig. 8�a�. A very clear qualitative
difference from the cooling rate in the micromotion-free case

is that, at sufficiently high rf frequencies ��̃�4.4 for 

=−1�, stable points for the transverse mode energies develop
even when the remaining modes are cold. This effect has
been discussed in Ref. �15� and is attributed to the heating
peak of the Doppler distribution becoming resonant with a
micromotion sideband, as described by Eq. �23�. This might
be related to the bistable behavior reported in some single-
ion experiments �21,27,28�. The stability breaks down when
thermalization is taken into consideration. Consider, for in-
stance, the stable point indicated in Fig. 8�a� for 
M

�x��7.6.
Here, it is clear from the figure that, when the z mode has
heated to 
M

�z��2, cooling of the x mode will commence.

When 
M /�̃��2 for the transverse modes, we find that
only the J0 term of Eq. �23� contributes significantly, and the
argument of Sec. VI A that the cooling rate for the z mode is
not affected by excited transverse modes when 
M

�z��1+
M
�x�

+
M
�y� also applies here, as illustrated by Fig. 8�b�.
Finally, another effect with respect to micromotion is that

the presence of uncontrolled static stray fields can result in
the ion experiencing micromotion even at the ion equilib-

rium position. At temperatures where 
M ��̃, the first-order
effect according to Eq. �23� of this will be a reduction of the
central spectral component by a factor of J0���2; see, for
example, Ref. �29�. We note that this effect can be compen-
sated by using an effective saturation parameter based on the
steady state fluorescence observed in the trap.

It is clear from the results in this section that we cannot
ignore the transverse modes if their associated maximal Dop-
pler shifts are comparable to that of the z mode. If, however,
we assume the transverse modes are cold enough to avoid
the heating effects described in Figs. 7 and 8, we have seen

above that the primary effect of the transverse modes will be
to reduce the cooling rate of the z mode. This would result in
the 1D model overestimating the mean initial energy of the z
mode. However, for most experiments that use linear rf traps,
it is reasonable to assume that the transverse modes are
heated significantly less than the z mode. This is because
most investigations of the anomalous heating in ion traps
have found the results to be consistent with heating rates
having a frequency dependence of �−n with n�1 �16,18,20�.
Since the transverse mode frequencies are often an order of
magnitude larger than �z, this would indeed lead to the trans-
verse modes being significantly colder than the z mode. Also,
since the energy in the transverse modes affects only the
cooling of the z mode through the resulting Doppler shift, the
effect of the transverse modes could be further reduced by
arranging k to have a smaller projection on the transverse

FIG. 8. �Color online� Predicted cooling rates for �a� a trans-
verse mode in the presence of an excited z mode and �b� the z mode
in the presence of a single excited transverse mode at 
=−1.
Dashed lines assume that the trapping potential has no associated
micromotion, as described by Eq. �21�. In this case, the cooling
rates are of course identical for the two cases. The solid lines as-
sume the transverse confinement to be provided by a rf quadrupole

potential with a frequency �̃=6, as described by Eq. �24�. For both
situations, the cooling rate is plotted with the spectator mode having
a motional energy of 
M = �0, 2 , and 4�. The plots are based on
the weak-binding model, and thus assume secular frequencies to be
small compared to the linewidth. Note that the thermalization and
equilibration effect discussed in the text is clearly observed for both
cases. The dot in �a� indicates the stable point discussed in the text.
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modes. This would, however, reduce the efficiency of cool-
ing of the transverse modes �11�.

C. Departures from the weak-binding, low-saturation limit

In most experimental situations, we will not strictly sat-
isfy the requirements of low saturation or weak binding. In
particular, for the trap referenced in Fig. 4 the secular fre-
quencies of the transverse modes are approximately equal to
half the 41.4 MHz linewidth of the Doppler cooling transi-
tion, making the weak-binding assumption only approxi-
mate. Also, the illustrated data were obtained at a saturation
parameter of 0.9, outside the validity region of the line-
profile model that accounts for rf micromotion �24�. To vali-
date our claim that the fluorescence signal predicted by the
1D model is a good approximation if the heating rate is
assumed to be a strongly decreasing function of �, we per-
formed a numerical Monte Carlo simulation of the fluores-
cence, based on integrating the optical Bloch equations
through a large number of cooling trajectories. For each tra-
jectory, we propagate the density matrix � of the ion’s inter-
nal state according to the master equation

d�

dt
=

i

�
��,H�c��x,t�� + 2L�L† − �L†L,�� , �25�

where L��g�	e��� /2 is the Lindblad operator for excited
state decay and x�t�= x̄�t�+a(x̄�t�)cos��t� for the x̄ and a
introduced above. Coupling to the motional state is modeled

by the average light force mẍ̄=�k��ee�t�. This model as-
sumes neither that the atoms are weakly bound nor that the
cooling beam intensity is low, but does neglect recoil heat-
ing.

Figure 9 shows the result of fitting simulations with dif-

ferent assumptions for the frequency dependence of the heat-
ing to the data set presented in Fig. 4. We find that, if we
assume the transverse modes are not heated, we obtain a
temperature estimate of 3.9 K, in agreement with the result
of fitting the 1D model to the data, as illustrated by Fig. 4.
The z mode temperature of 3.7 K estimated from the �−1.4

model found in Ref. �20� is close to, and slightly smaller
than, this value, and agrees with the temperature estimate of
3.4±0.3 K based on extrapolating heating rates measured
with the Raman sideband technique for the same trap con-
figuration. This particular form of the frequency dependence
of the heating rate was observed for the same trap when the
Raman sideband technique �20� was used, and similar fre-
quency dependencies have been observed in other geom-
etries �16,18�. If we instead assume an �−1 dependence of
the heating, the results change only slightly.

Our main conclusions from the simulation results are that
the primary effect of the presence of weakly heated spectator
modes will be to slow down cooling due to thermalization. If
�−1.4 heating of the transverse modes is assumed, the 1D
model will somewhat overestimate the motional temperature
of the axial mode.

VII. MODIFIED EXPERIMENTAL PROTOCOLS

We consider two modifications to the experimental proto-
col to reduce the total measurement time. Both are motivated
by the fact that the size of the signal from a given amount of
heating increases with increased initial energy.

One approach would be to coherently add a known
amount of energy to the z mode at the start of the heating
period. If the added energy is enough to bring the atom into
the slow-cooling regime, this will increase the signal change
due to a given amount of additional heating, as illustrated in
Fig. 10.

Alternatively, parametric amplification �30–32� could be
employed after the heating cycle to modify the thermal dis-
tribution. Parametric amplification can be implemented by
modulating the z trap potential at 2�z, and leads to amplifi-
cation of one quadrature of the motion while damping the
other quadrature. For a low value of 	̄, parametric amplifi-
cation would increase the fraction of experiments in which
the atom is in the slow-cooling regime at the beginning of
the cooling process, thus increasing the signal for a given
heating period, as illustrated in Fig. 11.

The performance of either of the modified protocols out-
lined in this section will be determined by the uncertainty of
the implementation parameters.

VIII. CONCLUSION

In conclusion, we have shown that the motional energy of
a trapped atom or ion can be estimated from the temporal
changes in fluorescence observed when Doppler cooling is
applied. Specifically, the initial energy can be estimated by
fitting Eq. �17�, where the mean initial motional energy is the
only free variable, to the observed fluorescence. Our analysis
assumes the oscillation frequency of the atoms is much
smaller than the linewidth of the optical transition used for
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FIG. 9. �Color online� Averaged fluorescence vs time as pre-
dicted by Monte Carlo simulations for best fits to the data presented
in Fig. 4 for different models of the frequency dependence of the
anomalous heating rate. The solid line assumes transverse modes to
be unaffected by the heating. For the dashed and dash-dotted lines,
we assume heating to be proportional to �−1.4 and independent of
�, respectively. The fitted value of the initial z mode temperature
for the three cases is 3.9, 3.7, and 1.4 K, respectively. Assuming the
transverse modes to be unaffected by heating �solid� should be very
well approximated by the best fit to the 1D model �dotted�, as also
plotted in Fig. 4.
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Doppler cooling and the motional energy at the start of the
cooling is thermal.

Compared to Raman sideband transition methods for
heating rate measurements, this method is simpler to imple-
ment experimentally but requires longer measurement dura-
tion for traps with low heating rates. On the other hand, for
high heating rates, where sideband cooling is inefficient, this
may be the method of choice. We have shown that, in the
typical situation, where the time for heating dominates, the
total measurement time decreases with decreasing laser in-

tensity, decreasing laser detuning, and increased heating pe-
riod duration. We have compared the trade-off between these
parameters �Fig. 5 and Eq. �20��. Finally, we indicate �Sec.
VII� that the total measurement time can be reduced by add-
ing additional energy to more quickly bring the ion into the
low-fluorescence regime.

By comparison with various models of three-dimensional
Doppler cooling, we have established that under typical ex-
perimental conditions the effects of the high-frequency
modes are small, and that they will lead to temperature esti-
mates that are somewhat higher than the actual temperature
of the low-frequency mode.
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APPENDIX A: INTEGRALS

The integrals appearing in Eqs. �9�, �11�, and �21� are all
convolution integrals of elements with analytical Fourier
transforms and can thus be easily evaluated in Fourier space.
For the 1D integrals, the inverse Fourier transform can also
be performed analytically. Here we present a more direct
approach to evaluating the 1D integrals.

For a ,b�R we define Z�a ,b� as

Z � �
0

2� 1

sin�� − z

d

2�
= −

1

z
� z2

z2 − 1
, �A1�

where z= �a+ i� /b. Noting that

1

x − z
= b

1

1 + �a − bx�2 ��bx − a� + i� , �A2�

we find that, according to Eq. �A1�,

�
0

2� b sin��
1 + �a − b sin���2

d

2�
=

1

b
�Re�Z� + a Im�Z�� ,

�
0

2� 1

1 + �a − b sin���2

d

2�
=

1

b
Im�Z� .

Taking the branch cut discontinuity for �· to be along the
negative real axis, we have for b�0 that ��−iz�2=−iz, so
that

Z�a,b� =
ib

�b2 − �a + i�2
, b � 0. �A3�

APPENDIX B: NUMERICAL CALCULATION OF THE
AVERAGED SCATTERING RATE

In this section we present an efficient numerical method
for evaluating the averaged scattering rate given by Eq. �17�.
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FIG. 10. �Color online� Improving the sensitivity of the tem-
perature measurement by deliberate excitation. The dotted line
shows the average scattering rate �17� as a function of time for an
atom that was deliberately excited to a motional energy exactly
equal to 	0=4 /r, so that P0�	�=
Dirac�	−	0�. The solid line shows
the scattering rate as a function of time for an atom which has first
been deliberately excited to a motional energy of 	0=4 /r and then
allowed to heat for a duration that added an average thermal energy
of 	̄=0.75 /r. For comparison, the dashed �dash-dotted� line shows
the signal for an atom experiencing the same �no� heating period
without any initial excitation, i.e., with 	̄=0.75 /r �	̄=0�. In all
cases, 
=−1. With initial �deliberate� excitation, the change in fluo-
rescence rate due to the heating is seen to be larger.

5 10 15 20 25
Τ r

0.35

0.4

0.45

0.5

0.55

�d
N
�d
Τ�

FIG. 11. �Color online� Improving the sensitivity of the tem-
perature measurement by parametric amplification. The solid �dot-
ted� line shows the average scattering rate vs time during the re-
cooling of an atom which has been allowed to heat to 	̄=0.75 /r
�0.05 /r� and then subjected to parametric amplification by a factor
of 3. For comparison, the dashed and dash-dotted lines show the
average scattering rate for the same heating �	̄=0.75 /r and 0.05 /r,
respectively�, but without parametric amplification. In all cases, 

=−1.
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Introducing 	n=��	0 ,n���, for n=0,1 , . . ., we note that
��	m ,n���=	m+n. The values of 	n are the energies along a
single cooling trajectory. If the scattering rate can be consid-
ered constant on time scales of ��,

dN

d�
���	0,��� � Rn, � � ��n − 1���,n��� , �B1�

we find that the thermally averaged scattering rate, as given
by Eq. �17�, averaged over the same intervals can be approxi-
mated by

R̄n � �
m=0

�

Rm+n�
	m+1

	m

P0�	��d	�. �B2�

Since the values of the Rn are independent of P0, R̄n is easily
calculated for different P0 by list convolution.

For the Maxwell-Boltzmann distribution, a numerically
stable form of the weight factors appearing in �B2� is

�
	−�	/2

	+�	/2

e−	�/	̄d	�

	̄
= 2e−	/	̄ sinh
�	

2	̄
� .
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